
HAL Id: hal-02397453
https://hal.science/hal-02397453

Submitted on 6 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tensor and Coupled Decompositions in Block Terms:
Uniqueness and Irreducibility

Dana Lahat, Christian Jutten

To cite this version:
Dana Lahat, Christian Jutten. Tensor and Coupled Decompositions in Block Terms: Uniqueness
and Irreducibility. SPARS 2019 - Workshop on Signal Processing with Adaptive Sparse Structured
Representations, Jul 2019, Toulouse, France. �hal-02397453�

https://hal.science/hal-02397453
https://hal.archives-ouvertes.fr


Any correspondence concerning this service should be sent 
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: 
http://oatao.univ-toulouse.fr/25048 

Open  Archive  Toulouse  Archive  Ouverte 

OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 

To cite this version: Lahat, Dana and Jutten, Christian Tensor 
and Coupled Decompositions in Block Terms: Uniqueness and 
Irreducibility. (2019) In: Workshop on Signal Processing with 
Adaptative Sparse Structured Representations (SPARS 2019), 1 
July 2019 - 4 July 2019 (Toulouse, France). 



Tensor and Coupled Decompositions in Block Terms:

Uniqueness and Irreducibility

Dana Lahat
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Abstract—In this work, we present recent results concerning decom-

positions of tensors and ensembles of matrices in sum of terms that

are not necessarily rank-1. We formulate mathematically the concept of

irreducibility, which is the enabling factor that allows these low-rank

terms to exist as “blocks” without being further factorized into terms

of smaller rank. We first demonstrate these results on tensors. Next,

we generalize our results to a coupled factorization of several matrices

that cannot be written as a single tensor. This coupled factorization is

inspired by data fusion, and generalizes independent component analysis

in several directions.

OUTLINE

Decomposition of a tensor in a sum of rank-1 terms is a basic

and prevalent tool in data analysis. However, in various scenarios,

writing a tensor as a sum of terms whose rank is other than one is

more faithful to the underlying structure of the data (see, e.g., [1] and

references therein). Such models are based on the observation that in

real-world data, the assumption that each latent phenomena can be

described by rank-1 terms is sometimes too restrictive. For this aim,

different types of tensor block term decomposition (BTD) [2] have

been proposed. When applicable, these models provide advantages

such as higher precision and computational efficiency over their rank-

1 counterparts (e.g., [3], [4]).

A decomposition of a tensor in a sum of rank-1 terms means that

we write it as a sum of rank-1 tensors. A rank-1 tensor of order N

(an N -dimensional “cube”) is an outer product of N rank-1 vectors.

A rank-1 tensor is the most minimal form to write a tensor of order

N , in the sense that it can be represented by only N vectors: we

cannot write an N th-order tensor as an outer product of less than N

vectors (some or all of which might be identical).

This observation seems trivial. But, what happens when we speak

of representing a tensor as a sum of terms that are not rank-1 tensors?

How come such decompositions exist? Why don’t we write each of

these terms as a sum of several rank-1 tensors? How can these low-

rank terms (which are not rank-1 tensors) have a meaning on their

own? This work is motivated by these questions.

Fundamental concepts in decompositions in a sum of terms of rank

other than one are reducibility and irreducibility. In this context,

irreducibility means that each term in the sum cannot be further

factorized into several distinct terms of smaller rank by linear

transformations, that is, by multiplying each mode of the tensor by

an invertible matrix. Irreducibility is irrelevant to decompositions in

sum of rank-1 terms, because each mode already has the smallest

possible rank which is one.

We say “in this context”, because the term “(ir)reducibility” is

used in algebra also in other meanings. Our use of “(ir)reducibility”

is strongly related to that used in representation theory [5]. In fact,

it was shown [6], [7], [8] that the irreducibility, and thus also the

uniqueness and identifiability, of joint block diagonalization (JBD)

(illustrated in Fig. 1a), and of the rank-(Lr,Mr, ·) BTD (illustrated

in Fig. 1b), can be characterized using Schur’s lemma [5], when the

other factor matrices are nonsingular. In this work, we shall explain

how this result leads to a possible new generalization of the concept

of Kruskal rank [9]. Kruskal’s rank is a key concept in defining the

uniqueness of the decomposition of a tensor in sum of rank-1 terms.

Earlier work on the uniqueness of BTD focused on role of the

factor matrices (e.g., the matrix A and its transpose in Fig. 1), but

not on the role of the values on the block-diagonals of the tensor S
(see Fig. 1). In order to avoid reducibility, it was assumed that the

block-diagonal terms, also known as core tensors [2], were generic.

Given this assumption, it was proven in earlier work that BTD were

generically unique, under mild conditions on the factor matrices.

In this work, we thus enrich our understanding of block decompo-

sitions by taking into account non-generic core tensors [8]. Using this

approach, we prove that BTD (specifically, a type-2 decomposition

of a tensor in a sum of rank-(Lr,Mr, ·) terms, illustrated in Fig. 1b)

may be non-unique when the core tensors are irreducible yet not

generic. This observation is not covered by other existing results in

the literature. We show that if the diagonal blocks (on the frontal slice

of the tensor) have different size, they cannot cause non-uniqueness;

this raises the question whether the set of block dimensions in a BTD

can be regarded as a type of diversity [10]. Next, we show how to

extend our analytical framework, that is based on Schur’s lemma,

to the an ensemble of matrices that cannot be stacked in a single

tensor [11]. We describe several ways in which this new coupled

block decomposition/diagonalization (illustrated in Fig. 2) subsumes

known results on the rank-(Lr,Mr, ·) BTD. We obtain a conjecture

on a new generalization of Kruskal’s rank for the core tensors. We

explain how our results provide new insights on the uniqueness of

canonical polyadic decomposition (CPD) and BTD.
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(a) Joint block diagonalization (JBD) can be written in matrix notation, A−1X(t)A−⊤ = S(t) as the multiplication of each matrix X(t) by A−1

and its transpose. Each matrix S(t), 1 ≤ t ≤ T , is block diagonal with the same block pattern for all t. This is a joint congruence transformation

that yields a set of block-diagonal matrices, hence the name JBD. Instead, we can write this in tensor notation: X ×1 A
−1 ×2 A

−1 = S, where ×n

in the nth-mode tensor product.
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(b) Decomposition of a 3rd-order tensor X in a sum of block terms. In this example, there are three blocks on each diagonal, hence, three block

terms; only the first two are depicted explicitly on the right hand side. The 3rd-order tensor X can be written as a multiplication of a tensor S,

whose frontal slices are block-diagonal matrices with the same block pattern, with matrix A and its transpose, on the first and second mode. Note

that here, there is no multiplication on the third mode. The illustrated decomposition is a special case of the (Lr,Mr, ·)-BTD [2].

Fig. 1: Illustration of a decomposition of a 3rd-order tensor into block terms. When the transformation matrix A is invertible, the only

non-uniqueness of this decomposition may occur due to pathological values in the diagonal blocks [8].
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Fig. 2: Illustration of coupled block diagonalization (CBD). In this

example, we have an ensemble of matrices, {X[k,ℓ]}, indexed by

1 ≤ k, ℓ ≤ K, where K ≥ 2, and K transformations (invertible

matrices) A
[k]. Each matrix X

[k,ℓ] is multiplied by two transfor-

mation matrices: A−[k]
X

[k,ℓ]
A

−[ℓ]⊤ = S
[k,l]. Each matrix S

[k,l] is

block diagonal: in this example, it has three rectangular (in this case,

they are illustrated as square, but this does not have to be the case

in general) non-overlapping matrices on its main diagonal, and the

off-diagonal terms are zero. This type of decomposition, which was

introduced in [12], is more general than JBD, because we can obtain

JBD as a special case of coupled block diagonalization (CBD), by (i)

setting A
[k] = A for all k, and (ii) S[k,ℓ] all have the same size and

the same block-diagonal structure (these requirements are already

satisfied in the illustration, but this does not have the be the case

in general). Since CBD is more general than JBD, its uniqueness

cannot be determined using Schur’s lemma [5]. Therefore, we use
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