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Decomposition in multilinear rank-(L,, M, -) terms of a 3rd-order tensor Coupled block decomposition (CBD) of K matrices

[De Lathauwer, 2008]
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o X € CI*/*T third-order tensor
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e L,>1, M, >1

o S. € ClrxMxT" “core tensor”
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Motivation: more flexibility in representing latent signals, beyond rank-1
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Reducibility and Irreducibility

o For any arbitrary nonsingular transformations Y., Z,, and fixed r,

ASUB] = (AY,)(Y,S1Z))(Z "B]) Wi
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A multilinear rank-(L,, M., -) term is reducible by simultaneous (A, = B,) or generalized
(A, # B,) congruence transformation if the core tensor S, can be further block-diagonalized by
basis transformations in 1st and 2nd modes. Otherwise, it is irreducible by simultaneous or
generalized congruence.

o Reducibility can cause non-uniqueness
o As soon as 1" > 3, we generally have irreducibility = blocks exist

Non-uniqueness of multilinear rank-(L,, M,,-) decomposition

A decomposition in multilinear rank-(L,, M,, -) terms with irreducible core tensors is not
unique if, for some i # j € {1,... R}, 3 ¥ € Ct>*li, & ¢ CM>*Mi nonsingular s.t.
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[Lahat, Cardoso, Messer, 2012], [Lahat and Jutten, 2018]

Example of non-uniqueness
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Consider an alternative rank-(L, M, -) BTD of T with
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where ¥ € C'*% and & € CM*M are nonsingular matrices.

It So =& x| W X, P, then
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W, ® nonsingular = L; = L;, M; = M,
Holds also for not-full-column-rank A, B
Necessary and sufficient when A = B real nonsingular, S'¥) symmetric positive definite V¢
Reduces to Kruskal rank [Kruskal, 1977] equal to 2 when W, ® are scalars:
generalizes collinearity / “proportional columns”
Conjecture: Kruskal-like results for more than two irreducible core tensors? e.g.,
o kly +kg+ k& > 2R+ 2 (K} is “Kruskal rank” for partitioned matrices [pe Lathauwer, 2008])
o £ = 1 when our non-uniqueness condition holds

o kT =2if k¥ # 1, and 3 a triplet (¢, 5, k), ¢ # j # k satisfying
Sk:Sj Xl\If XQCI)—I—S]' Xl\P/ XQ(I)/

with &, U’ ®, and ®’ nonsingular matrices, or similarly
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[Lahat and Jutten, 2015]
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» Not a (reasonable) tensor decomposition

. Al = [ AR A[]g} o Clxy, 1l
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o CBD and multilinear rank-(L,, M,, -) are related
» Extendable to coupled tensor decompositions [Lahat and Jutten, 2016]

Motivation: uniqueness and identifiability of latent variables in multimodal data fusion

Reducibility and Irreducibility (CBD)

For any arbitrary nonsingular Z,Lk] of size Ly{] X Lq[nk] vr, k,
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(S EE is reducible in the coupled sense if for fixed r, each Siv" can be brought,
by coupled basis transformations, to the block form:

where 0 < olfl < Ly{], at least one o/ = 0,

I
b and at least one /¥ £ L7,

o L7U = L, Yk = Generally irreducible as soon as K > 3 = blocks exist
o LY +# LY for at least one k +#+ { = for certain block sizes, always reducible

Non-uniqueness of CBD

CBD with irreducible blocks is not unique if 3 at least one pair (¢, 7), ¢ # j, for which
L = L vk and
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where {®M}E  are nonsingular Lgk] X Lgk] matrices.
[Lahat and Jutten, 2015, 2019]
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Example of non-uniqueness

Use A" similarly to the rank-(L,, M, -) example

« Holds also for not-full-column-rank A%

o Necessary and sufficient when A¥l = A real nonsingular Vk, Syrlke = sL‘jﬂ

symmetric positive definite Vr
? Generalizes Kruskal rank to coupled -block- decompositions (beyond tensors)

o Our proofs rely on irreducibility, Schur's lemma [Schur, 1905], [Lahat, Jutten,
Shapiro, 2018], and a statistical model for the data

o Related results, generic uniqueness: e.g., [De Lathauwer, 2008], [Domanov et al.,

2018] (asymmetric); [Cai and Liu, 2017], [Cai, Cheng, Shi, 2019] (symmetric)
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