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Rheology of a confined suspension of vesicles (model for blood) is analyzed numerically in two
dimensions as a function of the viscosity contrast λ (defined as the ratio between the inner and the
outer viscosities ηin and ηout). We consider both the dilute, semi dilute and more concentrated
regimes up to about 35% of vesicle area fraction. This paper is a follow up of our recent work [A.
Nait-Ouhra et al., Phys. Rev. Fluids 3, 123601 (2018).] where we have found that depending on
λ the vesicle can either be centered or off-centered in a channel. Here we will analyze in particular
how the existence of the new attractor (off-centered solution) affects rheology. In the dilute regime,
it is found that the effective viscosity corresponding to the off-centered solution may have a lower
value than that of the centered solution. Moreover the effective viscosity shows a discontinuity as
a function of λ. This discontinuity is traced back to the existence of a saddle node bifurcation of
the lateral position. When the flow strength is increased the viscosity behavior becomes continuous,
owing to the evolution of the transition of the off-centered solution from a saddle-node to a pitchfork
bifurcation. We analyze then rheology as a function of the suspension concentration ϕ for different
values of λ. For large enough λ the viscosity may be lower or larger than that corresponding to
small λ, depending on initial configuration. There is a critical concentration beyond which the
initial configuration is irrelevant, but still the behavior of the suspension viscosity with ϕ for low
and large λ are quite different both qualitatively and quantitatively. This is traced back to special
spatial organization of the confined suspensions, which depends on λ.
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I. INTRODUCTION

Rheology of confined suspensions, where the suspended entity size becomes of the order of the available gap,
has received so far much less attention than their unconfined counterparts. There are many examples where the
confinement effects come to the fore. For example, in microfluidics and nanofluidics [1–11] the transported entities
(cells, macromolecules, such as DNA, and so on) have often sizes which can be comparable to the typical size of the
transport devices. We therefore expect the interaction of the suspended entities with walls to play decisive roles. For
example, walls may create depletion (zones), due either to entropic or hydrodynamic effects [10, 12–17] that should
affect transport properties. A prominent example is blood flow where red blood cells (RBCs) interaction with the
vessel walls leads to a cell-free layer close to the wall. This cell-free layer plays a pivotal role in oxygen transport,
since it leads to a drastic reduction of the effective viscosity with decreasing vessel diameter, allowing thus for a
more efficient transport in small vessels of the vascular network where oxygen (and other elements, such as ATP[18])
is delivered to tissues and organs. The decrease of blood viscosity with vessel diameter is known as the Fåhræus-
Lindqvist effect [19]. A basic understanding of the behavior of confined suspensions requires, on the one hand, the
identification of the key parameters that play a relevant role, and on the other hand linking the microscale (e.g.
the spatiotemporal organization) to the macroscale. The present study is directed along this objective. We will see
that the viscosity contrast λ (defined as the ratio between the inner viscosity ηin and the outer one ηout) plays an
essential role in the spatial organization, which in turn affects rheology. The rheology of confined suspensions has
been addressed quite sparsely to date. Regarding suspensions of rigid spheres, Peyla et al. [20–22] have shown that
for a certain range of ratio between the gap size and the particle size, the interactions between particles leads to a
decrease of the total dissipation. 2D and 3D numerical simulations of confined RBCs [23, 24] have been performed
using vesicles and capsules as a model. It has been shown that confinement leads to a subtle ordering with a strong
impact on rheology. Similar ordering [25] has been reported on confined suspensions of rigid paricles in the presence
of inertia.

Our study is motivated by blood flow. However, since our objective is to analyze the basic fundamental features,
we focus here on a simplified model: a 2D suspension of vesicles (a vesicle is a closed phospholipid membrane [26]).
It has been shown that 2D vesicles capture many features known for 3D models of RBCs. Indeed, both models show
several common shapes and dynamics, namely: tank-treading and tumbling [27, 28], slipper and parachute shapes
[29, 30], flow alignment [27, 31] and very recently polylobes shapes [32, 33] etc. In addition, both models show the
same rheological behavior [23]. These observations provide confidence that the adopted 2D system may retain the
essential effects of a more realistic model, and at the same time offers low enough numerical cost for a more systematic
investigation.

An important factor in our study is the role of the viscosity contrast λ. It is traditionally reported that under
shear flow (in 2D) two basic dynamics prevail: tank-treading (TT, obtained for low λ) and tumbilng (TB, obtained
for large λ). In the presence of confining walls, a vesicle under shear flow (obtained by two countertranslating plates)
is known to migrate towards the centerline, be it in the TT or TB regime (in the TB regime the migration velocity
is smaller than in the TT one) [31, 34]. The migration due to a wall has been the subject of many studies [34–42].

Recently [31], we have discovered that a vesicle under a confined linear shear flow in the Stokes limit has other final
solutions than settling in the centerline. More precisely, for a small enough flow strength and beyond a certain λ the
central position coexists with an off-centered one. The off-centered solution arises as a saddle-node bifurcation. When
the flow strength increases, the saddle node bifurcation transforms into a pitchfork bifurcation. Here we study how the
emergence of the new attractors affects rheology. We shall see that the new solutions significantly impact the rheology,
provided that the suspension concentration is small enough. When the concentration exceeds a certain value, we shall
see that the coexistence of attractors in the dilute regime is overridden by hydrodynamic interactions. However, the
viscosity contrast still plays an important role by changing qualitatively and quantitatively the rheological properties.

II. MODEL AND METHOD

Here we describe briefly the membrane model and the simulation method (for further information see [31, 43]). We
consider a set of 2D vesicles inside a channel, under a planar shear flow (v0 = γ̇yex). The vesicle membrane influences
the ambient fluid via bending and tension forces, and the total membrane force is given by:

fmem→flu = κ

(
d2c

ds2 + 1
2c

3
)

n− ζcn + dζ

ds
t (1)

which includes the local effective tension term ζ in order to fulfill the local arclength conservation constraint (ζ is
a Lagrange multiplier). Here c is the local curvature, s is the curvilinear coordinate along the membrane, n and t
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are the unit normal and tangent vectors, and κ is the membrane bending rigidity. The enclosed area A is conserved
automatically thanks to the fluid incompressibility. However, very slight variations of area and perimeter are observed
because of numerical errors (see Fig.1 in [44]). A derivation of Eq.(1) can be found in [42], obtained from the functional
derivative of the Helfrich [45] bending energy E = κ

2
∫
mem c

2ds+
∫
mem ζds.

We consider the limit of zero Reynolds number (the Stokes limit). The full problem is described by four dimensionless
numbers, which are:

λ = ηin
ηout

, Cκ = ηoutγ̇R
3
0

κ
≡ γ̇tc, Cn = 2R0

W
, τ = 4πA

L2 (2)

λ is viscosity contrast , where ηin, ηout denote the inner and the outer viscosities. Cκ is the capillary number measuring
the flow strength over the bending energy of the membrane. In other words, Cκ controls how the shapes of vesicles
deform in response to an applied external flow, where tc is the typical time needed for the vesicle to recover its
equilibrium shape after cessation of flow. γ̇ is the applied shear rate. Cn is the degree of confinement, where W is
the channel width. τ is the reduced area, where L is the vesicle perimeter, the effective vesicle radius is defined as
R0 =

√
A/π. Using the Green’s function techniques, the velocity v(r0) of a point on the membrane can be written

in the following dimensionless expression:

v(r0) = 2
1 + λ

v0(r0) + 1
2πCκ(1 + λ)

∫
mem

ds fmem→flu(r).G2w(r, r0) + 1− λ
2π(1 + λ)

∫
mem

dsv(r).T2w(r, r0).n(r) (3)

where we have used the following scales: R0 for the length, U = γ̇R0 for the velocity and κ/R3
0 for the force per

unit area. G2w(r, r0) and T2w(r, r0) are the Green’s functions (second- and third-order tensors) satisfying the no-slip
boundary condition at the bounding walls (see [43] for more details). v0 is the imposed velocity.
The dimensionless force fmem→flu is given formally by the same expression in Eq.(1) in which membrane bending

rigidity κ is set to unity (we keep the same notation for simplicity).
The still unknown Lagrange multiplier ζ is obtained by imposing a divergence-free velocity along the membrane,

expressing the membrane incompressibility. The numerical method of imposing membrane incompressibility follows
closely that presented in [28].

The membrane displacement in time is obtained by updating the discretization points after each time iteration,
using a Euler scheme, r0(t+ dt) = v(t)dt+ r0(t).

III. RESULTS

A. Rheology and its relation to attractors of vesicle positions in the channel

In a recent work [31] we have seen that the vesicle final lateral position in the channel (denoted as hf) depends on
λ. We have found that beyond a critical λ (and for a small enough Cκ) there is emergence of a non centered solution
coexisting with the centered one. In this section, we consider the very dilute regime (where the additivity effect due to
each vesicle is legitimate) in order to study the impact of the lateral position on the rheology. The effective viscosity
is given by:

ηeff = ηout(1 + [η]ϕ) (4)

Where [η] is the normalized viscosity (is called the intrinsic viscosity when ϕ → 0), represents the contribution of
the vesicles to the viscosity. It is given by

[η] = 1
ηoutSγ̇

[∫
mem

ds yfflu→mem,x +ηout(λ− 1)
∫
mem

ds (nxvy + nyvx)
]

(5)

where S is the total area of the vesicles. This expression is the extension of the Batchelor result for suspensions of
rigid particles to vesicles [46].

For a small enough λ the vesicle always reaches the centerline regardless of initial position [31]. Once the final
position is reached the normalized viscosity is extracted from (5). Figure 1 shows the result. Here parameters are:
τ = 0.7, Cκ = 1 and Cn = 0.4. Below a critical value of λ (λc ' 16, a value which depends on the other parameters)
the vesicle migrates towards the center of the channel. In this case (centered vesicle), the suspension shows a classical
behavior [28, 43, 47–51] : in the tank-treading motion (TT) [η] decreases with λ until a minimal value. Then [η]



4

 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2
 2.3
 2.4
 2.5
 2.6

T
T

T
B

FA

TB
a)

[η
]

-0.25
-0.2

-0.15
-0.1

-0.05
 0

 0.05

 5  10  15  20  25  30  35  40  45  50

b)

h
f 

/W

λ

FIG. 1. (Color online) The evolution of the normalized viscosity [η] and equilibrium lateral position hf (a and b resp.) as a
function of the bifurcation parameter λ. TT: Tank-treading, TB: Tumbling, FA: Flow alignment. Here τ = 0.7, Cκ = 1 and
Cn = 0.4. The dashed gray lines correspond to the results where the vesicle initially started at the centerline or at its vicinity
and ultimately gets centered. The centerline is at y/W = 0 on the vertical axis in (Fig. 1b) and the lower wall is at
y/W = −1/2.

increases in the tumbling regime (TB) (Fig. 1a). Above λc, if the initial position is close enough to the wall (the
distance from the lower wall in the simulation is 0.72R0), the vesicle settles in an off-center position [31] as shown
in Fig. 1b. This solution coexists with the centered solution. The vesicle aligns with the flow and we have referred
to this solution as flow alignment (FA), whereas in the coexisting centered regime the vesicle shows TB. The two
corresponding branches are labeled FA and TB in Fig. 1a. In other words, the suspension presents two possible
values of viscosity due to the existence of two different attractors (see Fig.2 in [44] for an averaged viscosity over all
possible final configurations). Whether the system selects one solution or the other depends on initial conditions.
The viscosity in the FA regime is significantly smaller than that in the TB regime. This is quite intuitive since a TB
vesicle has a larger cross section in the channel than a FA vesicle, opposing thus higher resistance to the flow. When
λ increases further the viscosity of the FA solution shows an increase of the suspension viscosity. This is due to the
fact that the FA vesicle is closer and closer to the wall, and thus the cell free layer becomes smaller and smaller. This
is reminiscent of the Fåhræus-Lindqvist effect [19].

B. Effect of degree of confinement

In this section we investigate the effect of the degree of confinement on the dynamics and rheology of a very dilute
suspension of vesicles. We take a single vesicle initially placed close to the lower wall. We set τ = 0.7, Cκ = 1 and vary
λ (key parameter in this study) for several Cn. The results are depicted in Fig. 2 which shows the same qualitative
behavior as seen in the previous section. The same dynamics of the vesicle for Cn = 0.4 (previous section) persists for
all values of confinement investigated here, that is, TT, TB and FA motion are observed. For each value of Cn (Fig.
2) there is a different critical viscosity contrast λc, below which the vesicle migrates to the centerline and [η] shows
a non-monotonic behavior as already discussed in the previous section. Beyond λc the vesicle settles at an off-center
position, exhibiting a sudden decrease of the normalized viscosity [η] of the suspension (Fig. 2), which then increases
with increasing λ. In conclusion, the same trend is observed pointing to the robustness of the phenomenon.
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FIG. 2. (Color online) The evolution of [η] and equilibrium lateral position hf as a function of λ for several degrees of
confinement Cn. Here we set Cκ = 1 and τ = 0.7. The vesicle is initially set at a small enough distance (0.72R0) from the
lower wall. TT, TB and FA are shown. The channel center is at zero and the walls are at y/W = ±1/2 on the right vertical
axis. Note that the TB branch continues for larger λ but here we only show the results until the FA branches appears.

C. Effect of capillary number

In this section we consider the effect of capillary number Cκ on the dynamics and rheology of the vesicle by fixing
the other parameters, Cn = 0.4, τ = 0.7. Figure 3 illustrates the effect of Cκ on the dynamics and rheology. The
main difference with previous results is that upon increasing Cκ the gray line representing the off-centered position as
a function of λ exhibits weaker and weaker jumps at the bifurcation point, until the transition becomes continuous.
The saddle-node bifurcation transforms into a pitchfork bifurcation. This transition also affects the behavior of the
normalized viscosity [η] which shows weaker jumps until showing a continuous behavior. A point worth of mention is
that the TB regime completely disappears in favor of a continuous transition from a TT solution to a FA one. We also
note that for a given λ in the off-centered case (FA regime in Fig. 3), the distance between the vesicle and the wall
increases as a function of capillary number Cκ implying a decrease of the normalized viscosity with Cκ (shear-thinning
behavior).

D. Effect of reduced area

We carried out a systematic study on the effect of reduced area τ (for a circle τ = 1, otherwise τ < 1) on the
equilbrium lateral position of a vesicle and its effect on the rheology of the suspension. The results are reported in
Fig.4. The other parameters are fixed to Cn = 0.4 and Cκ = 1. When τ is small enough, we find the same trends as
before. However, as τ increases (approaching 1), the situation changes significantly. For example, for τ = 0.9 while
the vesicle migrates out of center (for λ > 40), the normalized viscosity still exhibits a jump. Contrary to the other
values of τ, the viscosity is higher for the off-centered solution at the transition point. This is due to two effects: (i)
the higher value of τ lowers the lift due to wall so that the fluid left between the vesicle and the wall is smaller, leading
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FIG. 3. (Color online) The evolution of [η] and equilibrium lateral position hf according the bifurcation parameter λ for
several capillary numbers Cκ. The vesicle is initially set at a small enough distance (0.72R0) from the lower wall. TT, TB
and FA are shown. Beyond a certain value of Cκ (c and d panels) , the TB motion is suppressed and the evolution of [η] as a
function of λ does no longer exhibit any jump. The channel center is at zero and the walls are at y/W = ±1/2 on the right y
vertical axis. Note that the TB branch (when it exists) continues for larger λ but here we only show the results until the FA
branches appears. For the continuous curves, TB regime does not exist.

to higher dissipation. (ii) The vesicle has a shape close to a circle causing a higher cross-section against the flow.
These two effects together yield higher viscosity than a tumbling vesicle at the center. Even if the vesicle tumbles at
the center, due to its quasi-circular shape, its elongation is weaker now causing less and less resistance against the
flow.

IV. SUSPENSIONS

We have seen above that depending on λ a single vesicle may migrate to the center or towards the wall and
this significantly alters the rheology of the suspension. The question naturally arises of whether this off-centered
position may survive for higher concentrations. We have investigated this question by varying concentration and by
choosing various initial vesicle positions with the aim to see whether or not the final configuration is sensitive to initial
conditions. Periodic boundaries are used along x direction, the box length is Lx = 40.5R0 and the enclosed area of a
single vesicle is A = πR2

0. The other parameters are kept to λ = 20, Cn = 0.4 and Cκ = 1 for which a single vesicle
would select an off-centered position. We first discuss the dilute and the semi-dilute regimes. We compare the results
to those obtained in Ref.[23] for another set of parameters (λ = 1, Cn = 0.4 and Cκ = 1) where only the centered
solution exists; i.e. for this viscosity contrast λ = 1, there exists no second attractor (off-centered) for a single vesicle.
The results are presented in Fig.5. We see that for λ = 20, and below a certain concentration (ϕ ' 12.4%), the

normalized viscosity [η] may have several values for the same concentration (ϕ) depending on the final configuration
(which depends on the initial configuration) of the suspension. This means that for dilute and semi-dilute suspensions,
several stable spatial configurations are possible which give rise to different values of normalized viscosity [η] or



7

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0  5  10  15  20  25  30  35  40  45  50
-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

a)
[η

]

TT

T
T

TB

T
B

FA

FA

τ=0.6

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0  5  10  15  20  25  30  35  40  45  50
-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

b)

h
f 

/W

TT

T
T

TB

T
B

FA

FA

τ=0.7

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0  5  10  15  20  25  30  35  40  45  50

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1c)

[η
]

λ

TT

T
T

TB

T
B

FA

FA

τ=0.8

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0  5  10  15  20  25  30  35  40  45  50
-1

-0.5

 0

 0.5

 1d)

h
f 

/W

λ

TT

T
T

TB

TB

FA

FA

τ=0.9

FIG. 4. (Color online) The evolution of [η] and equilibrium lateral position hf as a function of the bifurcation parameter λ for
several reduced areas τ. Here we set Cκ = 1 and Cn = 0.4. The vesicle is initially set at a small enough distance (0.72R0)
from the lower wall. TT, TB and FA are shown. The channel center is at zero and the walls are at y/W = ±1/2 on the right
y vertical axis. The normalized viscosity [η] shows in the FA regime a jump with higher values than those of the TB regime
for τ = 0.9. This contrasts with the behavior for other value of τ, see text. Note that the TB branch continues for larger λ
but here we only show the results until the FA branches appears.

effective viscosity ηeff (Fig.6). It is interesting to note that, below a certain concentration (ϕ ' 6.2%), the suspension
of relatively rigid vesicles (λ = 20) may have a much lower value of [η] than that of a suspension of soft vesicles (λ = 1
Fig.5). This lower value for more rigid particles is associated with the existence of stable off-centered positions, as
described above. The highly non-monotonic behavior of [η] for λ = 1, described in [23], as a function of ϕ is due to
the existence of ordered solutions with a single (for low enough ϕ) and double (for larger ϕ) file configurations.
For a large enough λ for which two attractors exist for a single vesicle, the situation is quite different. We have

fixed λ = 20. We find, depending on initial conditions (as described in the caption of Fig.5) that for a small enough
ϕ (< 6.2%) there exist two solutions (i) centered single file (as found for λ = 1) undergoing tumbling giving rise to
the viscosity values shown as points (a′, b′ and c′) in Fig.5 and (ii) off-centered single file solution exhibiting flow
alignment having the viscosity shown as points (a, b and c) in Fig.5. In other words, for low enough ϕ the single
ordered file seems to exists whatever the value of λ is. For λ = 20 the existence of FA single file exists only for a low
enough concentration (points a, b and c in Fig.5). In this low concentration regime the normalized viscosity shows a
plateau owing to the weak hydrodynamic interaction.

However, when the concentration increases slightly beyond point c in Fig.5 the hydrodynamic interaction among
vesicles starts to play a role, but still the existence of two attractors continues to affect rheology up to about ϕ = 12%.
The situation becomes more complex than for a lower concentration. Indeed, the single file FA solution undergoes
a transition towards the centered TB file (point d and inset d in Fig.5). From point c (FA file) to point d (TB
centered solution, see inset d) the viscosity increases as expected, since TB vesicles in the centerline have a higher
cross section. When the concentration is increased further (from point d to e) the single file TB solution still exists,
but [η] decreases. The reason is that the insertion of a new vesicles fills the gap between already existing vesicles and
reduces the strength of recirculation zones between vesicles. This reasoning is similar to that evoked for λ = 1 (single
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file TT solution)[23]. For solutions d and e the initial condition corresponds to a centered set of solution. It seems
thus that the central attractor is robust despite the presence of hydrodynamic interaction. This is, however, not the
case for the the second (off-centered) attractor. We have prepared half of vesicles with the off-centered position (at the
attractor position for a single vesicle) and the other half at the opposite position (which is also an attractor as well)
with the hope of obtaining a double file solution (as with λ = 1 [23]). All simulations with these initial conditions led
to a disordered final solution (represented by inset f in Fig.5). The same outcome is obtained with random initial
position. It seems thus that the second attractor has become unstable in the presence of hydrodynamic interactions.

A further increase of ϕ (for λ = 20) beyond point e, destroys the single file TB solution in favor of an apparently
disordered solution (see inset f), leading to higher and higher viscosity. This is drastically different from the case of
λ = 1, where the system organizes into a double file that survives up to about ϕ = 35%. At that concentration, the
suspension for λ = 20 shows a significantly higher ηeff , which is about 1.45 times that corresponding to λ = 1.
In summary, the suspension viscosity shows a rich behavior depending on the viscosity contrast λ. For small enough

ϕ, the more rigid particles can either show lower or higher normalized viscosity depending on initial conditions. This
points to a non trivial fact that data handling in experiments inherently contain statistical variances not only due to
noise and natural imperfections and variety of samples, but also due to the very nature of multi-stability of solutions
reported on here. This sheds a new light for future interpretations of rheology of soft suspensions. Beyond a certain
concentration, the softer particles exhibit order (e.g. double file), whereas more rigid particles show disorder, resulting
in a much higher effective viscosity. Note finally, that the appearance of order (soft enough particles) and disorder
(for more rigid particles) is not a 2D property, but also a 3D property, shown both theoretically for model systems
(drops, capsules, vesicles) and experimentally for red blood cells [24]. The present study can thus serve as a guide for
a systematic analysis in 3D.

V. CONCLUSION

A major central point of this study is that the existence of two attractors leads to a rheology which depends on
initial configurations. This happens in the dilute and the semi-dilute regimes, up to about a concentration of 12%.
Beyond that concentration, the attractors loose their identities. Still, the viscosity contrast affects significantly the
value of the effective viscosity as shown in Fig. 6. Several diseases (such as malaria) are accompanied by hardening of
the RBC cytoplasm, a fact which can be mimicked by a higher internal viscosity (and thus higher viscosity contrast).
This leads to a higher effective viscosity in microcirculation compromising the efficiency of oxygen transport. This
study was dedicated to 2D and to a linear shear flow. An interesting extension should now be made for 3D and for a
pipe flow which is a more relevant scenario for blood flow. Ordering of RBCs (and its impact on rheology), similar to
the reported result in 2D has already been identified in 3D [23, 24]. This fact provides some confidence to the present
study for its relevance to a more general situations.
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FIG. 5. (Color online) The evolution of [η] as a function of concentration ϕ for typical values of λ. Here we set Cκ = 1 and
Cn = 0.4. The initial position of the vesicles has impact on the rheology up to ϕ ' 12.4%. Points a, b and c on the curve
correspond to FA configuration (a typical configuration is shown in inset c). Points a′, b′ and c′ on the curve correspond to
another type of configuration (centered TB; a typical configuration is shown in inset c′) obtained from different initial
conditions as compared to a, b and c configurations. Point b′′ on the curve corresponds to another configuration which is a
mixed state, in which a vesicle undergoes an off-centered TB, whereas the second one shows FA (see inset b′′). Points d and e
on the curve correspond to centered TB configuration (see inset d and e resp.). Points d′, e′ and f on the curve correspond to
disordered configuration (a typical configuration is shown in inset f). The blue curve (λ = 1) is taken from Ref.[23].
Configurations a, b and c are obtained from initial conditions where the vesicle are equidistant and set close to lower wall
(0.72R0 distance from the wall). Configuration d and e are obtained with initial set of equidistant vesicles at the center.
Configuration f is obtained with random initial positions. Configurations a′, b′ and c′ are obtained from initial conditions
where the vesicle are equidistant and set at the center. It is noteworthy that we may also obtain the points b′ and c′ with
initial random positions with a much longer time span. Configurations d′ and e′ are obtained with initial random positions.
Configuration b′′ is obtained with a vesicle at the center and the other close to the wall (0.72R0 distance from the wall).
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