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Approximation algorithms for the p-hub center routing problem in parameterized metric graphs

Let G = (V, E, w) be a ∆ β -metric graph with a distance function w(•, •) on V such that w(v, v) = 0, w(u, v) = w(v, u), and w(u, v) ≤ β • (w(u, x) + w(x, v)) for all u, v, x ∈ V . Given a positive integer p, let H be a spanning subgraph of G satisfying the conditions that vertices (hubs) in C ⊂ V form a clique of size at most p in H, vertices (non-hubs) in V \ C form an independent set in H, and each non-

The Single Allocation at most p-Hub Center Routing problem is to find a spanning subgraph H of G such that r(H) is minimized. In this paper, we show that the Single Allocation at most p-Hub Center Routing problem is NP-hard in ∆ β -metric graphs for any β > 1/2. Moreover, we give 2β-approximation algorithms running in time O(n 2 ) for any β > 1/2 where n is the number of vertices in the input graph. Finally, we show that the approximation ratio of our algorithms is at least Ω(β), and we examine the structure of any potential o(β)-approximation algorithm.

Introduction

The design of hub-and-spoke networks is a key issue with applications in transportation, e.g., airlines [START_REF] Ernst | Uncapacitated single and multiple allocation p-hub center problems[END_REF] and cargo delivery systems [START_REF] O'kelly | Solution strategies for the single facility minimax hub location problem[END_REF]. The major concern to design a hub-and-spoke network with high quality is to connect a large amount of origin/destination (O/D) pairs by using a small number of links. The usage of hub facilities helps to reduce the connections between all nodes. To locate p hubs in hub networks in order to route the traffic between origin/destination pairs with minimum cost is the classical hub location problem called the p-Hub Median problem [START_REF] O'kelly | A quadratic integer program for the location of interacting hub facilities[END_REF][START_REF] Todosijević | A general variable neighborhood search for solving the uncapacitated r-allocation p-hub median problem[END_REF]. Notice that the general p-hub median problem considers that each pair of origin/destination has different cost per unit of traffic. For example, the fuel per-mile cost of trucks from location A to location B could be different from B to A because their altitudes are not the same. We call a hub location problem multi-allocation, if a demand node can be served by several hubs. If each demand node can be served by exactly one hub, the hub location problem is single-allocation. The p-hub median problem is NP-hard. Many linear programming-based and heuristic algorithms were proposed to solve the p-hub median problem and its variants (see the survey papers [START_REF] Alumur | Network hub location problems: the state of the art[END_REF][START_REF] Campbell | Twenty-five years of hub location research[END_REF][START_REF] Mladenović | The p-median problem: a survey of metaheuristic approaches[END_REF]).

Another hub location problem, the Single Allocation p-Hub Center problem, is to choose a fixed number p of vertices as hubs and to assign each non-hub vertex to exactly one of the chosen hubs in such a way that the maximum distance/cost between origin-destination pairs is minimized [START_REF] Campbell | Integer programming formulations of discrete hub location problems[END_REF][START_REF] O'kelly | Solution strategies for the single facility minimax hub location problem[END_REF]. Unlike the p-Hub Median problem to minimize the total cost of all origin-destination pairs, the Single Allocation p-Hub Center problem is to minimize the poorest service quality. Chen et al. [START_REF] Chen | Approximation algorithms for single allocation k-hub center problem[END_REF] proved that for any > 0, it is NP-hard to approximate the Single Allocation p-Hub Center problem to a ratio 4 3 -and gave a 5 3 -approximation algorithm running in time O(pn 3 ) to solve the same problem. If the input graph is ∆ β -metric, it was proved that for any ε > 0, to approximate the Single Allocation p-Hub Center problem to a ratio g(β) -ε is NP-hard where g(β) is a function of β and a series of r(β)-approximation algorithms were given in [START_REF] Chen | The approximability of the p-hub center problem with parameterized triangle inequality[END_REF] where r(β) is a function of β. The Star p-Hub Center problem is another hub location problem with min-max criterion. It is to pick p nodes as hubs among the set of demand nodes connecting with the central given hub c and to connect each of the remaining demand nodes to exactly one of the p chosen hubs such that the longest path in the tree structure network is minimized. Chen et al. [START_REF] Chen | Approximation algorithms for the star k-hub center problem in metric graphs[END_REF] showed that for any > 0, to approximate the Star p-Hub Center problem to a ratio 1.5 -is NP-hard and gave a 5 3 -approximation algorithm for the same problem. Moreover, for input graphs satisfying β-triangle inequality, i.e., w(u, v) ≤ β • (w(u, x) + w(x, v)) for all vertices u, v, x in the input graph G = (V, E, w) and β ≥ 1/2, it was shown that for any > 0, to approximate the Star p-Hub Center problem to a ratio g(β) -is NP-hard and r(β)-approximation algorithms were given in the same paper where g(β) and r(β) are functions of β [START_REF] Chen | On the complexity of the star p-hub center problem with parameterized triangle inequality[END_REF][START_REF] Chen | Approximability and inapproximability of the star p-hub center problem with parameterized triangle inequality[END_REF].

Despite numerous research results on solving various hub location problems in the past twenty-five years [START_REF] Campbell | Twenty-five years of hub location research[END_REF][START_REF] Contreras | Hub location problems[END_REF], the design of approximation algorithms for hub location problems only made very little progress in the past two decades, especially for the p-Hub Median problem [START_REF] Iwasa | Approximation algorithms for the single allocation problem in hub-and-spoke networks and related metric labeling problems[END_REF][START_REF] Kuroki | Approximation algorithms for hub location problems[END_REF]. In this paper, we consider a variant of the p-Hub Median problem in which each pair of origin/destination has the same unit traffic (flow) cost called the Single Allocation at most p-Hub Center Routing problem. The Single Allocation at most p-Hub Center Routing problem is to choose at most p vertices as hubs and to assign each remaining vertex (called nonhub) to exactly one of the chosen hubs in such a way that the sum of distance/cost between all origin-destination pairs is minimized, i.e., the routing cost is minimized.

There are some routing cost optimization problems on finding a spanning subtrees or a spanning tree satisfying certain properties of the input graph such that the routing cost is minimized [START_REF] Lin | On the minimum routing cost clustered tree problem[END_REF][START_REF] Wu | A polynomial-time approximation scheme for minimum routing cost spanning trees[END_REF][START_REF] Wu | A polynomial time approximation scheme for the two-source minimum routing cost spanning trees[END_REF]. Some of these minimum routing cost spanning tree problems admit polynomial-time approximation schemes [START_REF] Wu | A polynomial-time approximation scheme for minimum routing cost spanning trees[END_REF][START_REF] Wu | A polynomial time approximation scheme for the two-source minimum routing cost spanning trees[END_REF].

Our study uses the well-known concept of stability of approximation for hard optimization problems [START_REF] Böckenhauer | Towards the Notion of Stability of Approximation for Hard Optimization Tasks and the Traveling Salesman Problem (Extended Abstract)[END_REF][START_REF] Böckenhauer | Stability of Approximation[END_REF][START_REF] Hromkovič | Stability of approximation algorithms and the knapsack problem[END_REF][START_REF] Rozenberg | Hromkovič: Algorithmics for Hard Problems -Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics[END_REF][START_REF] Klasing | A modern view on stability of approximation[END_REF]. The idea of this concept is similar to that of the stability of numerical algorithms. But instead of observing the size of the change in the output value according to a small change of the input value, one is interested in the size of the change of the approximation ratio according to a small change in the specification (some parameters, characteristics) of the set of problem instances considered. If the change of the approximation ratio is small for every small change in the set of problem instances, then the algorithm is called stable. The concept of stability of approximation has been successfully applied to several fundamental hard optimization problems. E.g. in [START_REF] Andreae | On the traveling salesman problem restricted to inputs satisfying a relaxed triangle inequality[END_REF][START_REF] Andreae | Performance guarantees for approximation algorithms depending on parameterized triangle inequalities[END_REF][START_REF] Bender | Performance guarantees for the TSP with a parameterized triangle inequality[END_REF][START_REF] Böckenhauer | Approximation algorithms for the TSP with sharpened triangle inequality[END_REF][START_REF] Böckenhauer | Towards the Notion of Stability of Approximation for Hard Optimization Tasks and the Traveling Salesman Problem (Extended Abstract)[END_REF][START_REF] Böckenhauer | An Improved Lower Bound on the Approximability of Metric TSP and Approximation Algorithms for the TSP with Sharpened Triangle Inequality (Extended Abstract)[END_REF][START_REF] Böckenhauer | Improved lower bounds on the approximability of the traveling salesman problem[END_REF][START_REF] Mömke | An improved approximation algorithm for the traveling salesman problem with relaxed triangle inequality[END_REF], it was shown that one can partition the set of all input instances of the Traveling Salesman Problem into infinitely many subclasses according to the degree of violation of the triangle inequality, and for each subclass one can guarantee upper and lower bounds on the approximation ratio. Similar studies demonstrated that the β-triangle inequality can serve as a measure of hardness of the input instances for other problems as well, in particular for the problem of constructing 2-connected spanning subgraphs of a given complete edge-weighted graph [START_REF] Böckenhauer | On the hardness of constructing minimal 2-connected spanning subgraphs in complete graphs with sharpened triangle inequality[END_REF], and for the problem of finding, for a given positive integer k ≥ 2 and an edge-weighted graph G, a minimum k-edge-or k-vertex-connected spanning subgraph [START_REF] Böckenhauer | On k-Edge-Connectivity Problems with Sharpened Triangle Inequality[END_REF][START_REF] Böckenhauer | On k-Connectivity Problems with Sharpened Triangle Inequality[END_REF].

In this paper, we consider a graph G = (V, E, w) with a distance function w(•, •) being a ∆ β -metric graph on V such that w(v, v) = 0, w(u, v) = w(v, u), and w(u, v) ≤ β •(w(u, x)+w(x, v)) for all u, v, x ∈ V . Given a positive integer p, let H be a spanning subgraph of G satisfying the conditions that vertices (hubs) in C ⊂ V form a clique of size at most p in H, vertices (non-hubs) in V \ C form an independent set in H, and each non-

hub v ∈ V \ C is adjacent to exactly one hub in C. Define d H (u, v) = w(u, f (u)) + w(f (u), f (v)) + w(v, f (v))
where f (u) and f (v) are hubs adjacent to u and v in H respectively. Notice that if u is a hub in H then w(u, f (u)) = 0. Let r(H) = u,v∈V d H (u, v) be the routing cost of H. We list the formal definition of the Single Allocation at most p-Hub Center Routing problem in the following.

Single Allocation at most p-Hub Center Routing

(∆ β -SApHCR) Input: A ∆ β -metric graph G = (V, E, w) and a positive integer p. Output: A spanning subgraph H * of G satisfying the following conditions (i) any pair of vertices (hubs) in C * is adjacent in H * where C * ⊂ V and |C * | ≤ p; (ii) any pair of vertices (non-hubs) in V \ C * is not adjacent in H * ; (iii) each non-hub v ∈ V \ C * is adjacent to exactly one hub in C * such that r(H * ) is minimized.
Notice that to solve the ∆ β -SApHCR problem, we are asked to find a set of hubs C with size at most p and also to decide the rest of the vertices (non-hubs) to be adjacent to exactly one hub in C.

In Fig. 1, we give an example of the ∆ β -SApHCR problem that can be applied in the design of post mail networks for which hubs are major post offices and nonhubs are small post offices. In this paper, we investigate the approximability of the ∆ β -SApHCR problem in ∆ β -metric graphs. The paper is organized as follows: In Section 2, we prove that the ∆ β -SApHCR problem is NP-hard in ∆ β -metric graphs for any β > 1/2. In Section 3, for any β > 1/2, we give 2β-approximation algorithms running in time O(n 2 ) for the ∆ β -SApHCR problem. In Section 4, we show that the approximation ratio of our algorithms is at least Ω(β), and we examine the structure of any potential o(β)-approximation algorithm.

NP-hardness

In this section, we show that for any β > 1/2, the ∆ β -SApHCR problem is NPhard.

Theorem 1. For any β > 1/2, the ∆ β -SApHCR problem in ∆ β -metric graphs is NP-hard.

Proof. We prove that the ∆ β -SApHCR problem is at least as hard as the well-known NP-hard problem Maximum Clique [START_REF] Garey | Computers and Intractability: A guide to the theory of NP-completeness[END_REF].

Maximum Clique Problem [24]

Input: A simple undirected graph G = (V, E) and a positive integer k. Output: Whether there is a clique S ⊆ V of size k in G.

Notice that if G has a universal vertex v, i.e., deg G (v) = |V |-1, then we can simply select v in S and ask whether there exists a size-(k -1) clique in G[V \ {v}]. Thus, we may assume that G has no universal vertex. In the following, we reduce the input G = (V, E) of the Maximum Clique problem to the ∆ β -SApHCR problem where

p = k + 1. According to G, we construct an input ∆ β -metric graph G = (V , E , w) where V = V ∪ {x}, E = {(u, v) | u, v ∈ V },
and assign the cost of each edge in E as follows.

• w(u, v) = 1 if (u, v) is an edge in G. • w(u, v) = 1 + if (u, v) is a non-edge in G where 0 < < 1. • w(x, v) = 1 for all v ∈ V .
It is not hard to see that G is a ∆ β -metric graph for any β ≥ 1+ 2 . Notice that for any constant β, it defines a ∆ β -metric graph class and this graph class contains all ∆ β -metric graphs for β ≤ β. If one can prove for any 1/2 < β < 1 the ∆ β -SApHCR problem is NP-hard, then it implies for any β > 1/2 this problem is NP-hard. In the following proof, we may assume that 1/2 < β < 1.

Let H * be an optimal solution of the ∆ β -SApHCR problem. Let S * be a size-k clique in G. We then obtain a solution H of the ∆ β -SApHCR problem by letting all vertices C = S * ∪ {x} be the set of hubs in H and letting all the remaining vertices in V \ S * be non-hubs adjacent to x. We obtain the following facts.

• For two non-hubs y, z, d H (y, z) = 2.

• For a hub v ∈ C \ {x} and a non-hub y, d H (v, y) = 2.

• For two hubs u, v ∈ C, d H (u, v) = w(u, v) = 1. • For any vertex v ∈ V , d H (v, x) = w(v, x) = 1.
We see that the routing cost of H is

r(H) = 2 • n 2 - k 2 + n = n 2 - k 2 where n = |V |. Since H * is an optimal solution of the ∆ β -SApHCR problem in G , we have r(H * ) ≤ n 2 -k 2 . Claim 1.
All non-hubs in H * must be adjacent to the same hub.

Proof. Suppose that there are at least two hubs adjacent to non-hubs. Then the routing cost between any two non-hubs which are adjacent to different hubs is at least 3. This will imply that r(H

* ) ≥ ( 3-ρ 2 ) • n 2 -k 2 > n 2 -k 2 
where 0 < ρ < 1, a contradiction to the assumption that H * is an optimal solution of the ∆ β -SApHCR problem.

Claim 2. The number of hubs in H * is p.

Proof. If the number of hubs is less than p, i.e., |C * | < p, then we may obtain another solution H by selecting p -|C * | non-hubs in H * and let them be hubs in H . Since all hubs are pairwise adjacent and β < 1, it is not hard to see that r(H ) < r(H * ). It contradicts the assumption that H * is an optimal solution of the ∆ β -SApHCR problem. This shows that the number of hubs in H * must be p. Claim 3. The vertex x must be a hub in H * . Proof. Suppose that x is not a hub. Since G has no universal vertex, in H * the hub which is adjacent to all non-hubs must be incident to some edges with edge cost 1 + . We see that r(H

* ) ≥ ( 2+ 2 ) • n 2 -k 2 > n 2 -k 2 = r(H)
where > 0, a contradiction to the assumption that H * is an optimal solution of the ∆ β -SApHCR problem. This completes the proof that x must be a hub in H * . Proof. According to Claims 1-3 that all non-hubs are adjacent to x and |C * | = p = k + 1, we have the routing cost between vertices in C * is

r(C * ) = r(H * ) -r(V \ C * ) -r(V \ C * , C * ) = n 2 - k 2 -2 • n -k 2 -((n -k) + 2 • k(n -k)) = k + 1 2 . Notice that w(x, v) = 1 for v ∈ V , w(u, v) = 1 if (u, v) ∈ E, otherwise w(u, v) = 1 + . Since r(C * ) = u,v∈C * w(u, v) = k+1 2 , we see that for u, v ∈ C * \ {x}, w(u, v) = 1 and C * \ {x} forms a clique in G.
According to Claim 4, if there exists a polynomial time algorithm that solves the ∆ β -SApHCR problem with routing cost n 2 -k 2 where k = p-1, then the Maximum Clique problem can be solved in polynomial time. However, Maximum Clique is a well-known NP-hard problem [START_REF] Garey | Computers and Intractability: A guide to the theory of NP-completeness[END_REF]. By the fact that Maximum Clique is an NP-hard problem, this implies that ∆ β -SApHCR is also an NP-hard problem.

New approximation algorithms

We have shown the NP-hardness of the ∆ β -SApHCR problem by reducing from the maximum clique problem. It is well-known that the maximum clique is hard to approximate. In this section, we give approximation algorithms for the ∆ β -SApHCR problem.

We first state a property of ∆ β -metric graphs in the following lemma.

Lemma 1 ([8]

). Let G = (V, E) be a ∆ β -metric graph for 1 2 ≤ β < 1. For any two edges (u, x), (v, x) with a common endvertex x in G, w(u, x) ≤ β 1-β • w(v, x).

Algorithm 1: Approximation algorithm for ∆ β -SApHCR for 1/2 ≤ β ≤ 1

Let U := V . Initially, C = ∅. Construct a spanning subgraph H of G by the following steps.

Step 1: Find z = arg min v∈V u∈V w(u, v) as a hub in H.

Step 2: Pick p -1 vertices {v 1 , . . . , v p-1 } farthest to z from U . Let C := C ∪ {z, v 1 , . . . , v p-1 } be the set of hubs in H and U := U \ {z, v 1 , . . . , v p-1 }.

Step 3: Connect all vertices in U to z as non-hubs in H.

Step 

(u, v) = d H * (u, v). Define w * (G * ) = u,v∈V w * (u, v) = u,v∈V d H * (u, v) = r(H * ).
Let H be the solution returned by Algorithm 1 with z being the only hub in H that is adjacent to non-hubs. Notice that z = arg min v∈V u∈V w(u, v). Let S z be the spanning star of G with center z. We use f * (v) to denote the hub adjacent to v in

H * for v ∈ V . Note that f * (v) = v if v is a hub in H * . Let S v be the spanning star of G * with center v and w * (S v ) = (u,v)∈E(Sv) w * (u, v). Claim 1. r(H) ≤ r(S z ) -(1 -β) • u,v∈C\{z} (w(z, u) + w(z, v)) Proof. Note that r(H) = u,v∈V \C (w(u, z) + w(v, z)) + v∈V w(v, z) + u,v∈C\{z} w(u, v) and r(S z ) = u,v∈V \{z} (w(u, z) + w(v, z)) + v∈V w(v, z).
We see that

r(S z ) = r(H) + u,v∈C\{z} (w(u, z) + w(v, z)) - u,v∈C\{z} w(u, v) = r(H) + u,v∈C\{z} (w(u, z) + w(v, z) -w(u, v)).
According to the β-triangle inequality for u, v ∈ V , w(u, v) ≤ β(w(z, u) + w(z, v)). We obtain that

r(H) = r(S z ) - u,v∈C\{z} (w(z, u) + w(z, v) -w(u, v)) ≤ r(S z ) -(1 -β) • u,v∈C\{z} (w(z, u) + w(z, v)).
This completes the proof.

Claim 2. u,v∈C * \{f * (z)} w(u, v) ≤ u,v∈C\{z} (w(z, u) + w(z, v))
Proof. We obtain that

u,v∈C * \{f * (z)} w(u, v) ≤ u,v∈C * \{f * (z)} β • (w(z, u) + w(z, v)) ≤ u,v∈C\{z} β • (w(z, u) + w(z, v))
(due to the selection of hubs in Algorithm 1)

≤ u,v∈C\{z} (w(z, u) + w(z, v)).
This completes the proof.

Claim 3. v∈V w * (S v ) ≥ 1 β v∈V w(S v ) -(1 -β) • (u,v)∈E(H * ) w(u, v) Proof. Note that w * (u, v) = w(u, f * (u)) + w(f * (u), f * (v)) + w(v, f * (v)). If (u, v) ∈ E(H * ), then w * (u, v) = w(u, v). Otherwise, w * (u, v) = w(u, f * (u)) + w(f * (u), f * (v)) + w(v, f * (v)) ≥ 1 β • w(u, f * (v)) + w(v, f * (v)) (by the β-triangle ineqality) ≥ w(u, f * (v)) + w(v, f * (v)) (since β ≤ 1) ≥ 1 β • w(u, v).
We then obtain that

v∈V w * (S v ) = v∈V u∈V w * (u, v) = (u,v)∈E(H * ) w * (u, v) + (u,v) ∈E(H * ) w * (u, v) ≥ (u,v)∈E(H * ) w(u, v) + 1 β (u,v) ∈E(H * ) w(u, v) = 1 β • v∈V u∈V w(u, v) -( 1 β -1) •   (u,v)∈E(H * ) w(u, v)   = 1 β •   v∈V w(S v ) -(1 -β) • (u,v)∈E(H * ) w(u, v)   .
This completes the proof. This shows that r(H) ≤ 2β • r(H * ), and the proof is completed.

Now we prove r(H) ≤ 2β • r(H * ) in the following. r(H * ) = w * (G * ) = 1 2 • v∈V w * (S v ) ≥ 1 2β • v∈V w(S v ) - 1 -β 2β • (u,v)∈E(H * ) w(u, v) (by Claim 3) = 1 2β • v∈V w(S v ) - 1 -β 2β •   u∈V \C * w(u, f * (u)) + u∈C * \{f * (z)} w(u, f * (z)) + u,v∈C * \{f * (z)} w(u, v)   ≥ 1 2β • v∈V w(S v ) - 1 2 •   u∈V \C * w(u, z) + u∈C * \{f * (z)} w(u, z)   - 1 -β 2β • u,v∈C * \{f * (z)} w(u, v) (by Lemma 1, w(u, f * (u)) ≤ β 1-β • w(u, z)) ≥ 1 2β • v∈V w(S v ) - 1 2 • w(S z ) - 1 -β 2β • u,v∈C * \{f * (z)} w(u, v) ≥ n 2β • w(S z ) - 1 2β • w(S z ) - 1 -β 2β • u,v∈C * \{f * (z)} w(u, v) (since β ≤ 1) = n -1 2β • w(S z ) - 1 -β 2β • u,v∈C * \{f * (z)} w(u, v) = r(S z ) 2β - 1 -β 2β • u,v∈C * \{f * (z)} w(u, v) (since r(S z ) = (n -1) • w(S z )) ≥ r(S z ) 2β - 1 -β 2β • u,v∈C\{z} (w(z 
Algorithm 2: Approximation algorithm for ∆ β -SApHCR for β ≥ 1

Let U := V . Initially, C = ∅. Construct a spanning subgraph H of G by the following steps.

Step 1: Find z = arg min v∈V u∈V w(u, v) as the hub in H.

Step 2: Connect all vertices in U \ {z} to z as non-hubs in H.

Step 3: Return H.

Theorem 3. For any β ≥ 1, there is a 2β-approximation algorithm for the ∆ β -SApHCR problem running in time O(n 2 ).

Proof. It is easy to see that in time O(n 2 ), Algorithm 2 returns a feasible solution of the ∆ β -SApHCR problem. We now prove that the solution H returned by Algorithm 2 satisfies the approximation ratio 2β. Let G = (V, E, w) be the input graph of the ∆ β -SApHCR problem. Let H * be an optimal solution of the ∆ β -SApHCR problem and C * be the set of hubs in H * . Construct a weighted complete graph G * = (V, E, w * ) according to H * where w * (u, v) = d H * (u, v). Let w(G * ) = u,v∈V w * (u, v) = r(H * ). We use S v to denote the spanning star of G with center v and w(S v ) = u∈V w(u, v).

Let x = arg min v∈C * {w(S v )}. Define w * (S v ) = u∈V w * (u, v) where w * (u, v) = d H * (u, v). Let f * (x) denote the hub adjacent to x in H * . Note that if x is a hub in H * , then f * (x) = x. Claim 1. w * (S x ) = (n -2) • w(x, f * (x)) + w * (S f * (x) ).
Proof. If x is a hub in H * , we have f * (x) = x and the equation holds directly. Suppose that x is not a hub. We obtain that

w * (S x ) = v∈V w * (x, v) = v∈V \{x} (w(x, f * (x)) + w(f * (x), f * (v)) + w(f * (v), v)) = (n -1) • w(x, f * (x)) + v∈V \{x} (w(f * (x), f * (v)) + w(f * (v), v)) = (n -2) • w(x, f * (x)) + v∈V (w(f * (x), f * (v)) + w(f * (v), v)) = (n -2) • w(x, f * (x)) + v∈V w * (f * (x), v) = (n -2) • w(x, f * (x)) + w * (S f * (x) ).
This completes the proof. Claim 2. For any hub y ∈ C * , w * (S y ) ≥ 1 β • w(S y ). Proof. According to the β-triangle inequality, we see that w(u, y) ≤ β • (w(u, f * (u)) + w(f * (u), y)). We obtain that for u ∈ V , w * (u, y) = w(u, f * (u)) + w(f * (u), y) ≥

1 β • w(u, y). Thus w * (S y ) = u∈V w * (u, y) ≥ u∈V 1 β • w(u, y) = 1 β • u∈V w(u, y) = 1 β • w(S y ).
This completes the proof. Now we prove r(H) ≤ 2β • r(H * ) in the following.

r(H * ) = w * (G * ) = 1 2 • v∈V w * (S v ) = 1 2 • v∈V w * (S f * (v) ) + (n -2) • w(v, f * (v)) (by Claim 1) ≥ 1 2 • v∈V w * (S f * (v) ) ≥ 1 2β • v∈V w(S f * (v) ) (by Claim 2) ≥ 1 2β • n • w(S x ) (since x = arg min v∈C * {w(S v )}) ≥ 1 2β • (n -1) • w(S z ) (since z = arg min v∈V {w(S v )}) = 1 2β • r(H).
This shows r(H) ≤ 2β • r(H * ). Thus Algorithm 2 returns a solution with approximation ratio 2β.

On the structure of o(β)-approximation algorithms

Let A denote the class of algorithms for the ∆ β -SApHCR problem in which for any input instance there is a hub to which the algorithm connects at most c • n-p p nonhubs for some 0 < c < 1 (and where 2 ≤ p ≤ cn for some 0 < c < 1). In this section, we show that any algorithm from class A has an approximation ratio at least Ω(β). Thus, any potential o(β)-approximation algorithm would need to exhibit a structure different from the algorithms in class A. (Note that in particular Algorithms 1 and 2 belong to class A.) Theorem 4. Let A be an algorithm for the ∆ β -SApHCR problem from the class A. Then, the approximation ratio of A is at least Ω(β).

Proof. Let n be a multiple of p. Define the following input instance to the ∆

β - SApHCR problem. Let G = (V, E, w) where V = {v 1 , v 2 , . . . , v n }, E = {(u, v) | u, v ∈ V },
and assign the cost of each edge in E as follows.

• w(v i , v j ) = 1 for all 1 ≤ i < j ≤ p.

• w(v i , v j ) = 1 for all 1 ≤ i ≤ p, p + (i -1) • n-p p + 1 ≤ j ≤ p + i • n-p p .

• w(v i , v j ) = 2β otherwise.

It is obvious from the definition that G is a ∆ β -metric graph.

Claim 1. The cost of an optimal solution to the ∆ β -SApHCR problem for the input instance G is at most O(n 2 ) .

Proof. Let H be the following solution to the ∆ β -SApHCR problem for the input instance G.

1. Pick the vertices v 1 , v 2 , . . . , v p as the set of hubs in H.

2. Pick all the vertices in V \ {v 1 , v 2 , . . . , v p } as the set of non-hubs in H.

3.

For any 1 ≤ i ≤ p, connect all the vertices v j where p + (i -1)

• n-p p + 1 ≤ j ≤ p + i • n-p p to v i as non-hubs in H.
Then, the routing cost in H between any two vertices (hubs and non-hubs) is at most 3. Hence, the routing cost of H is at most r

(H) ≤ 3 • n 2 ≤ 3 2 • n 2 . Claim 2.
Let A be an algorithm for the ∆ β -SApHCR problem from the class A. Then the cost of the solution returned by A for the input instance G is at least Ω(β • n 2 ).

Proof. Let A be an algorithm from the class A. Let H A be the solution returned by A to the ∆ β -SApHCR problem for the input instance G.

As the algorithm A belongs to the class A, there is a hub to which at most c • n-p p non-hubs are connected in H A (for some 0 < c < 1). Hence, there are at least (1 -c) • n-p p vertices at distance 2β from any of the hubs in H A . The routing cost of H A is at least the sum of the pairwise distances between these vertices. Hence,

r(H A ) ≥ 4β • (1 -c) • n-p p 2 ≥ Ω(β • n 2 )
(as 2 ≤ p ≤ cn for some 0 < c < 1 for any algorithm in the class A).

According to Claims 1 and 2, any algorithm in the class A returns a solution for the input instance G = (V, E, w) whose cost exceeds the cost of an optimal solution by at least a factor Ω(β). This completes the proof of Theorem 4.

Corollary 1. The approximation ratio of Algorithms 1 and 2 is at least Ω(β).

Proof. Algorithms 1 and 2 clearly belong to the class A. Thus, applying Theorem 4 yields the result.

Corollary 2. The approximation ratios of Algorithms 1 and 2 are Θ(β), and this is asymptotically optimal in the class A.

Proof. Direct consequence of Theorems 2, 3, 4 and Corollary 1.

Concluding remarks

In this paper, we have proved that the ∆ β -SApHCR problem is NP-hard in ∆ βmetric graphs for any β > 1 2 . For any β > 1 2 , we have given polynomial-time 2βapproximation algorithms, whose approximation ratio is at least Ω(β). In future work, it is of interest to design approximation algorithms with better approximation ratios. However, as we have shown in this paper, any potential o(β)-approximation algorithm would need to exhibit a very specific structure. Besides, it is still open whether the ∆ β -SApHCR problem is APX-hard or not. If the ∆ β -SApHCR problem is APXhard, one must prove that for any > 0, it is NP-hard to approximate ∆ β -SApHCR to a factor c -for some constant c > 1. The other possibility is that there exists a polynomial-time approximation scheme (PTAS) for ∆ β -SApHCR. We conjecture that there exists a PTAS for the ∆ β -SApHCR problem.

Figure 1 :

 1 Figure 1: An example of a single allocation at most p-hub center routing network where the four hubs are the major post offices and the non-hubs are the other small post offices.

Claim 4 .

 4 If the ∆ β -SApHCR problem has an optimal solution H * with r(H * ) = n 2 -k 2 and C * is the set of hubs in H * , then C * \ {x} is a clique of size k in G where k = p -1.

  , u) + w(z, v)) (by Claim 2)

  It is easy to see that in time O(n 2 ), Algorithm 1 returns a feasible solution of the ∆ β -SApHCR problem. We now prove that the solution H returned by Algorithm 1 satisfies the approximation ratio 2β. Let G = (V, E, w) be the input graph of the ∆ β -SApHCR problem. Let H * be an optimal solution of the ∆ β -SApHCR problem. Let C * denote the set of hubs in H

4: Return H. Theorem 2. For any 1/2 ≤ β ≤ 1, there is a 2β-approximation algorithm for the ∆ β -SApHCR problem running in time O(n 2 ). Proof. * . Define w(H * ) = (u,v)∈E(H * ) w(u, v). Construct a weighted complete graph G * = (V, E, w * ) according to H * where w *
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