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Lattice Boltzmann Simulation of Advection-Diffusion of
Chemicals and Applications to Blood Flow

Hengdi Zhang, Chaouqi Misbah∗

Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France

Abstract

Diffusion of solutes is often encountered in many biological processes. In the

blood micro circulation system, solutes, such as oxygen and calcium molecules,

as well as Adenosine Triphosphate (ATP) and biochemical messengers, are

released by cells (like red blood and endothelial cells), and are dispersed via dif-

fusion and advection. Moreover, several targeted drug delivery strategies rely

on an encapsulation of chemicals and on their release in the blood stream at

specific location. The released chemicals couple to blood flow, in which red

blood cells (RBCs) constitute the major component. Thus, the development

of numerical methods which take into account both dynamics of RBCs and

their coupling with chemicals is of great importance for many biomedical ap-

plications. We develop here a lattice-Boltzmann based method that deals with

generic moving boundary conditions in an advection-diffusion field representing

the chemicals. The boundary condition of the solutes at the cell membrane is

based on a modified bounce-back scheme. We prove analytically, and validate

numerically, that it enjoys second order precision. The solver is validated with
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several benchmarks and is then coupled with a solver for a suspension of RBCs,

we developed previously. We then exemplify the method on the problem of lipo-

some drug delivery in arterioles. The results show that for a rigid drug carrier

at a scale of about 1 µm, the presence of RBCs facilitates the drug absorption

along the vessel wall. We also exemplify the solver for the release of chemicals

induced by membrane shear stress, a feature which is omnipresent in mechano-

involved signaling processes. As a way of example, we briefly study the problem

of ATP release by RBCs. We point out several possible generalizations.

Keywords: lattice boltzmann, blood flow, chemical signaling

1. Introduction

In many biological processes cytoplasmic membranes play an important role

regarding molecular and ion (active and passive) transport from the cell interior

towards the extra cellular environment and vice versa. Examples are abundant

in blood circulation. For instance, red blood cells (RBCs) can release oxygen5

as well as ATP in the microcirculation zone depending, in particular, on the

oxygen pressure as well as on the cell membrane shear stress Forsyth et al.

(2011); Zhang et al. (2018). Other examples are encountered in endothelial

signaling pathways modulating vasodilation Davies (1995); Yamamoto et al.

(2000); Ando and Yamamoto (2013), or in the lymphatic system where calcium10

dynamics plays a decisive roleZawieja (2005); Jafarnejad et al. (2015). Solute

transport is also an active field of research in biotechnologies, such as targeted

drug delivery which relies on an encapsulation of chemicals within liposomes

which are then released at specific sites; the release is triggered either by intrin-
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sic properties (e.g. local shear stress) or by means of an external stimulus (e.g.15

ultrasound) Needham et al. (2000); Allen and Cullis (2013); Akbarzadeh et al.

(2013); Sercombe et al. (2015); Kaoui (2018). All these examples involve an

intimate coupling between blood flow and chemical transport. In other words,

the chemical species, besides reactions and diffusion, are advected by the flow.

In addition, the chemical species are bound within moving and deformable do-20

mains (e.g. RBCs, drug carriers, such as liposomes, etc.). RBCs constitute the

major obstacle against solute dispersion in the blood stream. We have thus to

cope the coupling between the moving boundaries, the flow field and chemical

transport with specific boundary conditions on the membranes of the suspended

entities (e.g. liposomes, RBCs) describing the condition under which the solute25

is released. This task is, in its full generality, quite complex and presents several

numerical and conceptual challenges to be described below.

The main purpose of this paper is to develop an advection-diffusion method

in the presence of deformable particles (like RBCs or liposomes). This prob-

lem will be formulated and solved by means of a lattice Boltzmann method30

(LBM). The solution of the pure fluid flow by LBM has now become quite clas-

sical Zou and He (1997); He and Luo (1997); Chen and Doolen (1998); Succi

(2001); Mohamad (2011); Krüger et al. (2013); Krüger et al. (2017). The dif-

fusion/advection problem is now becoming an emerging field of research from

both physical and numerical aspects Mohamad (2011); Krüger et al. (2017);35

Huang et al. (2009); Lee et al. (2010); Markl and Körner (2015); Chen et al.

(2013a); Zu and He (2013); Fakhari et al. (2017); Liu et al. (2018). To the best
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of our knowledge, a LBM with general moving boundary with Dirichlet (the

boundary concentration is specified) / Neumann (the normal derivative is spec-

ified) / Robin (a linear combination of boundary concentration and its normal40

derivative is specified) condition has not been addressed yet.

We will develop here a LBM for the diffusion-advection problem and couple

it with the fluid solver. The formulation of the coupling of the fluid flow to the

chemicals adds an extra layer of complexity. A formidable task is to properly45

handle the chemical boundary conditions on a curved and moving interface (the

cell membrane). We will see that both the curvature as well as the moving

boundary character pose a challenge. The difficulty arises from the fact that

the chemical concentration can be discontinuous at the boundary, unlike the

velocity field which is continuous and where the so-called immersed boundary50

method (IBM) has been successfully applied. Except for some specific situa-

tions (the diffusion profile is smooth; the profile has a finite thickness across

the membrane) Peskin (2002); Feng and Michaelides (2004); Yang et al. (2009);

Huang et al. (2009); Lee et al. (2010,?); Chen and Lai (2014), the use of IBM

for general problems remains to be shown. Another alternative than LBM55

for treating diffusion has been dealt with recently Liu et al. (2018).

In that work a combination of a Langevin equation (for nanoparti-

cles) and LBM (for RBCs) is adopted. When chemical reactions are

present, as well as when general boundary conditions are prescribed

at the moving boundaries, a generalization of this spirit remains to60
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be done.

A generic type of boundary conditions at the membrane that we will deal

with is the so-called Robin boundary condition. This question has been ad-

dressed for a static curved boundaryGebäck and Heintz (2014); Zhang et al.

(2012); Chen et al. (2013b); Li et al. (2013); Huang et al. (2016). This prob-65

lem was addressed in a way which requires an interpolation strategy and local

curvature information, making its parallel implementation for arbitrary moving

curved boundaries challenging. Huang et al.Huang and Yong (2015) proposed

another simplified scheme for general Robin condition on piecewisely linear seg-

ments (which are parallel to the mesh segment) with second order precision. The70

formulation of the boundary condition is derived via asymptotic analysis Junk

et al. (2005); Yoshida and Nagaoka (2010), and requires only local information.

Later on Huang et al. (2016) an extension of this scheme for curved boundaries

with second order precision has been proposed. However, this scheme turned

out to present an interpolation strategy which is shape-dependent and requires75

information on the local curvature.

In order to circumvent the problem of inefficiency for parallel implementa-

tion and challenges raised by some specific shapes, we have developed, by still

adopting the general Robin boundary condition scheme from Huang and Yong

(2015), a simplified interpolation scheme. Indeed, our scheme takes into account80

only a single neighboring lattice point to the membrane, instead of several lat-

tice points Huang et al. (2016). It will be shown here that the simplified version

still enjoys the same precision, but at the same time it offers the possibility
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of efficient (parallel efficiency) and robust handling of arbitrary and moving

boundaries.85

In addition to the above complexity due to boundary shape, the motion of

the boundary in itself raises another problem. Indeed, in the course of time

lattice points belonging to a domain lying on one side of the membrane may

shift to the other side, and vice versa. Thus, we must identify at each time step

the points which have been swept by the moving boundary. This requires an90

interpolation and / or extrapolation scheme in order to properly reset the values

of the concentration field (in the classical fluid-structure interaction problem ,

this is the so-called refilling procedure Lallemand and Luo (2003)). Our method

uses a similar spirit as the refilling procedure, but introduces some improvement,

as will be described here.95

Due to the general complexity of the problem we will focus here on a 2D

geometry. The implementation of the chemical problem in LBM is based on the

so-called D2Q5-BGK model (2 dimensional, 5 velocity and Bhatnagar-Gross-

Krook single relaxation time). To efficiently exploit the parallelization benefit

of LBM, the implementation is fully based on a graphic processing unit (GPU)100

parallel architecture, namely Compute Unified Device Architecture (CUDA).

Several tests are performed in order to demonstrate the precision and validity

under static and moving boundary conditions.

After having performed several convergence and validation tests, we inte-

grate this solver into a well-validated immersed-boundary coupled Navier-Stokes105

LBM solver Shen et al. (2017). We then present two main applications: (i)

6



we study the liposome drug delivery (caused by an external stimulus) problem

and analyze the main outcome. Particularly important contributions have been

made by Kaoui Kaoui (2018) and others Kabacaoğlu et al. (2017) who analyzed

the problem of drug release and solute mixing. Another impotant study has110

analyzed advection-diffusion under steady flow for a given shape (a cylinder)

Gekle (2017). Here we extend these studies to the case where the suspended

entities (e.g. model of RBCs) are both deformable (free moving boundaries)

and coupled to the advection-diffusion of the solute. (ii) We shall adapt the

method to the case where the membrane boundary condition depends on the115

local shear stress, with the aim to analyze mechano-involved signaling process

in micro-circulation. Of particular interest is the problem of ATP release from

RBCs that will be briefly presented.

2. Methods

Since the problem of solving the Navier-Stokes equations by LBM has by

now become quite classical Zou and He (1997); He and Luo (1997); Chen and

Doolen (1998); Succi (2001); Mohamad (2011); Krüger et al. (2017), we will

focus on the convection-diffusion problem, and only briefly recall the LBM for

the fluid when needed. The proposed method can handle several solutes which

are coupled to each other. However, for ease of presentation we will consider a

single solute only. In addition, we will restrict ourselves to a two dimensional

domain (denoted as 2D), and thus our model of RBC will be a 2D contour made

of an inextensible membrane. It will be recognized that a generalization
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to many solutes is straightforward. Let c denote the concentration of a

given solute that depends on space and time. In its full generality c obeys the

following equation

∂c

∂t
+ u · ∇c = ∇ · [D(t,x)∇c] +R(c, t,x) (1)

u is the velocity field (supposed to be known for the moment), t ∈ R+ and120

x ∈ R2 are time and spatial coordinates, respectively. For simplicity, we assume

here that the diffusion coefficient D is constant. The reaction term R can be

handled within the LBM method (in the same way as an external force in the

usual fluid solver). A non-overlapping moving boundary (say a RBC model in

2D) curve is explicitly defined as B(t, s) = [X(t, s), Y (t, s)], here X and Y are125

Cartesian components of a given membrane point, s is a scalar parameter, which

can typically be chosen as the local arc length. By adopting for the fluid flow

the non-slip condition assumption at the membrane, the boundary is advanced

by the adjacent fluid velocity

∂B

∂t
= u(t,B) (2)

If s is chosen as the local arc-length, the normal vector of the boundary is defined130

as n(t, s) = [−∂Y/∂s, ∂X/∂s], while tangential vector is defined as t(t, s) =

[−∂X/∂s,−∂Y/∂s]

The solute concentration c and the corresponding flux J = uc − D∇c are,

in general, discontinuous at the boundary. By defining c±(B) = limε→0± c(B +

εn), (c± in short), the general Robin boundary condition (an equation which135
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combines both Neumann and Dirichlet conditions) along the two sides of the

moving boundary B can be written as


α+

1 c
+ + α+

2 n · ∇c+ = α+
3

α−1 c
− + α−2 n · ∇c− = α−3

(3)

Here αi’s are real constant. A schematic of the moving boundary and some

definitions are shown in Fig. 1a.

2.1. Advection-Diffusion Lattice Boltzmann Method140

We adopt the so-called D2Q5 BGK model (2 dimensional 5 velocities and

a single relaxation time) to formulate a convection-diffusion lattice Boltzmann

scheme. Compared to the classical D2Q9 models (used for the fluid solver Zou

and He (1997); He and Luo (1997); Chen and Doolen (1998); Succi (2001)),

D2Q5 requires a smaller memory usage and lends itself to an easier treatment145

for the geometry of the moving boundary, both of which are important for ac-

celeration in a GPU parallel context. In addition, there are numerical evidences

that D2Q5 may enjoy a better stability against D2Q9 for the diffusion problem

in some particular situations such as at low or intermediate Peclet numbers Li

et al. (2017); Suga (2006).150

Let ∆x and ∆t denote the spatial and temporal mesh sizes, the discrete

micro velocities are defined as

[
c0 c1 c2 c3 c4

]
=

0 1 −1 0 0

0 0 0 1 −1

 ∆x

∆t
(4)
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a

b

Figure 1: A schematic of the convection-diffusion problem in the presence of a moving bound-

ary: a) physical boundary B(t, s) is piecewisely continuous with countable discontinuities in

its derivative. Boundary conditions expressed by Eq. (3) are imposed along each side of the

curve. Arrows along the curve show the monotonously increasing direction of s. b) Geomet-

rical information of the physical boundary which is discretized into a series of boundary pairs

(a square and a circle which are located on the nearest lattice points from the boundary).

Boundary conditions are reinterpreted on the zigzag (dash-dot) line
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This notation means that the velocity ci has its components in the x− y plane

given by the ith column of the matrix. We will define a particular speed as

cs = (∆x/∆t)/
√

3 (which would be called the sound speed in the traditional155

fluid problem, but here it only has a formal analogy). The direction of ci is

defined by the unit vector ĉi = ci/|ci|.

Denoting the micro distribution function as gi(t,x), its temporal evolution

follows the two main steps:

(i) the collision step160

g∗i (t,x) = gi(t,x) +
1

τ
(geqi − gi(t,x)) + wi∆tR (5)

(ii) and the streaming step

gi(t+ ∆t,x) = g∗i (t,x− ci∆t) (6)

Here g∗i is known as the post-collision distribution function, wi is the weight

factor valued as w0 = 1/3 and w1,2,3,4 = 1/6, and τ = 3D · (∆t/∆x2) + 1/2 is

the dimensionless relaxation time. The equilibrium distribution function is

geqi = wic

[
1 +

u · ci
c2s

]
(7)

which depends on the macro concentration c and velocity u. The relation be-

tween the micro distribution function and the macro concentration is simply165

given by

c =

4∑
i=0

gi (8)
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It is proven via an asymptotic analysis (see Yoshida and Nagaoka (2010);

Huang and Yong (2015) and Appendix Appendix A) that Eqs. (5)-(7) con-

verge to the convection-diffusion Eq. (1) with a second-order precision when

∆t/∆x2 ∼ O(1). A brief derivation is provided in Appendix Appendix A. We170

define the dimensionless diffusivity and velocity (in the lattice Boltzmann units)

as

D
′

= D ·∆t/∆x2

u
′

= u ·∆t/∆x
(9)

The relaxation time τ and D
′

are related by (see Appendix Appendix A)

τ = 3D
′
+ 1/2 (10)

2.2. General Moving Boundary Condition Treatment

Since the boundary treatments on both sides of the membrane (Fig. 1) are

identical from the technical point of view, we only discuss the handling of c−.

Thus below, we omit “±” sign in (3). We will split the general Robin boundary

conditions given by Eq. (3) into two pieces (and then combine them in the

general case). The first one is the Dirichlet condition written as

c = α3 (α1 = 1, α2 = 0) (11)

and the second one is the Neumann condition written as175

∂c

∂n
= α3 (α1 = 0, α2 = 1) (12)
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B

M P

Figure 2: A typical boundary lattice is highlighted as the hollow circle. gi(t,x) is to be

calculated from boundary condition (see text). The curved boundary needs to be interpolated

onto the zigzag boundary (dashed-doted line). This process is done via finding a value α
(mid)
3

imposed on zigzag boundary which is consistent with c = α
(mid)
3 (Dirichlet) or ∂c/∂ĉī =

α
(mid)
3 (Neumann) on the curved boundary value problem. ĉi is the unit vector parallel to

ci, ĉī = −ĉi.

2.2.1. Treatment for Static Curved Boundary

The moving boundary treatment is composed of two steps. The first one

is to deal with the shape itself at a given moment (a static boundary), while

the second one consists in reconstructing the boundary lattice points when they

flip from one side of the membrane to the other due to the motion of the free180

boundary.

The static boundary treatment follows closely (with some important mod-

ifications; see below) that given in Refs. Huang and Yong (2015); Huang

et al. (2016). The authors there first extended the halfway bounce-back scheme

(known for fluid solvers) to the convection-diffusion LBM. This modified scheme185

is suitable for the type of the boundary shown by the dashed-dotted lines in Figs.
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1 b and 2). For that boundary (which will be called hereafter zig-zag bound-

ary) all its intersecting points with the lattice mesh segments are defined at the

middle of the mesh segments (dashed-dotted lines in Figs. 1 b and 2; M is one

representative point). Since this scheme requires only local information, it lends190

naturally itself to an efficient parallel implementation.

Recall that in Fig. 1 a physical boundary is discretized into a series of

boundary pairs. Assuming there is a boundary lattice point that resides at

position x (see Fig. 2, the hollow circle and hollow square provide an example

of a typical boundary pair), due to the existence of boundary B, the distribution195

function gi(t + ∆t,x) cannot be determined from streaming Eq. (6). Indeed,

if x is the hollow blue circle, then the streaming operation given by Eq. (6)

(where the argument of the right hand side is x − ci∆t) would propagate the

information from the hollow red square to the hollow blue circle (see Fig. 2).

The streaming procedure will fail due to the presence of the boundary, and thus200

the determination of the evolution of gi at a boundary point, designated by x,

requires a special treatment.

The concentration field (or its normal derivative) is specified at the real

boundary (a representative point is P in Fig. 2) to be equal to α3 (for Dirich-

let boundary condition). The discretized boundary has a representative point205

denoted as M, at which the concentration (still unknown) is denoted as α
(mid)
3 .

Below we show how is this value determined from α3 and the concentration field

at point x. Once this task is performed, we have at our disposal the concentra-

tion field inside the domain of interest, satisfying the boundary condition. The
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idea is then to use the Boltzmann equation in order to determine the sought-210

after micro-distribution appearing on the left hand side of Eq.(6) as a function of

the post-collision distribution at point (t,x) and the macro concentration field

at the discretized boundary (Eq. (13)). The proof is given in the Appendix

Appendix B and the result is given by (for Dirchlet and Neumann conditions)


gi(t+ ∆t,x) = −g∗ī (t,x)+

1

3
α

(mid)
3 for c = α

(mid)
3

gi(t+ ∆t,x) =
1 + 3u · ĉi
1− 3u · ĉi

g∗ī (t,x)+
D
′
∆x

(1− 3u · ĉi)
α

(mid)
3 for ĉi · ∇c = α

(mid)
3

(13)

The streaming equation given by Eq.(6) is substituted by the above equation215

for any lattice point x lying next to the boundary. Our analysis presented in

Appendix Appendix B shows that the scheme has a second-order precision.

This is consistent with the direct numerical estimates Huang and Yong (2015).

Let us now show how to determine α
(mid)
3 . An interpolation procedure was

developed in Huang et al. (2016) for such a purpose, but it requires information220

from several lattice points. In addition, the selection of interpolating points

is geometry-dependent. A simpler procedure is required for a practical imple-

mentation of moving boundaries and parallel computation. Here, we only use a

single neighboring lattice point (x + ci∆t in Fig. 2).

Interpolate α
(mid)
3 for Dirichlet condition.225

We perform a simple linear interpolation. Let us define the normalized distance

p (Fig. 2) between points x and P. The idea is to use the concentration

gradient at x at previous time step to linearly interpolate α
(mid)
3 out of the
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concentration field (or its derivative) at the real boundary (where c = α3 for a

Dirichlet condition) and at x. The concentration at point M and at time t+∆t230

is given by

α
(mid)
3 =


α3 + (p− 1

2
)∆xĉi · ∇c(t,x) if p ≤ 1

2

α3

2p
+ (1− 1

2p
)c(t,x) if p >

1

2

(14)

This interpolation has a second-order precision. The separation into two

cases (p > 0.5 and p < 0.5) is dictated by numerical stability.

Asymptotic analysis shows that the concentration gradient can be recon-

structed locally in terms of the micro-distribution with one-order precision pro-235

cedure Yoshida and Nagaoka (2010); Huang et al. (2016)

∇c =
1

∆tc2s

[
uc−

4∑
i=0

cigi

]
+O(∆x) (15)

Interpolate α
(mid)
3 for Neumann condition.

Since the zigzag boundary has its normal vector ĉī which is different from

n, the reconstruction of α
(mid)
3 involves tangential derivative as well. It is easily240

seen that

α
(mid)
3 =

∂c

∂ĉī

= ĉī · n
∂c

∂n

∣∣∣∣
M

+ ĉī · t
∂c

∂t

∣∣∣∣
M

(16)

The normal derivative at M can be obtained from P and first order extrap-
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olation from x,

∂c

∂n

∣∣∣∣
M

=


α3 + (p− 1

2
)

(
∂c

∂n

∣∣∣∣
x

− ∂c

∂n

∣∣∣∣
x+ĉi

)
if p ≤ 1

2

α3

2p
+ (1− 1

2p
) · ∂c

∂n

∣∣∣∣
x

if p >
1

2

(17)

The tangential derivative of c at point M is unknown, so we will express

it in terms of the value at x and at the neighboring point x + ĉi. A linear

extrapolation yields

∂c

∂t

∣∣∣∣
M

=
∂c

∂t

∣∣∣∣
x

+
1

2

(
∂c

∂t

∣∣∣∣
x

− ∂c

∂t

∣∣∣∣
x+ĉi

)
(18)

Finally, we consider the general Robin boundary condition, which is a lin-

ear combination of Dirichlet (Eq. (11)) and Neumann (Eq. (12)) boundary

conditions. It reads

α1c+ α2
∂c

∂n
= α3 (19)

Similar to Huang et al. (2016), we reduce the Robin condition back to a Neu-

mann problem by approximating the boundary concentration c in the term α1c

in Eq. (19) with its value at previous time step. Since the boundary position is

off-lattice (see point P in Fig. 2), the value of c on the boundary is evaluated245

with concentration value on the nearest boundary lattice and corresponding

gradient information (see Eq. (15)). Recalling the diffusive scaling assumption

mentioned at the end of section 2.1, namely D
′

= ∆t
∆x2D ∼ O(1), it is obvi-

ous that the introduced error by this approximation merely introduces a second

order error term.250

2.3. Treatment of the Moving Boundary

When dealing with an interface two questions arise: (i) how is the inter-
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face being advanced in the course of time, and (ii) how is the interface being

discretized and the boundary conditions implemented. The first point is quite

classical: once the velocity field is known then the interface is simply advected255

by the local velocity (using Euler scheme). In this case the velocity is defined

on the fluid lattice, whereas the interface is off-lattice. In order to transfer the

fluid velocity information from the lattice to the interface the immersed bound-

ary method is used Peskin (2002); Feng and Michaelides (2004); Yang et al.

(2009); Shen et al. (2017). This is what we adopt here for the fluid flow only260

(but not for the solute). For the diffusion problem, we have to specify how is

the boundary condition imposed on the interface. The first step is to determine

the discretized interface as described in Fig. 1. This procedure is different from

the IBM, since our interface is defined as a geometrical one (a sharp interface

description) and not as a thin strip as is the case with the IBM . The reason for265

this treatment is that, unlike the velocity field, the concentration field (and its

derivatives) is generically discontinuous at the interface, so that the IBM is in-

appropriate for handling this situation with enough precision. Some exceptions

are observed for a special type of boundary conditions as described in Huang

et al. (2009); Lee et al. (2010,?); Chen and Lai (2014). Once the interface is270

discretized the boundary terms are evaluated and then transfered to the con-

centration lattice points in order to deal with the LBM at the interfacial region

(see Eq. 13).

After each interface motion (obtained thanks to the fluid velocity) we have to275
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resolve the problem of points flipping from one side of the interface to the other

side. A possible type of treatment is the so-called refilling procedure Lallemand

and Luo (2003). In this method, a point which passes from one side to the other

has to be connected to new neighbors located on the same new side. The new

distribution function value of the point having passed the interface is evaluated280

as an extrapolation from its new neighbors. Here we will use a similar strategy

but in a more refined manner, as described below. Our procedure is split into

three steps: (a) at a given time we have configuration shown in Fig. 3a with 4

boundary lattices (shown with empty red squares). At this moment the bound-

ary treatment is done as if the boundary were fixed at that configuration. (b)285

At later time the boundary moves to configuration shown in Fig. 3b where, for

example, a new boundary point (in addition to the previous four), shown with

empty magenta square, enters the domain. In Lallemand and Luo (2003) the

distribution function of the new boundary point is obtained by extrapolation

from its neighbors shown in red in Fig. 3b. Our treatment is slightly different.290

The idea is to ignore first that new point (since we do not yet dispose of the

value of its distribution function), and take into account the boundary motion

thanks to the new 4 distances that the 4 red square points make with the new

boundary position. We then calculate the distances p for each of the boundary

neighboring points (p was described previously in Fig. 2, and was represented in295

Fig. 3 with a red dashed line) and evaluate the boundary conditions according

to Eqs. (13 to 17). (c) In the third step, we evaluate the distribution function

at the new point (shown with a hollow magenta square in Fig. 3c) by using
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information from its neighbors, as explained below.

The natural neighbor interpolation based on Voronoi tessellation Novak and300

Slepchenko (2014) or linear/quadratic interpolation Lallemand and Luo (2003)

could be implemented. In order not to introduce too many branching operations

into moving boundary treatment, we used a simple linear interpolation instead

(which lends itself to efficient parallel implementation and is robust even when

the membrane undergo high distortions). Our analysis has led us to postulate305

the following relation for the distribution function at the new points swept by

the boundary

gk =

∑
k′∈S(ref) wk′(2gk(t,x + ck′)− gk(t,x + 2ck′))∑

k′∈S(ref) wk′
(20)

Here S(ref) is a collection of subscripts defined on a lattice point , which flipped

from Ω+ to Ω− in the new time step (see Fig. 3). An index k belongs to

S(ref) only if both x + ĉk and x + 2ĉk belongs to Ω−(t) and Ω−(t + ∆t) in310

both previous and present time step. We have postulated equation (20) from

linear extrapolations and a set of intuitive weight factors as defined in section

2.1. We have successfully tested these weight factors by a number of numerical

experiments (examples of validation will follow). Similar extrapolations (for

rigid moving boundaries) were adopted for fluid and solute problems in Yin315

et al. (2012); Chen et al. (2013a).

Finally, note that in all cases treated here the boundary conditions

for the solute are periodic along the x-direction, and are various in the

y-direction, such as periodic, or absorbing walls (see examples below),

20



a cb

Figure 3: The procedures dealing with the moving boundary problem: (a) at that time step,

we treat the boundary condition as a static boundary. (b) at intermediate time step, keep the

boundary grids fixed, calculate the intersection length p due to boundary movement (defined

in Fig. 2), and deal with the new boundary condition with the p value (even if it is larger

than 1). (c) Search for neighboring lattice points in the set S(ref), and then calculate the

new distribution function value via Eq. (20)
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depending on applications. The method developed here lends itself to320

other boundary conditions. For example, other boundary conditions

for the solute at the external boundaries could be used as well, such

as the Robin ones, and so on.

3. Validations

3.1. Validations on time-dependent problems with static boundaries325

3.1.1. A pure diffusion problem in an irregular domain

We first validate our boundary condition scheme by treating a time-dependent

diffusion problem in the presence of a static boundary. This problem has an

analytical solution Hu et al. (2018). A periodic square domain is defined as

Ω = [−1, 1]× [−1, 1], with the presence of an internal boundary

B = [r(θ) cos(θ), r(θ) sin(θ)], θ ∈ [0, 2π)

here r(θ) = 0.4 + 0.1 cos(3θ). As the internal boundary is closed, it divides Ω

into Ω− and Ω+, which are the external and internal domains respectively. We

focus here on the solution in Ω−. The analytical solution is given by Hu et al.

(2018)

c(ana)(t, x, y) = 1 + 0.5 exp
(
−2π2tDa

)
cos(πx) cos(πy) for (x, y) ∈ Ω−

Here Da is a dimensionless diffusion coefficient. For definitness, its value

is set here to 0.1. The above solution is valid for both Dirichlet and Neumann
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conditions The above concentration field satisfies the pure diffusion equation

with initial condition

c|t=0 = c(ana)(0, x, y)

and a corresponding Dirichlet type boundary condition

c|B = c(ana)

or a Neumann type boundary condition

∂c

∂n

∣∣∣∣
B

= ∂nc
(ana)

Here n is the normal vector pointing from Ω− to Ω+. We tested numerically

both boundary conditions.

The choice of relaxation time τ in simulation is quite flexible. As we have

seen in Eq. (9) and Eq. (10), once the lattice mesh size ∆x and relaxation time

τ are fixed, the total number of the simulation steps is given by

N (step) =
T

∆t
=

TDa

∆x2D′
=

3Da

∆x(τ − 0.5)
· T

For definiteness, we fixed T = 1 (in an arbitrary unit). Simulations with dif-

ferent values of relaxation time were tested, namely τ = 0.625, 0.75 and 1. The

numerical results are then compared to the analytical solution c(ana) at this

particular time T = 1. We define the numerical relative error of concentration

c(num) as

E(∆x) =
||c(num) − c(ana)||

||c(ana)||
(21)

where || · || is the euclidean norm (the L2-norm defined as ||f || ≡330

[
∫

Ω
f(x, y)2dxdy]1/2). A second-order convergence is observed (see Fig. 4).
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Figure 4: The relative error against the mesh size in the static three-leaves problem from Hu

et al. (2018).

3.1.2. An advection diffusion problem in an irregular domain

Secondly, we test this boundary condition scheme against an advection

diffusion problem in an irregular domain, which has an analytical solution

Huang et al. (2016). The computational domain is defined as Ω = {(x, y) ∈

R2|φ(x, y) < 0}, here φ(x, y) is a scalar field which reads

φ(x, y) = x4 − 5x2 − 3x+ 2y4 − 6y3 − y − 1

The time dependent advection diffusion problem is governed by

∂

∂t
c(t, x, y) +∇ · (uc) = ∇ · (D∇c) + S, (x, y) ∈ Ω, , t ∈ [0, T ]

The velocity field is set to be a constant, u = (1, 0) and D is a constant scalar.

The time dependent source term S is

S = (x3 + y3)ω cos(ωt) + [3x2 −D(6x+ 2)] sin(ωt)
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The initial condition is given as

c|t=0 = 0, (x, y) ∈ Ω

The boundary condition, which is defined on the zeros of φ(x, y), can be defined

as either Neumann type or Robin type. For Neumann condition, it reads as

∂c

∂n

∣∣∣∣
φ=0

= (3nxx
2 + 2nyy) sin(ωt)

For Robin condition, it is given by

(
c+

∂c

∂n

)∣∣∣∣
φ=0

= (x3 + y2 + 3nxx
2 + 2nyy) sin(ωt)

Here nx and ny are components of the normal vector pointing outward. This

problem has an analytical solution

c = (x3 + y2) sin(ωt)

By following Huang et al. (2016), we set D = 1 and ω = 1. A computational

domain [−3, 3]× [−2, 4] is uniformly meshed into N ×N lattices. For the Robin

condition, the value of c on the boundary is obtained by the values at the335

boundary lattices and the gradient information (see Eq. (15)) at previous time

step. By choosing different τ and mesh size ∆x = 6/N , the numerical results at

T = 1 are compared with the analytical solution. A second order convergence

is observed (see Fig. 5). Despite the fact that there is only a single neighboring

point to a given boundary lattice point and no curvature information (recall Fig.340

2) used in this boundary treatment, the relative error is of the same magnitude

compared to the results from Huang et al. (2016) (recall that in that work
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Figure 5: The relative error against the mesh size in the advection diffusion problem in an

irregular domain from Huang et al. (2016).

several neighboring points and boundary curvature information are employed).

The relative error against the different choices of relaxation time τ

(and thus against diffusivity, see eq. 10) is gathered in Fig. 6. This345

result suggests that a choice for the relaxation time in the range

τ ≤ 1 (see Fig. 6) is an appropriate one. Our numerical experiments

revealed that this choice favors stability. Indeed, we found that for

both Neumann and Robin type boundary condition, simulations with

a large relaxation time led to numerical instability (e.g. the choice350

τ = 3 and N = 16 led to divergence). We identified that the instability

results from extrapolation of tangential gradient in Eq. (18). Note

that omitting the extrapolated term can make the simulation more

stable with large relaxation time but as a counterpart the precision

of the boundary treatment will degrade down to first-order.355
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Figure 6: The relative error against relaxation time τ in the advection diffusion problem in

an irregular domain from Huang et al. (2016). The lattice mesh size is fixed as N = 128.

3.2. Moving Boundary Validation

Now we perform some validation tests on a problem with moving bound-

aries. The first example is a cylinder (which is a circle in 2D, which encloses a

solute) which is advected by a constant velocity. The second case consists of a

deformable opaque surface that encloses a solute and which is distorted by a360

rotational velocity field.

3.2.1. An Advected Leaking Rigid Reservoir

Consider a cylindrical reservoir which is advected by a constant velocity u0

in a periodic box Ω = [−a/2, a/2]× [−b/2, b/2]. The boundary of the advected

reservoir is described as

B(t, θ) = [r0 cos(θ) + u0xt,−r0 sin(θ) + u0yt] , θ ∈ [0, 2π)
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where r0 is the radius of the cylinder. A solute concentration field c is defined

in Ω and obeys

∂

∂t
c(t, x, y) +∇ · (u0c) = ∇ · (D∇c), (x, y) ∈ Ω, t ∈ [0, T ]

The initial condition is set as

cini =


1 inside reservoir

0 outside reservoir

The concentration along the internal and external sides of B are denoted as

c−(t, θ) and c+(t, θ) respectively. The normal vector points into the outward

direction. The solute is leaking from the reservoir into the external zone, and

this leakage is described by the following boundary condition at the cylinder

surface

D
∂c−

∂n
= −D∂c

+

∂n
= k(c− − c+)

Parameters are fixed as r0 = 0.8, a = 4, b = 2, D = 1, and k = 1.

The concentration fields computed with two different constant velocities u0 =

[a/T, 0] or [0, 0] are compared at T = 1. The contour plots of the numerical365

solution with ∆x = b/512 is shown in Fig.7

The boundary concentration values, c− and c+, are evaluated thanks to the

concentration values and their gradients at the lattice points (see Eq. (15)).

Since u0 is constant, one can infer from Galilean invariance that the actual

concentration field in the case where u = [a/T, 0] should be identical to that370

obtained in the case with zero advection velocity. However, the numerical errors

may affect the Galilean invariance. Therefore, it is important to check if this
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Figure 7: Snapshots for the concentration field for u = [a/T, 0] (left side) and u = [0, 0] (right

side) respectively. In both simulations, we have set ∆x = b/512 and τ = 1. Since the only

difference between the left side simulation and the right side one is that the concentration field

is advected by a constant velocity, it should be identical to the concentration field on the right

side up to a translation (Galilean invariance). This property is accurately reproduced in this

simulation, although the LBM is based on an Euclidian mesh. The preservation of Galilean

invariance is crucial to scenarios with long term advection such as cell membrane flowing in

channels of realistic length.

29



10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

∆ x

R
e

la
ti
v
e

 E
rr

o
r

 

 

Relative Error in case u
0
 = a/T

Relative Error in case u
0
 = 0

Slope 2

Figure 8: Relative error against ∆x in the case of a cylindrical reservoir being advected by a

constant velocity

property is preserved after long simulation time (see the comparison of the two

results at T = 1 in Fig. 7). τ is fixed to 1 in these simulations. The numerical

solution for ∆x = b/1024 and u0 ≡ 0 is used as a reference solution from which375

the error is calculated when non zero velocities are considered. A second-order

convergence is obtained (Fig. 8).

3.2.2. A Reservoir that undergoes rotation and distortion

In this case we consider a divergence-free rotational velocity field u = [ux, uy]

(see the vector field in Fig. 9 colored in gray) in a simulation box Ω = [−1, 1]×380

[−1, 1].


ux = −0.5[1 + cos(πx)] sin(πy)

uy = 0.5[1 + cos(πy)] sin(πx)

A localized circular reservoir is initially defined with its centroid at x0 =
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[0.5, 0] with radius r0 = 0.3. Its boundary is denoted as B. The reservoir is

then subjected to a rotating velocity field, thus, the motion of the reservoir

boundary is expressed as ∂B/∂t = u. A concentration field c is defined on this385

simulation box, and is governed by the advection-diffusion equation A zero-

flux Neumann condition is imposed on both sides of the reservoir boundary

B. A representative Dirac delta function is used as an initial condition c0 =

δ(x− x0). More precisely, we consider a regularized Dirac function in

the form of Gaussian function with a width of order of two lattice390

points. We set the Peclet number to Pe = max (|u|)/D = 50. The imposed

velocity field is expected to extremely elongate and distort the reservoir. This

extreme distortion will constitute an interesting test of the code robustness. The

advancing of the distorted reservoir boundary is conducted by means of a 4th

order Runge Kutta method, under which, the numerical error of reservoir area395

is adequately suppressed. A numerical solution (obtained with via ∆x = 1/512

and τ = 0.75) is presented in Fig. 9. We measure the error at T = 1, when

the shape is still easily resolvable for a large enough mesh size ∆x = 1/16.

The finest mesh ∆x = 1/2048 is used to estimate the relative error. (21). A

convergence rate between first and second order (around 1.45, see Fig. 10) is400

observed. We attribute this to the loss of resolving geometry information when

the mesh size is not small enough. For example, in the case where ∆x = 1/32, in

Fig. 10, the maximum width of the shape is represented by only 7 lattice points,

which may cause a significant inaccuracy during the reconstruction process of

the zigzag numerical boundary. Despite the relative degradation of the quality405
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Figure 9: From left to right, up to bottom we show the numerical solution of the concentration

field at T = 0.125, 0.5, 2 and 8, in which ∆x = 1/512. The vector fields in gray represent the

rotational velocity field.

10
−3

10
−2

10
−3

10
−2

∆ x

R
e

la
ti
v
e

 E
rr

o
r

 

 

Relative Error
Slope 1
Slope 2

Figure 10: Relative error against ∆x in the case of a cylindrical reservoir being advected and

distorted by a rotational velocity field u
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of precision (from the expected order 2 down to order 1.5) the code robustly

handles extreme distortions, such as the situation shown at T = 8 in Fig. 9.

4. The Arteriole Thrombosis Drug Delivery Simulation

The validations (section 3) have proven that the numerical method’s capa-

bility of dealing with advection, rotation and distortion of a moving boundary,410

with even quite ample deformation patterns under flow. We now implement this

solver for the study of a first practical example, the arteriole thrombosis drug

delivery. This example is inspired by previous numerical studies on simplified

models for liposome drug release in channel flow Gekle (2017); Kaoui (2018).

We consider a liposome that encapsulate some drug to be released in a blood415

vessel. We take here into account both the plasma fluid and the RBCs. We

follow below closely the work of Kaoui Kaoui (2018).

Liposomes are closed membranes, and are considered as promising targeted

drug carriers. They have typical diameters ranging from 100 nm to 1µm Ser-

combe et al. (2015). They are suitable means for carrying hydrophilic drugs420

to a particular location in the organism where they may release their content

thanks to an external stimulus (for example ultrasound excitation) or when the

surrounding fluid shear stress reaches a critical value (shear stress is the highest

in arterioles). Although there exist various types of liposomes depending on the

precise purpose, we consider it here to be composed of a single lipid bilayer. Ac-425

tually in 2D and for an incompressible membrane there is only a single mode of

deformation (bending), and there is no real distinction between different models
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(vesicle, capsule, red blood cell, etc...).

We consider a straight long channel for the arteriole model, with a Gaussian

hill shaped obstacle on one side of the vessel wall to represent the thrombosis430

(Fig. 11). We adopt a 2D vesicle as a crude model for RBCs (we will nev-

ertheless use the abbreviation RBC in what follows). An immersed boundary

coupled lattice Boltzmann method is employed to resolve the fluid-membrane

coupled system. This means, that the motion of the RBCs is performed by

the classical immersed boundary method (unlike the treatment of the diffusion435

problem) Peskin (2002); Feng and Michaelides (2004); Yang et al. (2009); see

Shen et al. (2017) for details of our fluid solver. A liposome is initially located

at the upstream of a thrombosis site, surrounded by RBCs. The liposome en-

capsulates a water-soluble drug with concentration c0 = 1. Its membrane is

initially impermeable to the drug. Then the liposome is advected by blood flow440

until it reaches a particular distance from the thrombosis, where we assume

that the liposome membrane becomes suddenly absolutely permeable to solute

(mimicking the effect of an external stimulus). A schematic representation is

given in Fig. 11 to show the simulation layout.

We would like to evaluate how does the presence of RBCs impact the drug445

delivery process. The role of RBCs is two-fold, they affect the flow field, and

they serve as solute obstacles. To elucidate the role of each effect we consider 3

different situations, one without RBCs at all, the second one with passive RBCc

(i.e. RBCs are completely transparent to the drug), and finally a realistic case

in which the RBCs are opaque to the drug. In all the three cases we consider a450
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Liposome RBCs

Figure 11: A schematic representation of liposome drug delivery process near an arteriole

thrombosis. The top panel represents some time before drug release, and the bottom one

represents the situation after drug release. The colormap represents the concentration of drug

solute. The liposome becomes transparent after it reaches a particular distance from the

thrombosis

complete absorption condition along the vessel walls (zero-value Dirichlet condi-

tion). When RBCs are considered as opaque to solute, the boundary conditions

at the RBC membrane and at the wall reads


∂c

∂n
= 0 on RBCs membrane

c = 0 on vessel walls

(22)

When we consider a transparent RBC model, we relax the first of the two above

boundary conditions. In that case the RBCs only affect the flow pattern, which455

in turn affects the advection of the solute, but the RBCs do not affect directly

the solute (no solute obstacle).

4.1. Preliminaries on the fluid–membrane–solute system

We first briefly recall the modeling of 2D membrane problem, which serves to

model RBCs and the drug carrier as well. A 2D unstretchable closed membrane

is used for the RBC model, and has a bending elastic modulus κb = 3× 10−19J
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Betz et al. (2009); Kaoui et al. (2011). The membrane force is obtained from

the Helfrich energy

H(X(t, s)) =
κb
2

∮
κ2ds+

∮
ζds

Here X(t, s) is the position of RBC membrane, κ is the local curvature, ζ is a

Lagrange multiplier that enforces local membrane inextensibility, and s is the

curvilinear coordinate. The membrane force (which is obtained as a functional

derivative of H with respect to X(t, s)) is applied as a bulk force (albeit localized

close to the membrane, in an immersed boundary spirit) to the fluid

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ ·

[
η(∇u +∇uT )

]
+

∮
δH

δX
· δ(x−X)ds,

where the supescript T stands for the transposition operation. The membrane

force (which is the functional derivative with respect to the membrane460

position) is given by Kaoui et al. (2008)

fmem→flu = κ

(
d2κ

ds2
+

1

2
κ3

)
n− ζκn +

dζ

ds
t (23)

Then, the velocity field u is used to advance the membrane shape

∂X

∂t
=

∫
δ(x−X)u(x)dxdy

We define the Capillary number as Ca = µexγ̇wR
3
0/κb, where η is the fluid

viscosity (which is position dependent, so that it can be taken to be different

inside and outside of the RBC, if need be; see later). γ̇w is the flow shear

rate at channel wall in the absence of thrombosis, liposome and RBC, R0 is a

characteristic radius of the RBC, R0 =
√
A/π. A reduced RBC area is defined
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as RA = 4πA/P 2, A and P are constant area and perimeter, respectively.

RA is an index that quantifies the roundness of the RBC, and taken here as

RA = 0.7. For the RBC model we take R0 = 3µm, whereas for the drug carrier

(liposome, for which we adopt the same membrane model as the RBC) we take

RA(lip) ≈ 0.997 (a quasi-circular shape) and a radius R
(lip)
0 = 1.8µm. We set

Ca = 10, meaning that the flow strength is large enough to strongly deform

RBCs. This will allow us to test the robustness of the code. In the whole

simulation we keep the Reynolds number Re = max(|u|)R(ves)
0 /η ≈ 0.2. The

channel width and length are W = 7.5R
(ves)
0 and L = 75R0, thus the simulation

box is Ω(vessel) = [−37.5R0, 37.5R0]× [−3.75R0, 3.75R0]. The Hematocrit value

31.3% is taken for RBCs, which corresponds to 56 representing cells in the

channel. The thrombosis is shaped as

y = ht · exp

[
−1

2

(
x− L/2
wt

)2
]

Here ht = 0.5 ·W and wt = W are the height and the width of the shape.

Several studies Zhao et al. (2012); Kumar and Graham (2012); Gekle (2016);

Müller et al. (2016); Krüger (2016); Guckenberger and Gekle (2018) have shown

that due to the small liposomes size, their rigidity and flow conditions, the465

margination (caused by RBCs) effect will drive them to the so called cell-free

layer (CFL) near the vessel wall. Our long term simulation also confirmed this

tendency. However, in the absence of RBCs, the liposome remains at its initial

lateral position while being advected by the flow along the channel. In order

to be able to compare the results with those obtained in the presence of RBCs470

(where margination prevails) we selected the initial liposome position to be in
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the CFL (as in the presence of RBCs), 1.25R0 distant from the upper vessel wall.

We use the following criterion for drug release: the liposome is impermeable to

solute until its centroid reaches a given distance from the thrombosis, below

which it becomes transparent. In these simulations we have set that distance to475

be x(permeation) = −17.5R0. We have in mind the situation where the liposome

develops small pores that allows solute release, whereas the liposome maintain

its overall membrane integrity.

We set ∆x = 0.15 µm and Pe = max(|u|)R(ves)
0 /D = 10 and 100, which

corresponds to typical drug solute diffusivities D ( 10−10 and 10−11 m2/s).480

Prior to the study of interest (0 value Dirichlet condition in Eq.(22), we have

tested our code with zero-flux boundary condition on vessel walls in order to

check numerically the mass conservation. We have found that loss of mass is

always smaller than 1.5%.

4.2. Results485

The solute absorption rate by vessel walls is shown for different cases in Fig.

12 (a). The normalized absorption rate is defined as

R(t) = 1−
∫∫

c(t)dxdy∫∫
c(0)dxdy

(24)

The integration is treated as a summation among all pixels, which introduce

an error term of order 1% only.

It is found that for both Pe = 10 and 100, whether we have transparent

RBCs or no RBcs at all (solid lines and dashed lines in Fig.12 (a)) the absorp-

tion rate is practically the same. We believe this is due to the liposome’s lateral
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Figure 12: (a) The solute absorption rate as a function of time for Pe = 10 and 100. (b)

The normalized lateral position of the liposome as a function of time with or without RBCs’

presence. In both cases the liposome is close to the wall. The vessel wall is at position 0.5

and the center-line at position 0.
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Figure 13: (a) The normalized absorption rate along the upper wall, calculated from Eq. (25).

(b) Corresponding solute concentration distribution at γ̇t = 66.7, both in the presence and

absence of RBC; Pe = 100.

position near the vessel wall (Fig. 12 (b)), where the normalized distance be-

tween liposome centroid and the wall y(lpsm)(t) is always small enough, so that

the absorption curve is diffusion-dominated, rather than advection-dominated.

However, when RBCs are opaque, we find an increased absorption, shown by

dotted lines in Fig. 12 (a)). A close inspection suggests that RBCs, as solute

barrier, obstruct the diffusion of solute from liposome to the channel center.

Consequently the gradient is increased towards vessel wall; it is proportional to

the normalized absorption rate along the upper wall:

fabsp(t, x) = − D

γ̇R0

∂c

∂y

∣∣∣∣
y=3.75R0

(25)

Figure 13 shows the absorption rate together with RBCs configuration and

the solute pattern at the thrombus location. Here again, we notice the higher

absorption rate due to the presence of RBCs playing the role of solute barriers.490

In conclusion, when having high enough Hematocrit (31.3% in this study)
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and high enough rigidity of liposome which lead to margination, the presence of

RBCs facilitates the vessel wall absorption process. This is mainly due to the

impermeability of RBC membrane to the solute. One can speculate that increas-

ing Hematocrit will strengthen the absorption, although further investigations495

are needed before reaching a definite answer.

5. ATP release from Red Blood Cells under Flow

The study of mechanosensing of solute release can be handled by coupling

the boundary conditions with other information such as the membrane shear

stress. We apply here our solver to the problem of release of ATP (Adenosine

Triphosphate) from RBCs under shear flow. Experimental studies have shown

that when RBCs undergo flow originated shear stress, they can release ATP,

a universal energy carrier and messenger molecule that plays important role in

vessel dilatation Wan et al. (2008); Forsyth et al. (2011). It has been shown in

Forsyth et al. (2011) that the amount of ATP release depends on whether RBC

undergo tank-treading (TT) or tumbling (TB). In our 2D model a transition

from TT to TB can be achieved by increasing the viscosity contrast between

the internal and the external fluids Vlahovska et al. (2009). We define the

viscosity contrast as λ = ηin/ηout, here ηin and ηout are the viscosity of internal

and external domain of the RBC. A shear flow is generated in a simulation

box [W,L] = [12.5R0, 25R0] by moving the upper and lower walls with the

same speed but opposite direction. The solute (ATP) boundary condition on

the upper and the lower walls correspond to zero-flux condition, with periodic
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boundary conditions along the flow direction. The RBC is initially located at

the center of the shear flow. Experiments have shown that viscosity (as well as

the shear rate) contrast is a key parameter to the motion of RBCs under shear

flow Fischer et al. (1978); Tsubota and Wada (2010); Fischer and Korzeniewski

(2013). For low enough λ (to be specified below), a vesicle (or 2D RBC) tends

to exhibit TT motion, whereas for higher λ TB prevails. Two typical values of

λ are shown in Fig. 14. We adopt a simplified model of the ATP release, which

is a Heaviside step function for shear stress condition (namely, the release takes

place only if the local membrane shear stress exceeds a certain value). Thus, the

Neumann boundary condition along the membrane for the solute release from

RBC towards the external fluid reads

D
∂c

∂n
=


γ̇w/P if σ > σ0

0 if σ ≤ σ0

Recall that P is the perimeter of the RBC, γ̇w the wall shear rate, defined

in section 4. σ is the shear stress along the membrane, defined as

σ = ηout
∂ut

∂n

where ut is the fluid velocity along the membrane tangent.500

The critical value of the shear stress is set to σ0 = 0.07Pa, and is inspired by

in vitro experiments Forsyth et al. (2011). We use the ATP diffusivity DATP =

2.36×10−10m2/s, which leads to the Peclet number Pe = γ̇wR
2
0/D = 1.91. The

ATP concentration field snapshots is shown in Fig. 14 with λ = 1 (TT) and

λ = 8 (TB). Our results show that qualitatively an increase of viscosity contrast505
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Figure 14: ATP fields under different viscosity contrast values. For λ = 1, the vesicles undergo

tank-treading motion, while for λ = 8, the tumbling motion prevails. In the tumbling regime

the release pattern along the membrane is more inhomogeneous, but the overall released

concentration is lesser than in the tank-treading regime (λ = 1).

reduces the ATP release. In other words, the TB regime triggers less release

than the TT one. This finding is consistent with experimental observations

Forsyth et al. (2011). Actually the problem is more subtle, since not only the

local shear stress matters, but also the cell deformation amplitude. By taking

into account both effects, we have been able to reproduce both qualitatively and510

quantitatively the experimental results. An extensive study is devoted to this

question in a different publication Zhang et al. (2018).

6. Conclusion

In this work, we developed a 2D lattice-Boltzmann based advection-diffusion

solver for curved moving boundaries for both Dirichlet, Neumann and linear515

Robbin boundary conditions. In most cases, a second order convergence is

achieved. For highly distorted boundaries, a convergence between first and

second order is observed. The boundary scheme requires only one neighboring
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lattice point with simple strategy, allowing for efficient GPU parallelization.

Since the advection-diffusion solver is designed for generic usage, its imple-520

mentation for other problems, such as two-sided coupling cases is straightfor-

ward. Moreover, the scheme is based on a simple pixelization of curved bound-

ary, with the help of parallel voxelizer, implying that the extension to 3D is also

feasible.

We coupled this solver to a well-validated immersed boundary lattice-Boltzmann525

fluid-vesicle solver and implemented the resulting code for the study of liposome

based hydrophilic drug delivery problem. We confirmed that with an assump-

tion of instant absorption on vessel wall, when the liposome margination effect

is strong, the presence of red blood cells facilitates the absorption. We have

also demonstrated the potential of using this solver for shear stress induced530

cell-signaling process, and have exemplified it for the problem of ATP release

by RBCs under flow.
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Appendix A. Asymptotic Analysis of the Bulk Equations and Bound-

ary Conditions

In this appendix, we show on one hand that the lattice-Boltzmann equations

are equivalent in the asymptotic limit to the advection-diffusion equation and540
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on the other hand they allow to derive the boundary conditions (Eq. (13)); see

Huang and Yong (2015). Similar procedures were used in Junk et al. (2005);

Yoshida and Nagaoka (2010) for other strategy of handling boundary condi-

tions, different from that given by Eq. (13) (which we may view as a modified

bounce-back scheme). By using our strategy, we will prove analytically here545

that this boundary condition enjoys a second order precision. We deal here

with the zigzag boundary which is defined to pass through the middle of the

mesh segment (dashed line in Fig. 1 (b)). It is this choice that allowed us to

reach the second-order precision.

Let us first introduce the diffusive scaling which is based on the idea of finding550

a suitable pair of scaling size (which is also the numerical mesh size) (∆t,∆x)

that makes the diffusivity in numerical simulation D
′

(as it was defined in Eq.

(9)) close to O(1) in magnitude. This conditions reads

D
′

=
∆t

∆x2
D ∼ O(1) (A.1)

The following choice of scales satisfies our constraint

∆t = aε2

∆x = ε

(A.2)

Here a = ∆t/∆x2 = D
′
/D is a constant value representing the ratio between

numerical diffusivity D
′

and physical diffusivity D. The factor ε is a small555

parameter and is often introduced in this way in the context of asymptotic
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analysis. Accordingly the scaling of velocity is given by

u
′

=
∆t

∆x
u = aεu (A.3)

Our asymptotic analysis below obtained in the limit ε → 0 will show that

(i) the Boltzmann equation recovers the advection-diffusion equation, and (ii)

the convergence to the advection-diffusion equation is of order O(ε2) for both560

the bulk equations and the boundary conditions.

The Boltzmann equation (combining collision and streaming process (equa-

tion (5 - 7)) reads, by omitting the reaction term, as

gi(t+ aε2,x + ĉiε)− gi =
1

τ
[wic(1 + 3au · ĉiε)− gi] (A.4)

The unspecified argument in gi is (t,x) and is omitted here, ĉi = ci/(∆x/∆t)

is the normalized unit vector of micro velocities defined in Eq. (4).565

We will expand gi and c in powers of ε up to third order. It turns out

that the second order provides the leading order contribution for the advection-

diffusion problem, whereas the third order is necessary for obtaining the desired

precision. The expansion reads


gi = g

(0)
i + εg

(1)
i + ε2g

(2)
i + ε3g

(3)
i +O(ε4)

c = c(0) + εc(1) + ε2c(2) + ε3c(3) +O(ε4)

(A.5)

Expanding Eq. (A.4) in power series of ε and ignoring terms of higher order570
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than ε3 we obtain

gi(t+ aε2,x + ĉiε)− gi =

3∑
n=1

1

n!

(
aε2

∂

∂t
+ ε(ĉi · ∇)

)n
gi

+O(ε4)

(A.6)

For Eq. (1) we get

3∑
n=0

(
c(n) −

4∑
i=0

g(n)

)
εn +O(ε4) = 0 (A.7)

Equating terms of similar order in ε in (A.7) provides

c(n) =

4∑
i=0

g
(n)
i (A.8)

Reporting (A.5) and (A.6) into (A.4) we obtain, by equating terms of the

same order, the following hierarchical equations

g
(0)
i =wic

(0)

g
(1)
i =wic

(1) +
1

2
aĉi · uc(0) − τ(ĉi · ∇)g

(0)
i

g
(2)
i =wic

(2) +
1

2
aĉi · uc(1) − τ(ĉi · ∇)g

(1)
i − τ

[
a
∂

∂t
+

1

2
(ĉi · ∇)2

]
g

(0)
i

g
(3)
i =wic

(3) +
1

2
aĉi · uc(2) − τ(ĉi · ∇)g

(2)
i − τ

[
a
∂

∂t
+

1

2
(ĉi · ∇)2

]
g

(1)
i − τ

[
a(ĉi · ∇)

∂

∂t
+

1

6
(ĉi · ∇)3

]
g

(0)
i

(A.9)

By summing over i (from 0 to 4) the first equation in (A.9), and using

Eq.(A.8) and the fact that the weight factors obey
∑4
i=0 wi = 1, we find that

the resulting equation is automatically satisfied. Performing the same operation

with the second equation yields the same conclusion, by using Eq.(A.8) and the

first equation in (A.9), and by virtue of the fact that
∑4
i=0 ĉi = 0, and that

47



wi enjoys a symmetry property (w1 = w2 and w3 = w4). Performing again the

same operation with the third equation, and using the previous orders results

leads (after simple algebraic manipulations) to an advection diffusion equation

∂c(0)

∂t
+ u · ∇c(0) = ∇ ·

[
2τ − 1

6a
∇c(0)

]
(A.10)

Finally, performing the same operation with the last equation yields

∂c(1)

∂t
+ u · ∇c(1) = ∇ ·

[
2τ − 1

6a
∇c(1)

]
(A.11)

This proves that the lattice Boltzmann scheme (A.4) converges to the ad-

vection diffusion equation with an error term O(∆x2). The relation between575

diffusivity D and relaxation time τ is given by (2τ − 1)/(6a) = D, which also

gives τ = 3∆t/∆x2D + 1/2.

Appendix B. Boundary Condition: A Modified Half-Way Bounce-

Back Scheme

In this section, we attempt to explain the boundary scheme for the static580

zigzag boundary, which is given by Eq. (13). This relation has been originally

proposed in Ref. Huang and Yong (2015), in which, a second-order convergence

is observed in numerical experimentsHuang et al. (2016). We present here a

simplified derivation for the particular zigzag boundary which intersects with

mesh segments only at middle points (dashed-dotted line in Fig.1 b). Our585

derivation will prove analytically the second order precision.

A representative point of the discretized boundary is designated as M in

Fig. 2, and x is a lattice point next to the boundary, and we have the relation
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M = x−1/2ĉi∆x. A Dirichlet boundary condition is defined as c(M) = α
(mid)
3,D ,

whereas a Neumann boundary condition, since the normal direction of the zigzag590

boundary coincides with ĉī, can be written as (ĉī · ∇)c(M) = α
(mid)
3,N . The

subscript D and N represents Dirichlet and Neumann respectively. ī is an

index which corresponds to inverse direction of ĉi, that is ĉī = −ĉi. However,

in the LMB spirit c(M) is not known, since the concentration field is defined

at the lattice points only. Therefore we have to express c(M) as a function of595

its nearest lattice point located at x. Expansion around the lattice point at

position x yields

α
(mid)
3,D = c(M)

= c− 1

2
ε(ĉī · ∇)c+O(ε2)

=

[
c(0) − (

1

2
(ĉi · ∇)c(0) − c(1))

]
ε+O(ε2)

α
(mid)
3,N = (ĉī · ∇)c(M)

= −(ĉi · ∇)c+ ε
1

2
(ĉi · ∇)2c+O(ε2)

= (ĉi · ∇)

[
c(0) − ε(1

2
(ĉi · ∇)c(0) − c(1))

]
+O(ε2)

(B.1)

For brevity, all unspecified arguments on the right hand side are understood to

be (x, t).

The main question now is how to substitute the streaming step (6) at the600

boundary, in a such a way to respect the above boundary conditions. gi(t+∆t,x)

is the unknown incoming distribution function that needs to be determined. In-

spired by the traditional bounce back condition (for Navier-stokes equation) we

introduce the distribution g∗
ī
(t,x), which is the known post-collision distribu-
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tion function (defined by Eq. (5)), but defined for opposite micro velocities; the605

subscript ī means that the corresponding micro velocity direction is pointing

outward (see ĉī in Fig. 2). The classical bounce-back boundary condition is

given by gi(t + ∆t,x) = g∗
ī
(t,x) for zero-flux boundary condition in the pure

diffusion problem (the relation is analogous to the non-slip boundary condition

in Navier-Stokes LBM). This is quite intuitive, since from time t to t + 1 the610

number of particle crossing the boundary from each side is equal and opposite.

The question is how to extend this relation to the present problem.

To deal with this question, we use the same asymptotic expansion in powers

if ε, as performed in the preceding appendix, for g∗
ī
(t,x) and gi(t+∆t,x). With

the help of the post-collision and equilibrium distribution function definition (615

Eq. (5) and (7)) and the asymptotic expansion (equation (A.9) ), we find for
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g∗
ī
(t,x) and gi(t+ ∆t,x) the following expressions up second order in ε

g∗ī (t,x) =gī(t,x) +
1

τ
(geq
ī
− gī)

=wic
(0) + εwi

(
−(3aĉi · u− (τ − 1)(ĉi · ∇))c(0) + c(1)

)
+

ε2wi

{
(τ − 1)[(τ − 1

2
)(ĉi · ∇)2 − 3aĉi · u(ĉi · ∇)− a ∂

∂t
]c(0) − (3aĉi · u− (τ − 1)(ĉi · ∇))c(1) + c(2)

}
+

O(ε3)

gi(t+ ∆t,x) =gi(t,x) + aε2
∂

∂t
gi +O(ε3)

=wic
(0) + εwi

(
(3aĉi · u− (τ − 1)(ĉi · ∇))c(0) + c(1)

)
+

ε2wi

{
[τ(τ − 1

2
)(ĉi · ∇)2 − τ3aĉi · u(ĉi · ∇)− (τ − 1)a

∂

∂t
]c(0) + (3aĉi · u− τ(ĉi · ∇))c(1) + c(2)

}
+

O(ε3)

(B.2)

Here the symmetrical structure of the micro velocities ĉi + ĉī ≡ 0 has been

exploited. A close inspection of the above equations and the boundary con-620

ditions (B.1) allow one to infer the proper writing of the streaming process.

Indeed, summation and subtraction of gi(t + ∆t,x) and g∗
ī
(t,x) provide inter-

esting results if one focuses on zeroth and first order terms only. The results
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are given by

g∗
ī
(t,x) + gi(t+ ∆t,x)

2wi
=

[
c(0) − ε(1

2
(ĉi · ∇)c(0) − c(1))

]
+O(ε2)

g∗
ī
(t,x)− gi(t+ ∆t,x)

2wiε
=3aĉi · u

[
c(0) − ε(1

2
(ĉi · ∇)c(0) − c(1))

]
−

(τ − 1

2
)(ĉi · ∇)

[
c(0) − ε(1

2
(ĉi · ∇)c(0) − c(1))

]
+O(ε2)

(B.3)

625

Interestingly, the right hand sides of Eqs. (B.3) are linear combination of

the boundary condition (Eq.(B.1) ), and in addition they both have the same

magnitude regarding the error term O(ε2). By substituting α
(mid)
3,D and α

(mid)
3,N

(given by Eq. (B.1)) into Eq.(B.3), the boundary scheme (Eq. (13)) can be

straightforwardly extracted. Note that in the special case when u ≡ 0 and630

α
(mid)
3,N ≡ 0, the boundary scheme will coincide with the classical bounce-back

one. An important point is worth of mention. The choice of the zigzag boundary

passing precisely at the middle of the lattice segments is not innocuous. Had

we chosen another definition, then the precision would have degraded down to

lower order, namely O(ε) instead of enjoying O(ε2) precision.635
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Krüger T. Effect of tube diameter and capillary number on platelet margination

and near-wall dynamics. Rheol Acta 2016;55(6):511–26.715
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