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Message Exchange Games in Strategic Contexts

Nicholas Asher* Soumya Paul
CNRS, Institut de Recherche en Institute de Recherche en
Informatique de Toulouse Informatique de Toulouse

Antoine Venant
Université Paul Sabatier, Toulouse

1 Introduction

Conversations often involve an element of planning and calculation of how best
one can achieve one’s interests. We are interested in how conversations proceed
in a setting in which dialogue agents cannot assume that their interests coincide
with those of their interlocutors, and we think this is a promising starting
point for a general model of conversation. While there is a large literature
in linguistics and in Al on cooperative conversation stemming from Grice
(1975), there is little theoretical and formal analysis of conversation in non-
cooperative situations. The work of Traum & Allen (1994), where cooperativity
is determined only by the social conventions guiding conversation, obligations
that do not presuppose speakers to adopt each other’s goals, constitutes an
important exception. Still, the formal structure of such conversations remains
largely unexplored. We propose here a formal theory of message exchange in
settings where agents don’t necessarily share interests and goals.

In particular, a little explored element in linguistics is the general “shape’
of a conversation, its overall structure and the effects of this structure on
content. The goals of conversational participants and the context of moves
they have already made explain why they make the subsequent discourse moves
they do and give a coherence to the conversation as a whole. For conversations
where agents share conversational goals and interests, a broadly Gricean answer
explored by Grosz & Sidner (1986), Grosz & Kraus (1993) inter alia is that
the discourse is organized around a problem that it is in the common interest
of the participants to resolve; the structure of the conversation reflects the
structure of the decision problem, or rather the reasoning of conversational
participants to construct a plan that solves the common decision problem.
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Non cooperative conversations, conversations where cooperativity or shared
goals and interests cannot be assumed, don’t instantiate reasoning about a
common decision problem. Consider a debate between two political candidates.
Each candidate has a certain number of points she wants to convey to the
audience; each wants to promote her own position at the expense of the other’s.
Strategic conversations are also reactive: to achieve their goals, each participant
needs to plan for anticipated responses from the other. To explain “what is going
on” in such a conversation, we need to appeal to the participants’ discourse
goals, which may depend on the goals of the participants’ interlocutors. Similar
strategic reasoning about what one says is a staple of board room or faculty
meetings, bargaining sessions, and even conversations with one’s children.
These observations indicate that strategic conversations are games, and debates
are typically 0 sum games. Typically only one agent can win, though there
may also be draws. Such conversations are common.

Grasping the general conversational goals of conversationalists does not
suffice, however, to determine the structure of a conversation. Since conversa-
tions should be the result of rational inference to the best means for achieving
one’s conversational goals given one’s information about the discourse context,
particular linguistic moves in a conversation should be related to an overall
conversational goal. For cooperative conversations, we need to describe the
linguistic reflection of the reasoning about a common decision problem, and
this means we need to talk about the way clauses in a text rhetorically relate
to each other and how such related clauses can combine to form more complex
discourse units bearing rhetorical relations to other discourse constituents in a
way that has become familiar not only from Grosz and Sidner but from theories
of discourse structure like RST Mann & Thompson (1987) and SDRT Asher
& Lascarides (2003). The interaction between goals and particular moves is
important for understanding monologue as well, as one can ask what “problem’
the author was trying to solve in a particular passage; there is a close corre-
spondence between a coherent text’s discourse structure and the text’s “goal”.
We aim to tell a similar story for conversations in not necessarily cooperative
settings. Given certain general conversational goals for our conversational
participants, we want to track how particular discourse moves detailed in a
theory like SDRT takes one dialogue agent towards her conversational goals or
thwarts them.

To get a better idea of the structure of conversations in strategic settings,
we start from two intuitions. There is a strong intuition that many strategic
conversations have a determinate outcome. One dialogue agent can “win” if she
can play certain conversational moves; and if she doesn’t, she loses. There is also
a strong intuition that in many conversations some conversational strategies,
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and some winning conditions or conversational goals, are more complex, and
more difficult to achieve, than others. Understanding and categorizing such
winning conditions and their strategies are an important part of understanding
the large scale structure of conversations. In addition, they also determine
whether a conversational agent has won the strategic conversational game,
which is one important communicative effect of the conversation. But how
can we measure or compare such strategies? This paper systematizes these
intuitions and offers an answer to our question.

To help with these intuitions, here are some examples of conversations with
their intuitive winning conditions.

Example 1. Suppose a candidate, Candidate A, has a joint interview with
another competing candidate, Candidate B, for an academic position. Suppose
Candidate A has proved an important theorem and she knows that during the
interview if she can mention this, she will have “won” the interview by getting
the job over the smarter candidate B, as long as she can mention this fact, no
matter at what point of the meeting she says so. This is her winning condition.

Example 2. In the following example from Solan & Tiersma (2005), a
prosecutor wants Bronston to say whether he had a bank account in Switzerland
or not; Bronston does not want to make such an admission. His winning
condition is to not answer the question directly, but only to implicate an
answer that he doesn’t have a bank account. He does not want to commit
either to having or to not having a bank account.

(2) a.  Prosecutor: Do you have any bank accounts in Swiss banks,
Mr. Bronston?
b.  Bronston: No, sir.
c¢.  Prosecutor: Have you ever?
d. Bronston: The company had an account there for about six

months, in Zurich.

A non-courtroom variant of (2) is (1). The background is that Janet and
Justin are a couple, Justin is the jealous type, and Valentino is Janet’s former
boyfriend.*

(1) a. Justin: Have you been seeing Valentino this past week?

b. Janet: Valentino has mononucleosis.

1 Thanks to Chris Potts and Matthew Stone for this example.



Janet’s response implicates that she hasn’t seen Valentino, whereas in fact
though Valentino has mononucleosis she has been seeing him him.

Example 3. Consider a voire dire examination in a medical malpractice suit
where the plaintiff lawyer (LP) has as a goal to return repeatedly to the topic
about the division of a nerve during a surgery. This goal has a further objective
of getting the witness (D) to characterize the surgical operation as incompetent
and mishandled. Repeatedly coming back to the topic can wear D down as
actually happened in the case we cite.

(3) a. LP: And also, he put an electrical signal on that nerve, and it
was dead. It didn’t do anything down in the hand, it didn’t
make the hand twitch?

b. D: Correct.

c¢. LP: And we know in addition to that, that Dr. Tzeng tore
apart this medial antebrachial cutaneous nerve?

d. D: Correct.
e. LD: Objection.
f. THE COURT: Overruled.

g.  D: Correct. There was a division of that nerve. I'm not sure I
would say “tore apart” would be the word that I would use.

h.  LP: Oh, there you go. You're getting a hint from your lawyer
over here, so do you want to retract what you're saying?

The defendant was resisting this line of attack relatively well, but then made
an error by agreeing to LP’s loaded question.

Example 4. During the Dan Quayle-Lloyd Bentsen Vice-Presidential debate
of 1988, Quayle was repeatedly questioned about his experience and his quali-
fications to be President. Quayle attempted to compare his experience to the
young John Kennedy’s to answer these questions; his winning condition was
probably to suggest with this comparison that like Kennedy he was a worthy
Presidential candidate. Part of his goal too was to have this comparison pass
without criticism (perhaps because he couldn’t defend it adequately), and so
it was indirect. However, Bentsen made a discourse move that Quayle didn’t
anticipate.



(4) a. Quayle: ... the question you're asking is, ”What kind of
qualifications does Dan Quayle have to be president,” [...] 1
have as much experience in the Congress as Jack Kennedy did
when he sought the presidency.

b.  Bensten: Senator, I served with Jack Kennedy. I knew Jack
Kennedy. Jack Kennedy was a friend of mine. Senator, you're
no Jack Kennedy.

c.  Quayle: That was unfair, sir. Unfair.

d. Bentsen: You brought up Kennedy, I didn’t.

Bentsen’s surprise move successfully attacked Quayle’s strategy to establish
a comparison between himself and John Kennedy. Quayle had no effective
defense and lost the debate handily.

Example 5. Allegedly, the physicist and Nobel laureate Richard Feynmann
decided the topics of his next lecture in advance and prepared for it for over 8
hours. However, when he entered the class he would start off with: “So what
shall we discuss today?” But he would always have a strategy to steer the
conversation to the topics he had prepared for, whatever his students, who
always wanted to stump him (and so had opposing interests to Feynmann’s),
would answer. Feynmann’s winning condition was eventually to get to his
prepared topic and stick to it for the remainder of the lecture.

Our examples so far have described or been excerpted from actual finite
conversations that are relatively circumscribed. But conversations can occur
over a much longer period, say over an entire Presidential campaign as in our
next example. Nevertheless, they are still linguistic conversations.

Example 6. Recall President Clinton’s adage “it’s the economy stupid.” What
Clinton meant is that he should keep the conversation focussed on questions
concerning the economy in the extended debate between his Democratic team
and the opposing Republican one during the 1992 Presidential campaign. As
long as Clinton was able to bring the debate repeatedly back to a discussion of
the economy, he achieved his winning condition.

We claim the following are important features of strategic conversations
(and perhaps of conversations generally).
(I) People have conversations for purposes. Their conversations are success-
ful when they achieve those objectives. Crucially, some of these objectives
involve commitments to contents by other conversational participants. In all
conversations, including those where one person’s gain from the conversation



is another person’s loss, the interlocutors’ contributions force them to commit
to certain contents, which are the conventional meanings and implicatures of
their utterances in the context.

(IT) In principle, conversational players have no limits on the length of their
intervention, though they are finite. In practice exogenous time limits may be
imposed.

(III) Players can in principle “say anything” during their conversational turn,
though what they say may very well affect whether their conversation is
successful or not.

(IV) While conversations are finite, they may have no designated “last turns;”
conversational agents cannot in general foresee who will “have the last word.”
Hence, people strategize in conversations even when they can’t anticipate when
the conversation will end, what possible states might arise, or what utterances
their opponent will consider.

In order to turn features (I-IV) into a model, we need three things: (i)
an appropriate vocabulary of conversational moves for building sequences
of message exchanges between players, (ii) goals or winning conditions for
conversational players, (iii) a way of modeling the epistemic limitations that
players cannot in general foresee the last move of a conversation. Infinitary
games like Banach Mazur (BM) games Oxtoby (1957), Gradel (2008), Kechris
(1995) furnish a good point of departure, as they reflect some features of
(I-IV). For simplicity, we will mostly restrict our attention to two-player win-
lose games, allowing us to concentrate on basic conceptual points, though in
section 4 we briefly consider extensions. Our theory distinguishes between
conversations in virtue of their winning conditions, and different winning
conditions require different strategies for achieving them giving rise to different
linguistic realizations. We give a precise criterion for the existence of these
strategies and a formal model of winning conditions, enabling us to compare
different conversational goals and their winning strategies. No extant framework
examines the structure of conversations in general and their game theoretic
structure in such a precise way.

Our paper is organized as follows. Section 2 introduces the basic points of
our model in more detail and considers related work; section 3 gives background
on infinitary games and introduces our theory of message exchange games.
Section 4 develops a typology of conversations via their winning conditions. We
investigate constraints on winning conditions that are intrinsic and normatively
necessary for winning conversations most of the time, such as consistency and
discourse coherence. These constraint render conversations more complex.
Section 5 concludes our paper with some pointers to future work.



2 Conversations as infinite games

As stated in the introduction, we think of conversations as games in which the
players are trying to achieve a certain end—namely, that the conversation go
in a particular way. These games involve a set of sequences of conversational
moves and a characterization of winning conditions for players of the game.
We now delve deeper into the structure of conversational games. What do
they concretely involve? What are the ‘moves’ of the players, what are their
‘strategies’ and so on? What are their winning conditions? And how can we
model conversational goals in a formal setting?

2.1 Signaling games, Grice and opposing preferences

Assuming that conversationalists are rational, what they say and how they
interpret what is said should follow as actions that maximize their interests
given what they believe. Conversational moves should be calculated via an
estimation of best return given what other participants say, which is a natural
setting for game theoretic analyses. Game theory has had several applications
in pragmatics Lewis (1969), Parikh (1991, 2000, 2001), Benz et al. (2005),
Franke (2008), Franke et al. (2009), van Rooy (2003), van Rooij (2004). Much
of this literature uses the notion of a signaling game, which is a sequential
(dynamic) game in which one player with a knowledge of the actual state sends
a signal and the other player who has no knowledge of the state chooses an
action, usually an interpretation of the signal. The standard set up supposes
that both players have common knowledge of each other’s preference profiles
as well as their own over a set of commonly known set of possible states,
actions and signals. The economics literature contains a detailed examination
of signaling games, Spence (1973), Crawford & Sobel (1982), Farrell (1993),
Rabin (1990), to name just a few important papers in this area.

Although they have proved useful for many issues, signaling games do
not offer a straightforward way to encode the principles we outlined in the
introduction, especially for strategic contexts. As a consequence, the model we
propose in this paper differs from signaling games in many aspects. However,
it does not contradict the predictions of signaling models but rather provides a
natural and convenient way of addressing situations that are not transparently
expressible as a signaling game’s context. We now explain why the strategic
contexts considered in this article fall into this category.

A game requires, in order to be a reasonable candidate for modeling non-
cooperative contexts, that its structure encodes the players’ divergent pref-
erences. As emphasized earlier, the most intuitive way of doing that is to



assume a 0 sum game. Signaling games however predict that no communication
happens in such games: it can be shown that in equilibrium? the sending of
any message has no effect on the receiver decision.

An immediate corollary is: assuming that the sender has the possibility
of (costlessly) not sending a message and that the sending of any message
has at least an infinitesimal cost, €, makes it optimal for the sender to not
send anything. This leads to obvious, unintuitive and irrational consequences.
Hence, the most straightforward way of setting up non-cooperativity makes
communication of any kind is impossible in a signaling game. This means that
non-cooperativity of the sort we are interested here should not translate as
0-sum utilities in a signaling model.

Still, there is between perfectly aligned utilities and 0-sum games, a space
of games with partially aligned utilities which could encode (some) lack of
cooperativity into the context while still allowing for communication to take
place. Notice that yielding the right equilibrium is not the only demand to
put on the game structure: a precise justification of the chosen utility profile
is also needed. In order to use game as part of a general theory of meaning,
one has to make clear how to construct the game-context, which includes
providing an interpretation of the game’s ingredients (types and actions) and
explaining why the utility profiles fits the situation to be modeled. Franke
(2009), for instance, associates in a principled way an interpretation game to
a given utterance. Interpretation games form a subclass of signaling models
assuming a specific class of sender types actions and preferences. They intend to
encode a ”canonical context” for an utterance, in which relevant conversational
implicatures may be drawn. In interpretation games, the full game structure is
determined by the set of sender types: there is a bijection between the set of
receiver actions and the set of sender types, and the utility profile is such that
both the receiver and sender get rewarded if they coordinate on the sender
actual type, and do not gain anything otherwise.

Such a setting is very intuitive and interestingly does not seem to require
further precision on what exactly it means for the receiver to take the action a;
associated with receiver type t and why such an action should indeed maximize
the receiver payoff if ¢ is the sender’s actual type. Even if one can still wonder
whether performing a; means that the receiver believes that the actual state is
t, or that the receiver is publicly committed to ¢, these interpretations collapse

2 Assuming bounded rationality of conversational agents may restore an effect to messages:
for instance the Iterative Best-Response model in Franke (2009) allows a level 2 sender
to misdirect a less sophisticated level 1 receiver. However, we are convinced that the
conversational examples presented in this article are compatible with a common belief in
rationality and require an analysis making such an assumption.



for Gricean agents. A Gricean sender should intend to commit to what he
believes is true (sincerity), cooperativity should make a Gricean receiver intend
to interpret the sender commitment as what the sender intends to communicate,
and belief in the sender’s sincerity should finally make him believe that the
sender believes in what he has committed to. Therefore, the games structure
as it stands seems to offer a perfectly adequate level of abstraction.

But things become much more intricate as soon as one is considering
potentially non-Gricean players, and this makes the task of understanding and
providing justification for a (partially) unaligned utility profile much more
involved. It depends on what one takes actions and types to represent. Recall
example 2 and imagine, for the sake of argument, that we want to model
Bronston’s answer with a signaling game involving two sender types: fpank and
t_bank, tWo corresponding interpretative actions dpank and a-pank, and three
possible messages, Mycs, Mno aNd Meompany- These messages are respectively
true in the sets of states {tpank}, {t-bank} and {fpank, {-bank }- Assume also
that we want to accommodate a fear of perjury on Bronston’s part into the
game context. Consider first that performing action a-pank means for the
receiver to update his belief to includes that ?_pank is the actual sender’s
type, or at least, to subsequently acts as if it were the case. Under such an
interpretation, if a sender sends m,, and the receiver takes action a-pank,
should the sender fear being charged with perjury? Intuitively no, because
such an attack would indicate an inconsistent belief of the receiver that t—pank
holds (because the action he took is interpreted as such) and does not hold
at the same time.® Then again, if actions are to be interpreted at the level of
public commitments, a receiver who takes action a_pank after receiving m,,
takes the sender to be publicly committed to f_pank, which does not imply
that he believes the latter state to be actual, and therefore, a receiver who
takes this action is still susceptible to attack Bronston on perjury if he believes
that Bronston’s actual type is tpank. Bronston’s payoff in that case should
depend on whether the prosecutor will charge him for perjury and how bad
the consequences will be. These considerations illustrate two things: first, in
order to deal with non-cooperative contexts, one has to make precise what
the exact set of actions is and what they represent—something which may
vary according to the nature of the player’s objectives (commitments, beliefs,
both, something else, ... ); second, the payoffs of the sender and receiver may
depend on subsequent actions, which requires that the possible outcomes of the

3 We assume here that the prosecutor has an interest to charge Bronston with perjury only if
he believes that Bronston actually performed perjury. One can relax this assumption, but
that would mean that the prosecutor’s beliefs are irrelevant to his subsequent moves and
that the commitments-related interpretation of actions should be considered here.



signaling games encode all possible relevant continuations of the conversation.
None of this is self-evident and makes a systematic construction of a game
context much more difficult than in the cooperative case.

These difficulties stem from the close correspondence between a general
formalization of Gricean principles and that of games with shared interests
that Asher & Lascarides (2013) establishes. This doesn’t entail that in 0
sum games, Gricean principles don’t ever apply, but the result does establish
that one shouldn’t count on Gricean principles as operative; in general one
can’t assume that players are maximizing quality, quantity or relevance (to
one’s own conversational ends). Furthermore, there is an important difference
between being a non-Gricean speaker, and one that admits to being so. A
player’s conversational objectives are very likely to include not making such
an admission. Conversations can thus exhibit a kind of hide-and-seek game
where agents try to expose the "bad” behavior of their opponent while making
themselves look good. In example 2, if the prosecutor rejects Bronston’s
indirect answer, he signals a commitment to Bronston’s lack of cooperativity.
If Bronston then admit having a swiss bank account, he commits to the fact
that he was not cooperative in giving the indirect answer. In such a context,
the prosecutor intuitively should claim that Bronston is being non-cooperative
but Bronston should try to avoid admitting that he is. In analogous contexts
occurring outside of the courtroom, it might be rational for an interrogator who
cares for his reputation or his interlocutor’s friendship to prefer a misleading
answer over formulating a public accusation of non cooperativity that he cannot
prove.

Signaling games have difficulties expressing these constraints because of
the asymmetry of the sender and receiver in such games. While the sender
might reveal something about his type when he sends a message, the receiver
obviously does not when he chooses an action. Indeed, in a signaling game
with a sender’s type t whose interest is to mislead, there is a message m and
receiver actions a and a’ such that the triple (¢, m,a) has better utility for the
sender than the triple (¢,m,a’) and that for the receiver the opposite holds,
i.e. (t,m,a’) has a better payoff. Given this we can show that: in any perfect
bayesian equilibrium of the game, m is sent with non-zero probability and the
receiver uses a has a response to m with a non-zero probability iff there is a
sender type t’ such that a is a best response to m in t’ in the equilibriumf or
both the sender and the receiver and the receiver’s posterior probability reflects
that after the sending of m, ¢’ is more likely than ¢. This means that the only
basis for a receiver to ever accept a misleading answer is that he judges it more
likely that his opponent is cooperative than not cooperative, never that he
lacks an argument to confront him, or has reasons to avoid confrontation.



Other models like that of Glazer & Rubinstein (2004) exists that do not
use signaling games. However, they also have difficulties in expressing the
sort of constraints we have developed above. Signaling games and persuasion
games both still take a broadly Gricean view of communication: conversations
are essentially information gathering or exchange activities; agents exchange
messages for the purpose of affecting the beliefs of the other partner. This
is precisely, however, what is in doubt in many conversations. In many
conversational settings and in all of our examples, agents converse not in
the hope persuading their opponents, but rather to impress or persuade others,
and perhaps themselves. Just as Grice captures important aspects of some
but not all conversations, people do try sometimes to persuade or to exchange
information, but this is not a general framework for all conversations.

We need a different model of conversation. Our players interact with each
other and exchange messages that convey objective, public commitments. For
instance, D in (3d) commits to Dr. Tzeng’s having “torn apart” the nerve
by agreeing with LP’s description in (3c). D then tries to go back on that
commitment in (3g). D may or may not believe this commitment. But if he
agrees with (3c), then he is committed to its content, and he can be attacked
on the basis of that commitment or subsequent commitments. As our excerpts
in our examples make evident, conversationalists often pay careful attention
to the commitments of others, not only to explicit commitments but also to
their implicatures. For example, in (4) Bentsen seizes on a weak or possible
implicature of Quayle’s commitments, that he is comparable in Presidential
stature to JFK, and attacks Quayle for it. In our examples, the moves players
make to defend their commitments or to attack those of an opponent exploit
the conventional meanings and even the implicatures that messages have.
So our model must enable us to fix the meanings of players’ moves to their
conventional meaning.

Why do conversationalists make the commitments they do, if they don’t do
it to persuade their interlocutors or to send a signal that their interlocutors
will find credible? Players make the commitments they do, for the purpose of
convincing or influencing a third party, which we call the Jury. The Jury is for
us an abstract role that can be satisfied in diverse ways. In examples (2) and
(3), it’s the jury of the court; in examples (4) and (6), it was the American
electorate. Sometimes the third party may be one of the players, as in example
(1) below. The Jury does not as such participate in the conversational game but
is rather a scoring function for the game. Players choose their conversational
objectives based on what they believe they can defend against their opponents
and that will find favor in some way with the Jury. A player attempts to
achieve her conversational objective, while her opponent tries to thwart her.



The Jury is an unbiased, rational and competent user of the language of the
players and judges on that basis whether a given discourse move or a sequence
of moves contributes toward the realization of the conversational objectives of
a player or not. We make the simplifying assumption for most of the paper
that the Jury can only be convinced by one player.

2.2 Why infinite games?

We believe that humans must act as though conversational games were un-
bounded. If conversations have definite last moves and our players have
opposing interests, even the presence of the Jury will not explain why our
agents converse in the way they do.

Consider example 2 again, or its non courtroom variant (1). Janet is
presented with a Hobbsian choice. Ideally, she would prefer not to answer the
question at all or simply lie. To not answer the question or to lie would be
rational and what Janet should do, if she were playing a one shot game with no
further interaction with Justin (this is akin to the defect move in the Prisoner’s
Dilemma). As conversations, however, have continuations, many people have
the intuition that a refusal to answer will make Janet fare worse in subsequent
exchanges. Janet cooperates with her interlocutor in the minimal sense of
providing a response to the question, what Asher & Lascarides (2013) call
rhetorical cooperativity, because of reputation effects. If Janet doesn’t cooperate
by responding to Justin, she risks receiving uncooperative treatment if in the
future she asks a question or make some demands of him. This is a form of the
“tit for tat” view of Axelrod (2006). Nevertheless, the reputation argument
has its problems. If a conversation is just a finite sequence of one shot games,
what holds for a one shot game holds throughout a conversation. Backward
induction over such a finite sequence would lead Justin to the conclusion that
he should not bother to ask his first question because it is in Janet’s to defect
at the earliest possible opportunity. If there is a foreseeable last move for one of
the players i, then she will play to her advantage and defect on the last move,
if her opponent has gone along in the discussion. The opponent seeing this will
reason by backwards induction to defect at the earliest possible moment. The
prediction is that given a foreseeable last move, no message exchange should
occur.

If the conversational game is assumed to be infinite, however, the formal
argument for the rationality of defection over sequences of exchanges in cases
where conversationalists have opposing interests disappears. The argument
from backward induction fails because there is no last move from which to
begin the induction. However, there is still some explaining to do. A simple



“tit for tat” model doesn’t explain why interlocutors cooperate with each other
rhetorically, even if their roles wvis a vis their interlocutors are never reversed,
even if Janet and Bronston never make any demands of their interlocutors.

In our model, the Jury can force rhetorical cooperativity. A defection will
hurt player 7 if the Jury can infer that ¢’s is defecting because a rhetorically
cooperative move would reveal a reason for them not to be persuaded by her.
This is also a feature of the model of Glazer & Rubinstein (2001, 2004) but
their model is more restrictive. In their model, the Jury only interacts with one
sender who must persuade the Jury to accept or reject a message. In addition,
the sender of a message is restricted in her choice of messages she can send in
a given state, and so the Jury can draw more secure inferences from messages
she doesn’t send. Since she can only send certain messages in certain states
(e.g., Bronston might be able to say he did not have an account only in a
state where he truly does not), a failure to send a message or to respond to a
question where the message is directly requested and would be in the player’s
interest to send could well indicate that the player is not in the state where
such a message is permitted.

We have made no such assumptions about messages, however, because we
do not think that messages are tied to states in such a simple way. One can
say anything regardless of the state of the world in a conversation. So the
reasoning from signals and strategies to the persuasiveness of a player is much
more uncertain for the Jury in our games. In addition, while Player i needs
to convince the Jury that she has achieved her conversational goals, her goals
are more complex than simply getting the Jury to accept the content of a
particular message and crucially involve her opponent. Player i could simply
refuse to cooperate with her opponent, because she has a general strategy of
not revealing information to her opponents. Or she could provide a reasonable
defense for why she is not cooperating. In either case, it falls on the opponent
to make the case to the Jury that player i’s lack of rhetorical cooperativity
provides a reason to reject i’s goals. If attacked, player ¢ can reply to the
opponent, defending her lack of cooperativity, and then the opponent must
press the issue.

The following excerpt from a press conference by Senator Coleman’s
spokesman Sheehan brings out these features of our model. Senator Coleman
was running for reelection as a senator from Minnesota in the 2008 US election
(thanks again to Chris Potts for this example):



(2) a. Reporter: On a different subject is there a reason that the
Senator won’t say whether or not someone else bought some
suits for him?

b.  Sheehan: Rachel, the Senator has reported every gift he has
ever received.

c.  Reporter: That wasn’t my question, Cullen.

d. Sheehan: The Senator has reported every gift he has ever
received. We are not going to respond to unnamed sources on
a blog.

e. Reporter: So Senator Coleman’s friend has not bought these
suits for him? Is that correct?

f.  Sheehan: The Senator has reported every gift he has ever
received. (Sheehan continues to repeat “The Senator has
reported every gift he has ever received” seven more times in
two minutes to every follow up question by the reporter corps.
http://www.youtube.com/watch?v=VySnpLoalUrI)

Sheehan, like Bronston, is seeking to avoid committing to an answer to a
question. Sheehan’s (2b) in response to the reporter’s first question could be
interpreted as an indirect answer, an answer that implicates a direct answer;
the senator didn’t comment on the question concerning whether he had received
the gift of suits because he felt he had already said everything he had to say
about the matter. But in (2) the reporter doesn’t accept this rather indirect
answer; she says that Sheehan’s response was not an answer to her question. In
effect, she wants a direct answer to the question concerning the suits. Sheehan
then explains why in 2d he won’t answer the question. The reporter then
presses the issue, and Sheehan becomes rhetorically uncooperative for the rest
of the exchange, repeating the same thing. At this point, the Jury will begin to
reflect on Sheehan’s strategy: is he being rhetorically uncooperative because he
has something to hide? His earlier explanation for his defection from rhetorical
cooperativity becomes lost, and it becomes more and more plausible that
Sheehan won’t answer the question because the true answer is damning to his
interests. To win given a defection from rhetorical cooperativity, Sheehan has
to have a reply for every attack; on the other hand, if the opponent eventually
introduces an attack for which the first player does not have a convincing reply
(e.g., he simply repeats himself or simply stops talking), the opponent will win.

The need to justify uncooperative moves or defection generalizes. In most
strategic situations, in order to win, 0 must engage with questions and remarks
of her opponent(s); she must show that her opponent cannot attack her position



in such a way that a rational unbiased bystander would find plausible. For any
discourse move, we can imagine a potential infinity of attacks, defenses and
counterattacks. In successful play, a player has to be able to defend a move m
against attacks; she may have to defend her defense of m against attacks and
so forth. This is a general necessary victory condition for 0. Let attack(n,m)
hold iff move m attacks move n; commitments or types of discourse moves that
generalize over more specific discourse moves? that are used to defend or attack
commitments:

Observation 1 [NEC] A play is winning for 0 only if for all moves n of 0
and for all moves m of 1, attack(n,m) — k(move(0, k) A attack(m, k))

Conversely for 1, a sufficient condition for winning is the negation of Observation
1. Given (1) 0 wins only if she is prepared for the conversational game never to
end and to rebut every attack by 1. It is this constraint that provides a second
reason for assuming conversational games to be infinite and is a powerful reason
for obeying rhetorical cooperativity.

NEC also has empirical consequences. In virtue of it, we can see why Quayle
intuitively loses in example (4). Part of Quayle’s winning condition was not to
come under attack for his implicit comparison or at least to be able to rebut
any attack on his move; that is NEC was also part of his winning condition.
But given that he had no rejoinder to Bentsen’s unanticipated move, he failed
to comply with Observation 1 and so lost.

To Observation 1, we add another, motivated by example (2): to win, 0
should not simply repeat herself in the light of a distinct move by her opponent
at least not more than twice.

Observation 2 [NR] A play is winning for 0 only if there is no move k by 0
such that 0 repeats k on m successive turns, for m > 3, regardless of what 1°s
intervening contributions are.

NR buttresses NEC’s support for rhetorical cooperativity.

While we could weaken the quantifiers in NEC and NR to something like
for most moves of 0, we are rather interested in the general upshot of such
constraints: to model winning play by 0, we need to model a conversation as a
potentially unbounded sequence of discourse moves, in which she replies to every
possible attack by her opponent. Moreover, at least some of the moves of player

4 Examples of such moves are Answering a question, Explaining why a previous commitment
is true, Elaborating on a previous commitment, Correcting a previous commitment, and
so on—in fact, they correspond to the discourse relations of a discourse theory Asher &
Lascarides (2003).



¢ must be related to prior moves of her opponent. It follows that it is always
risky, and often just rationally unsound, to play a rhetorically uncooperative
move like defection without further explanation that is optimal only if it is
the last move in a finite game. Defection from rhetorical cooperativity is
possible, but it must be explained or defended in any winning play convincing
the Jury. A player who plays a rhetorically uncooperative move opens himself
up to an attack that will lead to a defeat in the eyes of the Jury, as in (2).
That is, relatively weak and uncontroversial assumptions about the beliefs and
preferences of the Jury validate rhetorical cooperativity as a component of any
winning play.

Even if in practice, conversations don’t go on forever, players have to
worry about continuations of conversations thus should rationally act as if a
conversation were ‘potentially infinite’. In such situations, a theory of finite
play does not apply and one has to resort to infinite plays. This is why it is
necessary to adopt a framework of infinite games. By moving to a framework
with unbounded conversational sequences, Aumann & Hart (2003), Aumann &
Maschler (1995) show how games with unbounded cheap talk, games involving
extended conversations with an infinite talk phase consisting of a pattern
of revelations and agreements ending ultimately in an action, make possible
equilibria for players that are not available in one shot or even sequences of
revelations of bounded length. While we have adopted the simplest of payoff
structures for our study, our examples show that unbounded conversational
sequences allow players to win conversations that they otherwise couldn’t. Had
the reporters in 2 been limited to one question and one follow up, they could
not have successfully attacked Sheehan in the way they did.

Another reason in favor of using infinitary games is, paradoxically, their
simplicity. Given that we cannot impose any intrinsic limitations as to the
length of conversations, a formalization of purely finite conversations is more
complicated. In an infinitary framework, it is also straightforward to model
finite conversations. Finite conversations are not just conversations that stop
but crucially involve a point of mutual agreement that the players have fin-
ished Sacks (1992). We represent a finite conversation then as one in which a
finite sequence terminates with an agreement on a special ”stop” symbol that is
then repeated forever. More than that, initial prefixes of infinite sequences will
play a very important role in the sequel. While our models of conversations
will be infinite sequences, all that we ever make judgments on are finite prefixes
of such conversations. We will have to evaluate the play of players and whether
they have met or are meeting their objectives on such finite prefixes.



3 Message Exchange Games defined

We have established that conversations should be modeled as some sort of
infinite game. In this section we define such games, which we call message
exchange games, formally, using Banach Mazur games, a well-known sort of
infinitary game, as a departure point and point of comparison. We then
make some remarks about the expressive capacities of our new framework
and examine how it addresses the problems we found with the signaling game
framework.

Let V be a countable, non-empty set. We sometimes refer to V' as the
vocabulary. For any subset A of V', A* is the set of finite strings over A and
A¥ the set of countably infinite strings over A.

Definition 1 A Banach-Mazur game (BM game) BM (V¥ Win) consists of
an infinite set of strings V¥ together with a winning condition Win C V<.

The game proceeds as follows. Player 0 first chooses a non-empty finite
string xg € V*. Player 1 responds by choosing another non-empty finite string
x1 € V*. Player 0 moves next choosing another finite string x,. This process
repeats itself forever yielding a play, an infinite sequence of alternating moves
by 0 and 1. Define the flattening flat of a play p = (xy)gen as the infinite
sequence eventually designed by the two players: flat(p) = zo-x1-x2... € VY.
Player 0 wins the game if flat(p) € Win. Player 1 wins otherwise. A strategy
fi for player i, is a function from the set of finite plays to the set of finite
strings, V*. A play p = (x1)ren of the game, is said to be consistent with the
strategy f; iff, for every integer k, kmod 2 =i = x; = fi(zvo- 21 ... 25_1). In
other words, each move of player i is played according to f;. A strategy f; is
said to be winning iff in every play consistent with f;, player ¢ wins.

BM games suggest a natural model for conversations: participants alternate
turns in which they utter finite contributions. These contributions add to
each other, and together form a conversation. This process potentially goes
on indefinitely, or, at least strategic reasoning requires thinking of it that way:.
However, BM games “erase” the information of who said what in the following
sense:

Proposition 1 Let BM(V¥, Win) be a BM-Game. Then, for any play p and
every play p' € flat='(flat(p)), player i wins in p iff player i wins in p'.

Given any infinite sequence s, any infinitely countable set turns C N such that
min(turns) > 0 yields a play in flat~'(s) and conversely: every element in
turns specifies a position in s which is the end of a player’s move. A corollary



of the above proposition is that we cannot define a winning condition that
imposes for instance that player 1 says something in particular, as long as
she and 0 don’t infinitely repeat the same single move. We formalize this
observation as follows:

Corollary 1 Let BM(V¥, Win) be a BM-Game. Let y € V* be a finite
sequence such that there is at least one infinite sequence w in Win such that
w & V*y?or |yl > 2. There is a play p of the game such that y is never a
substring of any move of player 1 in p.

The idea for the proof of this corollary is simple: since w does not end with
infinite repetitions of y, every occurrence of y in w is eventually followed by
something which is not y, call it z. It suffices to define the alternation of turns so
that = constitute exactly the turns of 1. More formally: let ¢ be a position in w at
which y appears. define [; as Min({l € N | y does not occur at i+1x |y| in w}.
[; exists by hypothesis since otherwise w would end with infinite repetitions of
y. For any position k in s, let n, (k) be the position of the first occurence of y
in w after k. Define inductively turns with n,(0) 4 I, ) % |y| € turns, and
for any k in turns, n, (k) 4 l,, &) x |y| € turns. turns yields a winning play in
flat=t(w) for which player 1 never “says” y.

BM games have a limitation that require us to introduce a more structured
type of game given our principle I. A given conversationalist might have as
a goal that her interlocutor and only her commit to a particular content,
or answer a particular question, which BM games do not allow. Consider
again (2). There’s an important difference between Bronston’s response to
a question by the prosecutor and the prosecutor’s offering that information
himself, and that difference can’t be captured in BM games under all interesting
scenarios. Discourse moves contain more information than the sentence itself.
The discourse move that Bronston commits to a negative answer to (2a)
provides more information than just the string no sir provides, and it is such
moves that are of interest.

To remedy the expressive limitations of BM games, we introduce our
variant, message exchange (ME) games. An ME game involves a vocabulary
of discourse moves V' (which for the moment we consider as just atoms) that
yields two disjoint sets Vo =4.p V x {0} and Vi =45 V x {1}, standing for
the respective vocabularies of 0 and 1. The game is played with 0 and 1
alternatively choosing finite sequences in their own vocabulary Vj or V;.
We can take the vocabulary of the players to be common as in the above
definition or to differ; the game is structured as to encode the information on
which player played what into the plays so that we can determine whether 0

or 1 commits to a particular move. A turn by i is an element of the set (V;)*.



The plays of the ME game over V' are w sequences in (V5 U V7)“.

Definition 2 An ME game is a pair G = ((Vo U V4)¥, Win), with Win C
(Vo U Vi)~

Player 7, at turn 7, picks a non-empty finite sequence of moves forming a
finite path in V;, which we interpret as a finite (dynamic) conjunction of move
formulas. At any point in the conversation, these finite sequences of moves
concatenate and give us a finite conversational play or path in (VU V7)*.

An important condition on Win is whether it hinges on which of the
players made a particular discourse move. We call such winning conditions
decomposition sensitive. Let m denote the natural projection of Vo U Vj onto V'
(m(v,i) = v). Define 7, as the extension of 7 into a projection of sequences
in (Vo UVy)* onto V¥ 7, ((vg)ken) = (m(vk))ken (where all the vy belong to
Vo UVh).

Definition 3 (Decomposition sensitive winning conditions) Win C (V,U
V1)“ is decomposition sensitive iff AW C 7w, (Win) such that —(7;* (W) C

Conversely, an ME game GG with a decomposition invariant Wing is one where:
JW C V¥ such that a sequence oy € (Vo U Vi)¥ is an element of Wing iff
7o(01) € W. Thus, if 0 has a winning strategy in G, she also has one for
attaining W in the BM game BM (V, W), and conversely, if she has a winning
strategy for attaining W in BM (V, W), there is a sequence of plays that she
can make regardless of what 1 does that will guarantee her a sequence s € W.
That sequence of plays yields a sequence o € (Vo U V1)“ in which 0 and 1 are
assigned different contributions at turns such that 7, (c) = s and so o € Wing.
Thus, if 0 has a winning strategy in BM (V, W), she also has a winning strategy
in G. We have thus shown:

Proposition 2 Given an ME game G = (Vo UV1)¥, Winyg) where Winy g
s decomposition invariant, O will have a winning strategy in G iff she has a
winning strategy in the BM game BM (V¥ Wingy) over V¥ where Wingy =
7Tw( WZHME)

In other words, when ME games involve decomposition invariant winning
conditions, they collapse to BM games, and the existence of a winning strategy
is predicted by the basic theorem for BM games, which we discuss in the next
section.



3.1 The Jury, constraints and meanings

But first we revisit a problem we posed for signaling games that define content in
reflective equilibrium, the problem that signals have no meaning in conversations
where players’ interests are opposed. In our model of conversation, the opposing
interests of the players do not impede communication of content but rather
presuppose a set content; both players have to have a clear and defensible
idea of what their opponent has committed to if they hope to win a message
exchange game. While our ME games allow a player to say anything on her
turn, just saying anything lacks certain important elements intrinsic to a good
or winning play, and these elements end up determining this content. Players
set their winning conditions vis a vis an audience that makes requirements on
winning conversations. And so we need to give a more detailed model of the
Jury.

The Jury can either be biased towards a particular victory condition that
player 0 must guess or unbiased and accept whatever victory condition 0
chooses to play. In either case it is swayed by argument and verifies whether a
particular victory condition has been met. The Jury rates each contribution by
a player in individual turns or small sequences of turns with respect to whether
they get a player closer to a given goal or make it more difficult to attain. We
will suppose that turns are evaluated as either helping 0 achieve a particular
goal, hindering her or having no effect via a function ||t|| € [—1,1]. For the
moment we will assume that the Jury is unbiased and so the Jury’s and 0’s
conception of the winning condition coincide.

The function ||.|| should also verify necessary conditions on good discourse
like consistency and coherence, which we now describe. Discourse consistency
can be defined in different ways, but it must respect the rules of valid inference.
In our ME games, the rules of inference for the logical connectives and quanti-
fiers, as well as the conventional lexicon for non logical terms, impose a notion
of consistency on play. If 0, for instance, maintains in example 1 that she
proved a theorem but also that she did not prove it, she is inconsistent and the
Jury will conclude she is confused. If she claims that she proved the theorem
but also that if the theorem has a proof, it hasn’t been found yet, she is also
inconsistent. Such inconsistency precludes her from her winning condition.
We can further extend our notion of consistency by supposing further that
our games are situated in the sense that they involve deictic reference to non-
linguistic objects and properties like natural kinds. Courtroom cases typically
involve extra-linguistic elements fixing the meaning of certain referring terms
(imagine introducing pictures in a courtroom of a particular character, or the
character himself). So consistency will involve more complex rules like how to



adjust one’s commitments in the light of new evidence about a natural kind or
about an individual. Any violation of consistency will lead to an immediate
attack by the opponent —you just contradicted yourself so how can we (i.e. the
Jury) believe anything you’'re saying. This is the sense of LP’s closing comment
in example 3. So requiring that a player ¢’s winning plays form a consistent
set of formulas in V; will place constraints on the meanings of her expressions.

For the time being, we consider the following very simple form of consistency,
though ideally a more sophisticated form is needed.

Definition 4 A play p of an ME game over vocabularies Vi and V1 is consistent
for player i iff p | Vi does not both contain ¢ and —¢ for any formula ¢ € V;.

How does consistency affect the Jury? If an agent ¢ makes inconsistent
contributions, then her contributions automatically entail that the victory
conditions of the other agent have been achieved. Given that ¢ is inconsistent,
her contributions entail a commitment to any content whatsoever and no
information anymore; she commits to any finite sequence of discourse moves
on every turn, and so j just needs to make the appropriate moves on each turn
to achieve her winning condition.

Successful play also involves rhetorical cooperativity. Defection from the
conversation is not usually a winning option for either player. The space of
possibly coherent attacks on a message places constraints on the meaning of
messages. An attack, or in discourse terms a Correction Asher & Lascarides
(2003), can apply in principle to practically any word in a player’s contribution,
as the following adaptation of a famous example of Strawson’s shows:

(3) a. 0: A man fell off a bridge.
b. 1: It wasn’t a man. It was a woman, and she didn’t fall; she
was pushed.

c. # 1: No, John is a basket ball player.

However, not just any move can count as a coherent attack. 3c is an incoherent
discourse move and cannot be interpreted as a sensible attack or any other
discourse move relating to the claim in 3a. Though player 1 can make the
move in 3¢, it won’t do him any good vis a vis the jury, and an opponent can
attack it successfully as an incoherent move. Competent speakers of a language
can tell quite well when an attack is coherent or not and so our players will
also have to play only coherent attacks if they wish to succeed in their winning
condition. Our model of the Jury below reflects this in its estimation of the
type of each player; a player who is successfully attacked will suffer in the
Jury’s estimation of her type.



Attacks aren’t the only sort of discourse move that we have to countenance.
There are also rebuttals, defenses or supporting moves for claims and many
others. All of these moves have coherence requirements. This is what discourse
theories study, they make use of the lexical and compositional content of their
relata to infer such relational discourse moves and check their coherence Asher
& Lascarides (2003). Requiring winning plays to involve coherent discourse
moves constrains the meaning a message can have.

In effect our language V' has a rich structure, borrowed from discourse
theories like Asher & Lascarides (2003). We have descriptions of contents of
discourse constituents (which one can think of as elementary discourse moves)
and these discourse constituents are arguments to various discourse relations
like Question Answer Pair and Correction. We thus have a countable set of
discourse constituent labels DU = {7, m, 79, ...}, and a finite set of discourse
relation symbols R = {R, Ry, ... R,}. Our vocabulary V' consists of formulas
of the form 7: ¢, where ¢ is a description of the content of the discourse unit
labelled by 7 and R(7, ), which says that m; stands in coherence relation R
to m. Following Asher & Lascarides (2003), each discourse relation symbolized
in V' comes with constraints as to when it can be coherently used in context
and when it cannot. It is these constraints that give the meanings of agents’
messages and of their commitments, irrespective of what they believe about the
contents of those messages.

With our vocabulary V now fixed, we can specify rhetorical cooperativity
more precisely by noting that a sequence of conversational moves can be repre-
sented as a graph (DU, Ey, (), where DU is a set of vertices each representing
a discourse unit, £y C DU x DU a set of edges representing links between
discourse units that are labeled by ¢ : E — R with discourse relations. We can
now define rhetorical cooperativity using the following two concepts. Let T be
the set of turns in an ME game and let p; : T — ©(V;) be the projection from
a turn to the set of DU’s of the contribution by ¢ therein.

Definition 5 (Coherence) A contribution by i € {0,1} is coherent on turn
7 if for all m € p;(T) there exists ©' € (pi(7') U p1—i(7")) where 7" is T or some
previous turn such that there exists e € Ey such that we have (e(n’,m)Ve(mw, 7))
holds.

Definition 6 (Responsiveness) Player i € {0,1} is responsive on turn T
if there exists w € p;(1) such that there exists ' € (p1_i(7")) where 7' is the
previous turn such that for some e € Ey we have e(n’, ).

Definition 7 (Rhetorical cooperativity) Player i is rhetorically coopera-
tive in an ME game G if every turn in G by i is both coherent and responsive. G



1s rhetorically cooperative if the play of both players is rhetorically cooperative.

Note that one can coherently continue at turn k + 2 one’s contribution from
turn k, ignoring the opponent contribution in turn k£ 4+ 1. Responsiveness on
the other hand, forces a player to address the opponent’s last turn in some way
(acknowledging, correcting, answering questions, ... ).

Recall our constraint NEC, a condition according to which to win a player
must be able to respond to every attack. We can characterize strings that
provide attacks and responses effectively in our discourse language Venant
et al. (2014), and we can characterize NEC as follows:

Definition 8 (NEC) NEC holds for Player i € {0,1} on turn 7 iff for all
7€ (pi(T") U pi1—i(7")) where 7' is some previous turn, there exists m € p;(T)
and there is an e € Ey such that e(n', ), Attack(n') and Response(r).

Now let’s see how the Jury enforces these constraints. The Jury will penalize
contributions by that are not coherent, and it will penalize a player that is
not responsive on her turn. While being incoherent or unresponsive on a turn
is not a game changer; being inconsistent is—inconsistency makes the player
automatically lose. In addition, our Jury is sensitive to attacks that it deems
successful; and it is sensitive to ones with no reply—i.e. ones that do not
conform to NEC. The following model of the Jury with two components makes
these claims concrete:

The Jury assigns a rating to the contribution in turn 7, with the following
constraints:

e if the player 0 in 7; fails to respect coherence in 74 then cohy(7x) =
—1lif kmod2=0
1 otherwise.

—11if kmod 2

e if the player of 7 is not responsive in 73, then resg(7x) = { 1 otherwise

e If 0 is inconsistent by turn 7, of o and 1 is not, then consy(mp) = —1
for all & > k. Otherwise, consy(my) =0

e In all other cases where a winning condition Win distinct from coherence,
consistency, responsiveness and nec, wing(7;) = 1 if 7, advances 0 toward
Win; Wing(7,) = —1 if 7 takes 0 further away from Win; Wing() =0
otherwise.

The Jury also maintains a probability distribution over to types: BADy and
GOODg modeling the gain or loss of credibility that 0 has faced so far. At each



turn we write this probability as Py, and it is defined as follows:

e P)(GoODy) = 1 and Py y1(GOODy) = P(GOODg|oy), where oy is the
initial sequence of k turns in the game.

e Py(BADy) =1 — P,(GOODy).

e if 1 successfully attacks 0 at turn &, then P,(GOODg) = Py_1(GOODg|oy) =
¢k Pr—1(GOODg) where 0 < ¢; < 1 is a constant representing the severity
of punishment per single move of a player ¢ by the jury (¢ = 2/3 is a
good example).

e Conversely, if 0 successfully attacks 1 at turn k (this includes a good
response to an attack move by 1), then P(BADgy|oy) = ¢.Py—1(BADy).

These two ingredients contributes to a definition of the Jury’s evaluation in
the following way:
|7|| of the k™ turn’s benefits to 0:

|7x|| = coho(Tk) + reso(Tx) + cong(Tk) + Pr(GOODg) (wing (7))

&
lol§ = lim inf [E > ”TkH]
k=1,1,€0

Then 0 obeys the Jury condition for a sequence o only if |]U||g >0 and 1
wins otherwise. It is easy to see the following:

Proposition 3 If a necessary condition on Win is the Jury condition, then
to win 0 must respect consistency, and must satisfy NEC, responsiveness and
coherence more often than not..

The fact that the Jury enforces our constraints implies that the meaning of
a move is largely fixed by its consistent and coherent uses in context, how it
can be attacked and how it can be defended, amplified on and so on. This is
a counterpart of a well-known fact about formal languages: the models of a
formal language are determined by the consistency notion of the language’s
underlying logic or semantics. Because our players play infinite sequences,
a player can completely specify a model for a countable first order language
using Lindenbaum’s procedure.® Suppose player i plays a move ¢. Using the
consistency and coherence requirements on winning plays, she can build a

5 See e.g. Chang & Keisler (1973).



maximal consistent and coherent set of formulas from V' by adding a consistent
formula with a coherent relation at each turn to what she has already played.
Since V' contains at most w many formulas, an infinite play of an ME game
suffices to construct a maximal consistent and coherent set.® In fact the space
(Vo U V1)¥ contains all maximal consistent sets for the language. Thus:

Proposition 4 Let V' be a countable first order language. Then there is a set
C C (Vo UVY)¥ that consists of all plays that are consistent and rhetorically
coherent and that specifies all the intended models of V.

Not every play specifies a full model. However, the game structure itself does.
And in our idealized setting, the plays that are consistent and specify models
are common knowledge of the participants and of the Jury.

Our ME games thus enforce an exogenously specified notion of meaning,
specified by linguistic theory. This includes implicatures, which would seem
to mark an important difference with the signaling models of section 2.1).
In signaling models, implicatures arise as a byproduct of cooperativity in
the game’s equilibrium; our model takes them to be provided by linguistic
theory, and then predicts agents’ attitude toward them in the conversation’s
continuations. We could thus think of a signaling model as one of implicature
generation, while our model is one of implicature “survival”.

We think the situation is more complicated for two reasons. First, on
a commitment-based view such as ours, the constraints of consistency and
coherence determine implicatures. For instance, Quayle’s implicature K in (4)
that he was comparable to John Kennedy as a politician translates in our model
into the fact that it is consistent and coherent both for Bentsen to commit that
Quayle committed to K and for Quayle to commit that he did not commit to
K. Now as noticed earlier, a decision to exploit or to deny an implicature brings
with it a commitment that the linguistic premises (cooperativity, sincerity,
competence. .. ) of the implicature’s derivation hold, or do not hold. This being
understood, it does not matter whether one implements those premises within
a logical theory, or within a signaling game’s utility profile. But linguistic
constraints like coherence and consistency do further work. Consider, example
(2) with a fully cooperative Bronston. Where does the implicature to the “No”
answer comes from in the first place? This implicatures is fundamentally tied
to coherence. Inferring “Yes” through Bronston indirect answer makes him
less coherent than inferring “No”, because the “No” allows for an implicit
contrastive discourse relation (“No I did not. [But] the company had one”
while the yes would require an explicit marker “the company had one too” to

6 Or a maximal consistent and saturated set.



infer a relation (this is moreover actually confirmed by the natural prosody of
Bronston’s answer). Any model would have to rely one way or another on a
pragmatic theory to explain utilies and model this assymetry.

Second, we do not think that signaling games are independent of an exoge-
nous linguistic theory with regard to implicatures. One of the main concerns
of the model in Franke (2009) is to bring conventional meaning back into
signaling model, which is not innocuous by constraining the set of player types
in the game. In order to capture implicatures properly, one needs to make
conventional meaning a part of the signaling model. To this end Franke (2009)
suggests that the set of types constitute a potential answer set to the question
under discussion; hence, determining the game’s context requires a pragmatic
model as well.

In conclusion, both signaling games and ME game need to appeal to an
exogenous theory. Signaling games give a nice implementation of the Gricean
theory where linguistic considerations can often be “hidden” into the game
context, whereas ME games allow a higher level form of quantification over
those possible game contexts, which is crucial to account for the possibility of
Gricean or non-Gricean speaker.

3.2 Some interim remarks on ME games

BM games are classically played by 2 players, as are ME games. However,
conversations are not limited to two players only but may involve several
players. Most of our examples in Section 4 are of that nature. Our model can
accommodate such a scenario as follows: when a conversation involves n players
(n > 2 say), the player whose objective is to achieve the winning condition
Win is taken as Player 0 and all the other players ‘together’ form Player 1.
Any and everything of what is said by these n — 1 players constitutes Player 1
moves in the conversational ME game. Such an assumption is standard in the
theory of multiplayer games.

In ME games, winning conditions are defined over sets of infinite sequences.
However, our Jury witnesses actual conversations that are perforce only finite,
initial prefixes of such sequences and forms a judgment concerning winners
and losers of conversation on this basis. So our theory must provide a means
for verifying whether a winning condition that applies to infinite strings holds
or not in virtue of finite prefixes of those strings when possible. ME games
whose winning conditions are not finitely verifiable will give rise to actual
conversations for which a winner cannot once and for all be determined.

It may seem odd that we define a conversation’s winning condition for a
player using only sequences of discourse moves involving commitments. Don’t



agents engage in conversation typically to get their interlocutors or observers
of the conversation to do some non-linguistic action? As our vocabulary can be
what we can like, we can add to our vocabulary of discourse moves descriptions
of non-linguistic actions or states, like player 1 buys the goods, which is a
move that player 1 might make at the close of a negotiation. In principle we
can include a description of whatever actions that are pertinent to winning
conditions in a conversation.

ME games involve separate vocabularies for our two players. We have
assumed that the same types of move from a vocabulary V' are available to
both, but our games distinguish which player plays which move by restricting
0 to play from Vj = {(v,0)|v € V} and 1 to play from V}; = {(v,1)jv € V'}.
However, players may play with different vocabularies, for instance where 0
plays from the set {(u,0)|u € U}, 1 plays from {(v,1)jv € V} and U C V.
That is, the moves envisioned by one player is a strict subset of the other
player’s set of envisioned moves. We plan to investigate this possibility in a
future paper.

It’s also possible that as in chess, one player, indeed both players, might
be playing more than one ME game, with the same vocabulary of moves.
The possibility of using multiple ME games seems an intuitive way to analyze
the complex goals of strategic conversationalists like debaters, who have both
positive goals and also goals to thwart the positive goals of the opponent.
With two ME games, a debater could play 0 in one game and 1 in the other.
Alternatively, given the possibility of a biased Jury, 0 may be playing one ME
game according to her conception of the Jury, while the Jury takes her to be
playing another. Indeed, the interactions between players and the Jury offer a
whole range of options, that plan to explore in the future.

4 Winning conditions

Let’s recap. We've argued that the analysis of strategic conversation requires
a different framework with novel features, from those used in most game
theoretic analyses of conversation. We've established five necessary constraints
on winning conditions in virtue of a model of the Jury—consistency, coherence,
NEC from observation 1, NR from observation 2 and responsiveness; and we’ve
shown that these constrain the meaning of the signals players use independently
of the players’ beliefs or preferences, in contrast to other game theoretic
frameworks.

Nevertheless, while our model of the Jury evaluates individual contributions
of players it does not completely determine winning conditions or the ‘shapes’
of conversations that depend on them. This is something we now investigate.



We will characterize precisely the conversational objectives that players choose,
how complex they are, whether there is a winning strategy in the game for
achieving them, and, if there is a winning strategy, how complex it is. In order
to do this, we need a natural way of classifying sets of infinite strings that
satisfy different conversational goals. The fact that the sets of infinite strings
in BM games and ME games define a topology will allow us to make use of the
Borel Hierarchy, a natural measure of topological complexity, to characterize
different types of winning conditions. The place of a winning condition in the
Borel Hierarchy in turn determines the complexity of the winning strategy that
a player should employ.” We will examine the structure of the winning set Win
in a ME game when Win lies in the low levels of the Borel hierarchy.

To define the topology on the infinite strings in our ME games, we first
need to fix our domain D, which is the set of all possible plays in the ME game
G = (VobuVy)¥, Win). Note that D = (VouV;)“\ (VP UV). That is, since the
players have to play finite and non-empty sequences, this excludes (V3” U V}¥)
from the set of possible plays. We define the open sets in our topology to be
sets of the form A(Vo U V1)“ N D where A C (Vo U V;)*. We shall often denote
this set as O(A). Intuitively, O(A) denotes all possible ways in which a play
can continue after a string u € A has been played. If A is the single string {u}
then we shall abuse notation and write O(u) instead of O({u}). The closed
sets are as usual the complements of the open sets. Suppose for example, (2)
provides an initial segment of an ME game. O(2) is all the ways that the
conversation can continue. This is an open set over the set of plays D in the
ME game.

Using this topology, we inductively define the Borel sets, 2 and TI° for
1 < a <wp. Let XY be the set of all open sets. 10 = 2_(1)7 the complement of
the set of X sets, is the set of all closed sets. Then for any o > 1 where « is
a successor ordinal, define X2 to be the countable union of all TIY_; sets and
define TT° to be the complement of 2. A? = ¥ NTIY. Below is a schematic
picture of the initial sets and their inclusion relations in the Borel Hierarchy.

Similar to the above, let us define a topology on V* by specifying the
open sets as AV where A C V*. We note that since our “flattening” or
projection function 7, : ((VoU V7)Y — V¥ is an onto homomorphism, the Borel

7 See, for instance, Revalski (2003-2004) for a nice survey on infinitary games.



complexity of 7;'(A) = the Borel complexity of A, where 7'(A) = {s €
(Vo uW)¥|m,(s) € A}. Further, 7, maps open sets in (Vo U V;)¥ to open sets
in V*. However, closed sets in (V5 U V) maybe mapped either to closed sets
or to open sets in V“. By a simple inductive argument we can show that the
Borel complexity of sets do not increase under the map .

For ME games with decomposition invariant winning conditions, which are
just BM games, the Banach-Mazur theorem states necessary and sufficient
conditions for the existence of a strategy to achieve Win. The theorem in-
tuitively says that Player 0, the player who starts the conversation, can win
if her strategy takes into account, or has an ‘answer’, for almost all possible
situations when her turn to speak may come. That is, the set of situations that
her strategy doesn’t take into account must be ‘small’ in a sense that we define
below. Example 5 from the introduction illustrates the problem. Feynmann,
who confronts his students eager to stump him by beginning the conversation
with “So what shall we discuss today?”, automatically throws the floor open
for all possible topics that might arise. He can achieve his objective only if
the continuations of this initial question that do not fall within his winning
condition are very few. He must have a convincing response to any possible
question or topic that may be thrown at him that enables him to get to his
chosen topic.

To understand this theorem, we need some definitions. A set is nowhere
dense if its closure contains no non-empty open set. A set is meager if it is a
countable union of nowhere dense sets. Meager sets represent sets which are
‘small” in a topological sense. The complement of a meager set is a co-meager
(or topologically ‘large’) set. A topological space is called a Baire space if
the countable intersection of dense sets is dense. That is, every meager set is
nowhere dense. We will work in a Baire space.

Theorem 1 (Banach-Mazur (Mauldin 1981)) Given a BM game BM (V¥, Win),
(i) Player 1 has a winning strateqy if and only if Win is a meager set; (ii)
Player 0 has a winning strategy if and only if, there exists a finite string x such
that O(x) — Win is meager (that is, Win is co-meager in some basic open set).

4.1 Winning conditions in conversations: Reachability and Safety

Let’s start by looking at the winning condition for the conversation in Example
1, which, at least on a certain interpretation, is a very simple, decomposition
invariant condition. Suppose that in order to achieve her winning condition,
candidate A has only to mention at some point, it doesn’t matter when, the
theorem that she has proved (leaving aside the constraints NEC, NR, consis-



tency or discourse coherence, which make winning conditions more complex).
In other words, for A to win the game, her conversation x must eventually
contain this move. More generally, conversations in which the objective of a
player is to simply “touch upon” a certain topic exhibit the following shape:

Win = Reach(R)

Reachability, a characteristic property of many conditions classified as ¥ in the
Borel hierarchy, is defined as follows. Given a non-empty subset R C (Vo U V)
of the elements of the vocabulary, a string x in (Vo U V;)¥ is said to reach R if
the elements from R occur somewhere in x. More formally, for a string x over
the vocabulary (Vo U V;) we let z(i) denote the ith element of z. We define
occ(z) = {a € (Vo UVy) | 3i,2(i) = a} to be the set of all the elements of
(Vo U V1) which occur in z. Then

Reach(R) ={x € D | R C occ(x)}

is the set of all strings in which the elements of R occur at least once. The
reachability set R of example 1 is just a singleton. Since this winning condition
is decomposition invariant, by the BM theorem A has a winning strategy, since
the winning condition picks out an open set of strings of discourse moves.

Just as Reachability characterizes many conditions in XY, Safety charac-
terizes an important subset of these II{ conditions and is defined as follows.
Suppose S (the ‘safe’ set) is a subset of (Vo U V).

Safe(S) ={x € D | occ(x) C S}

is the set of all strings which contains elements from S alone. That is, the
strings remain in the safe set and do not move out of it. One common sort of
I19 condition is to prevent player 0 from reaching a X{ condition; another is to
avoid a certain commitment or finite set of commitments.

Note An alternative way of thinking about reachability and many %{ condi-
tions is to look at their definitions in terms of temporal logic. As our space of
infinite strings is a set of linear orders, formulas of linear temporal logic (LTL)
can describe some of its subsets, in particular many reachability conditions.
For any element a € (V5 U 1)), let the proposition p, denote the property of
visiting or playing a. For some finite R C (V5 U V1), the LTL defining formula
for the strings that reach R is:

¢T€achable(R) - /\ <>pa

a€R



where ¢ is interpreted as eventually.® A reachability formula of the form {p, is
true at an index i of a sequence = (z,i = Op,) iff for some j > i, x,j | pa. A
string x satisfies Op, (x |= Op,) iff at the initial point 0 of z, z,0 |= p,. Safety
also has an LTL defining formula for the strings that stay in S: where [J is
interpreted as always,
¢safe(S) = \/ Pa
acsS

For a safety goal of the form O¢, x, = O¢ iff for all j > i, z,j | ¢. x = Do
iff z,0 = Og.

The simple X{ winning condition of candidate A’s is decomposition invariant.
However, this is not so for other goals. Consider (1) again. Justin is playing a
game with a disjunction of reachability conditions as his winning condition: his
goal is to get Janet either (i) to admit that she has been seeing Valentino or
admit that she hasn’t. These characterize an open set in an ME game where
0 is Justin. Nevertheless, unlike candidate A’s, Justin’s winning condition
depends on Janet’s making a certain commitment, a decomposition sensitive
winning condition. We need to analyze the topological characteristics of such
winning conditions.

We first look at winning conditions that are decomposition sensitive in a
particular way: Win depends on 0’s making a particular contribution at each
turn. We call these conditions rhetorically decomposition sensitive. Our con-
straints of responsiveness, coherence, consistency and NEC are all rhetorically
decomposition sensitive conditions.

Proposition 5 If Win is rhetorically decomposition sensitive, then it is mea-
ger.

Proof Let x € Win be a winning play. Since Win is decomposition sensitive,
for every prefix z,, of  which ends with a contribution of 1 there exists a finite
Y, such that O(z,y,) N Win = (). Since x was arbitrary, this means the closure
of Win cannot contain a dense open set. Hence, Win must be meager. O

Given the constraints enforced by the Jury, we will be mostly interested in
rhetorically decomposition sensitive winning conditions in ME games. Any
winning condition incorporating these constraints is a meager set.

However, not all winning conditions that are meager provide a winning
strategy for Player 1. 0 has a winning strategy in an ME game G just in case
there is a sequence of moves x such that for every finite prefix x,, of x ending in
1’s turn, there is a finite prefix y,, of plays by 0 such that O(x,.y,) N Win # (.

8 For an introduction to LTL, see e.g. Lamport (1980).



And 1 has a winning strategy in G just in case there is no such sequence z, or
in other words just in case for every sequence of moves x there is a finite prefix
z, of x ending in 1’s turn, such that O(x,) N Win = 0.

Consider the following abstract ME game. Suppose V' = {a, b} and suppose
Player 0 loses if and only if at any point she plays b. That is, the winning set
Win is

Win = D\ Reach({(b,0)})

This is itself a rhetorically decomposition sensitive winning condition. Now,
both Win and 7, (Win) are meager sets in their respective topologies. As
the Banach Mazur theorem rightly states, Player 1 has a winning strategy in
the BM game (V¢ 7,(Win)): play b at some turn. However, she does not
have a winning strategy in the ME game (Vy U V})“, Win). That is because
whatever she plays, Player 0 can always avoid playing b. In other words, the
decomposition sensitivity of the ME games breaks down the applicability of the
Banach Mazur theorem in ME games. Player 1 cannot ‘play for’ Player 0 now,
which she can do in the BM game. A linguistic example of such a situation
is a game GG where Janet from example (1) is player 0. Janet has a winning
strategy in GG even though her winning condition is meager.

Conversely, consider a winning condition for 0 that depends on some finite
number of contributions by 1. Call such goals 1-finite-decomposition sensitive.
An instance of such a winning condition would be Justin’s. Recall that Justin’s
objective in (1) is to get Janet to commit as to whether she has been seeing
Valentino or not. Symbolize this commitment by Janet’s as (¢,1) € V1, as
Janet is Player 1. Then Justin’s winning condition is the union of open sets
{O(z.(c,1)): = € (Vb UV;)*} and is co-meager. Nevertheless, his opponent
Janet has a winning condition in such a game: never answer Justin’s question
directly. More generally,

Proposition 6 If an ME game G has a 1-finite-decomposition sensitive win-
ning condition, then there is no winning strategy in G for 0.

Corollary 2 There are ME games with 1-finite-decomposition sensitive win-
ning conditions that are co-meager, but where O has no winning strateqy.

There are also 0O-finite-decomposition sensitive winning conditions that
depend only on finitely many moves of 0. These conditions are X} where 0
always has a winning strategy, as the BM theorem predicts. A final situation is
the one of the prosecutor in example (2) has components that are decomposition
sensitive, but the entire winning condition is not. The prosecutor’s winning
condition as described above is that Bronston must either commit to an answer



or never answer P’s question. Given such a winning condition, there is a
winning strategy for the prosecutor: keep asking the question until Bronston
commits to an answer. In fact the entire game space is the winning condition
for the prosecutor. Thus, we can infer:

Proposition 7 Decomposition sensitivity of winning conditions is not pre-
served under union.

Proof Let Win; be a decomposition sensitive winning condition and let
Wing = D\ Winy. Clearly Winy is also decomposition sensitive. Indeed,
because if the play is decomposed according to some play v € Win, then Player
0 cannot win. However Winy U Winy, = D is clearly decomposition invariant.
O

We’ve now canvassed the whole spectrum of decomposition sensitive winning
conditions in ME games. In general, decomposition sensitivity makes ME games
more expressive and more complex than BM games, breaking the delicate link
between topology and winning conditions given by the BM theorem.

Decomposition sensitivity also affects Borel complexity. If Player 0 has a
winning strategy in a rhetorically decomposition sensitive ME game then the
Borel complexity of Win is at least %9.

Proposition 8 Let G = ((Vo U V4)¥, Win) be an ME game such that Win is
rhetorically decomposition sensitive. If Player 0 has a winning strategy in G
then the Borel complexiy of Win is at least ¥9.

Proof Let us mimic a winning play u of Player 0. v € Win only if for every
prefix u,, n odd, of u that ends in a Player 1 move, O(u,,) N Win # (). Thus
whatever 1 plays to reach u,, 0 can choose v,, such that w, 1 = u,v, is still a
prefix of u. We may thus write u as

u=upO(u1) NuO(ug) N ...

Hence Win, being at least a countable union of the above sequences, is at least
9. OJ

4.2 Winning Conditions: co-Biichi

We've already met the next kind of set in the Borel Hierarchy, ¥ sets, also
known as co-Biichi sets. Suppose C is a subset of (Vo U V;) (the ‘co-Biichi’ set).
Then

co-Biichi(C) = {z € D |inf(x) C C}



where inf(x) = {a € V | Vi,3j > i,2(j) = a} is defined to be the set of all the
elements of V' which occur infinitely often in x.

In terms of LTL formulae, the co-Biichi condition may be viewed as follows.
Let C' C V be the co-Biichi set. Then

chofBuchi(C) =00 \/ Pa

acC

We've also seen that rhetorically decomposition sensitive winning conditions,
including consistency, responsiveness, coherence and NEC, are all at least X9, if
they have winning strategies. More particularly using proposition 8, if 0 must
commit to at least some proposition to win—i.e., she has a X9 objective—and
must remain consistent, her winning condition is Co-Biichi. Classic examples of
co-Biichi conditions are those with strings that eventually contain only elements
of C' or eventually settle down in C. That is, the strings eventually get stuck
in the safe set C'. Example 5 is a motivating example for a conversation with a
Y9 winning condition that also involves rhetorically decomposition sensitive
conditions like responsiveness, coherence and consistency: Feynmann had to
respond to his students’ questions and in a coherent way lead them eventually
to the topic that he wanted to discuss.

The winning condition that a conversation be finite is also a co-Biichi
condition. A finite conversation is easily modeled in the ME framework; the
initial segment in which the agreement is reached is then succeeded by an
infinite sequence of “null” moves that keep the content of the last move.
Indeed, there is a close connection between agreement winning conditions and
finiteness. If the only goal of the exchange is to achieve a fixed point in which
the dialogue stays within this information state forever after, the conversation
should stop once the terms of the exchange and the agreement are common
knowledge. Being rational agents, our players will stop once they acquire the
mutual knowledge that that state has been achieved and that nothing will take
them out of it.”

Bargaining agreements or agreements on some permanent exchange of
goods, which could also be information are naturally ¥9 conversations even in
the absence of these constraints—e.g., . Any information seeking conversation
in which 0 has the goal of acquiring agreement about some intellectual issue
¢, like a Socratic dialogue also has the structure of a 39 winning condition.
Walton (1984) calls these inquiry dialogues. Co-Biichi conditions distinguish
between provisional and real agreement. In a provisional agreement, an agent

9 In principle, participants could continue acknowledging each other’s acknowledgments ad
infinitem. But such acknowledgments wouldn’t serve any purpose. For a discussion see Asher
& Venant (2015).



provisionally may acknowledge another’s contribution and agree to a bargain
but later take the acknowledgment and the agreement back. If Win of the
conversational game consists only in reaching a provisional agreement, Win
is clearly XY, as it does not constrain what happens after the provisional
agreement is reached. Real agreement is different. Once attained between
two agents, the agents do not deviate from it in any further conversation; no
conversational moves take them out of that state of agreement, as required
for a co-Biichi condition. This is essentially also a decomposition sensitive
condition.

In the absence of any constraints, however, a decomposition sensitive
winning condition of agreement for 0 has no winning strategy for 0; 1 always
has a non empty 1-play of disagreeing for any possible continuation by O.
Similarly, no conversational goal of extracting a binding oath from an opponent
can succeed, unless additional constraints are imposed. For similar reasons to
the lack of a winning strategy for agreement type winning conditions, finiteness
winning conditions are also easily seen to have no winning strategy—I1 can
always prolong the game by talking when it is her turn.

Our general constraints of NEC, responsiveness and coherence, however,
can make the agreement happen in agreement seeking conversations. The Jury
becomes an “arbitratror”, imposing agreement when the opponent 1 no longer
has any counter arguments to rebut 0’s arguments for a particular position
or exchange; the lack of counter arguments makes 1’s objections not credible,
thus lowering 1’s score eventually leading to 0’s winning condition. Thus, with
the Jury’s constraints, 0 wins a X goal iff 1 has eventually no more arguments
against a certain proposition ¢, where ¢ may describe a bargain or topic of
discussion.

Co-Biichi conditions also characterize goals in which 0 repeatedly attacks
1 eventually to reduce the opponent’s score in the eyes of the Jury (Venant
et al. 2014). (3) is such an example. Let LD be player 0 in an ME game. In
the voire-dire transcript, 0 repeatedly returns to the question as to whether
the defendant Tzeng was responsible for severing a nerve in a patient’s hand;
he seemed prepared to revisit the theme indefinitely until he exposes that
the expert witness D, or 1 in this game, was covering up for a fault of the
defendant. Repeatedly questioned, 1 replies each time in the play up to (3c,d)
that Tzeng was not at fault. In the Jury’s eyes, 0’s questioning had little effect;
the Jury’s probabilities assigned to the types of 0 and 1 did not shift, and 0 was
no closer to his winning condition in getting the court to agree with him that
1 was not an impartial witness. However, at (3c,d), 1 contradicts his previous
testimony by agreeing to 0’s loaded question, and his attempts to backtrack
and correct his mistake are successfully attacked by 0 in (3h). At this point, 0



has achieved his goal.

We note that our model of the Jury needs refinement in that it does not
take account of successful retractions in the face of inconsistency, and so we
cannot really predict the counterattack at (3h). We plan to address this in
future work.

4.3 Bichi conditions

The complementary condition of a Co-Biichi condition, the Biichi condition, is
the equivalent of (infinite) iterated reachability, and is a condition that is not
expressible on finite strings. Suppose B is a subset of (VU V}) (the ‘Biichi’
set). Then

Biichi(B) = {x € D | inf(z)N B # 0}

is the set of all strings which contain infinitely many elements of B or equiva-
lently which visit B infinitely often. A Biichi set is I3 in the Borel hierarchy.
In conversations where player 0 has a Biichi winning condition, she will win if
she always has a path to B and revisits B infinitely often. A Biichi condition
is more sophisticated than a I19 condition, in which a player never leaves a set
of states. 0 can play for a Biichi condition and allow 1 a reachability or %9
condition on his play. In such a game, player 0 can continue to return to her
chosen and preferred states infinitely often, reiterating a point or set of points
that she wants to make (once again, a finite conjunction of Biichi conditions is
also Biichi).

Some Biichi conditions can be expressed using LTL formulas, however,
that are finitely satisfiable. For any x € V', let the proposition p, denote the
property of visiting or playing x. Let B C V be the Biichi set of states. Then

¢ Biichi(p) = 30\ ps

zeB

If 0’s winning condition means revisiting a set of states B infinitely often,
it must be for some other purpose other than agreements on exchanges of
goods or information, for once lasting agreement is achieved, there is no point
in revisiting that agreement. On the other hand, a Biichi condition can be
effective in debate. Political debates like those evoked in example (6) exemplify
a Biichi condition. Such a condition is more difficult to achieve if our rhetorical
constraints are imposed on acceptable discourse sequences, because it means
that any play by the opponent still must enable the player to have a rhetorically
cooperative path to return to B. But a practiced debater can have such a
strategy.



Let’s now take a closer look at the analysis of one of our examples involving
a Biichi winning condition, (4). Our excerpted example was a turning point
in the Vice-Presidential debate. Quayle’s goal as Player 0 was to continually
revisit the theme that despite his youth he had the talent and experience of
a good Vice-Presidential and Presidential candidate. In effect this is a I19
winning condition. Up to the exchange in 4, we can assume that Quayle had not
made any disastrous moves, had remained consistent, responsive and replied
to attacks and that the Jury’s assignment to GOODy had not suffered that
much. His play had produced an initial segment of strings in Win. That is, we
assume that the play o up until (4) is such that ||o|| was above 0, though not
significantly above.

Given this goal, it would seem 0 had a clear winning strategy. What went
wrong? To describe the exchange in (4) in detail, we need as basic vocabulary
for both V5 and Vi: an attack move, attack(z,y), meaning that the move y
attacks move x, descriptions of the content of basic moves z: ¢ and y: ¢, a
commentary move, comment(x,y) where a player expresses an opinion in y
about move z, and a question answering move (QAP). (4a) is a QAP move
to a question about his Presidential qualifications. But the content of (4a)
is ambiguous. Quayle might have just intended (4a)’s literal meaning—that
he was equal in governmental experience to John Kennedy as a candidate
for President. But he might also have intended, and probably did intend by
mentioning a famous President, to have the audience and Jury draw a direct
and positive comparison between himself and Kennedy with regards to the
kind of President he might become in line with his winning condition. In
response Bentsen plays attack(4a,b).4b: ¢, with ¢ contradicting the implicated
direct comparison. This is what he should do; he should try to get the Jury to
lower their estimation of Quayle’s GOOD type. At this point Quayle should
have counterattacked with another attack move, as NEC requires. But instead,
Quayle plays a weak comment(4b,c).4c: 1 in the subsequent turn; and then
Bentsen plays another successful attack(comment(4b,c),4d).4d: x, where x
says that it was Quayle brought up the comparison and thus opened himself
up to attack—hence, attack(4a,b) was perfectly fair. The Jury penalized
Quayle severely for this failure to assume and defend the consequences of
an implicature he most likely intended given his winning condition, setting

Cattackcomment(a,e)aa) — O and hence P attack(comment(4b,c),4d)<GOOD0) = 0.

Thus, at this point, ||o.4a — d|| = 0, and Quayle could do nothing in the

remainder of the debate to get Py.(GOODy) > 0. Given these assumptions, our
model predicts that Quayle lost the debate with this one move.



4.4 Muller conditions

A Muller condition is defined as follows. Suppose we are given a set F =
{F1, F,, ..., F,} of subsets of (V, U V) (the Muller sets). Then Muller(F) =
{z € V¥ | inf(x) € F} is the set of all strings which eventually (after a finite
point) get stuck in one of the Muller sets, Muller(F).

A Muller winning condition is a boolean combination of Biichi and Co-Biichi
conditions. In terms of temporal logic formulae this can be seen as follows. Let
F =A{F,F,, ..., F,} be the set of Muller sets where each F; is a subset of V.
Then

Prulter(F) = (¢co-Bdchi(Fl) V..oV ¢CO-BdChi(Fn)> A wco-Bdchi(m) =

/\ @ Biichicey) N - - N @eo-Biichir,) = /\ ? Biichi(gzy)
zeF] zEF,

Since Muller conditions extend Biichi conditions, Muller conditions are not
compatible with the goal of exchanging goods. Nevertheless, there are real life
conversations with Muller “winning” conditions with multiple states, in which
the participants revisit the states indefinitely often. In fact conversations with
Muller winning conditions are commonplace. For instance, examples (6) and
(4) have both IT and also ¥9 components to their winning conditions, as the
Jury requires that they obey rhetorical cooperativity, NEC and consistency.
Once a ITJ winning condition is combined with a X9 requirement, the result is
a Muller winning condition.

Proposition 9 If 0 must obey a rhetorically decomposition sensitive condition
with a 113 objective, then her winning condition is Muller.

There are also examples of conversations with Muller winning conditions.
One involves a conversation between two partners who have lived for a long
time together and who are quite old. After a certain point 0 always attempts
to go through the same conversational moves, so that they can revisit the same
memories, and touch on the same themes, laugh at the same jokes. 0 asks the
same questions to get the same answers. To quote John Prine from the song
Far from Me, a question ain’t really a question if you know the answer too.
In the song 1 plays along for a while, though she ”waits a little too long,” to
laugh at the same, repeated jokes. In the end 1’s goal is to break the cycle of
repeated conversational moves by 0. Assuming that our conversational agents
are rational, the goal of such a conversation is not information exchange or
some sort, of persuasion; it is something else like venting one’s emotions albeit
indirectly, reliving an experience, or conveying some other non literal message.



4.5 Relation to Gale-Stewart games

Another type of infinite games that have been extensively studied in the
literature of Logic and Computer Science is called a Gale-Stewart game (GS
game). A GS game is similar to a BM game in that the play of such a game is
again an infinite sequence x over a vocabulary V. However, whereas in a BM
game the players take turns in playing finite non-empty sequences of letters
from V, in a GS game, the players can play only single letters (from V') in
each turn. In other words, the turn-structure of the play is built inherently
into the dynamics of the game. Thus a GS game over a vocabulary V is a
tuple G = (V, Win) where Win, as before, is a subset of VV*. The notions
of a strategy, winning strategy, determinacy etc are defined as a BM game.
Every GS game (V, Win) where Win is Borel is determined Martin (1975).
However, the rigid turn structure of GS games precludes a characterization of
the winner in terms of the topological properties of the winning set unlike in
a BM game (thanks to the BM theorem). GS games in fact capture our ME
games with decomposition sensitive winning conditions, while the BM games
are isomorphic to the decompositive insensitive ME games.

The ME conversational games we proposed in this paper were developed
by imposing a turn structure on BM games. Alternatively, we could have
developed them as GS games (as the turn structure is built in) on the vocabulary
VT = V*\ {€}. Thus, the players take turns in playing elements from V7
(which are finite non-empty sequences in V') forming an infinite sequence in
V«. A play can thus be viewed as a sequence in ((V;" U VT)*\ (V& UVE)) =
(VouW)*\ (VZUV)) = D, where V; =V x {i}, i € {0,1} as before. Win
once again, is a subset of D.

Exploiting the correspondence between GS games and decomposition sensi-
tive ME games allows us to apply the Biichi-Landweber theorem, to infer the
memory requirements of a winning strategy. To state this theorem we need a
little background on what exactly is the memory of a strategy.

A strategy so for Player 0, in a GS game (V, Win) is a function s, :
(VorVih)* — VT and a strategy s; for Player 1 is a function s; : (V;7V;7)*V;F —
V*+. A strategy s; of player i € {0,1} is said to be finite memory if there
exists a finite automaton with output M; which dictates s;. More formally
let, M; = (M;,m,d;,0;) where M; is a finite set of states (the memory
of s;), m? € M; is the initial memory, §; : V x M — M is the transition
function and O; : V x M — V7 is the output function. Define the extended
transition relation gz : VT x M — M from ¢; inductively as usual. That is,
8i(v,m) = 8;(v,m) and 0;(zv, m) = & (v, d;(z,m)). Then for every finite play

A~

xv that ends in Player (1—1)s turn, s;(zv) = O;(v, &;(zv, m®Y). s;is memoryless



or positional if M; is a singleton. A positional strategy can be represented as a
function s; : V' — V. Now, the Biichi-Landweber theorem can be stated as
follows

Theorem 2 (Biichi & Landweber (1969)) Let G = (V, Win) be a Gale-
Stewart game such that the Borel complexity of Win is at most a boolean
combination of X9 and 11 sets (that is, Win is at most Muller). Then one of
the players always has a finite memory winning strategy.

Coming back to conversations, this means that to win an ME game with
a decomposition sensitive winning condition having a low Borel complexity,
a player may require memory. However, if the winning condition is not ‘too
complicated’, a finite amount of memory suffices. Here is an example illustrated
with a particularly simple ME game with V' = {a, b}:

(4) Consider an ME game G = (V, Win) where 0 achieves Win iff she
plays a and b alternatively in each of her turns. 1’s moves do not
matter.

0 has a winning strategy for GG, but she has to remember what she did on her
prior turn to achieve it. So she would need to have at least one cell of memory
for a winning strategy. As another more linguistically sophisticated example,
any winning condition that incorporates NR would require (2 cells of) turn
memory.

As finite automata are one of the most tractable algorithmic objects, this
suggests to us an ambitious but exciting future project: Given a debating
situation between two (or more candidates) where the goals of the candidates
can be represented as low-complexity Borel sets, predict the winner and design
a winning strategy for her.

4.6 Finite satisfiability revisited

The examples of winning conditions that we've examined are all expressible as
formulas of linear temporal logic (LTL). While LTL’s semantics uses infinitary
sequences of evaluation points for formulas, many of the formulas that capture
intuitive winning conditions are also finitely satisfiable, satisfiable on finite
sequences. For instance, a finite sequence o will verify a reachability goal ¢¢ if
its initial state does, and similarly for all the LTL definable conditions we have
discussed. Even the LTL definable Muller conditions are Boolean combinations
of LTL definable Biichi and Co-Biichi conditions, and so they also can be
satisfied over finite sequences. In addition, since consistency or satisfiability



and discourse coherence are defined for the finite formulas for V', finite prefixes
of sequences in ME games can naturally also verify these properties, and our
Jury winning condition declares a winner for any finite conversation.'?

Thus, for example, in example 2, the prosecutor has achieved his XY of
extracting at least a defeasible commitment from Bronston that he had no
account and that both he and Bronston had coherent, responsive and consistent
plays obeying NR and NEC. Given that the prosecutor’s choice of winning
condition was one the opinionated Jury found persuasive, it and the unbiased
Jury would award the prosecutor a victory. However had the opinionated Jury
required a stronger winning condition, on which the prosecutor had to extract
a non-defeasible commitment from Bronston, it would have assigned Bronston
the win. In example 3, LP’s cornering D into an consistency yields LP a win,
given our specification of the Jury.

The finite satisfiability of many winning conditions in the low levels of the
Borel hierarchy leads us to ask about monotonicity or stability properties of
these conditions. X{ and II{ conditions are monotonic over finite sequences in
the following sense: if ¢ is a ¥ condition and it is true in o, then it is true in
every extension of o; conversely, if ¢ is a I1{ condition and it is false in o, then
it is false in every extension of o. However, X9 and II3 goals are not monotonic
in this sense without further conditions; a X9 goal like an agreement may be
reached in one finite sequence but then falsified in a finite continuation of that
sequence, only to be reinstated in another continuation. This instability is
reflected in the failure in our finitary semantics of certain LTL entailments.
For instance a formula of the form [J0¢ can be satisfied in a finite sequence
x of length 1 (such that ¢ is true at the first index) but its LTL consequence
OOO@, where () is the next-time operator, is clearly false. This is another
indication that 39 and I3 are more complex than the sets at the first level of
the Borel Hierarchy. The non-monotonic behavior of conditions at the second
level of the Borel Hierarchy also reflects some of our linguistic observations—for
instance, the difficulty of establishing lasting agreements over a finite fragment
of conversation. Another example of this instability is this: NEC, the necessary
condition on winning, may be falsified “unjustly”, if 0 does not get the chance
to reply to an attack. Perhaps for this reason, if the opponent launches an
attack, most observers would require as fair that the attacked agent have the
right of reply. Indeed all of our rhetorical constraints are unstable as can be
seen from Proposition 9.

The non monotonic behavior of certain winning conditions over finite

10 Interestingly, conditions beyond X9 in complexity do not have finitely satisfiable conditions;
nor are they expressible using LTL formulae or even first order formulas of the language of
linear orders McNaughton & Papert (1971).



prefixes allows us to clarify two ways to verify such conditions linking them
to topological properties of the underlying space. There are two ways this
sort of finite verification can fail: first, a condition may be verified in a finite
prefix but verified only in some of its continuations and falsified on the others;
secondly, a condition may never be verified on any finite prefix but only on
infinite sequences. If all continuations of a finite prefix s verify or fail to verify
¢, then the game is already decided at s. This happened in the debate from
which example (4) is excerpted; after Bentsen’s attack, our model predicts that
Quayle’s objectives were foiled, no matter how he continued. We note that
the stable verification of ¢ in a finite string has a topological characterization.
Consider all those infinite strings s such that all of the finite prefixes of s satisfy
¢. The set of all such strings S is a model for ¢; if S is open, then any game
with ¢ as a winning condition is verified at a finite point, the point where S
starts to branch.

5 Conclusions and prospects

We have proposed a model for conversations in a strategic setting, ME games,
building on BM games. We’ve provided a strong motivation for consistency
rhetorical cooperativity, a key assumption of Asher & Lascarides (2013) even
in the absence of other shared goals. And we’ve built these constraints into
our conception of the Jury. We explored conversational goals which lie in the
low levels of the Borel hierarchy with natural examples of conversations and
provided a precise typology for them. We have shown how turns and turn
involving winning conditions make ME games strictly more expressive than BM
games and their winning strategies more complex. We also showed how intuitive
constraints like consistency affect the complexity of winning conditions, moving
many intuitive characterizations of simple winning conditions to ¥9 or Muller
in the Borel hierarchy. We’ve also shown some linguistic consequences of this
typology with respect to stability or instability of evaluation.

We have just scratched the surface of a rich and interesting theory of the
structure of conversations. There are many directions for further development.
For instance, we have considered only very simple forms of our discourse
constraints. Avoiding inconsistency in the more general case means avoiding
a finite sequence of formulas in V' in accordance with the logic that yields a
proof of an inconsistency. For first order logic, the consistency predicate is
I1Y over the language of Peano arithmetic, since provability is expressible as
a X9 predicate. It is not definable in S1S (or equivalently LTL), and so the
complexity of consistency lies higher up in the Borel Hierarchy (or maybe even
beyond that). We want to investigate more complex forms of consistency and



other constraints with respect to the Borel Hierarchy and what this means for
the existence and feasibility of winning strategies in ME games.

There are other directions for further research. One is to develop our model
of the Jury further using techniques from mean-payoff games Zwick & Paterson
(1995). Another is to investigate extensions of ME games to non zero sum
settings by replacing simple winning conditions with utility functions, which
would extend our analysis to many more conversations. Finally, we believe that
integrating signaling games with ME games is exciting: each conversational
move is in effect the result of a signaling game, and the ME game as a whole
yields a sequence of iterated signaling games whose utilities are guided by the
overall winning conditions.
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