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1
Abstract— 3D Deployment represents a fundamental role in 

setting up an efficient wireless sensor network (WSNs) and IoT 

network. In general, WSN are widely used in a variety of 

applications ranging from monitoring a smart house to 

monitoring forest fires with parachuted sensors. In this paper, we 

focus on planned 3D deployment, which the sensor nodes must be 

accurately positioned at predetermined locations to optimize one 

or more design objectives under some given constraints. The 

purpose of planned deployment is to determine the type, number, 

and locations of nodes to optimize coverage, connectivity and 

network lifetime. There have been a large number of studies, 

which proposed algorithms for solving the premeditated 3D 

deployment problem. The objective of this paper is twofold. The 

first one is to present the complexity of 3D deployment and then 

detail the types of sensors, objectives, applications and recent 

research that concerns the strategy used to solve this problem. 

The second one is to present a comparative survey between 

recent optimization approaches used to resolve the deployment 

problem in WSN. Based on our extensive review, we discuss the 

strengths and limitations of each proposed solutions and compare 

them in terms of the WSN design factors. 

Index Terms Indoor Environments, Optimization, Coverage, 

Connectivity, Energy consumption, Wireless Sensor Networks.

I. INTRODUCTION

A fundamental problem in the WSN and IOT collection 

network is how to deploy the sensors. The deployment 

problem can be described as follows: Having N wireless 

sensors and an area A to cover. How to deploy these sensors to 

form a WSN that meets system requirements, such as the 

connectivity of the network, its ability to detect relevant 

events happening in A, and is the ability to provide a required 

period of operation. This problem is related to coverage, 

connectivity, and lifetime issues. Indeed, the problem of 

deployment in WSN refers to the determination of the 

positions of nodes (and/or the base stations) so that the 

coverage, the connectivity and the energy efficiency can be 

obtained with a minimum number of nodes. 

Events happening in an area lacking a sufficient number of 

nodes may be unnoticed. Moreover, areas with dense sensor 

populations suffer from congestion, redundancy detection, and 

delays. Optimal deployment ensures adequate quality of 

service, long network life and cost saving. The problem of 

deployment can also be defined as follows: having a surface A 

in 2D or 3D with a set of obstacles (that can exist without 

partitioning A), and a set of sensors having different types 

(according to the radii of detection and communication). The 

overall goal is to minimize the number of nodes to be 

deployed on A while ensuring one or more objectives such as 

network coverage and connectivity [1]. It is said that the target 

region is covered if each point in A is covered by an active 

sensor having a probability of coverage Pc and a sensing range 

Rs if there is direct communication (Line of Sight) without or 

in the presence of obstacles. Besides, it is said that the network 

monitoring a target region is fully connected if all sensors can 

route data in multi-hop to the base station or another 

destination node. 

Most deployment approaches consider a WSN with 

randomly deployed sensors, which are generally modeled by a 

Poisson point process with a density γ. This Poisson process is 
defined as follows: for any zone A in the region R, the 

distribution of the number of nodes in A is the mean 

distribution of Poisson γǁAǁ, ǁAǁ is the surface of A. Given the 
number of nodes, their locations are mutually independent 

random variables and uniformly distributed over A. It is 

known that n nodes whose locations are mutually independent 

random variables, with a uniform distribution within A, are 

mainly a Poisson process with a density γ, provided that A is 
large [2]. 

An example of randomly deployed sensor networks is 

shown in Figure 1. There are twelve sensors deployed in a 

rectangular detection field. The density of sensors on the left 

side of the field is higher than that on the right one. Therefore, 

the detection field is not fully covered by the sensors. 

Figure 1.  An example of area coverage using randomly deployed sensors 
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Finding the optimal node distribution is a difficult problem 

to solve and it is considered NP-hard for most formulations. 

This problem is proven to be optimally solved in 2D 

environments while it has been proven NP-difficult if it is 

generalized to 3D environments [3]. Figure 2 shows an 

example of 2D deployment and another for 3D deployment. 

2D deployment 3D deployment 

Figure 2.  2D deployment vs. 3Ddeployment 

When sensors are deployed randomly, the initial coverage 

area provided by the network cannot be optimal as in the case 

of deterministic deployment. In order to increase the covered 

area, redundant sensors are deployed. Redundancy makes 

sensor networks denser than normal ad hoc networks. 

However, increasing sensor density cannot provide a 100% 

coverage probability. Even more, it is expensive to maintain 

high-density WSN on a large scale. Therefore, other 

approaches should be used to avoid these problems and 

improve the coverage after the initial random deployment. 

Another problem that complicates the redeployment is that of 

the robustness of WSN. Indeed, once deployed, it is expensive 

and impractical, even impossible, to replace unusable sensors 

in most types of applications. Hence, if a particular node is no 

longer running, there will be an impact on the overall 

performance of the network. The loss of a node may be due to 

different causes, such as battery depletion, physical damage 

caused by environmental forces, or destruction by the enemy. 

If a sensor that covers a sensitive area dies and no other sensor 

can cover that area, the WSN fails its mission of efficiently 

distributing the sensors. 

Indeed, one way to optimize the distribution strategy in 

WSN is to have redundant sensors that improve the 

performance of the network. In addition, if the detection field 

is vast or has limited access, the sensors may not be able to be 

deployed one by one in specific locations. Instead, they can be 

disseminated from an airplane. When the sensors are randomly 

deployed, the initial coverage area provided by the network 

cannot be optimal as in the case of deterministic deployment. 

In order to increase the coverage area, redundant sensors can 

be deployed. Redundancy makes sensor networks denser than 

ad hoc networks. 

However, increasing sensor density cannot provide a 100% 

coverage probability. Even more, it is expensive to maintain 

high-density sensor arrays on a large scale. Therefore, other 

approaches should be used in order to avoid these problems 

and improve the coverage after the initial random deployment. 

Another problem that complicates the redeployment is the 

robustness of WSN [4]. Once deployed, it is expensive and 

impractical, if not impossible, to replace unusable sensors in 

most types of applications. Therefore, if a particular node is no 

longer running, there will be an impact on the overall 

performance of the network.  

The process of deploying the sensor nodes greatly 

influences the performance of a WSN. The problem of 

deployment or positioning nodes in a WSN is a strategy that 

defines the topology of the network, and therefore the number 

and position of nodes. The quality of monitoring, connectivity, 

and power consumption are also directly affected by the 

network topology. 

The different deployment tasks can be grouped into three 

main phases. A pre-deployment and deployment phase (Figure 

3 (a)) which is achieved by the manual placement of nodes or 

the spreading of nodes from a helicopter, for example. A 

phase of post-deployment (figure 3 (b)) is necessary if the 

topology of the network has evolved, for example following a 

displacement of nodes, or a change of the radio propagation 

conditions. The third phase concerns the redeployment (Figure 

3 (c)) which is based on adding new nodes to the network in 

order to replace some failed nodes. The system can iterate on 

phases 2 and 3. 

(a) Pre-deployment and deployment phase 

(b) Post-deployment phase

(c) Redeployment phase

Figure 3. Phases of deployment [22]

Different issues are encountered at the level of the 

deployment of sensor nodes in WSN. These studies mainly 

concern stationary and mobile cases, single and multi-

objective cases, deterministic and stochastic aspects, and 

finally static and dynamic deployments [5]. 

Authors in [6] and [7] proposed a detailed study of 

deployment in the static case. They distinguish two 

deployment methodologies according to the distribution of the 

nodes (either random or controlled). The treated primary 

objectives can be as follows: 

- The coverage, which is one of the most preponderant

problems in WSN. Several types of coverage are presented: 

point coverage, area coverage, barrier coverage and coverage 

of an event or a moving target. 

- The consumed energy and ensuring the energy efficiency.

- The network connectivity.



- The lifetime of the network.

- The network traffic.

- The reliability of data.

- The cost of deployment (depending on in terms of a

number of deployed nodes). 

- The fault tolerance and load balancing between nodes.

In the context of dynamic deployment, authors in [8]

investigate the research works proposing solutions for the 

sensor nodes repositioning and its related issues. Connectivity 

and coverage are the most used factors in determining the 

communication and the detection efficiency, respectively. The 

coverage is affected by the sensitivity of the sensors 

represented by the detection range (noted Rs), while the 

connectivity is guaranteed by the communication range (noted 

Rc). According to [8], the degradation of the coverage 

probability in some WSN applications is tolerable, whereas 

the degradation of the probability of connectivity could be 

fatal for the network. 

Technological advances on the construction and 

manufacture of sensors have made them smaller, more 

affordable and more reliable. This allowed broadening the 

range of targeted application areas. The integration of WSN 

technology in industry has improved the business 

performance. Still more experimental work is needed to 

increase the reliability and efficiency of real-world WSN use. 

Given the variety of sensors, the applications of deployment 

sensors are very varied.  

In ecological applications, WSNs deployments are used to 

optimize the use and consumption of energy resources, such as 

a sensor incorporated into an air-conditioning system in a 

building. Indeed, this network manages the air conditioning 

according to the location of the individuals. The 

air conditioning trips only if it is necessary. For example, 

when the sensor detects the existence of people in the 

Region of Interest (RoI). This is the case for a heating, 

lighting or ventilation systems. In traceability and 

localization applications, WSN deployment can be a major 

fault correction of Global Positioning System (GPS) systems, 

which are high-energy consumption. Indeed, people who ski 

can be equipped with sensors. These sensors will be handy 

to locate victims under snow in case of an avalanche. Several 

other traceability and localization applications with 

significant economic interests can be considered. Again, 

unlike location solutions that are based on GPS systems, 

WSNs allow their deployment in enclosed areas such as mines 

or underwater areas [9]. 

In industrial applications, the deployment reduces the 

cost of maintenance constraints. Optimal sensors 

deployment can enhance manufacturing activities and it is 

ideal for any activity that requires fixed location and 

limited resources. Several other constraints and restrictions 

can be solved using WSNs. Among others, weight 

restrictions (in an airplane for example) and mobility ones 

(tracking a moving target or detecting a robot movement). 

Among industrial WSN applications, we can mention the 

following ones: Surveillance and monitoring activities on 

hazardous conditions (radioactivity exposure, etc.); 

Monitoring polluted geographical areas or real-time 

monitoring of a contaminated area to draw a 

dynamic 

geographical map; Monitoring the operation of machines; 

Logistics and inventory control; Process monitoring and traffic 

monitoring; Preventive maintenance of equipment and 

structures and supervision of foundations and buildings in 

civil engineering. 

In security applications, deployment can limit the financial 

expenses of securing structures. Among the WSN security 

applications: The deployment of sensors for detecting cracks 

and alterations in structures and buildings, following an 

earthquake or just to control its aging. This deployment can 

anticipate the destruction of the structure. Monitoring of 

movements in a geographical area to set up a distributed 

system of intrusion detection. The distributed aspect of 

different systems makes it possible to cross it or put it in a 

state of dysfunction. 

In environmental Applications: To ensure broad coverage 

over a large geographic area, an optimal WSN deployment can 

be used. We can cite several typical WSN environmental 

applications: Dissemination of a temperature-sensitive sensors 

on a forest (deployment from an airplane) to detect the 

outbreak of a fire; Controlling and managing the irrigation of 

green surfaces by detecting dry areas; The deployment of 

sensors on industrial sites, nuclear structures or oil refineries 

to capture and report the existence of leaks of toxic products 

(gases, chemicals, etc.) for rapid and effective intervention and 

the control of natural parks, sensors can be deployed to 

monitor animal movements and activities or to report and 

provide information on seasonal migrations of birds. 

In medical and veterinary applications: WSN deployments 

are generally used to permanently monitor patients. They are 

deployed to collect physiological data on vital functions such 

as heart rate, glucose levels, respiration or blood pressure. 

This facilitates the real time diagnosis of diseases and the 

monitoring of patients' health status. These sensors can be 

implanted under the skin or worn by the patient. 

 In the military field, WSNs are often deployed to monitor 

or analyze strategic areas, providing information regarding the 

loss or damage after a battle, monitoring the enemy equipment 

and ammunition, detecting chemical or nuclear attacks, etc. 

In smart homes and commercial applications: WSN can also 

be used in a commercial context. Indeed, sensors can control 

the operations of storage and delivery and provide (in real 

time) information about conditions, directions or positions of 

the goods. We can also follow production chains in factories 

and control the entire production process. Another very 

practical commercial WSN use is that of smart homes (Figure 

4). Figure 5 illustrates the intelligent home of the IUT of 

Blagnac in Toulouse in which our experiments are carried out. 

This application mostly targets people with disabilities or 

elderly to ensure their safety. Among the services offered in 

this context, the automatic control of doors and curtains 

(closing and opening), the control of household appliances 

(activation or shutdown), the triggering of the watering of 

plants in the garden or the management of air-conditioning 

and heating systems. 



 Figure 4.  Illustration of a smart home 

Figure 5.  Our smart home (Blagnac, Toulouse) 

Table 1 illustrates different recent deployment applications: 

TABLE  I. RECENT DEPLOYMENT APPLICATIONS

Paper Application(s)

Boubrima et al. [10]
Mobile WSN,air surveillance 

applications

Shehu et al. [11]

Signal detection
Segmentation of grayscale images by 

multi-level thresholding

Han et al.[12] disaster management, localization

Mostafaei et al.[ 13] Border surveillance 

Gjanci et al.[14] Acoustics WSN; submarines WSN

Adame et al.[ 15]
Surveillance of the elderly persons and 

smart homes

Kumar et al.[ 16] Precision agriculture 

The originality of this study is that it relies on different 

angles of views: a global analysis of the deployment 

problem is suggested by discussing the common 

models and assumptions, then detailing the approaches 

adopted in the literature. Indeed, the main contributions of 

this survey can be summarized as follows: 

- This survey gives a comparative study with a sophisticated 
classification, which relies on the type of modeling, and gives 
the recent art state of the deployment resolution approaches.

- Comprehensive definitions of connectivity and coverage 
with their different variants are given. For a better 
understanding, the connectivity and coverage problems are 
defined together then separately in this survey.

- Current trends and open issues of the deployment are 
discussed and summarized.

- Using the 3D deployment problem as an example, this study 
proves the efficiency of the optimization algorithms in solving 
complex real world problems. 

The rest of the paper is organized as follows. In Section II, 
we present an overview of 3D WSNs deployment. Specifically 
we define deployment strategies, types of deployment and 

different sensing model for WSNs. Section III, explores 3D 

multi-objective deployment, particularly we define primary 

objectives for 3D deployment. In section IV, we present a 

comparison and a review of recent studies over 

WSNs deployment. Section V illustrates numerical results 

of the recent approaches resolving the WSN deployment. 

Section VI gives a discussion of trends and present open 

deployment issues. Finally, section VII gives a conclusion 

and a set of perspectives. 

II. OVERVIEW OF 3D DEPLOYMENT IN WSN

When designing deployment strategies, several factors must 

be considered such as the monitoring area, the sensor 

capabilities (detection range and transmission range), the zone 

coverage, and the lifetime of sensors. The following questions 

should also be considered when establishing a deployment 

strategy: How many sensors should be deployed? How to 

place sensors in the monitoring area? Where to put the base 

station (BS) if we can choose its position? The number of 

sensors can be deduced from the lower limit of the monitoring 

area, sensor capacity and design requirements.  

II.1 CLASSIFICATION OF COVERAGE

There are three types of coverage issues: 

II.1.1  Full coverage

Full coverage is achieved if every point in the 3D RoI is at 

least covered by a sensor. Full area coverage requires the 

deployment of a large number of sensors, which increases cost 

and complexity. However, partial coverage only guarantees a 

certain percentage of coverage [17]. Figure 6 illustrates 

different geometric layouts used in the 3D coverage. 

Figure 6.  Different geometric 3D coverage layouts [18]

II.1.2 K-coverage

With regard to the k-coverage, 3D RoI is assumed to be k-

covered if there are at least k sensors that cover and monitor

each point of the 3D RoI [18]. Indeed, k-coverage represents 

the logical extension of the case of 1-coverage. In the case of 

k-coverage, the distance between the detection nodes is

minimized with the appearance of overlaps between the

detection spheres. In general, when achieving the k-coverage

optimally (K>1), the complexity of the coverage algorithm

will increase.

II.1.3 Surface coverage

In the case of surface coverage (shown in Figure 7), the 

sensors can only be deployed on the surface of the RoI. Many 

real applications require this kind of surface coverage where 

the RoI is a complex surface that is not a complete 3D space 

or a 2D plane. Mathematically, the detection field can be 

modeled as several small simplified triangles as single-valued 

function z = f (x,y) with two node distribution models: a 

planar surface Poisson point model and a space surface 



Poisson point one [2]. In [19] authors address the problem 

of surface coverage of 3D terrains in Mobile Wireless 

Sensor Networks.

Figure 7.  3D surface coverage [1] 

II.2  TYPES OF DEPLOYMENT

Deployment in WSN can be classified based on the 

placement strategy, applications and deployment domain. 

However, existing schema of deployment can be categorized 

under multiple criteria. 

II.2.1 Single Objective Deployment vs. Multi-Objective

Deployment

The criteria and objectives, on which the deployment is 

optimized, are often contradictory. This is the case of coverage 

and energy consumption or survivability and fault tolerance. 

Therefore, we cannot find a deployment that optimizes all 

objectives simultaneously. Hence the need for an optimal 

trade-off between the different objectives. According to 

the used type of deployment (single or multi-objective), we 

can either optimize each objective alone or use an 

aggregation function that combines all objectives in a single 

function with weights that represent the importance of each 

objective. 

II.2.2 Deterministic deployment vs. stochastic deployment

The selection of sensor positions is possible and 
determined beforehand, this is referred to as the deterministic 
deployment. When sensors can be dropped from an aircraft, 
for example, this is referred to as the non-deterministic 
or stochastic deployment. This last type of deployment 
cannot be optimal as long as it can result in very dense areas 
and others less dense or even disconnected. Deterministic 
deployment provides an optimal network configuration. 
However, because of the size and density required to 
provide adequate network coverage across large geographic 
areas, careful node positioning is not practical. In addition, 
many WSN applications should operate in hostile 
environments, which make the deterministic deployment 
impossible in some cases. As a result, stochastic deployment 
becomes the only possible alternative. As an example, 
the work of [20] aims to determine the number of needed 
randomly deployed nodes for target detection by 
optimizing the deployment cost and the area coverage. 
They propose the path exposure as a metric to 
evaluate the performance of the network and to measure the 
probability of detecting targets.

II.2.3 Stationary deployment vs. mobile deployment

Considering the mobility of nodes as a criterion, 
two deployment strategies can be distinguished: static 
deployment where the nodes do not change their positions 
and mobile deployment where the nodes have a mobile 
capacity and can move and reposition themselves after 
initial deployment. Indeed, after the initial deployment, 
some regions of the network may become uncovered due to 
occurred events in the 

RoI or depletion of sensor batteries. A solution to remedy this 
is to move some mobile nodes to these regions. Various 
examples of mobile node applications can be cited such as 
target tracking, rescue or underwater and military surveillance. 
Authors in [21] classify nodes according to their mobility into 
three classes: static nodes, mobile ones and mobile sinks. 
Figure 8 describes other characteristics of mobility: passive 
nodes are often attached to or carried by moving entities while 
active nodes have automotive capabilities. Besides, the degree 
of mobility varies from a continuous movement to an 
occasional movement with long periods of immobility. 

Figure 8.  Mobility Taxonomy 

However, it is necessary to optimize the movement of 
nodes, because according to certain studies, moving a node 
one meter can consume more than 30 times of energy 
than transmitting a block of data having a size of 1 kB. 
Despite this, mobility provides better coverage and 
connectivity and increases the network adaptability.

II.2.4 Homogenous deployment vs. heterogeneous

deployment

The nature of the service provided by the WSN determines the 
types of sensors to deploy: are they homogeneous or having 
different roles thus characterizing a heterogeneous 
architecture. A wireless network is said to be heterogeneous if 
the distribution of the nodes in the RoI is heterogeneous. 

Indeed, the first visions of the WSN consider homogeneous 

devices, generally identical from software and hardware point 

of view. However, different recent applications require a 

variety of devices that differ in number, type and role-played 

in the network [1] (some nodes may function as cluster heads 

or gateways to other communication networks such as GSM 

networks or satellite ones). 

II.2.5 Static deployment vs. dynamic deployment

Static deployment assumes that there is no mobility after the 
first positioning of nodes in the network. In the case of static 
deployment, the best node locations are chosen based on the 
optimization strategy, then no changes will occur during the 
lifetime of the network. Static deployment can be either 
random or deterministic. In fact, the positions of nodes have a 
considerable influence on the performance of the WSN and its 
operation. On the other hand, metrics which are independent 
of the state of the network and assuming a fixed operation 
scheme are often used to choose the locations of nodes. The 
distance between nodes is one of these static metrics. 
Moreover, the initial configuration of the network does not 
take into account the dynamic changes during the operation of 
the latter such as the mobility of targets. This explains the 
interest of dynamically repositioning nodes during the network 
operation. 

For example, to substitute some nodes having exhausted 



batteries, other sensors can be moved. Dynamic deployment is 

a solution for the problem of no guarantee of optimality during 

the initial deployment. It assumes that nodes can move in a 

coordinated way in the RoI. However, the relocation of nodes 

during the network operation is often expensive and requires 

the continuous monitoring of the state of the network and the 

events occurring in the neighborhood of the node. In addition, 

solutions must be found to the problem of data manipulation 

and delivery during the relocation process [22]. 

II.3 SENSING MODELS

In this section, we have introduced four fundamental 
sensing models: Binary model, probability model, tracking 
detection model and coverage/connectivity model in a WSN. 
Sensing model reflecting how wireless sensor field of interest 
is covered and communication connectivity describing how 
reliable the sensing information can be transmitted at the BS. 

II.3.1 Binary model

In the binary model, the detection field of each node 
is considered as a circular area and a target can be either 
detected or undetected. In this model, there is no transition 
period and a slight displacement of the target may lead it to be 
outside the detection field. This model aims to simplify the 
analysis of detection. Unfortunately, it does not realistically 
reflect the detection capabilities of nodes. It only takes into 
consideration the distance between the sensor and the target 
[23]. This model is illustrated in Figure 9. 

Figure 9.  Binary Sensing Model 

Mathematically, if the node S is at the location (xs, ys), the 

detection field of S is a circular area of radius Rs centered in 

(xs, ys). In the binary model, S detects the target in its 

detection field with a probability of 1 because the distance 

between the target area and the node is less than Rs. It cannot 

detect this target outside its range detection (a probability of 

0). Hence, the probability Psb of detecting a target T at the 

position (xt, yt) by S in the binary model is as follows: 

1
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The distance between T and S, denoted DTS, is 
calculated as follows: 

2 2( ) ( )TS s t s tD x x y y= - + - (2) 

II.3.2 Probability model

In the probabilistic model, there is a transition period between 
the ability of a node to detect a target and its non-ability. 
Hence, the target is detectable with a probability that varies 
between 0 and 1. By deploying a WSN, the distance that 

separates the target to be monitored from the node and the 
characteristics of the node itself influence the perception of the 
node and its ability to detect the target. Indeed, the probability 
of detection of an event is inversely proportional to the 
distance separating the node from this event.  

However, in this model, the geometric distance is not the 

only factor used to determine the coverage. Other factors 

come into play such as noise, environment, interference, and 

signal attenuation. The probabilistic detection model, shown in 

Figure 10, reflects a concept of fuzzy coverage that represents 

a changing regularity of sensor detection capability. 

Figure 10. Probability Sensing Model 

According to figure 10, we assume the existence of two 

critical distances for each node. A detection distance Rs (same 

parameter as the binary model) where the target is detected 

with a probability of 1 if the distance between the target and 

the node is less than Rs. The second distance is Ru which 

represents an uncertain detection range. The probability of 

detection of the target by the node depends on the distance that 

separates them if the distance between them is between Rs and 

Rs+Ru. The target is not detectable by the node if the distance 

between the target and the node exceeds Rs+Ru.

Mathematically, this probability can be defined as follows: 
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Knowing that a = DTS - Rs , λ and β are constants that 
depend on the sensors’ hardware properties [24].

II.3.3 Tracking detection model

As an extension of the probabilistic model of event detection 
described in the previous section, authors in [25] proposed a 
new model that highlights the duration of the event. They 
assume that the probability of detection of an event is 
increased when this event occurs for a long time at the same 
point. This model is ideal in the case of a tracking application. 
They propose a variable t that quantifies the duration of an 
event at a specific point. Let T be a period at the end of which 
the detection algorithm is executed and a decision is made if 
an event occurs. Hence, the probability of detection of this 
event will be calculated as follows: 
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II.3.4 Coverage and connectivity model

Coverage diagrams describe the topology of the sensor 
network to ensure perfect and optimal detection while 
connectivity schemes are related to the transmission and 
reception of messages in the network. Coverage and 
connectivity schemes include: 
- "Connectivity-first" or "Guaranteed-connectivity" scheme
(figure 11 (a)): it aims to guarantee connectivity. Thus, sensors
are at a distance equal to rc. According to [17], the efficiency

of this deployment mode is guaranteed when Rc≤ 3 sR ,Rc is 

the communication range and Rs is the detection one. 
- "Coverage-first" or "Guaranteed-Coverage" scheme (Figure
11 (b)): This deployment scheme tries to reduce the number of
sensors by minimizing the intersections and overlaps of the

coverage. In this scheme, nodes are at a distance of 3 sR .

According to [18], the efficiency of this deployment mode is 

guaranteed when Rc≥ 3 sR . 

-Hybrid coverage scheme: it is a combination of the two
previous schemes. Coverage is guaranteed to a certain distance
until it becomes probabilistic.

Figure 11.  Guaranteed-connectivity scheme (a) and guaranteed-coverage 

scheme (b) 

Other models exist such as the model that aims to ensure 

better energy consumption during detection or that which aims 

to extend the lifetime of the network. 

III. 3D MULTI OBJECTIVE DEPLOYMENT

Approaches that have been proposed to enhance lifetime of 

WSN can be classified according to their objective: 

III.1 PRIMARY OBJECTIVES FOR 3D DEPLOYMENT

III.1.1 The Number of deployed nodes, cost and scalability

More than half of the papers dedicated to resolve the 

optimal deployment of nodes aim to reach the defined goals 

with a minimum cost. This is based on the assumption that 

low-cost detection devices embedded inside the sensors are 

used to monitor phenomena such as temperature, pressure, 

humidity, light, sound or magnetism. However, if we consider 

the deployment of hundreds or thousands of sensors, the 

overall cost of deploying the network must be taken into 

consideration. Thus, the number of sensors deployed is one of 

the essential measures that must be taken into account in the 

WSN deployment process. Indeed, in some specific 

applications, it is not realistic to consider low cost sensors 

because the more sensors used, the higher cost becomes. 

Hence, the cost of a sensor strongly depends on the target 

application and the monitoring environment. For example, in 

the case of oceanographic applications such as offshore 

exploration, the cost of the sensor will be much higher because 

the detection device is much more sophisticated in order to 

detect specific phenomena and withstand the influences of the 

environment. 

The cost of a WSN starts from the construction phase of 

nodes. This cost may be variable depending on the application 

and the included detection devices. Nodes can be equipped 

with other equipment such as GPS that can increase the final 

cost of the node. Some applications do not take into account 

the cost of the node because of the low price of the used 

nodes. In this case, random deployment is an excellent way to 

deploy nodes in the RoI. A forest, an ocean or a battlefield are 

some examples of these applications. In other applications, the 

node costs are quite high and must be included in the node 

deployment strategies. Besides the node construction cost, 

deployment and maintenance costs are also applied to the total 

cost of a network. When the deployment is not random and is 

done by hand or with the help of particular automated robots, 

the cost of placing nodes must be taken into account. Indeed, 

the more the network needs nodes, the more its construction, 

deployment and maintenance will be high. 

To monitor and detect events, some WSNs require a 

number of deployed nodes in the order of hundreds or 

thousands. In some specific applications, this number can even 

reach an extreme value of millions. Scalability is an important 

metric when designing the deployment scheme as it will affect 

the network coverage, cost and performance. High-density 

areas increase the cost of networking and computing. While 

low-density areas can cause the problem of coverage holes or 

network partitions. The distribution of the nodes may be 

uniform or non-uniform. Indeed, sensors that are near the base 

station are more likely to be used in data transmission. Thus; 

the density of nodes near the base station must be higher than 

other areas. In this case, the density of the nodes is said to be 

non-uniform. Uniform density of nodes decreases the 

likelihood of nodes clustering and the appearance of cover 

holes. The number of nodes must be minimized while 

ensuring maximum coverage. 

III.1.2 Coverage problem

Coverage and deployment issues are fundamentally related. 

In order to achieve deterministic coverage, a static network 

must be deployed in a predefined form. Thus, optimal 

deployment of sensors will also provide good coverage of the 

monitored area. The coverage can be defined as follows: if 

each point in the region is at a maximum distance of Rs 

(detection range) from at least one sensor, then the network 

guarantees full coverage. Depending on the application for 

which the network is deployed, different levels of coverage 

may be implemented. Some applications accept a deterioration 

of coverage. While some other critical applications require full 

coverage over the lifetime of the network and failure to meet 

this requirement can lead to network failure. The ratio of the 

area covered by the detection nodes to the global application 

area is defined as the coverage. The ideal value of this 

parameter is 100%, which means that the entire surface is 



covered by nodes. 

 In addition, the degree of coverage of a point in the RoI is 

defined as the number of nodes covering that point. Based on 

this definition, the degree of coverage of a WSN is defined as 

the minimum of the degrees of coverage in all the RoI. Each 

node has a communication range (Rc) that defines the field in 

which another node can be placed to receive data. This is 

different from the detection range (Rs) that defines the area 

that a node can observe. Rc and Rs may be equal but are often 

different. 

The coverage in WSN is widely discussed in the literature, 

especially in the 2D case. Generally, the considered coverage 

issues are area coverage, point/target coverage, energy 

optimization coverage, and k-coverage. The percentage of the 

deployment area in which an event can be monitored by at 

least one sensor is expressed as 1-coverage. In an ideal 

deployment, the coverage must be 100%. Unfortunately, 

sensors are subject to failure, measurement errors, damages 

and energy depletion. Therefore, a more general case has been 

defined: the k-coverage (k ≥ 1), where each point of the 
monitored area must be monitored by at least k sensors [5]. 

The most studied coverage problem is that of area coverage. 

The primary objective of the sensor network is to cover and 

monitor an area (also called region). Figure 12 shows an 

example of several types of sensor deployments to cover a 

square-shaped area. 

Figure 12.  Coverage Types [22]

In the area coverage problem, each sensor covers a 

particular sub-area, and the total area of the sensor network is 

constituted by all the covered sub-areas. Maximizing the total 

coverage area of the WSN is the primary objective of the 

coverage area problem. Area coverage problem is closely 

related to the targeted application, such as target detection and 

tracking, battlefield monitoring, personal protection, and 

animal behavior tracking [1]. 

The most commonly used model for coverage is the disk 

detection model. It is based on the idea that all the points 

located in a centered-on-sensor disk, are supposed to be 

covered by the sensor. However, in the literature, many types 

of research assume a fixed detection range and an isotropic 

sensor detection capability. The detection capability of a 

sensor can be classified as a binary or probabilistic. Some 

published articles, use the ratio of the covered area and the 

overall deployment area as a metric to measure the quality of 

coverage. However, other works focused on the worst-case 

coverage. In addition, another less used method is based on 

measuring the probability of movement of targets or the 

probability of an event that is happening without being 

detected. 

Most coverage problems in WSN are related to the quality 

of area monitoring or event tracking. When the nodes are 

randomly deployed, the position of the nodes is no longer 

controlled. Therefore, some places in the target region remain 

uncovered. These areas are known as coverage holes. In some 

applications, nodes are equipped with mobile units to be able 

to move and cover these holes. To measure the coverage, we 

can just divide the RoI following a grid of small squares where 

each one represents a sensitive zone. Each square containing a 

node is considered as covered while each square that does not 

contain a node is considered as uncovered. Using this 

measurement method, the percentage of covered squares of all 

squares is known as the coverage rate. The circular detection 

model can be also adopted. It is also known as a binary disk 

model where each point inside the cover disc centred on the 

node is covered, and every point that is outside that disc is 

uncovered. Due to the characteristics of the real world, this 

model was unrealistic and the researchers proposed a more 

realistic model based on probability. According to these 

models used to represent the detection capabilities of each 

node, the detection coverage for the entire network can be 

determined. The probabilistic circular model is the most 

realistic model but it is more complicated [17]. 

III.1.3 Connectivity problem

In addition to the coverage, it is crucial for a WSN to 

maintain connectivity. Connectivity can be defined as the 

ability of nodes to reach the base station. If there is no 

available channel from any node to the base station, then the 

data collected by that node cannot be processed. Regardless of 

the used communication model, network connectivity is often 

measured by a connectivity graph. If this graph is fully 

connected, the network is assumed to be connected; otherwise 

it is considered as partitioned. That is, a network is said to be 

connected if active nodes can communicate together and a 

path can be established between each sending node and a 

presumed receiver one. Otherwise, we may not be informed of 

the events occurring in the RoI. This communication can be 

indirect using other nodes as relays. If a sensor detecting a fire 

cannot send this information to the base station, it will be 

more challenging to extinguish this fire. Therefore, the 

network topology must be connected and able to give 

information about any evolution of the monitored events [17]. 

Network connectivity is a problem to consider when 

designing the WSN. Indeed, in different studies; contrary to 

the coverage that is often considered a constraint or an 

objective when positioning nodes; the network connectivity 

has been neglected assuming that a good coverage will always 

give a connected network (when the communication field 

exceeds the detection one). Despite this, a limited 

communication field results in a reduced connectivity unless 

there is a substantial redundancy of coverage. 

The connectivity also makes possible the adjustment of the 

communication between the nodes of the network if a part of 

the network becomes disconnected due to breakdowns or 

energy exhaustion of a set of nodes. Connectivity is also 



needed to ensure the message propagation to the base station. 

The loss of connectivity often involves the end of the network 

lifetime. Assuming that there are several distinct paths 

between every two nodes, the degree of connectivity can be 

defined as the minimum number of paths between every two 

nodes in the network. If we should be connected with more 

than one sensor, this is referred to as the k-connectivity [26].

As well as the coverage, various research works describe 

based-on k-connectivity algorithms that construct k distinct 

paths between each node and sink. K-connectivity introduces 

more reliability in data transmission by guaranteeing k-1 other 

paths if a path fails. Moreover, using different paths facilitates 

the design of distributed mechanisms such as the traffic load 

balancing which helps to reduce power consumption and 

extend the network life [5]. 

III.1.4 Coverage with Connectivity

Coverage and connectivity are related and the locations of 

nodes affect them both. Any optimal deployment strategy 

must simultaneously ensure a globally connected network and 

an optimal coverage. In [27], authors formulate sufficient 

conditions to ensure coverage and connectivity in WSN. These 

conditions are influenced by the node locations, the detection 

range (Rs), and the communication range (Rc). They prove 

that if Rs ≥ √3Rc and the RoI are fully covered, then the 

communication graph is connected. Thus, it is necessary to 

combine the achievement of coverage and connectivity in a 

single deployment planning. 

- Relation between 1-coverage and connectivity: [27] and
[28] are the first papers that integrate the scheduling of
activities in detection and communication. Both studies state
that if a convex region is covered entirely by sensors, the
corresponding communication graph will be connected when
Rc ≥ 2Rs. That is, if Rc ≥ 2Rs, the network can guarantee both
coverage and connectivity.
- Relation between k-coverage and connectivity: Based on
the condition Rc ≥ 2Rs for coverage to imply connectivity, in
[29], authors study the relationship between the degree of
coverage and the connectivity. They prove the following
findings for a convex region A covered by K nodes if Rc ≥
2Rs: i) These nodes form a connected communication graph K.
ii)Interior connectivity is 2K. iii) It is possible to disconnect a
boundary node from the rest of the communication graph by
removing K sensors.

III.1.5 Energy efficiency

Generally, nodes in WSN have limited energy. The initial 

deployment scenario is usually based on a set of nodes and a 

smaller number of base stations. Indeed, a mobile node has 

different components such as memory, battery, processor, 

detection devices and mobility ones. These components use 

the battery power. After deployment, it is not always possible 

to recharge and maintain the node battery. Therefore, it is 

beneficial to know the energy consumed by each of these 

components to optimize their energy consumption. In this 

respect, authors in [30] investigate the energy consumption of 

different types of node’s hardware for different applications 
with different microprocessor platforms and communication 

protocols. In [31], researchers have also proposed a mobile 

device for moving nodes and calculated the energy consumed 

by nodes when moving straight or turning. 

The energy consumed by nodes is not uniform. In general, 

the nodes near the BS consume more power than nodes far 

from BS or at the border of the RoI, because they are used as 

relays to transmit the packets to other nodes. In many practical 

scenarios, the placement of sensors can be controlled so that 

the density of nodes can be changed by the variation of the 

energy consumption. In this way, the lifetime of the network 

can be increased. In a small WSN, nodes can be arbitrarily 

placed. As for a large WSN, it is possible to deploy several 

sensors in areas where the energy consumption is much 

higher. For example, in the case of aerial deployment, by 

merely dropping sensors on a set of selected areas. Thus, it is 

necessary to establish a correlation between the density of 

nodes and the energy consumption. This density must 

correspond to the distance between the sensors and the BS.  

Indeed, the waste of energy can be caused by several 

reasons: i) The phenomenon of collision: if a node receives 

more than one packet at the same time, these packets must be 

discarded and a process of retransmissions must be initiated. 

ii) The over-listening where the node receives packets that are

destined to other nodes. iii) The control packet overhead.

The energy consumption is often considered 

interchangeable with the lifetime. Indeed, due to the limited 

energy resources in the node batteries, it is necessary to 

effectively deploy and use the nodes in order to increase the 

lifetime of the network. 

III.1.6 Network lifetime

As mentioned above, the limitation of the energy resources 

affects the overall operation of the WSN. Therefore, it is 

important to optimize the energy consumption to maximize 

the network lifetime. This latter, can be defined as the time 

after which the network is partitioned in a way that makes data 

collection impossible from a part of the network. Another 

definition of the network lifetime uses the time after which the 

first node becomes non-operational. Indeed, according to the 

application of the WSN, the lifetime varies from a few hours 

to several years.  

It has a significant impact on the energy efficiency and the 

robustness of the nodes. In order to increase the lifetime of the 

network, different ways exist such as the relocation of nodes, 

the incremental deployment (adding new nodes after 

identifying defective ones), the balancing of loads and energy 

consumption between nodes to minimize the risk of node 

failure. 

III.1.7 Network traffic

Another factor that directly affects the lifetime is the message 
traffic. Indeed, the consumed energy is proportionally 
dependent on the number of delivered messages. Hence, the 
message traffic must be minimized in WSN. Two types of 
messages exist. i) Network messages that contain information 
such as viewing angle, status, residual energy, detection range, 
and node position. ii) Application-related messages that 
contain data detected from the environment. To optimize the 



lifetime in WSN, the distribution of redundant messages must 
be avoided or minimized. To achieve this, we often use the in-
network processing in the case of application messages. 

Regarding network messages, they are exchanged during 

the initial configuration where each node determines its 

position and those of its neighbors by using specific network 

messages. Repositioning strategies aim at calculating the final 

position of nodes. These strategies are iterative, which implies 

excessive message traffic. Two repositioning approaches exist: 

repositioning with physical movement and with virtual 

movement. Inversely with the virtual movement strategy, in 

the physical movement strategy, the sensor nodes physically 

change its position after each step. In terms of network 

lifetime, the physical movement strategy is less efficient than 

the virtual one. 

III.1.8 Data fidelity

Data fidelity is another important factor to be considered when 
deploying and designing WSN. This factor aims to ensure the 
credibility of the collected data. WSN determine an evaluation 
of the detected phenomena by collecting readings from 
different independent nodes often heterogeneous. The merging 
of these data decreases the likelihood of false alarms and 
increases the reliability of the reported incidents. From the 
point of view of signal processing, the merging of these data 
aims to minimize the effect of distortion by including the 
ratios of different nodes in the evaluation of the detected 
phenomena. Redundancy of nodes in the RoI increases the 
accuracy of the merged data, but it has the disadvantage of 
requiring an increased density of nodes which causes 
additional costs. 

III.1.9 Fault tolerance and load balancing

As noted above, excessive power consumption causes the 
malfunction of nodes that lose their energies and becomes 
useless. Hence, the WSN must be fault tolerant. In this regard, 
fault-tolerant deployment strategies are used to prevent 
individual failures that minimize the overall network lifetime. 
Different deployment strategies can be used to make the 
network more fault-tolerant. Among others, the distribution of 
loads between nodes, the deployment of new nodes and the 
relocation of them. More details on the problem of fault 
tolerance are discussed in [32]. 

III.1.10 Latency

Latency mainly concerns the delay in the aggregation, 
transmission or routing data. It is measured by the time 
elapsed between the departure of data packets from the source 
node and the arrival of these packets to the destination. 
Indeed, one of the causes of the emergence of latency is the 
use of alternative paths which are often longer than the main 
path. 

This leads to a higher consumption of energy. Moreover, 

some applications merge data to reduce the network traffic, 

which causes latency in the network. 

III.2 OPEN 3D DEPLOYMENT ISSUES

Although many types of research have been provided in the 
field of optimization of nodes positioning, various research 

challenges remain to be solved. In what follows, we identify 
open research problems in the 3D sensor deployment. 

III.2.1 Underwater WSN

 Underwater WSN is a network of sensors deployed 
underwater. Given the cost of installing these nodes, we must 
minimize their number. In order to communicate under water, 
these networks use acoustic waves that meet different issues 
such as fading signal, high latency, long propagation delay and 
limited bandwidth. The submarine nodes must be adapted to 
the extreme conditions of the environment and be self-
configured. Batteries installed in these nodes must be energy 
efficient as they are non-replaceable and non-rechargeable. 
Different underwater applications can be considered, including 
earthquake and pollution monitoring, underwater exploration 
and disaster prevention. 

 Indeed, deployment problems in underwater environments 

are quite different from those of the WSN. In this regard, the 

work of [33] provides an overview of the latest developments 

in submarine deployment algorithms. The authors categorize 

deployment algorithms into three categories, based on the 

mobility of sensor nodes: static deployment, self-adjustment 

deployment and assisted motion deployment. Future research 

problems with submarine deployment algorithms may focus 

on the following ideas:

- How to design a mobility model that solves the problem of
displacement of underwater sensors with water flow? This can
make submarine deployment algorithms more efficient.
- Current deployment algorithms often deal with small scale
networks while many monitored underwater areas are large
scale. How to design failed node recovery mechanisms and
deployment algorithms with a minimal number of redundant
nodes that can be used to avoid network partitioning.
- To our knowledge, in order to extend the overall lifetime of
an underwater acoustic sensor networks (UASNs), little
research has focused on the deployment of cyclical nodes
dynamically working.
- Given the dynamism and complexity of underwater
environments and the high cost of deploying submarine nodes,
it is interesting to design efficient deployment algorithms for
heterogeneous UASNs taking into account nodes with
different ranges of communication and detection.
Figure 13 illustrates a deployment of an underwater WSN.

Figure 13.  Deployment of an underwater WSN [34]

III.2.2 Underground WSN

Underground WSN is a network of sensors deployed in mines 
or caves to monitor underground events. In order to 
communicate data collected from underground nodes to the 



base station, additional sink nodes can be deployed above the 
ground. Because of the attenuation and signal loss, 
underground wireless networks are often more expensive than 
terrestrial ones because of the specific equipment used to 
ensure reliable communication across rocks and ground. 

Even more, as well as underwater networks, buried node 

batteries are often difficult to replace and recharge. This 

requires the design of deployment algorithms and 

communication protocols that are energy efficient. Different 

applications of underground networks can be cited such as 

military border surveillance, agriculture and minerals. 

III.2.3 Multimedia WSN

Multimedia WSN is a network of sensors deployed at low cost 
and equipped with microphones and cameras used to detect, 
store and process multimedia data such as audio, images or 
videos. When deploying such a network, different issues need 
to be considered, such as high power consumption, the need 
for different compression and data processing techniques and 
the demand for high bandwidth. Moreover, it is essential to 
guarantee a minimum quality of service to ensure the supply 
of reliable content. In general, multimedia networks are used 
to enhance existing WSN applications, such as monitoring and 
tracking. 

III.2.4 Coordinated multi-node relocation

Different contexts require that nodes coordinate between them 
to efficiently manage the application requirements while 
having the ability to synchronize inter-relocation [35]. This is 
the case for the exploration of inaccessible fields or the 
detection of landmines. 

III.2.5 Heterogeneity

The majority of WSN studies assume that nodes are 
homogeneous. In this respect, and knowing the simplicity of 
collection networks in IoT, it is necessary to design and 
further study networks with heterogeneous nodes that can be 
simultaneously shared by several applications with conflicting 
objectives. 

III.2.6 Simulation vs. real experimental deployment

Often, studies on node deployment are validated by 
performance analyses relying on simulations. The contribution 
of the simulation is that it is simpler and more controllable. 
However, it does not reflect the modelling of real application 
scenarios and may be less accurate than tests based on real 
prototypes.  

It is therefore attractive to design and implement real 

prototypes for the analysis of network performances under 

realistic experimental conditions and the real validation of the 

proposed models for deployment and coverage. Our 

contributions in this paper are validated by real experiments. 

The results of these real experiments are then compared to 

simulations to draw more consistent and applicable findings in 

different contexts. 

III.2.7 Mechanisms for detection and repair of coverage

holes

Despite the fact that different works have addressed the 
problems of connectivity and coverage, the issue of coverage 

holes has not been well highlighted. In this context, the 
problem of the coverage holes in the detection field is related 
to the deployment. Indeed, coverage holes are usually caused 
by failures of sensor nodes, by hostile environments (battle 
areas or volcanic regions) or by the random deployment of 
stationary nodes in hybrid WSN composed of static and 
mobile nodes. Mobile sensor nodes are often added after the 
initial deployment to overcome the problem of coverage holes. 

However, because of the low power of mobile nodes, an 

effective management of their movements to maintain the 

network coverage and connectivity while minimizing the 

power consumption becomes a challenge. In this context, 

paper [13] solved the coverage problem in directional WSN.

Indeed, directional nodes are often equipped with ultrasonic 

sensors, video sensors or infrared sensors. 

They differ from traditional omnidirectional nodes in 

different parameters such as viewing angle, the direction of 

operation and field of view. In [36], authors classify existing 

approaches solving the problem of coverage holes and 

determine their complexities, specificities and performances. 

They classify coverage optimization methods into four main 

classes: targeting-based, coverage-based, coverage 

guaranteeing connectivity-based and extending lifetime-based. 

They define the detection models, the challenges envisaged for 

DNS and their (dis)similarities to WSN. In [37], authors 

develop an adaptive algorithm named AHCH (Adaptive Hole 

Connected Healing), to solve holes problems with the 

guarantee of network connectivity without the need to find 

new deployment schemes. Indeed, this algorithm adapts the 

existing deployment scheme to avoid coverage holes. 

 To prove the effectiveness of this algorithm, authors

compare, for different time intervals, the optimal solution with 

the estimation of the adaptive approximation ratio of this 

algorithm, with a complexity in O(log|M|), M is the number of 

mobile sensors. Then, they extend this algorithm in the general 

case by establishing two other versions to solve the same 

problem. The first version is In AHCH (Insufficient AHCH) 

which is used to solve the problem of holes if the number of 

mobile sensors is insufficient to guarantee the k-coverage for 

all the holes. The second version is GenAHCH (General 

AHCH) which is a generalization of the specific cases treated 

by the AHCH algorithm. 

III.2.8 Three-dimensional node positioning

 The two-dimensional coverage problem has been solved in 

[35] using an algorithm with a polynomial time in terms of the

number of sensors. On the other hand, concerning the Three-

dimensional problematic, it is much more complicated to

solve; and the use of random deployment is often inefficient in

the case of real 3D networks. Moreover, compared to 2D

coverage, the complexity of 3D coverage algorithms

exponentially increases compared to the number of sensors

[35].

So far, most researchers on node positioning strategies are 

limited to the two-dimensional networks. Similarly, for 

networks with multimedia applications, the focus has been on 

coverage by managing the angular orientation of the nodes in 



a 2D plan. Indeed, most deployment and coverage algorithms 

used in 2D spaces become NP-Hard in a three-dimensional 

space [38]. Yet, with the emergence of WSN applications in 

underwater and aerial surveillance, solving issues related to 

connectivity and 3D coverage has become a necessity. Hence, 

sensor deployment optimization strategies in large-scale 3D 

WSN applications is one of the most emerging research topics 

currently. In this paper, we propose to solve this problem 

using evolutionary optimization algorithms. In this regard, 

different related works are detailed in table2. 

III.2.9 Set MultiCover Problem

The Set MultiCover Problem (SMCP) is a generalization of 
the Set Cover Problem in which each element i must be 
covered by a minimum number of sets ri. This involves 
covering all elements some times while minimizing costs. The 
SMCP problem can be reduced to a PP (Positioning Problem) 
as follows: Given an instance of the SMCP problem, we can 
build an instance of the PP such that an optimal solution of the 
PP is also an optimal solution of the SMCP. 

III.2.10  Art Gallery Problem

There is also a great resemblance between the problem of 
sensor positioning and the problem of the Art Gallery Problem 
(AGP). The AGP has been defined and treated by [39]. This 
involves placing agents or surveillance cameras in an art 
gallery represented by a non-convex polygon of n vertices in 
such a way that each point of the gallery is visible to at least 
one agent or camera. The AGP problem has been solved for a 
2D surface and has been demonstrated to be NP-hard for a 3D 
surface. 

Different variants of the AGP problem have been studied. 

An interesting version of the AGP problem is that after a 

random initial deployment, how agents move so that each 

point is visible to at least one agent, this is the Distributed Art 

Gallery Deployment Problem. However, in some positioning 

problems, the sensors can be heterogeneous unlike the AGP 

problem where cameras have the same characteristics. In [40], 

researches study the problem of energy optimization for the 

coverage problem in WSN. They detail the WSN design 

factors and present coverage issues similar to those of 

coverage in WSN. They are particularly interested in AGP, 

Ocean Coverage and Robotic Systems Coverage. The 

addressed energy optimization issues are based either on 

energy efficient area coverage or on energy efficient point 

coverage. 

IV. COMPARISON AND REVIEW OF RECENT STUDIES 

ON WSN DEPLOYMENT

A set of academic problems has a close relationship with 

the problem of sensor deployment. For example, the problem 

of warehouse location which consists of setting up a set of 

warehouses to serve a certain number of demand points while 

minimizing costs. The k-center problem is one of the problems 

of warehouse localization and more specifically of the 

minimax location-allocation type [41]. Many works have 

concentrated on studying different versions and their 

complexity.  

The k-center problem defines an objective function of 

minimizing the maximum distance between a demand point 

and the nearest warehouse. The decision version of this 

problem is that of determining whether a set of request points 

can be covered by k centers at a distance equal to r. Another 

similar problem is that of k-median. Formulated by Hakimi in 

1964, the k-median problem is one of the minimum 

localization-allocation problems [41]. It is a question of 

determining k centers among a set of n centers such that the 

sum of the distances between each point of the request and the 

nearest center is minimum. 

In literature, different works aim at resolving the problem of 

deploying sensors in WSN exist. Table 2 illustrates a 

comparison between the recent optimization approaches 

used to resolve the deployment problem in WSN. The 

non-consideration of the many-objective case of the 

deployment problem is the main drawback of these studies. 

Even more, the majority of these studies did not test the 

proposed approaches on real-world problems that are more 

complicated.  



13

TABLE 2. COMPARISONS BETWEEN RECENT WORKS RESOLVING THE DEPLOYMENT PROBLEM IN WSN 

Paper Application Space Sensing model Contribution / 

Approach

Objective(s) Disadvantage(s)

Konstantinidis 

and al.[42]

Power 

assignment and 
deployment 
problem

2D Deterministic A modified 

MOEA/D algorithm

Maximize the 

coverage and the 
lifetime

The performance of the MOEA/D is 

compared with only one algorithm 
(the standard NSGA-II) which does 
not give a sufficient idea about the 

effectiveness of the proposed approach 
compared with other ones.

Banimelhem 

and al. [43]

The problem of 

coverage holes

2D Deterministic Genetic Algorithm Minimum number and 

best locations of 
mobile nodes

No mathematical modeling is given

Aval and al. 

[44]

A survey 2D Deterministic Multi-objective 

methodologies: 
genetic algorithms 
and particle swarms

Coverage, 

connectivity, cost and 
lifetime

No simulations (or experimental 

studies) are given to compare the 
proposed approaches

Qu and al.[45] Redeployment 2D Deterministic Centralized 
optimization 
algorithms: GA and 

PSO

Maximize the 
detection range 
minimize the energy 

consumption.

The standard versions of the proposed 
algorithms are tested, with 
enhancements only on the problem 

assumptions. Moreover, it would be 
more interesting to consider the 3D 
deployment case

Unaldi and al.

[46]

3D terrains 3D Probabilistic Random walk 
mutation + guided 
wavelet transform 

(WT)

Maximize the quality 
of the coverage, 
minimize the number 

of sensors

The proposed method is not evaluated 
in dynamic environments and using 
mobile sensors. Moreover, it is not 

proved by empirical real-world 
scenarios

Danping and 

al.[47]

Signal and radio 

propagation 
modeling
indoor and 

outdoor 3D 
scenarios

3D Deterministic 3D multi-objective 

evolutionary 
algorithm+ a low 
cost heuristic

link quality, coverage, 

lifetime  and cost of 
hardware

The scalability of the used algorithm is 

not proved

Matsuo and al. 

[48]

Radio 

propagation 
model in the
disaster area

3D Deterministic Genetic algorithm

  +
Local search

Maximize k-coverage, 

Minimize the number 
of deployed nodes

The proposed algorithm is not 

evaluated by the known metrics 
(Hypervolume, Inverted Generational 
Distance).

Xu and al [49] Deploy indoor 
wireless antenna 
with obstacles

3D Deterministic Mathematical 
morphology strategy

Optimize the number 
of and locations of 
indoor antennas 

maximize the 
coverage.

Directed antennas are not taken into 
consideration.

Ko and 

Gagnon [50]

3D irregular 

terrains

3D Deterministic A parsing crossover 

strategy for the 
genetic algorithm

Maximize the 

probabilistic coverage 
on a point and the 
global coverage

Authors do not prove that the 

proposed parsing crossover scheme 
can be a full remedy when GA 
approach fails.

Jiang and al. 
(2016) [34]

Thermal Sensor 
Placement in 
Smart Grid

2D Stochastic A genetic approach 
based on a Gappy 
proper orthogonal 

decomposition 
(GPOD-GA)

Minimize the thermal 
sensor number

A single objective is considered.
No evaluation of the proposed 
approach using known metrics.

Alia and Al-

Ajouri [51]

No application is 

given

2D Deterministic harmony search-

based algorithm

Maximizing the 

coverage, maximizing 
the deployed sensor 
number

A simple model of the network.

A bi-objective model: only two 
objectives are considered.
No simulator is used: only Matlab 

results are presented
Sweidan and 
Havens [52]

The context of 
Terrain-Aware 

Wireless Sensor 
Networks

2D Deterministic Normalized Genetic 
approach (NGA), 

Artificial Immune 
System (AIS) 
approach and 

Particle Swarm 
Optimization (PSO) 
based approach

Minimize the cost of 
mobility and 

maximize the 
coverage

The high execution time of the 
proposed AIS and NGA.

Benatia and 
al.[53]

A simulation 
scenario for the 
deployment of 

sensors

2D Deterministic A new algorithm: 
objective Imperialist 
Competitive 

Algorithm 
(MOICA).

Minimizing the 
number of deployed 
nodes

Maximizing the 
coverage.

No real experimentations
The comparison with other approaches 
is not based on known metrics (such 

as hypervolume and IGD).

Hamdan and 

al.[54]

A simulation 

scenario for the 
deployment of 
sensors

2D Deterministic A new algorithm: 

multi-objective 
territorial predator 
scent marking 

algorithm 
(MOTPSMA).

Maximizing the 

coverage and the 
connectivity. 
Minimizing the 

consumed energy.

No real experimentations (using 

testbeds), even the simulations are 
performed using Matlab, not a 
dedicated simulator for wireless 

networks.
No comparison of the new approach 
with other known metaheuristics.



Cao and al. 

[55]

monitoring 

maritime 
environments

3D 3D uncertain 

coverage model

distributed

parallel cooperative 
co-evolutionary 
multi-objective large 

scale
evolutionary 
algorithm

Maximizing coverage, 

lifetime and reliability

the parallelism of the proposed 

algorithm
can be further improved through 
implementation on GPUs or

MICs.

Liu and 
Ouyang [56]

Heterogeneous 
Camera Sensor 
Networks

3D probabilistic 
sector-disk 
region

A mathematical k-
coverage estimation
Expression

Maximizing k-
coverage

A solid modeling but no real 
experiments

Khalfallah and 
al. [57]

3D Underwater 
WSN 
Deployment in 
Rivers

3D probabilistic a novel
deployment heuristic 
(3D-UWSN-Deploy) 
based on subcube

tessellation and a 
mixed
ILP optimization

Maximizing Full-
Coverage 
Connectivity, and 
Quality of Monitoring

The choice of the values of simulation 
parameters is not justified
performance metrics are not the 
standards known ones

Comparison with exact methods

Brown and al. 

[58]

Wireless Video 
Sensor Network

3D Deterministic a greedy
heuristic and an 
enhanced Depth 

First Search (DFS) 
algorithm

Maximizing  the 3D 
indoor space coverage

No comparison with other methods
Only one objective is considered (the 
coverage)

Video security is not considered

Wu and Wang 

[59]

- 3D probabilistic 

sensing

An approximation 

greedy discretization 
approach

Maximizing the k-

coverage and 
connectivity

Simplistic Problem Formulation

Small-scale problem
Instances
Comparison with the standard GA

V. DISCUSSION: TRENDS AND OPEN ISSUES FOR

DEPLOYMENT ALGORITHMS

The deployment is one of the major issues in WSNs. 
In the literature, a large variety of deployment 
challenges have been considered. In this study, these 
challenges were investigated while focusing on 
connectivity and coverage.

Indeed, many issues should be well investigated 
to facilitate achieving an optimal deployment that is 
easily customizable with different contexts and 
embedding different emerging communication 
technologies (4G, 5G, WiFi, LiFi, 802.15.4). These 
technologies will make the next generation of connected 
objects more sophisticated, reliable and intelligent, with a 
greater sensing range.  

Nevertheless, the capacities of connected 
objects encounter the embedded energy limitations. In this 
respect, renewable energy and energy harvesting are 
promising paths to expand the autonomy of connected 
objects and the lifetime of the network. 

Because of its prices becoming cheaper, 
the connected objects can be used to build complex large 
scale wireless networks. To guarantee the scalability, 
intelligent and distributed deployment approaches are more 
appreciated than centralized ones. The presented evolution 
orientations will rise thanks to the Internet of Things and the 
emergence of its common internet protocols.  

In this study, we presented the 2D and 
3D deployment models and algorithms. The expansion of 
new applications in smart cities and IoT, makes 
the 3D deployment, where objects are fixed at different 
heights, make it more interesting and challenging. 

Besides, the security is another important 
issue, usually not addressed, to be considered when 
designing a deployment algorithm. Indeed, a potential 
intruder can corrupt the data gathering and harm the 
deployment process. 

According to the actual rate of evolution of 
wireless technologies, it is expected that the latters will 
be soon consistent and widely used in numerous industrial 
complex applications. With the introduction of new 
challenged networks like UAVs (Unmanned Aerial 
Vehicles) and MUAVs (Micro UAVs), and regarding the 
heterogeneity of 

the radio propagation models, new deployment 
approaches must be designed.  

In short, these new deployment algorithms should 
to be more intelligent and more adapted to the 
new environment and application needs. Furthermore, 
it is desirable that the deployment algorithms have the 
ability to tolerate message losses. This gives them the 
possibility to handle failures, dynamic changes and 
unexpected occurring events in the network.  

VI. CONCLUSION AND PERSPECTIVES

In this paper, we presented the state of the art of the 

3D indoor deployment problem. We introduce the issues 

of the three-dimensional deployment and its different 

types, objectives, models and applications.  

We investigate the methods resolving the most important 

issues in IoT collection networks: the coverage, 

the localization and the connectivity, the network lifetime, 

the network traffic. 

Then we identified and criticized the recent 

research works dealing with the problem of 

deployment. Furthermore, we introduced the methods 

used to solve the 3D indoor deployment, especially 

the evolutionary optimization algorithms. In this regard, a 

recapitulative table is proposed to give the reader a better 

understanding of the shortcomings and advantages of the 

studied problem and algorithms.

We analyse the deployment techniques 
and evaluate their performance. Comparative results show 
that the performance of genetic algorithm outperforms 
other approaches in most cases. 

Indeed, after the deployment phase, planning 
the nodes activities should be achieved to optimize 
different other criteria such as maximizing the network 
lifetime while collecting data. On this basis, in order 
to optimize the deployment, a perspective consists in 
proposing various deployment techniques that are better 
suited for the new user’s needs. Afterwards, with the 
fast emergence of IoT networks, the deployment 
approaches will surely undergo an extensive development. 
Moreover, the energy issue, another 



important challenge which correlates with the 
deployment, is to take into consideration.
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