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ABSTRACT Jointly segmenting a collection of images with shared classes is expected to yield better results 
than single-image based methods, due to the use of the shared statistical information across different images. 
This paper proposes a Bayesian approach for tackling this problem. As a first contribution, the proposed 
method relies on a new prior distribution for the class labels, which combines a hierarchical Dirichlet 
process (HDP) with a Potts model. The latter classically favors a spatial dependency, whereas the HDP is a 
Bayesian nonparametric model that allows the number of classes to be inferred automatically. The HDP also 
explicitly induces a sharing of classes between the images. The resulting posterior distribution of the labels 
is not analytically tractable and can be explored using a standard Gibbs sampler. However, such a sampling 
strategy is known to have poor mixing properties for high-dimensional data. To alleviate this issue, the second 
contribution reported in this paper consists of an adapted generalized Swendsen-Wang algorithm which is 
a sampling technique that improves the exploration of the posterior distribution. Finally, since the inferred 
segmentation depends on the values of the hyperparameters, the third contribution aims at adjusting them 
while sampling the posterior label distribution by resorting to an original combination of two sequential 
Monte Carlo samplers. The proposed methods are validated on both simulated and natural images from 
databases.

INDEX TERMS Bayesian models, Bayesian nonparametrics, hierarchical Dirichlet process, image 
segmentation, potts model.

I. INTRODUCTION

Image segmentation has received a lot of attention in the
literature since it is a key step in image analysis. Biomed-
ical imaging based diagnosis [1] or remote sensing [2] are
examples of archetypal applications. Segmentation aims at
identifying K homogeneous areas, referred to as classes,
in an image or a collection of images. Within a statistical
framework, region-based segmentation can be formulated as
the estimation of class labels univocally assigned to pixels
sharing the same statistical properties. Adopting a Bayesian

The associate editor coordinating the review of this article and approving
it for publication was Diego Oliva.

formulation, one has to elicit a prior distribution over the
class labels. A classical choice is the Potts model, which pro-
motes spatially piecewise homogeneous regions by yielding a
higher prior probability for configurations where neighboring
pixels are in the same class. However, a major limitation of
the Potts model lies in the fact that the number of classes
K must be set in advance. As an alternative, K can also be
estimated jointly with the class labels. The resulting pos-
terior distribution is highly intractable but can be explored
using sampling methods, e.g., reversible jump Markov Chain
Monte Carlo (RJ-MCMC) algorithms. However, the effi-
ciency of RJ-MCMC may be limited by the dimension of
the problem and is highly driven by the ability of designing
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First, adopting the strategy followed by most image seg-
mentation approaches, the images are decomposed into
super-pixels, here obtained using the simple linear iterative
clustering algorithm (SLIC) [7]. Then, to fully characterize
the super-pixels, both color and texture histograms are con-
sidered as descriptive features. As for the segmentation algo-
rithm, a generalized Swendsen-Wang (SW) [8] based sampler
is proposed to accelerate the convergence and overcome the
mixing issues of the conventional Gibbs sampler. The SW
algorithm proposed in [9] introduces a set of bond latent
variables that allow the class labels of subsets of neighboring
super-pixels to be jointly updated; as these class labels are
typically highly correlated, this joint update improves the
convergence rate of the sampler. The last contribution of
this paper is to estimate the hyperparameters jointly with
the partition. For that purpose, they could be also assigned
a prior distribution and sampled within the SW procedure.
However, due to the intrication of the Potts and HDP models,
the presence of unknown normalization constants precludes
the closed-form computation of the conditional distribution
of the hyperparameters. To overcome this issue, we propose
to embed the MCMC algorithm into a sequential Monte
Carlo (SMC) sampler [10] which sequentially explores the
posterior label distribution for a sequence of hyperparameter
values. At each step, the likelihood of the current set of hyper-
parameters is also obtained up to an unknown constant, such
that the optimal value can be selected afterwards. An original
approach is proposed to compensate for this hyperparameter-
dependent constant which requires to run an additional SMC
algorithm that targets the prior instead of the posterior label
distribution. Finally, the best partition must be selected based
on the posterior label samples. To avoid label switching
issues, it is chosen in this work as the one minimizing the
Dahl’s criterion [11].

The paper is organized as follows. The statistical model of
the images to be segmented and the proposed prior distribu-
tion over the labels are presented in Section II. Section III
describes the single-site Gibbs sampling procedure for pos-
terior inference and the more efficient generalized SW-based
sampler is introduced in section IV. In section V, a sequential
Monte Carlo sampler is derived to jointly estimate the model
hyperparameters and the image partition. Finally, after deriv-
ing the selection procedure of the best partition, experimental
results are reported in section VII. Section VIII concludes the
paper and proposes perspectives to this work.

II. PROPOSED IMAGE MODEL

A. LIKELIHOOD

Let us consider a set of J images to be jointly segmented.
To reduce the data dimension and hence save computa-
tional complexity at the processing stage, each image j (j ∈

{1, . . . , J}) is first divided into Nj super-pixels. The pre-
segmentation algorithm used in this paper is the simple lin-
ear iterative clustering (SLIC) presented in [7]. It should
be noted that the super-pixels are irregularly shaped but a

efficient moves across spaces of different dimensions. Con-
versely, Bayesian nonparametric methods offer a scalable 
solution by allowing K to increase with the dimension of 
the data. Following this idea, a prior combining the Dirichlet 
process (DP) and the Potts model has been proposed in [3] for 
automatic image segmentation. In this case, the DP ensures 
the automatic inference of the number of classes while the 
Potts model enforces spatial homogeneity.
When considering the segmentation of a collection of J 

images, the most straightforward approach consists in par-
titioning separately each of the images in a set of mj·(j = 
1, . . . , J ) regions and then matching the regions among the 
different images to identify common classes. However, this 
suboptimal two-step processing does not fully take the shared 
information into account to characterize the classes. As an 
alternative, a joint analysis can be carried out: such an 
approach deals jointly with all the images, fully exploiting 
the fact that a given class can be present in several of them, 
but possibly in different proportions. For instance, when ana-
lyzing remote sensing images, vegetation can be encountered 
in countryside but also in urban and suburban areas. Never-
theless, its density is far less significant in the last categories 
of images. Thus, the joint processing is expected to improve 
the detection and recognition of the vegetation class in images 
where it is quite rare. In such scenarios, the model in [3] may 
not be suitable because the DP cannot depict a sharing of 
classes between images.
A first nonparametric approach for shared segmentation of 

image databases is proposed in [4]. A hierarchical model is 
considered so that the different regions of an image appear 
with proportions given by Pitman-Yor (PY) processes; such 
processes are well-suited to capture the power-law behav-
ior of natural objects. These regions are assigned to global 
classes whose prior distribution is also driven by a PY 
process. To favor smooth regions, thresholded correlated 
Gaussian processes are used to generate the class labels. 
Keeping up with the random field formalism, in this work, 
we propose an extension of the nonparametric model in [3]. 
The joint segmentation is made possible using a hierarchical 
Dirichlet process (HDP) [5] to model the labels of the regions 
and classes as well as their relationship, coupled with a Potts 
model that ensures spatial smoothness. The use of the HDP 
allows both the number of regions mj·, the overall number of 
classes K and the shared classes to be inferred automatically.
The posterior distribution of the labels can be written up to 

a normalization constant as the product of the prior and the 
likelihood of the set of observations. Since Bayesian estima-
tors associated to this posterior distribution cannot be derived 
analytically, a Markov chain Monte Carlo (MCMC) approxi-
mation is considered. We presented preliminary results based 
on a Gibbs sampler in [6]. However, that sampling scheme 
was not suitable for the segmentation of real images due 
its high computational cost. Moreover, the sampling proce-
dure in [6] did not allow the model hyperparameters to be 
estimated. This paper addresses both limitations.



neighborhood system can still be defined. Indeed, two super-
pixels are said to be neighbors if they share connected pixels.
Super-pixel n (n ∈

{
1, . . . ,Nj

}
) in image j is characterized

by the observation vector yjn and its associated distribution
denoted f is assumed to be parameterized by a latent vec-
tor θjn, i.e., yjn|θjn ∼ f (yjn|θjn). To make the segmentation
more efficient, both colors and textures of the super-pixels
can be taken into account. More precisely, in this case,
the observation vector is defined as a set of two descrip-
tors, namely ytjn and y

c
jn representing the texture information

and the red-green-blue (RGB) color histogram, respectively.
As a consequence, the vector of observations writes yjn =

(ytjn, y
c
jn), inducing θjn = (θ tjn, θ

c
jn). Assuming conditional

independence, the joint likelihood associatedwith super-pixel
n in image j writes f (yjn|θjn) = f (ytjn|θ

t
jn)f (y

c
jn|θ

c
jn). This

composite model will be considered in the experiments con-
ducted on real natural images (see Section VII-B). It should
be noted that preliminary tests on synthetic images of small
size will be based on a simpler model. More precisely, no pre-
segmentation will then be required and each class will be
characterized only by the gray level of its pixels.
The J images are assumed to be composed of K , possibly

shared, homogeneous classes. The joint segmentation has two
levels: i) first, each image j is divided into mj· (j = 1, . . . , J )
regions and ii) each region is assigned to a class. Thus,
the classification task consists in recovering the region label
cjn ∈

{
1, . . . ,mj·

}
of super-pixel n in image j as well as the

class label djt ∈ {1, . . . ,K } of region t in image j.
Pixels assigned to the same class k share the same latent

parameter vector, denotedφk . By denotingAk the set of super-
pixels assigned to class k , i.e., Ak , {(j, n)|djcjn = k},
we have θjn = φk . Assuming the observations are condition-
ally independent given the parameter vector, their marginal
likelihood is f (y) =

∏K
k=1 f (yAk ) where

f (yAk ) =

∫ 
 ∏

(j,n)∈Ak

f (yjn|φk )


 h(φk )dφk (1)

Bayesian framework, it is assigned a prior distribution which
has the specificity to be defined on the infinite dimensional
space of the probabilitymeasures. In this work, aDP is chosen
as a prior since its discrete realizations favor several pixels
to share the same class labels [12]. Under this assumption,
Gj writes:

Gj ∼ DP(α0,G0) with Gj =

∞∑

t=1

τjtδψjt . (2)

The DP depends on two parameters, a base measure denoted
here G0 and a scale parameter α0. The support points ψjt are
independent and identically distributed according toG0 while
the probabilities τjt indirectly depend on α0 through the stick-
breaking generative process [13].
To induce class sharing among the images, the base dis-

tribution G0 should be the same for all the images but also
discrete to ensure that the distributions Gj (j ∈ {1, . . . , J})
are defined with common atoms. As the number of atoms
is unknown, a DP is also selected as a prior distribution
for G0. In the sequel, its base distribution is denoted H , with
probability density function h and scale factor γ , leading to

G0 ∼ DP(γ,H ) with G0 =

∞∑

k=1

πk δφk . (3)

In the literature, this model composed of nested layers of
DPs is referred to as the hierarchical DP (HDP) [5]. To better
understand it, we can resort to the well-known metaphor
of the Chinese restaurant franchise (CRF) [5], based on the
Pólya urn scheme. First, since the value of the hyperparameter
vector θjn is uniquely determined by the region cjn and class
djcjn labels, themodels (2) and (3) can be completely rewritten
in terms of the latter. Furthermore, the distributionsG0 andGj

can be marginalized out to focus on the sequential generation
of the labels. Under the DP assumption, they are exchange-
able so that each label can be sampled as if it were the last
one. The procedure is the following: given the remainder
of the super-pixels, super-pixel n in image j has a positive
probability of being assigned to an existing region t which is
proportional to the number νjt of super-pixels in that region
whereas the probability of being assigned to a new one tnew

is proportional to α0, i.e.,

Pr(cjn = t|c−nj ) ∝

{
νjt if t ≤ mj·

α0 if t = tnew

with c−nj = {cjn′ |n′ = 1, . . . ,Nj, n′ 6= n}.
Similarly, region t in image j can be assigned to an existing

class k proportionally to the overall number m·k of regions
assigned to class k , or to a new one proportionally to γ , i.e.,

Pr(djt = k|d−jt ) ∝

{
m·k if k ≤ K

γ if k = knew
(4)

where d−jt = {dj′t ′ |j
′ = 1, . . . , J ; t ′ = 1, . . . ,mj′·; (j′, t ′) 6=

(j, t)}. Thus, the prior potential on the partition induced by the

with y the collection of all observations, yAk = {yjn|(j, n) ∈ 
Ak } the observations associated to the pixels with indexes in 
Ak and h(·) the prior distribution on φk .
This model is conditional upon the class and region assign-

ments. In the following section, we describe the considered 
prior model for the partition, i.e for the labels cjn and djt .

B. PRIOR DISTRIBUTION

The proposed prior modeling for the set of class and region 
labels (c, d) combines two potential functions that promote 
sharing of the classes and spatial homogeneity, respectively. 
They are described in what follows.

1) HIERARCHICAL DIRICHLET PROCESS

Let Gj be the distribution of the hyperparameter vector 
θjn (j ∈ {1, . . . , J} and n ∈ {1, . . . , Nj}). For the sake 
of generality, this distribution is assumed unknown and not 
enforced to belong to a specific parametric family. Within a



HDP writes

ϕ(c, d) =

J∏

j=1








Nj∏

n=1

1

(α0 + n− 1)


αmj·0

[ mj·∏

t=1

Ŵ(νjt )

]


×

[
m··∏

t=1

1

(γ+t−1)

]
γ K

[
K∏

k=1

Ŵ(m·k )

]
. (5)

2) POTTS MODEL

The prior (5) is complemented by a Potts-Markov ran-
dom field which promotes spatial homogeneity of the class
labels [14]. It is known to be particularly suitable for image
segmentation [15] and thus has been widely used for various
applications, ranging from remote sensing [2] to medical
imaging [16]. Given a description of the image through a
neighboring system, the probability for a super-pixel to be
assigned to a class k depends on the number of its neighbors
assigned to the same class. In our context, two super-pixels
are considered to be neighbors if they have at least two pixels
that are themselves neighbors according to a conventional
8-pixel neighborhood structure. The prior potential can thus
be written

ρ(c, d) ∝

J∏

j=1

exp


∑

q∈Vn

β 1djcjq ,djcjn


 (6)

where Vn denotes the set of super-pixels neighbors of super-
pixel n, 1·,· is the Kronecker delta function and β is the
so-called granularity parameter. For high values of this
parameter, the image exhibits few classes. On the contrary,
for small values of β, the images tend to be over-segmented.
The parameterβ is assumed to be known in this paper. It could
be estimated using a procedure similar to [17].

3) PROPOSED PRIOR MODEL

The proposed composite prior combines a global penalization
of the number of classes provided by the HDP and a local
penalization coming from the Potts model. The HDP induces
an implicit prior on the number of regions in each image,
the number of classes and the shared classes. With the Potts
model, a spatial proximity is taken into account. The joint
prior model of the region and class label is given by

Pr(c, d) ∝ ϕ(c, d)ρ(c, d). (7)

A. SAMPLING OF THE CLASS LABELS

Sampling the class label djt of the region t in image j is
achieved by deriving the corresponding conditional posterior
probability, which is proportional to the prior model (7) and
to the distribution of the observations associated with the
pixels of interest, conditionally on the other observations and
current partition, i.e.,

Pr(djt |c, d
−jt , y) ∝ p(yjt |c, djt , d

−jt , y−jt )Pr(djt |c, d
−jt ) (8)

with, using (7),

Pr(djt |c, d
−jt ) = ϕ(djt |c, d

−jt )ρ(djt |c, d
−jt ). (9)

The term ϕ(djt |c, d−jt ) can be computed by resorting to the
CRF metaphor. By assuming that K classes are active at the
current iteration of the Gibbs sampler, two cases should be
considered: the region t in image j can be assigned to an
existing class, i.e., djt = k (k ∈ {1, . . . ,K }) or to a new class,
i.e., djt = knew (knew 6∈ {1, . . . ,K }). These two distinct cases
are detailed in what follows.
1st Case (djt = k With k ∈ {1, . . . ,K }: The first

term in the right-hand side of (8) exhibits the distribution
of the observations associated to pixels in the considered
region conditionally on the observations associated to pixels
assigned to the class djt = k omitting those in the considered
region, i.e., p(yjt |c, djt = k, d−jt , y−jt ) = f (yjt |yA−jt

k

) =

f (yjt , yA−jt
k

)/f (y
A

−jt
k

). Moreover, the CRF allows the first prior

factor to be evaluated using (4) as ϕ(djt = k|c, d−jt ) =

ϕ(djt = k|d−jt ) ∝ m
−jt
·k . The second factor ρ(djt |c, d−jt ), cor-

responding to the Potts model, depends on the class assign-
ment of the set of neighbors of the super-pixels in the region
t that do not belong to this region, herein denoted V [t].
2nd Case (djt = knew With knew 6∈ {1, . . . ,K }): In this

case, since a new class is sampled, the conditional distri-
bution of the observations yjt becomes the marginal distri-
bution, i.e., p(yjt |c, djt = knew, d−jt , y−jt ) = f (yjt ) =∫
[
∏

n|cjn=t
f (yjn|φ)]h(φ)dφ. Furthermore, djt = knew induces

that none of the remaining super-pixels could have been
assigned to that class, i.e., ρ(djt = knew|c, d−jt ) ∝ 1, and,
according to (4), the CRF gives ϕ(djt = knew|c, d−jt ) ∝ γ .
To summarize the two cases detailed above, the conditional

posterior probabilities of djt writes

Pr(djt = k|c, d−jt , y)

∝





m
−jt
·k exp

(
∑

q∈V [t]

β1djcjq ,k

)
f (yjt |yA−jt

k

) if k ≤ K

γ f (yjt ) if k = knew.

(10)

B. SAMPLING OF THE REGION LABELS

The conditional distribution of the region label cjn associated
with super-pixel n in image j is proportional to the prior model
of this region label and to the likelihood of the observation

III. GIBBS SAMPLING

The posterior distribution Pr(c, d|y) ∝ Pr(c, d)f (y|c, d) is 
not analytically tractable, i.e., the optimal partition cannot 
be derived analytically. Thus, a Gibbs sampler is derived 
to draw samples asymptotically distributed according to the 
posterior. The region and class labels are iteratively sampled 
according to the posterior probabilities Pr(cjn|c−jn, d, y) and 
Pr(djt |c, d−jt , y), respectively [18], with c−jn = {cj′n′ |j′ = 
1, . . . , J ; n′ = 1, . . . , Nj′ ; (j′, n′) 6= (j, n)}. This sampling 
scheme is inspired from the one initially proposed in [5].



vector yjn

Pr(cjn|c
−jn, d, y) ∝ p(yjn|cjn, c

−jn, d, y−jn)Pr(cjn|c
−jn, d)

(11)

with

Pr(cjn | c−jn, d) = ρ(djcjn |cjn, c
−jn, d−jcjn )ϕ(cjn|c

−jn, d−jcjn )

(12)

In (12), as for the class labels, the term ϕ(cjn|c−jn, d) resulting
from the Bayesian nonparametric prior implies that super-
pixel n in image j can be assigned either to an existing region
or to a new one. These two cases are discussed below.
1st Case (cjn = t With t ∈

{
1, . . . ,mj.

}
): The first

term of the conditional distribution (11) is the distribution of
the observation vector yjn conditionally on the observations
attached to pixels assigned to region t in image j omitting
the nth one: p(yjn | cjn = t, c−jn, d, y−jn) = f (yjn |

y
A

−jn
djt

). Using the CRF paradigm (4), ϕ(cjn = t|c−jn, d) =

ϕ(cjn = t|c−jn) ∝ ν
−jn
jt . Moreoever, the Potts term writes

ρ(djcjn |cjn, c
−jn, d−jcjn ) = exp

(∑
q∈Vn

β1djcjq ,djcjn

)
.

2nd Case (cjn = tnew With tnew 6∈
{
1, . . . ,mj.

}
): The CRF

metaphor (4) leads to ϕ(cjn = tnew | c−jn) ∝ α0 and the
likelihood function associated with the observation vector yjn
is obtained by summing over the different possibilities for the
class label djtnew to be assigned to the new region

p(yjn|cjn = tnew, c−jn, d, y−jn)

∝


∑

k

m·k exp


∑

q∈Vn

β1djcjq ,k


+ γ




−1

(13)

×




K∑

k=1

m·k exp


∑

q∈Vn

β1djcjq ,k


 f

(
yjn|yA−jn

k

)
+γ f (yjn)




(14)

with f (yjn) =
∫
f (yjn|φnew)h(φnew)dφnew.

Finally, sampling the region label cjn can be conducted
from the conditional posterior probabilities

Pr(cjn = t|c−jn, d, y)

∝





ν
−jn
jt exp


∑

q∈Vn

β1djcjq,djt


 f (yjn|yA−jn

djt

) if t ≤ mj·

α0p(yjn|cjn = tnew, c−jn, d, y−jn) if t = tnew.

(15)

Note that, once a new region label tnew has been cho-
sen, the corresponding class label djtnew should be sampled
according to

Pr(djtnew = k|c, d−jtnew)

∝





m·k exp


∑

q∈Vn

β1djcjq ,k


 f (yjn|yA−jn

k

) if k ≤ K

γ f (yjn) if k = knew.

(16)

IV. A GENERALIZED SWENDSEN-WANG

BASED ALGORITHM

In high-dimensional problems, the efficiency of the proposed
Gibbs sampler can be impaired by the slow convergence
of the generated Markov chain. In particular, to speed-up
convergence, one opportunity is offered by the SW algo-
rithm, specifically designed to sample according to a Potts
model [9], one of the key ingredient in the proposed prior
model (7). It considers an augmented model, introducing a
set of latent binary variables r linking pairwise pixels to form
so-called spin-clusters. This latent variable r is defined such
that its sampling only depends on the current partition of
the pixels, while preserving the marginal distribution of the
labels. The major interest of this strategy results from the fact
that the labels of linked pixels are jointly updated. We pro-
pose here a generalized counterpart of the conventional SW
algorithm presented in [19].

A. CONDITIONAL DISTRIBUTION OF THE

LINKING VARIABLE

Within the proposed hierarchical segmentation scheme, two
sets of labels are introduced, namely, the labels of region c
and the labels of class d . One can think of sampling r condi-
tionally to the class labels, as it is classically conducted when
handling a Potts model. Unfortunately, in this case, a prob-
lem arises: under this configuration, two pixels in different
regions can be linked, which makes the sampling scheme of
c and d challenging since several regions can be assigned to
the same class. As an alternative, we propose to sample the
linking variable conditionally to both the region and class
labels. Note however that when two pixels belong to the
same region, they also share the same class. Thus, the linking
variable can be equivalently sampled conditionally on the
region labels c only. As a consequence, the linking variable
rjnq associated with two super-pixels n and q in the image j
can be sampled according to

rjnq |cjn, cjq ∼ Ber
(
1 − exp

(
−βλ1cjn,cjq

))
(17)

where Ber(p) is the Bernoulli distribution with parameter p
and λ governs the behavior of the generalized SW (GSW)
algorithm: the greater its value, the bigger the spin-clusters.

B. EMBEDDING THE GENERALIZED SW INTO

THE GIBBS SAMPLER

Finally, at iteration i of the algorithm, the sampling scheme
targeting the posterior distribution of interest is
1) r(i) ∼ Pr(r|c(i−1), d (i−1), y)
2) c(i) ∼ Pr(c|d (i−1), r(i), y)
3) d (i) ∼ Pr(d|c(i), r(i), y)

In step 1, since the distribution of r only depends on the
partition in regions c, the conditional probabilities reduce
to Pr(r|c, d, y) = Pr(r|c). As a consequence, the linking
variables are sampled according to (17). Moreover, in step 3,
the class labels are conditionally independent of the linking
variable r. Thus this step is equivalent to the one described in
paragraph III-A.



In all and for all, only step 2, i.e., the sampling of the region
labels c, needs to be reconsidered carefully. As previously
said, the SW algorithm allows the region labels associated
with observations belonging to the same spin-cluster to be
simultaneously updated. Let Cjl be the set of super-pixels in
the spin-cluster l of image j. We denote yjl , rjl and cjl the asso-
ciated set of observations, linking labels and region labels,
respectively, and y−jl , r−jl and c−jl the set of observations,
linking labels and region labels when omitting the super-
pixels in Cjl . The conditional posterior probability writes

Pr(cjl = t|c−jl, d, r, y)

∝ Pr(cjl = t|c−jl, d)Pr(rjl |r
−jl, cjl = t, c−jl)

× p(yjl |cjl = t, c−jl, d, y−jl) (18)

The first term in (18) can be rewritten as: Pr(cjl = t|c−jl, d) ∝

ϕ(cjl = t|c−jl, d)ρ(cjl = t|c−jl, d). The Potts field involves
the number of neighboring super-pixels of the spin-cluster
that are in region t . The set Vjl of that neighboring super-
pixels is the set of super-pixels that are neighbors of super-
pixels in Cjl but are not in Cjl . The conditional probability for
the super-pixels in Cjl to be in an existing region then writes

Pr(cjl = t ≤ m
−jl
j· |c−jl, d, r, y)

∝
Ŵ(ν−jl

jt + |Cjl |)

Ŵ(ν−jl
jt )

f (yjl |yA−jl
djt

)

× exp



∑

q∈VCjl

β

[
1djcjq ,djt − λ1cjq,t

]

 (19)

Moreover, the probability that the super-pixels in Cjl are in a
new region is

Pr(cjl = tnew|c−jl, d, r, y)

∝ α0 Ŵ(|Cjl |) p(yjl |cjl = tnew, c−jl, d, y−jl) (20)

where

p(yjl |cjl = tnew, c−jl, d, y−jl)

∝




K∑

k=1

m·k exp



∑

q∈VCjl

β1djcjq ,k


+ γ




−1

×




K∑

k=1

m·k exp



∑

q∈VCjl

β1djcjq ,k


 f

(
yjl |yA−jl

k

)
+γ f (yjl)




with f (yjl) =
∫
[
∏

n∈Cjl
f (yjn|φknew)]h(φknew)dφknew .

for instance using an approximate Bayesian computation as
proposed in [17]. Thus, this paper rather focuses on the
parameters of the HDP prior which are denoted in the sequel
χ = {α0, γ }.
Adopting a fully Bayesian framework, they could be

assigned a prior distribution and jointly estimated with the
parameters of interest, namely the class partition [5]. Within
the Gibbs sampler presented in Section III, sampling accord-
ing to the conditional posterior distribution p(χ |c, d, y),
e.g., using a Metropolis-Hastings step, would require to
compute the normalization constant associated to the prior
probabilities Pr(c, d|χ ) defined by (7). However, mainly due
to the Potts potential included in the prior distribution (7),
this normalization is not analytically tractable. Moreover,
as it involves a sum over all possible partitions of (7),
its pre-computation for realistic segmentation problems is not
possible.

The proposed alternative consists in estimating χ under a
maximum likelihood paradigm while exploring the posterior
distribution of the class partition by resorting to a sequential
Monte Carlo (SMC) sampler [10]. This algorithm, which
combines MCMC and importance sampling, is intended to
sequentially sample from a sequence of probability distri-
butions defined on the same measurable space. In our case,
this sequence corresponds to the posterior distributions of the
class and region labels conditionally upon a pre-defined grid
of values for χ . The interest of the SMC is then twofold.
Firstly, it only requires the target distributions to be known
up to a normalizing constant. Secondly, it calculates at each
iteration an estimate of this normalizing constant. Since the
latter is proportional to the likelihood of the hyperparameters,
it makes it possible to select afterwards their most likely
value.

To further detail the proposed approach, let us denote
{χm}m=1,...,M a predefined grid of possible hyperparameter
values,9m the target distribution up to a normalizing constant
and Z ′

m this normalizing constant at the mth iteration of the
SMC. More precisely, the latter are defined as follows:

Pr(c, d|y, χm) =
9m(c, d)

Z ′
m

, (21)

with 9m(c, d) = ϕm (c, d) ρm (c, d) f (y|c, d), where ϕm and
ρm write as in equations (5) and (6), respectively, with the
hyperparameters set to χm. The proposed SMC proceeds by
running in parallel several MCMC samplers, while varying
at each iteration the value of the hyperparameters according
to the grid. The generated chains are inhomogeneous but
an importance sampling step is conducted to guarantee that
a Monte Carlo approximation of Pr(c, d|y, χm) is obtained.
More precisely, if c(i)m and d (i)m are the samples generated by the
ith (i ∈ {1, . . . , I }) chain at the mth iteration, this probability
writes

Pr(c, d|y, χm) ≃

I∑

i=1

W (i)
m δc(i)m

(c)δ
d
(i)
m
(d), (22)

V. ESTIMATION OF THE HYPERPARAMETERS

The quality of the segmentation highly depends on the 
fine adjustment of the hyperparameter values. As for the 
parameter of the Potts model β, its estimation has already 
been investigated in the literature and can be performed



where
{
c
(i)
m , d

(i)
m

}
i=1,...,I

and
{
W

(i)
m

}
i=1,...,I

are called the par-

ticles and the importance weights, respectively. The latter are
introduced to correct for the discrepancy between the actual
and the target distributions of the particles. It should be noted
that different implementations of the SMC can be considered
depending on the choice of the MCMC samplers: either
the Gibbs or the generalized Swendsen Wang algorithms
described in Sections III and IV, respectively, could fit. In the
first case, the particles should be updated based on (8)–(16)
whereas, in the second one, (18)–(20) should be used. The
exact computation of the importance weights involves intri-
cate high dimensional integrals and cannot be carried out in
practice. It is shown in [10] that a relevant approximation of
the optimal importance weights, in the sense that they have
the minimum variance, can be sequentially computed as

W (i)
m = W

(i)
m−1w

(i)
m /

I∑

ℓ=1

W
(ℓ)
m−1w

(ℓ)
m , (23)

where the incremental weights w(i)
m reduce to:

w(i)
m =

9m(c
(i)
m−1, d

(i)
m−1)

9m−1(c
(i)
m−1, d

(i)
m−1)

. (24)

It is well-known that sequential importance sampling suffers
from weight impoverishment: that is, after a few iterations,
all the weights except one are close to 0. To prevent this
degeneracy, the particles are classically resampled according
to (22) when the effective sample size (ESS) [20] is below a
given threshold classically chosen as ǫI , with 0.5 < ǫ < 1.
Then, their weights are reset to 1/I .
A remarkable property of the SMC is that the sum of the

unnormalized importance weights provides an estimate of the
ratios of consecutive normalization constants, i.e.,

R′(m) =
Ẑ ′
m

Z ′
m−1

=

I∑

ℓ=1

W
(ℓ)
m−1w

(ℓ)
m . (25)

Then, by computing the product of the sequences of estimates
of the form (25) up to the current iteration, one can obtain an
estimate of Z ′

m/Z
′
1 which is directly related to the likelihood

of χm as follows

Z ′
m

Z ′
1

=

m∏

p=2

R′(p) =
f (y|χm)Zm
f (y|χ1)Z1

(26)

where Zm and Z1 are the normalizing constants of the
HDP-Potts prior distributions for the 1st and mth value
of χ , respectively. Using notations introduced in Section II,
we have:

P(c, d|χm) =
ϕm(c, d) ρm(c, d)

. (27)

posterior distribution of the partitions. At each iteration,
the particles are updated by sampling from equations (8)–(16)
or (18)–(20), but removing all the terms depending on the
measurements y. As for the incremental weights, they are
obtained as:

w(i)
m =

ϕm(c
(i)
m−1, d

(i)
m−1)ρm(c

(i)
m−1, d

(i)
m−1)

ϕm−1(c
(i)
m−1, d

(i)
m−1)ρm−1(c

(i)
m−1, d

(i)
m−1)

. (28)

The trick is that this SMC yields at each iteration an estimate
of the ratio Zm/Zm−1:

R(m) =
Ẑm

Zm−1
=

I∑

ℓ=1

W
(ℓ)
m−1w

(ℓ)
m . (29)

These ratios can be combined to obtain an approximation of
Zm/Z1 which can be used to compensate this term in (25) and
directly estimate f (y|χm)/f (y|χ1) in the end. Thus, f (y|χ) can
finally be computed for each value of the hyperparameter χ
chosen on the grid. The maximum likelihood estimate of the
hyperparameters χ̂ is finally derived as:

χ̂ = argmax
χm

f (y|χm)

f (y|χ1)
. (30)

The different steps of both SMC are detailed inAlgo. 1 aswell
as the combination of their outputs to estimate the likelihoods
of the hyperparameter values. Last but not least, it should be
noted that it is not necessary to resample a partition condi-
tional on the optimal χ . Indeed, the posterior distribution of
partition is directly given by (22) taking χm = χ̂ .

VI. DERIVING THE OPTIMAL PARTITION

After a burn-in period, the algorithms described in
Sections III and IV generate I samples from the posterior
distribution of interest which are denoted (c(1), d (1)), . . . ,
(c(I ), d (I )). Similarly, if the SMC is considered, I samples
from the target distribution can be directly obtained by
resampling the empirical distribution (22) corresponding to
the most likely values of the hyperparameters. Then, within
a Bayesian segmentation framework, the optimal partition
is commonly chosen as the marginal maximum a posteriori
estimator, i.e., the realization with maximum order of multi-
plicity. However, under the considered model, deriving this
estimator is not straightforward not only because of the well-
known label switching problem [21, Chap. 13] but also due
to the varying number of classes induced by the hierarchical
Dirichlet process. To overcome label switching, each sample
would need to be re-labeled, resulting in a prohibitive com-
putation cost. As an alternative, this paper proposes to follow
the approach introduced in [11] and detailed in what follows.
Let

κ ,
{
djcjn , j ∈ {1, . . . , J}, n ∈ {1, . . . ,Nj}

}
(31)

denote the set of class labels assigned to each super-pixel
in the images with κjn , djcjn . The best partition κ̂ is then

Zm

The difficulty inherent to the considered setting is that these 
normalization constants also depend on the hyperparameters 
and cannot be elicited. To overcome this issue, we propose 
to run an additional SMC defined with the same grid of 
hyperparameter values but targeting the prior instead of the



Algorithm 1 Sequential Monte Carlo Samplers for the
Hyperparameter Estimation

Input: y, {χm}m=1,··· ,M
1 % SMC targeting at the posterior distribution

2 for m = 1 to M do

3 %Sampling conditionally to the hyperparameter χm
4 for i = 1 to I do
5 %Sampling along the I particles

6 Sample c(i)m , d (i)m according to (8)–(16) or
(18)–(20);

7 Compute w(i)
m according to (24);

8 end

9 Compute W (i)
m according to (23);

10 Compute the ratio R′(m) according to (25);
11 if ESS < εI then

12 Resample the particles:
13 ∀i ∈ J1, IK, set W (i)

m = 1/I ;
14 end

15 end

16 % SMC targeting at the prior distribution

17 for m = 1 to M do

18 %Sampling conditionally to the hyperparameter χm
19 for i = 1 to I do
20 %Sampling along the I particles

21 Sample c(i)m , d (i)m from their prior distribution;
22 Compute w(i)

m according to (28);
23 end

24 Compute W (i)
m according to (23);

25 Compute the ratio R(m) according to (29);
26 if ESS < ǫI then

27 Resample the particles:
28 ∀i ∈ J1, IK, set W (i)

m = 1/I ;
29 end

30 end

31 % Compute the marginal likelihood

32
p(y|χm)

p(y|χ1)
≃

m∏
ℓ=2

R′(ℓ)

R(ℓ)
;

Output: χ̂

defined as the one minimizing the Dahl’s criterion corre-
sponding to the loss function associated to the Bayesian risk

κ̂ = argmin
i∈{1,...,I }

J∑

j=1

Nj∑

n,q=1

(
1
κ
(i)
jn ,κ

(i)
jq

− ζjnq

)2

(32)

where κ (i) is the partition generated at iteration i and

ζjnq =
1

I

I∑

i=1

1
κ
(i)
jn ,κ

(i)
jq

However this choice would have promoted an over-estimated
number of classes, in particular for pixels located in edges of
classes. Moreover, choosing the optimal partition among the
sampled ones amounts to select a fairly probable partition.

VII. EXPERIMENTS

The proposedmodel has been first applied to toy-images so as
to have at our disposal a ground truth to validate the obtained
segmentation. Then, it has been tested on natural images from
the LabelMe1 database.

A. RESULTS ON TOY IMAGES

A set of J = 3 images is generated as follows: synthetic
classification maps of size 64×64 pixels are simulated using
a Potts model with parameter β = 1.2 and a number of
classes chosen as Kreal = 3. To each class is associated a
gray level:−25, 0 or 25. These piecewise constant images are
then degraded by a centered white Gaussian noise of variance
σ 2
y = 152 to form the observed images. Noise-free and noisy

images are depicted in figure 1.

FIGURE 1. (a) Noise-free toy-images and (b) Noisy toy-images (σy = 15).

1) MARGINAL LIKELIHOOD

To segment the image set, a particular instance of the generic
model introduced in Section II is considered. Since the pre-
segmentation in super-pixels is not required for small size
images, the observations that are taken into account for the
segmentation directly consist of the noisy gray levels of the
pixels. The base distribution H of the HDP, according to
which the class parameters φk are assumed to be drawn, is the
following Gaussian distribution:

H ≡ N (µ0, σ
2
0 ),

with µ0 = 0 and σ 2
0 = 752. Moreover, conditionally

upon these parameters φk , the distribution f (·|φk ) of the pixel

1labelme.csail.mit.edu/

can be interpreted as an average pairwise probability. Thus, 
the optimal partition is chosen as the closest to the average 
one in the least-squares sense. An alternative would have 
consisted in thresholding ζ to define the optimal partition κ̂ .



values is assumed to be Gaussian, i.e.,

yjn|φk ∼ N (yjn;φk , σ
2
y ).

Note that the distributions H and f are conjugate, which
allows the marginal likelihood to be analytically computed.
Indeed, the observation model can be rewritten as

yjn = φk + εjn, εjn ∼ N (0, σ 2
y ). (33)

The marginal distribution of the set of observations associ-
ated to pixels in a class k is then a Gaussian distribution
N (yAk ; µk ,6k ) with mean µk and covariance matrix 6k

defined as

µk =



1
...

1


µ0

6k =




σ 2
0 + σ 2

y σ 2
0 · · · σ 2

0

σ 2
0 σ 2

0 + σ 2
y · · · σ 2

0

. . .

σ 2
0 σ 2

0 · · · σ 2
0 + σ 2

y



.

The conditional distribution of the nth observation associated
to the kth class in the jth image is also Gaussian, i.e.,

yjn|yA−jn
k

∼ N (yjn;µn, σ
2
y + σ 2

n )

with

σ 2
n = var

[
φk |yA−jn

k

]
=

(
1

σ 2
0

+
|Ak | − 1

σ 2
y

)−1

µn = E

[
φk |yA−jn

k

]
= σ 2

n



µ0

σ 2
0

+

∑

(j′,n′)∈A−jn
k

yj′n′

σ 2
y




Similarly, the conditional distribution of the observations
associated to pixels in the tth region is

yjt |yA−jt
k

∼ N (yjt ; µt ,6t )

with

µt =



1
...

1


µp

6t =




σ 2
y + σ 2

p σ 2
p · · · σ 2

p

σ 2
p σ 2

y + σ 2
p · · · σ 2

p

. . .

σ 2
p σ 2

p · · · σ 2
y + σ 2

p




where

µp = σ 2
p



µ0

σ 2
0

+

∑

(j′,n′)∈A−jt
k

yj′n′

σ 2
y




and

σ 2
p =

(
1

σ 2
0

+
|Ak | − νjt

σ 2
y

)−1

.

The same equation holds for a set of observations belonging
to the same spin cluster. These quantities are involved in the
different steps of the Gibbs algorithm and the GSW algorithm
introduced in Sections III and IV, respectively.

2) RESULTS

The proposed HDP-Potts model-based segmentation, imple-
mented by using either the Gibbs or the GSW algorithms,
is compared to the DP-Potts [3] for which the considered
images have been concatenated into a unique one beforehand.
We have enforced that pixels that originate from different
images cannot be neighbors. The parameters are set as
– scale parameter of the DP in the DP-Potts model: α = 1,
– Potts model granularity parameter in the DP- and

HDP-Potts model: β = 1.2,
– scale parameters of the DPs in the HDP-Potts model:
α0 = 1, γ = 1.

FIGURE 2. Initialization for the DP on (a) and results of segmentation for
(b) the DP-Potts and (c) the DP-Potts (GSW, λ = 0.5) algorithms.

FIGURE 3. Initialization for the HDP on (a) and results of segmentation
for (b) the HDP-Potts and (c) the HDP-Potts (GSW, λ = 0.025) algorithms.

Figures 2 and 3 respectively show the segmentation
results obtained with the DP-Potts and HDP-Potts models.



Each sampler has been run for 10000 iterations but only the
last 5000 sampled partitions were used to estimate the optimal
one. With the considered value of σy, the images are quite
noisy, making the segmentation problem harder.
To speed-up the convergence, a k-means algorithm has

been applied on the noisy images for the initialization. For
the DP-Potts (Gibbs and GSW) algorithms, wherein all the
images are concatenated to form a unique one, the k-means is
applied withKinit = 30. For the HDP-Potts (Gibbs and GSW)
algorithms, the k-means algorithm is separately applied on
each image of the set with Kinit = 15.
As for the proposed results, one should keep in mind that

the colors are arbitrary and are automatically set depending
on the number of classes. The relevance of the segmentation
should be studied by comparing the set of pixels that are in the
same class initially and also in the estimated partition. It can
be seen that the Gibbs algorithm detects only 2 classes. The
interest of the SW technique then appears: for both models,
applying it improves the results. However, by comparing the
required time to converge, it takes far less iterations for the
HDP-Potts than for the DP-Potts. Indeed, while more than a
hundred iterations are necessary for the DP-Potts (GSW), less
than ten are required for the HDP-Potts (GSW). It should be
noted that it is difficult to define a convergence criterion that
is independent of the label-switching problem: we chose to
simply monitor the stabilization of the posterior distribution.
However, this is not optimal since the chain can be trapped in
a local minimum.
In order to quantitatively evaluate the obtained segmen-

tations, we have also computed the V -measure introduced
in [22]. Its value, comprised in the interval J0, 1K, has
the advantage of being independent of the label-switching
issues. The closer it is to 1, the better the classification.
The V -measure yields similar values for both models on the
toy-images, ranging between 0.87 to 0.95 depending on the
considered images. These high values confirm the validity of
the proposed method.

B. RESULTS ON NATURAL IMAGES

1) MARGINAL LIKELIHOOD

Each image is pre-segmented in super-pixels with the
SLIC [7] method. The descriptor that we choose for a super-
pixel is a histogram. In this case, the likelihood of the obser-
vations is defined as a multinomial distribution. To be able
to compute the marginal distribution of the observations,
the prior distribution on the parameters is set as a Dirichlet
distribution. Let φk be the vector of parameters, the model
then writes:

φk |H ∼ H ≡ Dir(ϕ0)

yjn|φk ∼ f (·|φk ) ≡ Mult(yjn;φk )

Thanks to the conjugacy of the Dirichlet and multinomial
distributions, the marginal distribution of the observations

associated to pixels in class k writes:

f (yAk ) =


 ∏

(j,n)∈Ak

1

M(yjn)




D

(
ϕ0 +

∑
(j,n)∈Ak yjn

)

D (ϕ0)

with D and M respectively the normalizing constants of
the Dirichlet and multinomial distributions [23]. As for the
conditional distributions, they are expressed as:

f (yjn|yA−jn
k

) =
f (yjn, yA−jn

k

)

f (y
A

−jn
k

)

f (yjn|yA−jn
k

) =
1

M(yjn)
×

D

(
ϕ0 + yjn +

∑
(j′,n′)∈A−jn

k

yj′n′

)

D

(
ϕ0 +

∑
(j′,n′)∈A−jn

k

yj′n′

)

f (yjt |yA−jt
k

) =
f (yjt , yA−jt

k

)

f (y
A

−jt
k

)

f (yjt |yA−jt
k

) =
1∏

q|cjq=t
M(yjq)

×
D

(
ϕ0 +

∑
q|cjq=t

yjq +
∑

(j′,n′)∈A−jt
k

yj′n′

)

D

(
ϕ0 +

∑
(j′,n′)∈A−jt

k

yj′n′

)

In the sequel, it should be noted that the type of con-
sidered histogram depends on the processed images: it can
be gray level histograms or RGB histograms. They can be
used in combination with a histogram of oriented gradi-
ents (HOG) [24] to address textured classes and changes of
illumination.

2) RESULTS

The parameters have been set as:
– scale parameter of the DP in the DP-Potts model: α = 1
– Potts model granularity parameter in the DP- and

HDP-Potts model: β = 1
– number of bins in the histograms: Nbi = 16
– scale parameters for the DPs in the HDP-Potts model:
α0 = 1, γ = 1

– parameter of the prior Dirichlet distribution on the
observed gray level histograms: ϕ0 = 104 × y, where
y is the mean of the observed gray level histograms
and for the RGB combined to HOG histograms: ϕc0 =

3 × 104 × yc, with yc the mean of the observed RGB
histograms.

Figures 4, 5, 6 and 7 give the inferred segmentation for
a set of images with a road and a set of images of roads
and buildings. On each figure are first represented the set
of original images and the pre-segmented images into super-
pixels. The results obtained while the descriptor of the super-
pixel is a RGB color histogram combined with the HOG are
also shown.

On figures 4 and 5 the models DP-Potts and HDP-Potts
yield good segmentation results. The main classes are the



FIGURE 4. On (a) the original images for the first set with images of road;
on (b) the pre-segmented images with the SLIC method; on (c) the results
of segmentation using the DP-Potts algorithm applied to gray-level
histograms and on (d) to RGB histograms combined to HOGs.

FIGURE 5. On (a) the original images for the first set with images of road;
on (b) the pre-segmented images with the SLIC method; on (c) the
segmentation in regions and on (d) in classes using the HDP-Potts with
the gray-level histograms and on (e) in classes with the RGB histograms
combined to the HOGs.

FIGURE 7. On (a) the original images for the second set with a mix of
images with roads and buildings; on (b) the pre-segmented images with
the SLIC method; on (c) the segmentation in regions and on (d) in classes,
both using the HDP-Potts with the gray-level histograms and on (e) with
the RGB histograms combined to the HOGs.

FIGURE 8. Estimation of the marginal likelihood on a grid of values
{γm}m≥1 for the set of road images and for a pre-segmentation using the
SLIC method.

and buildings. The road and vegetation are quite well recog-
nized in the different images but the buildings are not always
identified as belonging to the same class. Indeed, they are
very textured, therefore the variability intra-class is high.

C. ESTIMATION OF HYPERPARAMETERS

To illustrate the relevance of the SMC algorithm proposed
in section V, it is applied to the set of road images for the
estimation of the scalar parameter of the HDP-Potts model γ .
The algorithmic setting is the following:
– Potts model granularity parameter in the HDP-Potts

model: β = 1
– scale parameter for the first DP in the HDP-Potts model:
α0 = 1

– a grid of M = 2000 test values {γm}1≤m≤M for the
HDP scale parameter decreasing from 100 to 0.1 in
logarithmic scale

– number of particles in parallel: I = 100
– parameter of the prior Dirichlet distribution on the

observed gray level histograms: ϕ0 = 104 × y

Figure 8 shows the estimation of the marginal likelihood
with the SMC. As intended, it exhibits a maximum for a
value of γ here equal to 3.65. It is taken as the estimation of
the HDP hyperparameter in the maximum likelihood sense.
Using this estimate of γ , the HDP-Potts method achieves

FIGURE 6. On (a) the original images for the second set with a mix of 
images with roads and buildings; on (b) the pre-segmented images with 
the SLIC method; on (c) the results of segmentation using the DP-Potts 
algorithm applied to gray-level histograms and on (d) to RGB histograms 
combined to HOGs.

road, the vegetation and the sky. The road is quite well-
recognized in the two last images while for the first, due to a 
different illumination setup, it is only partially identified. The 
vegetation is also well detected. As for the class sky, with the 
histogram of gray levels, not only the clouds are separated,
but also, it is divided regarding the changes of illumination.
With the HOG, the problems of different illuminations are 
tackled. It should be noted that the HDP-Potts model provides 
valuable additional information: the partition in regions of 
each image.
Figures 6 and 7 show the results of segmentation for a

mixed set of images with, as main classes, road, vegetation



FIGURE 9. On (a) the true images; on (b) the pre-segmented images into
roughly 1000 super-pixels; on (c) the results of segmentation with the
SMC applied to the HDP-Potts for the estimation of γ with Nbi = 16;
on (d) the results of segmentation with the HDP-Potts applied with the
hyperparameters set as in section VII-B but with γ set to its optimal value.

satisfying segmentation results for the set of road images,
as depicted in figure 9.
To validate the SMC, one could think of generating a set of

images directly with the prior model and then recovering the
hyperparameters values with the SMC algorithm. However,
the images thus obtained are quite irregular and therefore
useless for our purpose. Indeed, the proposed algorithms aim
at segmenting quite homogeneous images.

VIII. CONCLUSION

In this article, we propose a new method for the joint seg-
mentation of a set of images with shared classes, combining
the hierarchical Dirichlet process and the Potts model. The
Bayesian non parametric approach allows us to automatically
infer the number of classes from the data, while the Markov
field classically ensures spatial smoothness. The posterior
distribution is intractable and a Gibbs sampling is therefore
derived to explore it. Then, to speed up the convergence of the
chain, a generalized Swendsen-Wang algorithm is described.
Finally, an original approach consisting of two interacting
sequential Monte Carlo samplers is presented for the estima-
tion of the model hyperparameters. Results of segmentation
on both toy and natural images show the usefulness of the
proposed algorithms.
As a perspective of this work, the priormodel can be rewrit-

ten using the stick-breaking construction so that a variational
method can be used for approximate posterior inference.
It could be computationally more efficient. Also, the results
show that it may be of interest to choose an appropriate tex-
ture representation for very textured images. Finally, it would
be worth theoretically studying the influence of the hyper-
parameters (scale factors and granularity parameter) on the
mean number of classes.
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