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We examine the steady state of turbulent flows in thin layers using direct numerical
simulations. It is shown that when the layer thickness is smaller than a critical height, an
inverse cascade arises which leads to the formation of a steady state condensate where
most of the energy is concentrated in the largest scale of the system. For layers of thickness
smaller than a second critical height, the flow at steady state becomes exactly two-
dimensional. The amplitude of the condensate is studied as a function of layer thickness
and Reynolds number. Bi-stability and intermittent bursts are found close to the two
critical points. The results are interpreted based on a mean-field three-scale model that
reproduces some of the basic features of the numerical results.

Key words:

1. Introduction

Turbulent flows in geophysical and astrophysical contexts are often subject to geo-
metrical constraints, such as thinness in a particular direction, that can strongly affect
the behaviour of the flow. This occurs, for instance, in planetary atmospheres and
oceans (Pedlosky 2013) whose behaviour can strongly deviate from the classical three-
dimensional homogeneous and isotropic turbulence. This is related to the well-known fact
that the behaviour of flows at large Reynolds numbers Re depends on the dimensionality
of the system. In three dimensions (3D), vortex stretching transfers energy to small scales
in a direct cascade (Frisch 1995). By contrast, in two-dimensions (2D), the conservation
of enstrophy in addition to energy gives rise to an inverse energy cascade, a transfer of
energy to the large scales (Boffetta & Ecke 2012). Flows in thin layers display properties of
both systems, with the large scales behaving like a 2D flow and the small scales behaving
like a 3D flow. As a result, such systems are known to cascade energy both to large and
to small scales (Smith et al. 1996). In fact, it has been shown in (Celani et al. 2010;
Musacchio & Boffetta 2017; Benavides & Alexakis 2017) that as the height of the layer
H is varied, the system transitions from a state where energy cascades only to the small
scales for large H, to a state where energy cascades to both large and small scales when
H is smaller than approximately half the size of the forcing length scale `. In particular,
(Benavides & Alexakis 2017), using a Galerkin truncated model of the full Navier-Stokes
equations, were able to provide strong evidence of the criticality of the transition. In
addition, they observed a second transition to exact two-dimensionalisation for layers
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of very small thickness H ∝ `Re−1/2. This transition had been predicted theoretically
using bounding techniques by (Gallet & Doering 2015). Similar transitions from a strictly
forward cascade to an inverse cascade have been observed in other systems like rotating
turbulence (Deusebio et al. 2014), stratified turbulence (Sozza et al. 2015), rotating and
stratified flows (Marino et al. 2015), magneto-hydrodynamic systems (Alexakis 2011;
Seshasayanan et al. 2014; Seshasayanan & Alexakis 2016) and helically constrained flows
(Sahoo & Biferale 2015; Sahoo et al. 2017), to mention a few (see Alexakis & Biferale
(2018) for a review).

The thin layer, however, remains possibly the simplest model exhibiting such tran-
sitions and it thus deserves a detailed study at the different stages of inverse cascade
evolution. In the presence of an inverse cascade, for finite systems and in the absence
of a large-scale dissipation term, there are two stages in the development of the flow.
In the first stage (at early times), energy is transferred to larger and larger scales by
the inverse cascade. This process stops, however, when scales comparable to the system
size are reached, after which energy starts to pile up at these largest scales. In the long-
time limit, the increase of the large-scale energy saturates and a condensate is formed,
where nearly all energy is found in the first few Fourier modes. For 2D Navier-Stokes
turbulence, the possibility of such a condensation phenomenon was first conjectured
in the seminal paper of (Kraichnan 1967), first seen in DNS by (Hossain et al. 1983),
further explored quantitatively by (Smith & Yakhot 1993, 1994), and more recently by
(Chertkov et al. 2007; Bouchet & Simonnet 2009; Chan et al. 2012; Frishman & Herbert
2018; Frishman et al. 2017). Spectral condensation has also been studied in other quasi-
2D systems such as quasi-geostrophic flows (see Kukharkin et al. 1995; Kukharkin &
Orszag 1996; Vallis & Maltrud 1993; Venaille & Bouchet 2011). In terms of the real
space flow field, this spectral condensation corresponds to coherent system-size vortices
or shear layers. In 2D, where the cascade of energy is strictly inverse, a steady state
in the condensate regime is realised when the energy of the condensate is so large that
the dissipation due to viscosity at large scales balances the energy injection due to the
forcing. For split cascading systems, this is not necessarily true due to the presence
of non-vanishing 3D flow variations associated with the direct cascade. Therefore, in
this case other processes exist that can redirect the energy back to the small scales
where viscous dissipation is more efficient. Such mechanisms have been demonstrated for
rotating turbulence, where a flux-loop mechanism has been identified (cf. Bartello et al.
1994; Alexakis 2015; Seshasayanan & Alexakis 2018). Similar condensates have also been
observed in 3D fast rotating convection (Favier et al. 2014; Rubio et al. 2014; Guervilly
et al. 2014).

Condensates in thin layers have been observed experimentally: the first study by
(Sommeria 1986) was followed by the important contributions of (Paret & Tabeling
1997, 1998) and more recently by (Shats et al. 2005, 2007; Xia et al. 2008, 2009, 2011;
Byrne et al. 2011). An up-to-date review of relevant experiments is presented in (Xia
& Francois 2017). These experiments operate primarily in the long-time limit in which
the condensate is fully developed. This wealth of experimental studies of thin-layer
condensates is in striking contrast with the existing numerical results which have focused
exclusively on the transient growth of total kinetic energy due to the inverse cascade.
In these numerical simulations, the condensate state reached after long time in the
thin-layer case has not yet been examined due to the long computation time needed. In
this study, we aim to fill this gap and investigate the behaviour of turbulent flow at the
condensate stage for a thin layer forced at intermediate scales, using direct numerical
simulations (DNS) and low-order modelling. The DNS provide a detailed picture of
the behaviour of the full system, while the modelling shines light on the main physical
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Figure 1: The domain used is a box of height H and square base of side length L. The
forcing is invariant along the thin direction and stochastic with fixed mean rate of energy
input, while involving only wavenumbers k with |k| = kf = 2π/`. The thin direction will
be referred to as the vertical, the others as the horizontal directions.

processes involved in the problem.

The remainder of this article is structured as follows. In section 2, we present the set-
up and define the quantities we will be measuring. In section 3, we present the results
of a large number of direct numerical simulations (DNS) of thin-layer turbulence. Next,
in section 4, we discuss the behaviour close to the two critical points and in section 5,
we present spectra and spectral fluxes of energy. In section 6, we introduce a low-order
model which captures many features of the DNS results. Finally, in section 7, we discuss
our results and summarise.

2. Physical setup

In this section, we describe the set-up to be investigated. We consider the idealised
case of forced incompressible three-dimensional flow in a triply periodic box of dimensions
L× L×H. The thin direction H will be referred to as the vertical ‘z’ direction and the
remaining two as the horizontal ‘x’ and ‘y’ directions. The geometry of the domain is
illustrated in figure 1. The flow obeys the incompressible Navier-Stokes equation:

∂tu + u · ∇u = − ∇P + ν∇2u + f , (2.1a)

∇ · u = 0 (2.1b)

where u is the velocity field, P is physical pressure divided by constant density and ν
is (kinematic) viscosity. Energy is injected into the system by f , a stochastic force, that
depends only on x and y and has only x and y components, i.e. that is a two-dimensional-
two-component (2D2C) field. We make this assumption firstly to specifically force the
inversely cascading components of the flow and secondly because it is widely used in
previous studies such as (Smith et al. 1996; Celani et al. 2010; Deusebio et al. 2014;
Gallet & Doering 2015) and thus enables us to compare more easily with the literature.
The force is divergence-free, hence it can be written as f = (−∂yψ, ∂xψ, 0). The spectrum
of f is concentrated in a ring of wavenumbers of radius kf ≡ 2π/`. It is delta-correlated
in time, which leads to a fixed mean injection of energy 〈u · f〉 = ε, where 〈·〉 denotes
an ensemble average over infinitely many realisations. We use random initial conditions
whose small energy is spread out over a range of wave numbers. In some cases, in order
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Re 203 305 406 609 870 2031 4062 Hyper

1/K 8 8 & 16 8 8 8 8 8 8
nx = ny 256 256 & 512 256 512 512 1024 2048 1024

nz 16 16 16 32 32 64 128 64
# runs 40 40 40 30 30 10 2 4

Table 1: Summary of the different runs performed. For each Re and K several runs for
different values of Q have been performed. The horizontal resolution is nx, ny, while nz
stands for the vertical resolution at Q = 2. The vertical resolution was changed with Q
to maintain an isotropic grid, Knx = Kny = Qnz wherever possible.

to compare with previous studies, we used a hyper-viscosity, which amounts to replacing
ν∇2u by −νn(−∇2)nu.

The system (2.1) is characterised by three non-dimensional parameters: the Reynolds
number based on the energy injection rate Re = (ε`4)1/3/ν, the ratio between forcing
scale and domain height Q = `/H and the ratio between forcing scale and the
horizontal domain size K = `/L. The ratio between K and Q gives the aspect ratio
A = K/Q = H/L of the domain. The Kolmogorov dissipation length is denoted as

η = ν3/4/ε1/4 = `Re3/4.

The simulations performed for this work used an adapted version of the Geophysical
High-Order Suite for Turbulence (GHOST) which uses pseudo-spectral methods includ-
ing 2/3 aliasing to solve for the flow in the triply periodic domain, (see Mininni et al.
2011). The resolution was varied from 2562 × 16 grid points to 20482 × 128 grid points
depending on the value of the parameters. To explore the space spanned by these three
parameters, we have performed systematic numerical experiments: for a fixed value of
Re and K = 1/8, different simulations are performed with Q varying from small to
large values. The runs are continued until a steady state is reached where all quantities
fluctuate around their mean value. This is repeated for eight different values of Re from
Re = 203 (resolution 2562 × 16) to 4062 (resolution 20482 × 128) and for one value of
hyperviscosity (n = 8, ν8 = 10−38 as in (Celani et al. 2010)), as a consistency check, since
many of the previous studies of thin-layer turbulence used hyper-viscosity. For Re = 305,
we also perform a run with K = 1/16 (L→ 2L). The number of runs performed for each
Re are summarised in table 1.

To quantify the energy distribution among different scales it is convenient to work in
Fourier space. The Fourier series expansion of the velocity reads

u(x, t) =
∑
k

ûke
ik·x, ûk =

1

L2H

∫
u(x, t)e−ik·xdx (2.2)

where ûk = (û
(x)
k , û

(y)
k , û

(z)
k ) and the sum runs over all k ∈

(
2π
L Z
)2× 2π

H Z. In the pseudo-
spectral calculations, this sum is truncated at a finite kres. Since flow in a thin layer
is a highly anisotropic system, it is important to consider quantities in the vertical and
horizontal directions separately. For this purpose, we monitor various quantities in our
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simulations: first of all, the total energy spectrum as a function of horizontal wavenumber

Etot(kh) =
1

2

∑
k

k2
x+k2

y=k2
h

|ûk|2 . (2.3)

In addition, we monitor different components of domain-integrated energy, namely the
total horizontal kinetic energy

1

2
U2
h =

1

2

∑
k

kz=0

(∣∣∣û(x)k

∣∣∣2 +
∣∣∣û(y)k

∣∣∣2) (2.4)

(based on the (vertically averaged) 2D2C field only), the large-scale horizontal kinetic
energy

1

2
U2
ls =

1

2

∑
k

k<kmax
kz=0

(∣∣∣û(x)k

∣∣∣2 +
∣∣∣û(y)k

∣∣∣2) , (2.5)

where kmax =
√

2 2π
L , as well as the (vertically averaged) large-scale kinetic energy in the

z component

1

2
U2
z =

1

2

∑
k

k<kmax
kz=0

∣∣∣û(z)k

∣∣∣2 (2.6)

and the three-dimensional kinetic energy (3D energy), defined as

1

2
U2
3D =

1

2

∑
k

kz 6=0

|ûk|2. (2.7)

3. Results from the direct numerical simulations

In this section, we present the results obtained from our simulations. For a given set
of parameters Re,Q,K, two different behaviours are possible. For thick layers Q � 1,
3D turbulence is observed, i.e. there is no inverse cascade and the energy injected by the
forcing is transferred to the small scales where it is dissipated. No system-size structures
appear in this case. For thin layers Q � 1, a split cascade is present with part of the
energy cascading inversely to the large scales and part of the energy cascading forward
to the small scales. For these layers, at steady state, coherent system-size vortices appear
with very large amplitudes.

A visualisation of the flow field in these two different states is shown in figure 2 for the
3D turbulence and condensate states. Typical time-series of U2

h for a thick layer (forward
cascade) and a thin layer (inverse cascade) are shown in figure 3a. For the thick layer,
the total energy fluctuates around a mean value of order (ε`)2/3, while for the thin layer,
the energy saturates to a much larger value. The energy spectra for the two runs of
figure 3a at the steady state are shown in figure 3b, showing quantitatively that energy is
concentrated in the large scales for the two different cases. In more detail, U2

h for the thin
layer shows two different stages: first, at early times, there is a linear increase with time
and second, there is saturation at late times. Therefore, to fully describe the evolution
of the system, we need to quantify the rate of the initial energy increase and the energy
at which it saturates. The red-dashed line indicates a fit to the initial linear increase.
This slope provides a measurement of the rate εinv at which energy cascades inversely.
For the steady state stage, the black dashed-dot line indicates the mean value at late
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(a) (b)

Figure 2: Typical flow fields in the steady state of 3D turbulence (2a) and 2D turbulence
(2b) regimes, visualised using squared vorticity. The boxes below show the corresponding
side views. Note the astonishing similarity between this figure and figures 1 a), b) of the
experimental study by Xia et al 2011.
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Figure 3: Panel (a) shows the typical time evolution of U2
h for Q = 1.25 < Q3D and

Q = 4 > Q3D. In the former case, U2
h remains small. In the latter, there is an initially

linear increase whose slope measures the rate of inverse energy transfer. After long time,
U2
h reaches its steady state value. Two quantities are measured: the initial slope (red-

dashed line) and the condensate value (horizontal black dashed-dot line). A similar
evolution observed in an experiment is shown in (Xia et al. 2009) figure 6. Panel (b) shows
the corresponding spectra: in the presence of an inverse cascade there is a maximum at
the largest scale, while in its absence the maximum is near the forcing scale.
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Figure 4: Panel (a): initial slopes, measured as indicated in figure 3a, non-dimensionalised
by the energy injection rate ε, as a function of Q (∝ 1/H) for all Re used. The same
symbols are used in all plots in this section. Thick layers are at small Q (left) and thin
layers at large Q (right). Panel (b): the same data collapsed by a rescaling of the abscissa
by
√
Re and the coordinate by the maximum value obtained for that Reynolds number.

103
Re

1.0

1.5

2.0

2.5

Q
3D

upper bound
lower bound

Figure 5: Estimated value of Q3D as a function of Re. The top line shows the smallest
value ofQ for which an inverse cascade was observed and the bottom line shows the largest
value of Q for which no inverse cascade was observed. The rightmost point indicates the
results from the hyper-viscous runs.

times. For all runs, we measure the slope of the U2
h curve and the steady state mean

values of all corresponding energies defined in the previous section. For the runs of high
resolution, to accelerate convergence, the large-scale velocity uk=1 (from a run at the
early stage) was increased artificially and the run continued. Alternatively, an output of
a converged run was used as initial condition. However, all cases were run sufficiently
long to demonstrate that they have reached a steady state.

Figure 4 shows the slopes of the initial total energy increase εinv, measured as illus-
trated in figure 3a for all our numerical simulations. The slopes are non-dimensionalised
by the energy input rate ε and plotted versus Q for all different values of Re including
the hyper-viscous runs. The slope at this early stage measures the strength of inverse
energy transfer. At small Q (deep layers), the slope vanishes for all runs, showing that
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Figure 6: Left panel: U2
ls as defined in eq. (2.5), nondimensionalised by (ε`)2/3/K2 as a

function of Q. Right panel: the same data (excluding hyper-viscous run), with large-scale

energy rescaled by 1/Re and plotted vs. Q/Re3/4 showing a satisfactory data collapse.

The value Q3D/Re3/4 (where U2
ls plateaus) coincides for all Re at Q/Re3/4 ≈ 0.09-0.1.

no inverse cascade is present. Moving to larger Q, for every Re, there is a critical value
Q3D(Re) of Q above which the slope becomes non-zero. This is the birth of the inverse
cascade. Figure 5 shows estimates of Q3D as a function of Re: the upper curve shows the
smallest Q for which an inverse cascade was observed for that given Re while the lower
curve shows the largest Q for which no inverse cascade was observed. The critical value
Q3D lies between these two curves. The point Q3D shifts to larger Q as Re is increased
but eventually for the two largest Re simulated, namely Re = 2031 and Re = 4062, as
well as the hyper-viscous run, Q3D saturates at Q3D ≈ 2.5. (Previous findings (Celani
et al. 2010) estimated this value to Q3D ≈ 2, however in that work too limited a range
of values of Q was used to be able to precisely pinpoint Q3D. Another possible reason
for the different result is the different value of 1/K associated with the different forcing
wavenumber kf = 16 used). The saturation of Q3D ≈ 2.5 indicates that Q3D converges to
this value at large Re. For Q > Q3D, the slope begins increasing linearly εinv ∝ Q−Q3D.
(We note that small slopes are hard to distinguish from zero slope since the difference
only becomes apparent after a long simulation time.)

If Q is increased further, a point Q2D is reached beyond which the slope becomes inde-
pendent of Q. Above this second critical point, the flow becomes exactly 2D (Benavides

& Alexakis 2017). The value of Q2D increases with Re as Q2D ∝ Re1/2. This scaling is
verified in this work as well and shown in the right panel of figure 4. The two critical
points Q3D and Q2D at this early stage of development of the inverse cascade have been
studied in detail in the past (Celani et al. 2010; Benavides & Alexakis 2017).

Here we mostly focus on the second stage of evolution: the steady state and the
properties of the condensate. Figure 6 shows the equilibrium value of U2

ls, as defined
in equation (2.5), non-dimensonalised by the forcing energy scale (ε`)2/3 and multiplied
by K2. In the left panel, it is plotted versus Q (figure 6a) and in the right panel it is

rescaled by 1/Re and plotted versus η/H = QRe−3/4 (figure 6b). First consider figure
6a. At small Q, there is very little energy in the large scales. This corresponds to the
values of Q that displayed no inverse cascade at the initial stage. In the absence of an
inverse cascade, the large scales only possess a small non-zero energy and are expected
to be in a thermal equilibrium state (Kraichnan 1973; Dallas et al. 2015; Cameron et al.
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Figure 7: Zoomed-in version of figure 6a showing that there is a discontinuity in
U2
ls/(ε`)

2/3 at Q3D for all Reynolds numbers up to the second highest simulated.

2017). For Q > Q3D the energy in the large scale takes larger values. In all cases, the
energy increases nearly linearly U2

ls ∝ (Q−Q3D) for Q2D > Q > Q3D. With the chosen
coordinate, the close coincidence of the experiments with K = 1/8 and K = 1/16 at
Re = 305 indicates a scaling of U2

ls ∝ L2. If we zoom in on Q3D (see the figure 7), we
observe clear signs of small but discontinuous jumps of U2

ls at Q3D that are not visible in
the zoomed out figure 6a. These cases are examined in more detail in the next section.

The increase of the large-scale energy stops at the second critical point Q2D, where
U2
ls becomes independent of Q. It is noteworthy that the curves for various values of Re

all follow the same straight line between their respective Q3D and Q2D with only some
deviations at lowQ. Furthermore, bothQ2D and the plateau value of U2

ls depend on Re. In
figure 6b, the same data is plotted, but with rescaled axes. The rescaling collapses the data
well, with some deviations at small Q related to the convergence of Q3D. This indicates
that at large values of Q, U2

ls scales like U2
ls ∝ (ε`)2/3Re. This is precisely the scaling of

the condensate of 2D turbulence (Boffetta & Ecke 2012). The critical value where the

transition to this maximum value of U2
ls occurs is Q2DRe−3/4 = η/H2D ≈ 0.09− 0.1.

The scaling allowing to collapse the data in figure 4 (transient stage) is different from

that in figures 6,8 and 9 (condensate state). This implies that Q2D ∝ Re1/2 estimated

during the early stage of the inverse cascade development is different from Q2D ∝ Re3/4

estimated at steady state where a condensate is fully developed. The reason for this
difference is that the transition to exactly 2D motion occurs when the maximum shear
in the flow (which produces 3D motion by shear instabilities) is balanced by small-scale
viscous dissipation. In the presence of the inverse cascade, an E(k) ∝ ε2/3k−5/3 spectrum
is formed at k > kf , such that the peak of the enstrophy spectrum k2E(k) is at the forcing
scale. Thus the balance between 2D shear and 3D damping is

(ε`)1/3/` ∼ ν/H2,

implying H2D ∼ `Re−1/2 (Benavides & Alexakis 2017). In the condensate, however, most
of the energy and enstrophy are located in the largest scales and are such that energy
injection ε is balanced by large-scale dissipation ∝ νU2

ls/L
2. The large-scale shear is thus

Uls/L ∝ (ε/ν)1/2 which is balanced by the damping rate of 3D perturbations at onset,

(ε/ν)1/2 ∼ ν/H2,
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Figure 8: Left panel: U2
3D as defined in equation (2.7), non-dimensionalised by (ε`)2/3

and plotted versus Q. Right panel: the same information as figure (8a), but in terms of

the square-root of the 3D kinetic energy rescaled by (εH)2/3, plotted versus Q/Re3/4.
This rescaling indicates that U2

3D ∝ (Q2D −Q)2 close to the transition.
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Figure 9: Left panel: U2
z as defined in equation (2.6) as a function of Q. Right panel: The

various curves collapse when the abscissa η/H and the coordinate to be U2
3D/(εH)2/3.

Raising the coordinate to the 1/3 power, the curve becomes linear close to onset. This
indicates that close to onset, U2

v scales as U2
z ≈ (Qc−Q)3, where Qc ≈ 0.09−0.1 ≈ Q2D.

We note that the scaling exponent is different from that found for U2
3D.

giving the scaling H2D ∝ ε1/4ν3/4 ∝ `Re−3/4. We will recover the very same steady state
scaling in the section 6 from a low-order model. These two scalings imply the interesting
possibility that a flow which becomes exactly 2D at the early stages of the inverse cascade
for Q & Re1/2 may develop 3D instabilities at the condensate state if Q . Re3/4.

Figure 8 shows U2
3D as defined in equation (2.7). In the left panel it is non-

dimensionalised by the forcing energy (ε`)2/3 and plotted vs. Q (figure 8a), while in the
right panel, it is non-dimensionalised by (εH)2/3, raised to the power 1

2 and plotted

versus η/H = Q/Re−3/4. Figure 8a shows that beyond some non-monotonic behaviour
at small Q, U2

3D decreases monotonically with Q until it reaches zero at Q2D and
remains zero beyond this point. The 3D energy increases with Re at a given Q. Under
the rescaling in figure 8b, the various curves collapse nicely. In particular, the point
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where U2
3D vanishes is sharp and identical for all Re, namely η/H ≈ 0.1. Comparing with

figure 6b, one sees that this point and Q2D coincide within the range of uncertainties.
This means that beyond Q2D, not only is U2

ls independent of Q, but also U2
3D vanishes.

This confirms that Q2D corresponds to the point where the motion becomes invariant
along z.

Finally, figure 9 shows the vertical kinetic energy, non-dimensionalised by (ε`)2/3, once

plotted versus Q and once taken to the 1/3 power and plotted versus Q/Re3/4. The
general features of figure 9a are similar to figure 8a: like 3D energy, vertical kinetic energy
decreases with Q until it reaches zero and it increases with Re. The curves collapse in
figure 9b and the behaviour close to Q2D becomes linear if the coordinate is raised to
the 1/3 power, indicating an approximate scaling U2

z ≈ (Qc −Q)3 with Qc ≈ Q2D. This
indicates that the point beyond which the vertical kinetic energy vanishes is close to Q2D,
implying that beyond Q3D, the motion is not only invariant along z but also restricted
to the x-y plane. Hence, for Q > Q2D, the flow has two-dimensionalised exactly.

4. Behaviour close to the transitions: hysteresis and intermittency

In this section, we discuss the behaviour close to the two transition points Q2D and
Q3D. Each transition shows a different non-trivial behaviour. Close to Q3D, we observe
discontinuous transitions and hysteresis for some range of parameters, while close to Q2D,
we find both spatial and temporal intermittency with localised bursts of 3D energy.

4.1. Close to Q3D: Discontinuity and Hysteresis

We begin by discussing the behaviour of the flow for Q close to Q3D where a sharp
increase of the large-scale energy was observed. This sharp increase could indicate the
presence of a discontinuity that could further imply the presence of hysteresis.

To verify the presence of a discontinuity we need perform many different runs varying
Q is small steps as well as veryfing sensitivity to initial conditions. To do this, a hysteresis
experiment has been performed at Re = 406, consisting of two series of runs, that we
refer to as the ‘upper branch’ and the ‘lower branch’, see figure 10. On the upper branch,
we start with random initial conditions and Q ≈ 2.25 for which the system reaches a
condensate equilibrium with an associated non-zero value of large-scale energy. Once the
run has equilibrated, we use that equilibrium state to initialise a run at Q → Q − ∆Q
with ∆Q = 0.1. By decreasing Q, the physical height of the box is increased. To be
able to use the equilibrium state reached at one Q as initial condition for a neighbouring
Q, the z-dependence of the velocity field is scaled and the velocity field is projected
onto its diverge-free part, formally v(x, y, z)→ Pv(x, y, λz), where P = I−∇−2∇(∇ · ).
Having changed Q and applied this procedure, we let the system equilibrate to a new
condensate state. This is repeated five more times (step size reduced to ∆Q = 0.05 and
then ∆Q = 0.025) down to Q ≈ 1.9. When Q is now lowered 0.025 further, the condensate
decays into 3D turbulence and the large-scale energy saturates to close to zero. Reducing
Q even more, U2

ls remains small, indicating a 3D turbulent state. The lower branch was
calculated similarly, with the only difference that the experiment started at low Q and Q
was increased in steps of 0.05 and then of 0.025. For small Q, the two branches coincide,
while the lower branch remains at low U2

ls (3D turbulence) up to Q ≈ 2.025. For Q larger
than Q = 2.025, the lower branch merges with the upper branch, closing the hysteresis
loop and a condensate is spontaneously formed from 3D turbulence. In other words, for
Re = 406 in the range 1.9 6 Q 6 2.025, there are multiple steady states and to which
state the system will saturate depends on the initial conditions. The flow field for two
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Figure 10: Hysteresis curve of U2
ls non-dimensionalised by the forcing energy. Two

experiments are shown, the ’lower branch’ starting from small Q (deep layer) and
increasing Q and the ’upper branch’ starting from large Q (thin layer) and decreasing Q.

(a) (b)

Figure 11: Figures 11a and 11b visualise the typical flow field after long simulation time
at Q ≈ 1.97 in the hysteresis experiment on the upper (11b) and lower (11a) branches.
The lower branch flow field shows small scale structures and no large-scale organisation,
reminiscent of 3D turbulence. By contrast, the upper branch flow field is characterised
by two large-scale vortices in addition to smaller-scale structures in between them.

such states starting from different initial conditions for Q ≈ 1.97 is visualized in 11.

The following remarks are in order: although for each Q we ran the simulations until
saturation was achieved, since we are dealing with a noisy system, rare transitions can
exist between the two branches of the hysteresis loop. To test this, we picked the point
Q ≈ 1.97 on both lower and upper branches and ran them for a long time (thousands of
eddy turnover times τ = (L3/ε)1/2). In neither case did we see a transition between the
two branches, indicating that such transitions are rare (if not absent) in the middle of
the hysteresis loop. Near the edges of the hysteresis loop at Q ≈ 2.05 and Q ≈ 1.9, the
dependence on simulation time is likely to be stronger, but this has not been investigated.

Furthermore, we note that the bifurcation diagram of figure 10 corresponds to a
relatively low Reynolds number Re = 406. Whether this subcritical behaviour persists
at larger Re and/or larger box sizes (smaller K) is still an open question. Figure 7



Condensates in thin-layer turbulence 13

0 200 400 600 800 1000
t

10−9

10−7

10−5

10−3
U
2 3D

(a)

10−18 10−14 10−10 10−6 10−2

U2
3D

10−17

10−14

10−11

10−8

10−5

10−2

PD
F

Q = 1.25
Q = 2.5
Q = 4.75
Q = 5.0
Q = 5.125

(b)

Figure 12: Plots showing temporal intermittency at Re = 203. Figure 12a shows a typical
time series (on lin-log axes) of 3D energy close to Q2D. Specifically, Q = 5, while Q2D ≈
5.13at this value of Re. Figure 12b shows PDFs corresponding to this time series as well
as for different values of Q (PDFs shifted by a constant factor for better visibility). The
ifferent symbols mark different values of Q, while the dotted lines correspond to power
laws with exponents −1 (bottom), −0.8 (middle) and −0.3 (top) respectively.

suggests that a discontinuity continues to exist at Q = Q3D up to high Reynolds numbers
(Re = 2031 shown there). In addition, we found more points at higher Re that showed
a dependence on initial conditions but without having enough values of Q to create
a hysteresis diagram. These findings suggest that subcritical behaviour and hysteresis
might survive even at high Re. However, due to the high computational cost at higher
resolution and the long duration of the runs required to verify that the system stays in a
particular state, we could not investigate this possibility in detail. Further simulations at
larger Re and possibly smaller K (larger boxes) are required to resolve this issue. Similar
hysteretic behaviour has recently been reported in rotating turbulence, see (Yokoyama
& Takaoka 2017). More generally, multistability is observed in many turbulent flows, see
(Weeks et al. 1997; Ravelet et al. 2004) as examples.

4.2. Close to Q2D: Intermittent bursts

Next, we discuss the behaviour of the flow close to the second critical point Q2D. A
typical time series of 3D energy for Q . Q2D is shown in figure 12a. One observes bursty
behaviour and variations over many orders of magnitude, indicating on-off intermittency
(Fujisaka & Yamada 1985; Platt et al. 1993). On-off intermittency refers to the situation
where a marginally stable attractor loses or gains stability due to noise fluctuations.
When instability is present, a temporary burst is produced before the system returns to
the attractor. On-off intermittency predicts that the unstable mode X follows a power-
law distribution P (X) ∝ Xδ−1 for X � 1 where δ measures the deviation from onset
(here δ ∝ (Q2D −Q)/Q2D) and all moments scale linearly with the deviation 〈Xn〉 ∝ δ.

In our system, the 2D flow forms the marginal stable attractor that loses stability to 3D
perturbations depending on the exact realisation of the 2D turbulent flow. To formulate
this, we decompose the velocity field into its 2D and 3D parts, u = u2D + u3D, where
the 2D part is defined as the Fourier sum of u restricted to modes with kz = 0. Filtering
the 3D component of equation (2.1), dotting with u3D and integrating over the domain
gives

1

2
∂tU

2
3D = −〈{u3D · ∇u2D} · u3D〉 − ν

〈
|∇u3D|2

〉
, (4.1)
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(a) (b) (c)

Figure 13: Snapshots of u2
3D for Re = 203 and Q = 2.5 (figure 13a), Q = 5.0 (figure

13b) and Q = 5.125 (figure 13c), (corresponding to figure 12). The colorbar is chosen in
each plot such that the maximum value of u2

3D is shown in black. As Q increases towards
Q2D ≈ 5.13, U2

3D becomes more and more localised. In figure 13c, u2
3D is concentrated

in small columnar structures (upper and lower right-hand corner) absent in figure 14c.

(a) (b) (c)

Figure 14: Snapshots of vz for Re = 203 and Q = 2.0 (figure 14a), Q = 5.0 (figure 14b)
and Q = 5.125 (figure 14c). The colour scale on the right is chosen in each plot such that
the minimum (negative) is shown in black and the maximum (positive) in red. (same
as in figure 12). As in figure 13, uz becomes localised in smaller and smaller areas as Q
increases, i.e. there is increasing spatial intermittency as Q2D ≈ 5.13 is approached.

where 〈·〉 denotes integration over the domain. The chaotic 2D motions then act as
multiplicative noise while the viscous terms provide a mean decay rate. An important
physical mechanism for creating 3D disturbances is 3D elliptic instability of the 2D
counter-rotating vortex pair forming the condensate, as described in (Le Déz & Laporte
2002). This may explain the presence of the critical value Q2D itself: instability requires
small vertical wavenumbers, but the minimum wavenumber increases with decreasing H
and Q2D corresponds to the point where 3D perturbations begin to decay.

Figure 12 shows that temporal intermittency is present in the thin-layer system. Panel
(a) shows a typical time series of 3D energy at Q . Q2D which fluctuates over six orders
of magnitude. In particular, as mentioned before, there are burst-like excursions in 3D
energy. In figure 12b, PDFs constructed from this time series and similar ones for different
values of Q are shown along with dotted lines indicating power laws with exponents −1,
−0.8 and −0.3. The PDFs are very close to a power law for a significant range of U2

3D and
and the exponent converges to minus one as the transition is approached, in agreement
with on-off intermittency predictions. However, the scaling of 3D energy with deviation
from onset shown in figure 8b does not follow the linear prediction of on-off intermittency,



Condensates in thin-layer turbulence 15

but rather 〈U2
3D〉 ∝ (Q2D−Q)2. For U2

z , figure 9 seems to suggest yet a different scaling,
namely 〈U2

z 〉 ∝ (Q2D−Q)3. A similar behaviour was also found in (Benavides & Alexakis
2017) and was attributed to the spatio-temporal character of the intermittency that not
only leads to 3D motions appearing more rarely in time as criticality is approached but
also to them occupying a smaller fraction of the available volume. This appears also
to be the case in our results, as demonstrated in figures 13 and 14, where u2

3D and the
vertical velocity uz are plotted for three different values of Q. As Q approaches the critical
value Q2D, the structures become smaller for u2

3D and uz with the difference that u2
3D

shows spot-like structures in figure 13c which are absent for uz. This difference may be
related to the two different scalings observed for U2

3D and U2
z with Qc −Q small: if the

volume fraction of vertical motion depends on Qc −Q to a different power than that of
vertical variations, two different behaviours of U2

z and U2
3D would follow. A more detailed

quantitative investigation of the scaling of volume fraction will be needed to clarify this.
In summary, we have found nontrivial behaviour close to both transitions: we have

observed hysteresis near Q3D and spatio-temporal intermittency close to Q2D where the
temporal behaviour seems to be described by on-off intermittency. Taking into account
these effects will be crucial for understanding the exact nature of the observed transitions.

5. Spectra and fluxes

In this section, we discuss the spectral space properties of the three different regimes
described in the previous section. For this purpose, it is necessary to define a few
additional quantities. In addition to the total 1D energy spectrum defined in (2.3), is
of interest to consider the two-dimensional energy spectrum in the (kh, kz) plane.

E(kh, kz) =
1

2

∑
k′

k′2
x +k′2

y =k2
h

k′
z=kz

|ûk′ |2 . (5.1)

Moreover, the total 1D energy spectrum may advantageously be split up into three
components: the energy spectrum of the (vertically averaged) 2D2C field

Eh(kh) =
1

2

∑
k

k2
x+k2

y=k2
h

kz=0

(∣∣∣û(x)k

∣∣∣2 +
∣∣∣û(y)k

∣∣∣2) , (5.2)

the energy spectrum of the (vertically averaged) vertical velocity

Ez(kh) =
1

2

∑
k

k2
x+k2

y=k2
h

kz=0

∣∣∣û(z)k

∣∣∣2 , (5.3)

and the energy spectrum of the 3D flow defined as

E3D(kh) =
1

2

∑
k

k2
x+k2

y=k2
h

kz 6=0

|ûk|2 , (5.4)

satisfying Etot(kh) = Eh(kh) + Ez(kh) + E3D(kh). Furthermore, we introduce three
different quantities related to spectral energy flux. First, the total energy flux as a
function of horizontal wave number

Π(kh) = 〈u<kh · (u · ∇)u〉, (5.5)
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Figure 15: Logarithmic surface plots of E(kh, kz) at steady state in the three regimes a)
Q < Q3D, b) Q3D < Q < Q2D and c) Q2D < Q.
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Figure 16: Three different energy spectra, Eh(kh), Ez(kh), E3D(kh) at Re = 609 for
3D turbulence (figure 17a), 2D turbulence (figure 16c) and an intermediate case Q ∈
(Q3D, Q2D) (figure 16b) flux-loop condensate (cf. main text). For 3D turbulence (Q =
1.25 < Q3D), the 2D energy spectrum peaks at the forcing scale and is an order of
magnitude bigger than the other components. In the flux-loop condensate (Q = 4), 2D
energy is maximum at k = 1 and 3D and vertical energy are non-zero. In 2D turbulence
(Q = 16 > Q2D), 2D energy is maximum at k = 1, but 3D and vertical energy vanish.

where the low-pass filtered velocity field is

u<kh =
∑

k
k2
x+k2

y<k2
h

ûke
ik·x.

With this definition, Π(kh) expresses the flux of energy through the cylinder k2x+k2y = k2h
due to the non-linear interactions. The 2D energy flux as a function of kh is defined as

Π2D(kh) = 〈u<kh · (u · ∇)u〉, (5.6)

where the over-bar stands for vertical average and expresses the flux through the same
cylinder due to only 2D2C interactions. Finally, we define the 3D energy flux (due to all
interactions other than those in (5.6)) as a function of horizontal wave number by

Π3D(kh) = Π(kh)−Π2D(kh). (5.7)

It expresses the flux due to all interactions other than the ones in (5.6).
Figure 15 shows the steady state 2D energy spectrum in the three different regimes:

a) Q < Q3D, b) Q3D < Q < Q2D and c) Q2D < Q. In the 3D turbulent case a), the
global maximum is at the forcing scale and kz = 0, while large kz modes have a relatively
larger fraction of total energy than in cases b) and c). In cases b) and c), a condensate is
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Figure 17: Three different components of spectral energy flux, Π(kh), Π2D(kh) and
Π3D(kh), are shown for the same three cases and in the same order as in figure 16.
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Figure 18: Flux loop condensate steady state fluxes for Re = 4062 in panel (a) and the
hyperviscous run in panel (b).

present with a maximum at the largest wavenumber kh = 1, kz = 0. In case b), there is
still energy in the kz 6= 0 modes, while in case c), the energy is entirely concentrated in
the kz = 0 mode. Figure 16 shows the energy spectra Eh(kh), Ez(kh) and E3D(kh) for the
same three cases a)-c). In case a) (3D turbulence), all three spectra are of the same order,
with a small excess of Eh(kh) in the large scales and an excess of E3D(kh) in the small
scales. The small scale separation between the forcing and the dissipation scale does not
allow us to observe a k−5/3 power-law regime. In case b), Eh(kh) clearly dominates in the
large scales, forming a steep spectrum (close to Eh(kh) ∝ k−4

h ). However, at wavenumbers
larger than the forcing wavenumber kf = 8, Ez(kh) and E3D(kh) become of the same
order as Eh(kh). In case c) (2D turbulence), where Q > Q2D, the spectra Ez(kh) and
E3D(kh) have reduced to values close to the round-off error and are not plotted. The 2D
spectrum Eh(kh) displays again a steep power-law behaviour close to Eh(kh) ∝ k−4

h .
Figure 17 shows the energy fluxes as defined in eqs. (5.5-5.7) for the same three cases

examined in figure 16. In panel (a), where the case Q < Q3D is examined, there is almost
no inverse flux of energy and Π(kh < kf ) is practically zero. The small inverse flux that
is observed for Π2D(kh) at k < kf does not reach the largest scale of the system and is
nearly completely balanced by Π3D(kh), which is forward. At wavenumbers larger than
kf , the total flux is positive and is completely dominated by Π3D. This is to be contrasted
with the rightmost panel (c) with Q > Q2D, where at small wavenumbers, the flux is
negative and is dominated by the 2D flow, while at large wavenumbers there is a very
small forward flux. For the intermediate case Q3D < Q < Q2D in panel (b), there is an
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inverse energy flux. This flux can be decomposed into a negative 2D part Π2D(kh) and a
positive 3D part Π3D(kh). In other words, the 2D components of the flow bring energy
to the largest scales of the system, which is then brought back to the small scales by the
3D components of the flow associated with a forward energy flux, thus forming a loop
for the energy transfer. For this reason, we refer to this case as flux-loop condensate.

Due to finite viscosity, part of the energy that arrives at the largest scale (shown in
figure 17b) is dissipated. Therefore, the two fluxes are not completely in balance. As Re
is increased, however, the fraction of the energy that is dissipated in the large scales is
decreased and the two opposite fluxes come closer to balancing each other. This is shown
in figure 18, where the energy fluxes for the highest Re simulation and for the simulation
with hyper viscosity are plotted. The two opposite directed fluxes are closer in amplitude.
At Re →∞ it is thus expected that the inverse and forward fluxes at large scales will be
in perfect balance and all the energy is dissipated in the small scales. It is worth noting,
however, that the inverse cascade (negative flux) due to the 2D components has much
stronger fluctuations than the forward cascading flux that has lead to the non-monotonic
behaviour of the flux observed in figure 18 at small k due to insufficient time averaging.

6. A three-mode model

In this section, we formulate and analyse a simple three-scale ODE model which
reproduces certain features of the DNS results described in section 3.

As illustrated in figure 19, our model comprises a 2D mode U2D at the scale L of
the domain, a mode Uf at the forcing scale ` and a 3D mode U3D at the scale of the
layer height H, whose interactions are spectrally non-local, thus taking into account a
major result from section 5. The model describes the system at steady state where these
scales are well separated, but is not expected to capture the transient phase where all
intermediate scales between L and ` participate due to the inverse cascade. As before, let
Q = `/H, K = `/L and Re = (ε`4)1/3/ν. Interactions between modes are modelled using
eddy viscosity, which amounts to modifying the molecular viscosity ν by terms involving
the small-scale velocities, modelling the effect of small-scale on large-scale motions as
diffusive. The conceptual foundations of eddy viscosity were laid by de Saint Venant in
his effective viscosity, (de Saint-Venant 1843) (see Darrigol (2017) for a historical review).
Eddy viscosity was quantified for the first time by (Boussinesq 1877) and later widely
popularised through the works of Taylor (Taylor 1915, 1922), see also (Kraichnan 1976).
It has been estimated in various limits both in 2D and 3D flows, (Yakhot & Sivashinsky
1987; Hefer & Yakhot 1989; Gama et al. 1994; Dubrulle & Frisch 1991; Meshalkin 1962;
Sivashinsky & Yakhot 1985; Bayly & Yakhot 1986; Cameron et al. 2016; Alexakis 2018).

There are two notable cases where the dependence of eddy viscosity νE on the flow
amplitude Us and length scale ls is known. For Re → ∞, one expects that νE becomes
independent of ν and the only dimensionally consistent possibility for νE is given by

νE = c1Usls. (6.1)

where c1 is a non-dimensional number. In the low-Re limit, on the other hand, an exact
asymptotic expansion can be carried out (see Dubrulle & Frisch 1991) which reveals that

νE = c2
U2
s l

2
s

ν
+O(U4

s l
4
s/ν

2), (6.2)

where the non-dimensional number c2 can be evaluated by the expansion. It may
seem counter-intuitive that the low-Re limit could have any relevance for the turbulent
problem, but since we have established in the DNS that the presence of Q2D is a finite-Re
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�

Figure 19: Sketch of three-mode model. Solid curve: energy spectrum E(k) of the
condensate state. The energy injected at kf at a rate ε is distributed between large and
small scales. Moreover, energy is transferred from large to small scales. Finally viscous
dissipation occurs at all scales since Re < ∞ (short arrows on abscissa) and energy is
transferred to the dissipation range (arrow at kν = 2π/η). The spectrum E(k) shares
certain features with figure 1e) of (Xia et al. 2011) and figure 3 of (Celani et al. 2010).

phenomenon (Q2D ∝ Re3/4), we clearly need to include a finite Re ingredient to describe
it and the exact result (6.2) is selected for this purpose. The sign of the prefactors c1, c2
depends on the exact form of the small-scale flow and in particular its dimensionality.
While 2D flows tend to have negative eddy viscosities and transfer energy upscale, 3D
flows are expected to have positive eddy viscosities and transfer energy downscale. For
our model, we are going to consider that interactions among the three different scales
L > ` > H are such that the flow at the smaller scale acts as an eddy viscosity on the
flow at the larger scale. These interactions are illustrated in figure 19. In particular, the
energy injected at the forcing scale kf at a rate ε is transferred both to the large scale L
(by a negative eddy viscosity −µ) and to the small scales (by a positive eddy viscosity σ).
The large scales lose energy directly to the small scales (via a positive eddy viscosity term
η), while the small scales dissipate energy by transfer to the dissipation range, modelled
by a non-linear energy sink. In addition, viscosity is finite, s.t. all scales dissipate locally.
The set of equations below formalises these ideas:

d

dt
U2
2D = − (ν − µ+ η)

U2
2D

L2 , (6.3a)

d

dt
U2
f = ε− (ν + σ)

U2
f

`2 − µ
U2

2D

L2 , (6.3b)

d

dt
U2
3D = η

U2
2D

L2 + σ
U2

f

`2 −
U3

3D

H − ν U
2
3D

H2 . (6.3c)

Note in particular that eddy viscosities do not dissipate energy, but merely redistributes
it between different scales. Adding the three model equations leads to

d

dt
(U2

2D + U2
f + U2

3D) = ε− ν

(
U2
2D

L2
+
U2
f

`2
+
U2
3D

H2

)
− U3

3D

H
,

showing that the total kinetic energy only changes due to molecular viscosity ν, energy
injection ε and the sink term representing the 3D energy cascade to the dissipation range,
U3
3D/H. Depending on Re, either of the two expressions for eddy viscosity (eqs. 6.1,6.2)

may be expected to yield an adequate description of the multi-scale interactions in the
problem. A model that interpolates smoothly between the large and small ν limits, thus
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Figure 20: Steady state U2
3D from the full model for four different Re as well as for the

Re = ∞ limit. The Re = 500 and the Re = ∞ cases are almost indistinguishable. The
parameters used are L = ` = 1, α = 1, β = 5, γ = 0.5.

taking into account the finite-Re information necessary for describing Q2D, is given by

µ = α
U2
f `

2

ν + Uf `
, η = β

U2
3DH

2

ν + U3DH
, σ = γ

U2
3DH

2

ν + U3DH
, (6.4)

with α, β, γ > 0 non-dimensional coupling constants. In the limits ν → 0 and ν → ∞,
the above expressions converge to the formulae for eddy viscosities described before.
The nonlinear dynamical system thus defined possesses a varying number of fixed points
depending on parameters. To classify them, first note that ε 6= 0⇒ Uf 6= 0 at any fixed
point by (6.3b) and the definition of µ in (6.4). Hence there are four possibilities:

(a) laminar state: U2D = U3D = 0 (all energy in forcing scale),
(b) 3D turbulence state: U2D = 0 and U3D 6= 0,
(c) 2D condensate state: U2D 6= 0 and U3D = 0 and
(d) flux-loop condensate state: U2D 6= 0 and U3D 6= 0.

As shown in appendix A.1, in the zero viscosity limit, there is neither a laminar state nor
a 2D condensate fixed point in the model. This emphasises the importance of including
finite-Re information into the model for describing both Q3D and Q3D in a single model.
The laminar state appears for values of Re ≡ (ε`4)1/3/ν below a critical value Rec for
which there is no transfer, neither to large nor to small scales. Above this critical value,
one of the three other states is stable, depending on the value of Q = `/H. For small
values of Q (large H), the system is in the 3D turbulence state, where energy is only
exchanged between the forcing scale ` and the small scaleH. Above the critical valueQ3D,
the system transitions to the flux-loop condensate state where part of the injected energy
is transferred to the large scales and then back to the small scales, thus forming a loop.
Finally, at sufficiently large Q above a second critical point Q3D, the system transitions
to the 2D condensate where it follows 2D dynamics and there is only a transfer of the
injected energy to the large scales.

From this simple model, three major predictions may be derived:
• Firstly, the critical point Q3D is predicted to converge to a Re-independent value

at large Re as is shown in figure 20. In fact, in the infinite Re limit of the model, there
remains only one bifurcation, namely that at Q3D between two-dimensional turbulence
and the split cascade state.
• Secondly, the critical point Q2D is predicted to obey

Q2D ∝ Re3/4, (6.5)
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Figure 21: Model steady state U2
2D with and without rescaling. The overall structure

of the plots is strongly reminiscent of corresponding DNS results in figures 6a and 6b.
In figure 21a, U2D vanishes at small Q, increases monotonically between Q3D and Q2D

and remains constant for Q > Q2D. Figure 21b shows the same data as 21a with the
abscissa rescaled by Re3/4 and the coordinate rescaled by Re as in figure 6b. The collapse
improves with increasing Re. Parameters: α = 0.51, β = 8, γ = 0.1, ` = L/15 = 1.

• and thirdly, for Q > Q2D, i.e. in the 2D turbulent state, the steady state energy is
predicted to be

U2
2D = (ε`)2/3

(
L

`

)2

Re. (6.6)

The detailed derivations of these results are given in Appendix A.1. All these three main
features are in agreement with the DNS and therefore the diagram that displays the
different phases of the model, shown in figure 21a, resembles the corresponding figure 6a
from the DNS. Indeed, the same rescaling collapses the curves in both cases, see figures 6b
and 21b. We also note that for 0 < Q2D−Q� 1, it is predicted that U2

3D ∼ (Q2D−Q)2

(see appendix A.2), again in agreement with the DNS.
We understand the present ODE model as a mean field description which captures

the global system behaviour and averaged quantities, but does not take fluctuations into
account. Due to the importance of fluctuations near criticality, the ODE model does
not reproduce the detailed behaviour there. However, when a fluctuating energy input
is taken into account by replacing ε→ ε+ σζ in (6.3 b) (ζ being white Gaussian noise),
on-off intermittency is found close to Q2D where the PDF of U2

3D follows a power law
with an exponent tending to −1 as Q→ Q2D from below (see appendix A.3), just as in
the DNS. This is a consequence of the structure of the model equations.

To conclude this section, we reiterate that the model presented above successfully
captures the the location of the critical points (up to a scaling factor) as well as the
amplitude of the condensate U2

2D, while not producing a hysteresis. The intermittency
close to Q2D found in DNS is reproduced by the model when additive noise is included.

7. Conclusions

We present the first detailed numerical study of the steady state of thin-layer turbu-
lence as a function of the system parameters using an extensive set of high-resolution
simulations.

It is shown that the split cascade observed at early times of the flow evolution
(Celani et al. 2010; Benavides & Alexakis 2017; Musacchio & Boffetta 2017) leads to
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the formation of condensate states in the long-time limit. Three different states were
found for large Re. (a) For very thick layers the system saturates in a regular 3D
turbulence state with no inverse cascade and negligible dissipation at large scales. (b)
At intermediate layer thickness, a flux-loop condensate is formed in which part of the
energy transferred to the condensate by the 2D motions is transferred back to the small
scales by the 3D motions. (c) For very thin layers, the system becomes two-dimensional
and forms a 2D-turbulence condensate, where the inversely cascading energy is balanced
by the dissipation due to viscosity at large scales. The transition from 3D turbulence
to the flux loop condensate occurs at a critical height H3D (Q3D) that is a decreasing
(increasing) function of Re, but saturates at a Re independent value for large Re. For
values of H slightly smaller than H2D the amplitude of the large-scale velocity U2

ls jumps
discontinuously to a large value and increases linearly after that. Close to the threshold,
a hysteresis diagram was constructed where the system saturates to a different attractor
(3D turbulence or flux-loop condensate) depending on the initial conditions. Whether
this hysteresis behaviour persists at larger Re and larger box-sizes 1/K remains an open
question. The flux loop condensate transitions to a 2D turbulence condensate at a critical
height H2D that scales like H2D ∝ `Re−3/4 unlike the early stages of the development
where H2D ∝ `Re−1/2 (Benavides & Alexakis 2017). For the 2D turbulence condensate,
the large-scale energy was found to be inversely proportional to Re and independent
from H. The transition from a flux loop condensate to a 2D turbulence condensate
showed strong spatio-temporal intermittency leading to a scaling of the average 3D
energy as the square of the deviation from onset U2

3D ∝ (H − H2D)2, similarly as in
(Benavides & Alexakis 2017).

A three-mode model has been proposed which reproduces the DNS scalings of the
the critical points H2D and H3D as well as the amplitude of the condensate in the 2D
turbulence regime. The model demonstrates the basic mechanisms involved: A 2D flow
that moves energy from the forcing scale to the condensate and a 3D flow that takes away
energy both form the large scales and the forcing scales. The model does not describe
bistability or discontinuity close to Q3D. Nonetheless, it captures the occurrence of both
transitions observed in the DNS and provides several correct quantitative predictions.

We stress once more that the present work is the first numerical study of thin-layer
turbulent condensation. Previous studies of the thin-layer problem were restricted to
the transient inverse cascade regime due the long computation time needed to reach
the condensate state. Therefore, the present study is novel and provides an important
first step towards a better understanding of thin-layer turbulent condensates (of which
Earth’s atmosphere and ocean may be viewed as examples, despite the idealised nature
of our set-up), many open questions remain. The complexity of the physics involved close
to criticality goes beyond the mean field model and requires further targeted studies. We
are convinced that both critical points deserve more detailed investigations by means of
numerical simulations, experiments and modelling. Another important remaining open
problem is the formation of an inverse cascade from a 3D forcing. To study this, the
amplitude of the 3D components of the forcing should be varied compared to the 2D
components in a future study. 3D forcing will make a connection with more natural
forcing mechanisms like convection that also display condensates (Favier et al. 2014;
Rubio et al. 2014; Guervilly et al. 2014).

Concerning the realisability of the present numerical results in an experiment, it needs
to be stressed that this study only considers the triply periodic domain for simplicity.
When attempting to transfer the results to non-slip boundary conditions, a word of
caution is therefore in order: viscous boundary layers may lead to large-scale drag, which
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is explicitly left out from the model set-up used here. Also, 3D turbulence in boundary
layers may infect the interior flow, thereby affecting even high wavenumbers and the
two-dimensionalisation even in the bulk of the flow. However, the wealth of experimental
observations of turbulent condensates in thin layers, as referenced in the introduction
and summarised in (Xia & Francois 2017), suggests that the condensation phenomenon
at finite height is robust between different boundary conditions as well as between the
different forcing methods used in experiment and numerical simulations. In particular, it
would be very interesting to probe the discontinuity and associated phenomena reported
here in an experiment. This has not been done before and experimental studies of thin-
layer turbulent condensates have the advantage of allowing higher Reynolds numbers and
much better time statistics.
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Appendix A. Derivation of mean field model predictions

A.1. Scalings of critical points and condensate amplitude

In the low viscosity limit, the eddy viscosities given in equation (6.4), take the form
(6.1) and the resulting system of equations reads

∂tU
2
2D =

(αUf `)U
2
2D

L2 − (βU3DH)U2
2D

L2 (A 1a)

∂tU
2
f = ε− (αUf `)U

2
2D

L2 − (γU3DH)U2
f

`2 (A 1b)

∂tU
2
3D =

(βU3DH)U2
2D

L2 +
(γU3DH)U2

f

`2 − U3
3D

H (A 1c)

One can easily see that these equations do not permit a fixed point with U3D = 0 when
ε 6= 0. To show this, first note that, as in the finite Re case, the forcing scale velocity Uf
cannot vanish at a fixed point if ε 6= 0. Assume there exists a fixed point with U3D = 0.
Then equation (A 1c) is trivially satisfied, while (A 1a) implies that U2D = 0 or Uf = 0.
Since Uf must be non-zero, we have U2D = 0, which leads to a contradiction in equation
(A 1b) for any ε 6= 0. Hence neither a laminar flow state nor a 2D condensate state
exists in the system in the infinite Re limit. The only two remaining fixed points are 3D
turbulence and the flux-loop condensate. The former is given by

U2
2D = 0, U2

f =
ε2/3`2

γH4/3
, U2

3D = (εH)2/3 (A 2)



24 A. van Kan, A. Alexakis

Using this result and considering equation (A 1a), we can find that the 3D turbulence
fixed point becomes unstable to 2D perturbations at

H =

(
α2

β2γ

)1/4

` (A 3)

and thus we obtain that

Q3D =

(
β2γ

α2

)1/4

. (A 4)

Hence, in the low viscosity limit of our three-scale model, there remains only one
bifurcation, namely that at Q3D between two-dimensional turbulence and the split
cascade state. The second critical point Q2D vanishes to infinity as Q2D ∝ Re3/4 in
this limit. Figure 20 demonstrates close to Q3D that the full model converges to the
solution obtained from the asymptotic form of the equations A 1 as Re increases. This is
consistent with the convergence observed in the DNS in figure 6b.

At finite viscosity, one has to solve the full equations,(6.4) which is difficult analytically
for the 2D condensate state. In order to facilitate analytical progress in deriving predic-
tions from the model, one may formally take the high viscosity limit in which the different
eddy viscosities take the form of equation (6.2). The model equations then become

∂tU
2
2D = −

(
ν − αU

2
f `

2

ν + β
U2

3DH
2

ν

)
U2

2D

L2 , (A 5a)

∂tU
2
f = ε−

(
ν + γ

U2
3DH

2

ν

)
U2

f

`2 − α
U2

f `
2

ν
U2

2D

L2 , (A 5b)

∂tU
2
3D = β

U2
3DH

2

ν
U2

2D

L2 + γ
U2

3DH
2

ν

U2
f

`2 −
U3

3D

H − ν U
2
3D

H2 . (A 5c)

To obtain this limiting form of the equations, it is assumed that ν � Uf `, U3DH, while
no restriction is imposed on U2D; in particular, the case of a large scale-based Reynolds
number in the large scales U2DL/ν, which is most relevant in the condensate state, is

included. The laminar flow is unstable to 3D perturbations when Q < γ1/4Re3/4 and
unstable to 2D perturbations when

Re > 1/α1/3. (A 6)

When the latter condition is satisfied and H is sufficiently small (Q sufficiently large),
the system is attracted to the 2D condensate state, given by

U2
2D =

L2

ν

(
ε− ν3

`4α

)
, U2

f =
ν2

α`2
, U3D = 0.

Note that U2
2D is inversely proportional to the viscosity and proportional to L2 in

agreement with the scaling of the data in figure 6b. The 2D condensate state ceases
to be an attractor of the system when H is sufficiently large such that U3D becomes
unstable. This occurs when

H4 >

(
β
ε

ν3
+
γ − β
α`4

)−1

. (A 7)

Hence, we conclude that

Q2D =

(
β
ε`4

ν3
+
γ − β
α

)1/4

=

(
βRe3 +

γ − β
α

)1/4

. (A 8)

Thus, for moderate values of Re, there is an approximate scaling Q2D ∝ Re3/4 ∝ η,
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the dissipation length (note that Re3 > 1/α due to eq. (A 6)), in agreement with the
results obtained in section 3, where we showed that the U2

2D data points collapse under

rescaling such that QRe3/4 = η/H is on the abscissa and U2
2DK

2/[Re(ε`)2/3] on the
coordinate. Results from the full model equations (6.3) and (6.4) are shown in figure 21
where the same scaling is applied. The corresponding plots for equations (A 5) are very
similar. Furthermore, an asymptotic analysis close to Q2D described in section A.2 of this
appendix reveals that the scaling for U2

3D ∝ (Q2D−Q)2 which is the same as in the DNS
results shown in figure 8b although no intermittency is present. The other critical point
Q3D, where the 3D turbulence solution changes stability, can be evaluated numerically
and is found to increase with Re indefinitely. This, however, is an artefact of the high
viscosity asymptotic form of the eddy viscosities used in this subsection.

A.2. Behaviour of U3D near Q2D

Here, we derive the behaviour close to H2D in the three-scale model. First consider H =
H2D(1+δ) and let x = (x, y, z)T = (U2

2D, U
2
f , U

2
3D)T , x̃ = (x̃, ỹ, z̃)T = x− (x2D, y2D, 0)T ,

where x2D and y2D are the values of U2
2D and U2

f respectively at H = H2D. Then
equations (A 5) can be rewritten exactly in the form

d

dt
x̃ =

− ν
L2

α`2x2

νL2 −βx2H
2

νL2

−αy2
νL2 − ν

`2 −γH
2y2

ν`2

0 0 C

 x̃ +

 0
0

−1/H2D

 z̃3/2 + x̃TBx̃, (A 9)

where C = − ν
H2 + βH2x2

νL2 + γH2y2
ν`2 and the specific coefficients of the quadratic term are

irrelevant here. By definition of H2D, C(δ = 0) = − ν
H2

2D
+

βH2
2Dx2

νL2 +
γH2

2Dy2
ν`2 = 0. Hence,

for small δ, C ∝ δ. Specifically,

C
δ�1∼

(
2ν

H2
2D

+
2βx2
νL2

+
2γy2
ν`2

)
δ. (A 10)

Hence, considering the z̃ component and balancing the linear term with the z̃3/2 term,
we deduce that

z̃
δ�1∼

(
2ν

H2
2D

+
2βx2H

2
2D

νL2
+

2γy2H
2
2D

ν`2

)2

H2
2Dδ

2. (A 11)

This means that U2
3D ∝ δ2, which is precisely the scaling observed in figure 8b. It is

important to note however that the asymptotic result (A 11) is only valid for very small
δ and cannot be extended to δ ∼ O(1) where the quadratic terms are dominant.

A.3. On-off intermittency in the three-scale model

When a fluctuating energy injection rate is taken into account in the model by replacing
ε→ ε+ σζ, where ζ ∼ N (0, 1) is Gaussian white noise, on-off intermittency in U2

3D can
be observed in the three-scale model. This is illustrated in figure 22 in terms of the time
series of U2

3D and the corresponding PDF, which approaches a power law with exponent
−1 as Q→ Q2D.
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