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Abstract

The purpose of this work is to build a general framework to reconstruct the underlying fields

within a Finite Volume (FV) scheme solving a hyperbolic system of PDEs (Partial Differential

Equations). In an FV context, the data are piece-wise constants per computational cell and

the physical fields are reconstructed taking into account neighbor cell values. These reconstruc-

tions are further used to evaluate the physical states usually used to feed a Riemann solver

which computes the associated numerical fluxes. The physical field reconstructions must obey

some properties linked to the system of PDEs such as the positivity, but also some numerically

based ones, like an essentially non-oscillatory behaviour. Moreover, the reconstructions should

be high accurate for smooth flows and robust/stable for discontinuous solutions. To ensure a

Solution Property Preserving Reconstruction, we introduce a methodology to blend high/low

order polynomials and hyperbolic tangent reconstructions. A Boundary Variation Diminishing

(BVD) algorithm is employed to select the best reconstruction in each cell. An a posteriori

MOOD detection procedure is employed to ensure the positivity by re-computing the rare prob-

lematic cells using a robust first-order FV scheme. We illustrate the performance of the proposed

scheme via the numerical simulations for some benchmark tests which involve vacuum or near
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vacuum states, strong discontinuities and also smooth flows. The proposed scheme maintains

high accuracy on smooth profile, preserves the positivity and can eliminate the oscillations in the

vicinity of discontinuities while maintaining sharper discontinuity with superior solution quality

compared to classical high accurate FV schemes.

Key words: Finite volume, multi-stage-BVD, THINC, positivity-preserving, MOOD,

hyperbolic system of PDEs

1. Introduction

Computational fluid dynamics has been widely used in many engineering and scientific

research fields for decades. For instance, the conservative finite volume framework, one of

the classical CFD methods is often used to solve the compressible flow problems. In re-

cent years, high-order schemes were developed to handle both smooth and discontinuous so-

lutions with less numerical dissipation. However, one issue of the original high-order schemes

[SO88, SO89, JS96, RLZ03, ABC16] is that they may generate non-physical negative density

or pressure (positivity failure), which leads to a blow-up of the numerical computation. Some

classical high-order schemes fail to preserve the positivity (or to maintain the physical validity

of the solution) because of interpolation errors in the vicinity of very strong discontinuities or

when vacuum or near vacuum states occur. On the other hand, the first-order finite volume

so-called Godunov scheme [God59, Tor09] has an excessive numerical dissipation and tends to

smear out flow structures. Nonetheless, the Godunov scheme is monotone, robust and pre-

serves the positivity. Recently, Zhang and Shu developed some positivity-preserving strategy

to be supplemented with discontinuous Galerkin (DG) [ZS10, ZS11b], finite volume/difference

WENO scheme [ZS11a]/[ZS12] by employing a flux limiter with a restriction on the CFL number.

Other approaches based on Flux Corrected Transport (FCT) [LK16], cut-off limiters, bound-

preserving strategy [XZ17] or alternative techniques are also available.

Following a different path, the Multi-dimensional Optimal Order Detection (MOOD) approach is

an a posteriori limiting scheme which was proposed in [CDL11, DCL12, DZLD14], and further

used for different families of schemes: DG context [DL16, Vil18], Lagrangian and Arbitrary-

Lagrangian-Eulerian schemes [BLD15, BDLM18], or for other physical contexts apart from
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pure Euler equations, such as Shallow-water equation [CF17], compressible turbulence mod-

els [JYY18], hyperbolic systems with stiff source terms [BT17], Navier-Stokes equations [TB19],

etc.

The main idea in a MOOD-like algorithm consists in computing a candidate numerical solution

at the next time level. The MOOD algorithm picks out the bad cells from the good ones, and

re-compute the bad ones using a more dissipative scheme. A cell for which the criterion of

physical admissible detection (PAD) and numerical admissible detection (NAD) are satisfied is

accepted for the next time step. Otherwise, if a cell does not satisfy the criteria, it is marked

as problematic and re-computed by ‘decrementing’ the degree of the local reconstruction poly-

nomials, expecting that a lower order scheme will deposit more dissipation in the troubled cells.

This process of decrementing the local polynomial degree continues up to the cell becomes valid,

or, when the lowest order possible reconstruction is attained (piece-wise constant is usually the

last possibility).

Using polynomial reconstructions in an FV context is the ultra classical path followed by the ma-

jority of researchers to reach high accurate FV schemes. However, when discontinuous or step-

like solutions are encountered, such polynomial reconstructions become inefficient, or, worse,

counterproductive. For several years, in order to capture such discontinuous solutions, some

researchers rely on the Tangent of Hyperbola INterface Capturing (THINC) method which

mimics a step-like function, see for instance [XIC11, XHK05, SX14]. Later on THINC has

been used in a so-called Boundary Variation Diminishing (BVD) algorithm proposed in [SIX16].

The purpose is to hybridize a WENO polynomial reconstruction with THINC functions. The

BVD principle consists in appropriately selecting between these reconstructions. The diagnos-

tics used by the BVD algorithm to select the appropriate reconstructions rely on minimizing

the jump between the reconstructed values at the cell boundary. The BVD schemes are then

capable to resolve both discontinuous and smooth solutions with high fidelity, see for instance

[SIX16, DXL+18, DIX+18]. In more recent works [DSX19, DSX18], new BVD schemes have

been proposed by combining high-order linear-weight (constant-coefficient) polynomials and

THINC function with multi-stage BVD algorithms. The resulting schemes, so-called PnTm-

BVD (polynomial of n-degree and THINC function of m-level reconstruction based on BVD al-
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gorithm) schemes, are completely different from any existing high-resolution scheme that counts

on nonlinear-weights polynomials to suppress spurious oscillations. Numerical verification shows

that the PnTm-BVD schemes are able to achieve very high order accuracy for smooth solution,

and effectively remove numerical oscillation in presence of discontinuity. As shown in [DSX18],

for example, a 11th order scheme can be devised by using the 10th order polynomial as one of

the candidate for reconstruction.

In this paper, we present a general formulation of reconstruction in finite volume method by

integrating the BVD and MOOD methodologies. As a concrete example, we propose a high-

resolution scheme under a three-stage cascade BVD algorithm and MOOD method to fulfill the

shock capturing and positivity-preserving properties. For BVD reconstruction algorithm, the

linear 5th order upwind or piece-wise quartic method based on 4th-degree of polynomial (P4)

is implemented as one of the candidate reconstruction functions to capture smooth solutions.

Other candidate reconstruction functions use THINC function to eliminate the numerical os-

cillation and to capture sharply all discontinuities. Furthermore, a MOOD algorithm performs

and detects a candidate solution by physical admissible detection (PAD) ensuring as such the

positivity-preserving property. In this work, we demonstrate the effectiveness of P4-THINC-

BVD-MOOD scheme, or P4T3-BVD-MOOD scheme, in resolving smooth solution, capturing

sharp discontinuous solution and preserving positivity via some benchmark tests.

This paper is organized as follows. In Section 2, we briefly present the general finite volume

method. We demonstrate in Section 3 the details of solution property preserving reconstruction

ensuring high-order accuracy (HO), essentially non-oscillation (ENO) behaviour, sharp capture

of discontinuities and robustness for extreme situations. We extend the numerical scheme into

two-dimensional finite volume method with a discussion on accuracy and efficiency in Section

4. In Section 5, we show the results on some benchmark tests, which testify that the present

scheme is able to capture both smooth and discontinuous solutions and is able to preserve their

physical validity. We end the paper with a brief summary and future plans are drawn in Section

6.
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2. General Framework

For the sake of simplicity, we introduce the numerical method thoroughly in d = 1 dimension.

Its extension to multi-dimensions, here d = 2, carried on by dimension splitting, is presented in

a next section. Let us describe the finite volume method, the reconstruction schemes and the

positivity-preserving process in the following sections.

2.1. Finite Volume semi-discretization

Let us consider a scalar hyperbolic conservation law under the form

∂U

∂t
+
∂F (U)

∂x
= 0, (1)

where U(x, t) is the solution variable and F (U) is the flux function. Because (1) is hyperbolic,

the characteristic speed α = F ′(U) is a real number in 1D.

The computational domain in space is defined as Ω = [xL, xR] and divided into N cells,

Ii = [xi−1/2, xi+1/2], for i = 1, 2, ..., N . The grid size is uniform over the computational domain

and denoted by ∆x = xi+1/2 − xi−1/2. The time coordinate is t and 0 ≤ t ≤ T , where T > 0

is the final time. The time interval [0, T ] is split into Nt time steps [tn, tn+1], the time-step is

non-uniform and denoted by ∆t = tn+1 − tn > 0, with t0 = 0 and tNt = T .

For the standard finite volume semi-discretization, we employ the approximated volume

integrated-average (VIA) of the solution U(x, t) over a mesh cell Ii at time t as

Ui(t) =
1

∆x

xi+1/2∫
xi−1/2

U(x, t) dx where i = 1, 2, . . . , N. (2)

Let us denote by U = (Ui)i=1,2,...,N the vector of discrete FV data in the mesh.

The VIA Ui(t) for each cell Ii is updated by

dUi
dt

= − 1

∆x

(
F̃i+1/2(t)− F̃i−1/2(t)

)
, (3)

where F̃i+1/2(t) and F̃i−1/2(t) are the numerical fluxes at cell boundaries, calculated by a Rie-

mann Solver

F̃i+1/2(t) = FRiemann
i+1/2 (ULi+1/2, U

R
i+1/2, t). (4)
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where ULi+1/2 and URi+1/2 are the left-side and right-side values at cell boundaries respectively,

given by reconstructions over left and right support stencils. Particularly, the Riemann flux can

be written into a canonical form as

FRiemann
i+1/2 (ULi+1/2, U

R
i+1/2, t) =

1

2

(
F (ULi+1/2) + F (URi+1/2)

)
︸ ︷︷ ︸

Central flux

−
|ai+1/2|

2
(URi+1/2 − U

L
i+1/2)︸ ︷︷ ︸

Dissipation

, (5)

where ai+1/2 is a characteristic speed linked to the maximal eigenvalue of the hyperbolic con-

servation law. In this work a classical HLLC flux is employed [Tor09] but any approximate

Riemann solver could be employed.

A reconstruction procedure is used to calculate ULi+1/2 and URi+1/2 at given time t, we denote

by Ri ≡ R(U, Si) the reconstruction operator in cell Ii which, given the discrete solution U and

a stencil Si of neighbor cells provides a function in Ii. This reconstructed function is further

evaluated at boundary points xi±1/2 to get ULi+1/2 = Ri(xi+1/2) and URi−1/2 = Ri(xi−1/2) at time

t.

2.2. Time integration

In order to improve the temporal accuracy for (3), the full discretization is obtained by

employing a fourth-order strong stability preserving Runge-Kutta (SSPRK) developed by Ruuth

and Speteri [Ruu, SR02, Got05]. Defining

L(U) = − 1

∆x

(
F̃i+1/2(t)− F̃i−1/2(t)

)
(6)

then the time integration is given by

U (1) = Un + 0.391752226571890∆tL(Un)

U (2) = 0.444370493651235Un + 0.555629506348765U (1) + 0.368410593050371∆tL(U (1))

U (3) = 0.620101851488403Un + 0.379898148511597U (2) + 0.251891774271694∆tL(U (2))

U (4) = 0.178079954393132Un + 0.821920045606868U (3) + 0.544974750228521∆tL(U (3))

Un+1 = 0.517231671970585U (2) + 0.096059710526147U (3) + 0.063692468666290∆tL(U (3))

+ 0.386708617503269U (4) + 0.226007483236906∆tL(U (4))

(7)
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In this work we design a Solution Property Preserving Reconstruction operator by introduc-

ing a blending of high/low order polynomials and hyperbolic tangent reconstructions.

In figure 1 we sketch the principal steps of such an FV scheme, that is the Reconstruction op-

erator, the flux computation and the Runge-Kutta iterative method. In this paper, when Euler

U
n

U
n+1,*

U
n+1

RECONSTRUCTION FLUX COMPUT.

RK STEP

Figure 1: Sketch of the finite volume scheme with the reconstruction operator, the flux computation and the

Runge-Kutta iterative method.

system of partial differential equations are considered, then the reconstructions are performed

on the characteristics variables called W1,W2,W3 linked to the three real eigenvalues λ1 = u−c,

λ2 = u and λ3 = u+ c, respectively.

3. Solution Property Preserving Reconstruction

During the simulation of a hyperbolic system of partial differential equations, one generally

observes large zones where the solution is regular, some discontinuities, usually of dimension

d − 1, possibly in interaction, and, few and small but extremely demanding regions for which

the correct physics is difficult to capture. These regions are the places where we have to resort

numerical simulation to get an idea of the true physical solution, usually too complex to be

derived as an anlytical solution. Ideally, the regular zones should be resolved with an unlimited

high accurate scheme, for instance, using a piece-wise high order polynomial reconstruction. The

discontinuous zones demand the use of a numerical method that can capture the discontinuity in

a sharp manner and at the same time is free from spurious oscillations like a TVD 2nd order FV

scheme. At last, the demanding regions of the flow can usually be dealt only with a genuinely

dissipative scheme, the 1st order Godunov scheme being one of such representatives.

All of those regions are intimately related to some properties of the numerical solution which

should be preserved by the numerical scheme:

• High accuracy in regular zones −→ Accuracy on smooth profile.
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ENO

R
SHARP

SELECTOR R
2

SELECTOR R
1

U
n

RECONSTRUCTION

R

Figure 2: Illustration of the Solution Property Preserving Reconstruction. RHO is high order reconstruction

operator, RENO is an essentially non-oscillatory one, RSHARP is a sharp one. First the selector chooses between

HO and ENO to get reconstruction number 1. Then the selector picks either reconstruction 1 or SHARP to get

reconstruction number 2.

• Free from spurious oscillation close to steep gradient −→ Non oscillatory behavior.

• Sharp capture of discontinuity −→ Accuracy on discontinuous profile.

• Robustness for extreme situations −→ Fail-safe behavior

Therefore given the data Un, the reconstruction operator should provide a reconstructed function

in each cell which does generate (after the flux evaluation and the solution update) a numerical

solution Un+1 fulfilling with the previously list of properties. We can see this problem of re-

construction as a chained cascade of different reconstruction operators. We call them RHO for

high order reconstruction, RENO for essentially non-oscillatory reconstruction, RSHARP for sharp

reconstruction, see figure 2. A key tool is the so-called ‘selector’. The selector chooses which

reconstruction is the most appropriate one in a given cell. For instance, if the solution is smooth,

the selector should selectRHO reconstruction, while, in the case of a step function/shock or steep

gradient, then RSHARP must be selected. Such a selector is a key point because it drives the

reconstructions and, as a consequence, the numerical dissipation of the numerical method, then

its accuracy. In this work the selector is acting given two candidate reconstructions in a cell,

and chooses only one. Because we consider three different reconstructions, then two selectors

are operating in cascade, see figure 2. Let us first present the reconstruction operators RHO,

RENO, RSHARP. Then the selector will be described.

8



3.1. RHO: P4 unlimited polynomial reconstruction

To achieve higher accuracy in space, piece-wise polynomial reconstructions were developed

within FV schemes. For instance, the piece-wise parabolic method (PPM) developed in [CW84,

Huy97, LLZ15] achieves the third-order accuracy. Similarly to PPM, the fifth-order accuracy

scheme based on piece-wise polynomial of degree four (P4), known as piece-wise quartic method

(PQM) was proposed for instance in [WA08]. In this work we adopt the PQM reconstruction

by selecting one central stencil made of five cells surrounding the current one, see figure 3, the

stencil Si is therefore constituted of cell indexes i + k with k = −2, . . . , 2. The reconstruction

values at the left and right cell boundary are denoted as UL,P4
i+1/2 and UR,P4

i−1/2 respectively and are

up-winded via the formula

UL,P4
i+1/2 =

1

60
(2Ui−2 − 13Ui−1 + 47Ui + 27Ui+1 − 3Ui+2)

UR,P4
i−1/2 =

1

60
(−3Ui−2 + 27Ui−1 + 47Ui − 13Ui+1 + 2Ui+2)

(8)

This reconstruction is high accurate (5th order on smooth enough profiles in 1D) and, unfortu-

I
i

i−1/2 i+1/2

i
S

i−1i−2 i+1 i+2

Figure 3: Stencil selection for the right/left interface i± 1/2

nately, oscillatory when steep gradients are encountered.

3.2. RLO: no reconstruction/P0 polynomial

When considering no reconstruction, i.e. P0 ‘reconstruction’, we set UL,P0
i+1/2 = UR,P0

i−1/2 = Ui.

Such values lead to a first order FV scheme. Although it is a low accurate scheme, it presents

nonetheless an extremely robust behavior. We are using this scheme as the last resort when

extreme situations are encountered, such as a lack of positivity for Euler equations, occurrence

of NaN, etc. see section 3.4. Obviously in this case the stencil Si is made by only cell Ii.
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3.3. RENO, RSHARP: THINC reconstruction with β ≤ 1.2 or β ≥ 1.6

THINC stands for Tangent Hyperbola for INterface Capturing method, which is originally

a volume of fluid (VOF) scheme employing the hyperbolic tangent function for spatial recon-

struction. Being a sigmoid, differentiable and monotone function, hyperbolic tangent function

mimics a step-like discontinuity. In the case of strictly increasing or decreasing set of values

(Ui−1, Ui, Ui+1) then the THINC function can be expressed as [XHK05, SIX16] in Ii as

qi(x) = Umin +
δUmax

2

[
1 + θ tanh

(
β

(
x− xi−1/2

xi+1/2 − xi−1/2
− x̃i

))]
, (9)

where Umin = min(Ui−1, Ui+1), δUmax = max(Ui−1, Ui+1) − Umin and θ = sgn(Ui+1 − Ui−1).

The parameter β is used for controlling the slope and the jump thickness, i.e. if β has a value

close to zero then the profile qi converges towards the average value U i = Ui−1+Ui+1

2 while, if β

is large, it tends to be a step-like function, see figure 4. In (9), the only remaining unknown,

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-1  0  1  2

q

X

β=1.0
β=1.5
β=2.0
β=3.0
β=4.0
β=5.0

β=10.0

Figure 4: Left panel: Examples of THINC reconstruction qi(x) as a function of β for q̄i = 0.4 case over unit-length

cell — Right panel: Imaginary parts of modified wave-number from THINC schemes with β = 1, 1.1, 1.2, and 1.3.

The results for some TVD schemes limited with minmod, van Leer or superbee slope limiter are also displayed.

(The picture focuses on small wave-numbers.)

x̃i, which presents the relative location of jump center in the cell, is calculated by solving the

constraint condition Ui = 1
∆x

∫
Ii
qi(x) dx. The reconstructed values at left and right ends of cell
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boundary are given by

ULi (xi+1/2) = qi(xi+1/2) = Umin +
δUmax

2

(
1 + θ

tanh(β) +A

1 +A tanh(β)

)
,

URi (xi−1/2) = qi(xi−1/2) = Umin +
δUmax

2
(1 + θA),

where A = 1
tanh(β)

B
cosh(β)−1 , B = eθβ(2C−1) and C =

Ui − Umin + ε

δUmax + ε
with ε = 10−20 to avoid divi-

sion by zero. We denote by UL,Thβi+1/2 = ULi (xi+1/2) and UR,Thβi−1/2 = URi (xi−1/2) the reconstruction

values for THINC’s candidate interpolation function with β parameter.

Remark 1. The THINC reconstruction stencil Si is constituted by the direct neighbors, i.e.

Ii−1 and Ii+1, which are only used for the computation of min and max bounds.

Remark 2.: In the case of Ui is out of the bound of [Umin, Umax], which means that Ui is a

local extremum and Ui = 1
∆x

∫
I qi(x)dx can not hold anymore, we simply set qi(x) = Ui for all

point x ∈ Ii. This could be improved even further by employing a parabolic reconstruction for

instance.

Remark 3.: Notice that an alternative form of (9) is

qi(x) = U i +
Umax − Umin

2
tanh

(
β

(
x− xi−1/2

xi+1/2 − xi−1/2
− x̃i

))
,

from which the convergence towards U i when β tends to 0 is evident.

RENO: THINC reconstruction with β ≤ 1.2. In order to avoid oscillatory behavior we employ

THINC reconstructions with small values of parameter β. More precisely we use β = 1.2 or

β = 1.1 which are small enough values corresponding, more or less, to the same dissipation

as a 2nd order TVD FV scheme with either the van Leer slope limiter or the Minmod one

respectively. The operator are respectively denoted by R2
ENO and R1

ENO. The FV schemes

associated to these operators RENO are therefore close to classical 2nd order TVD numerical

schemes. In other words, the FV schemes generated by RENO reconstructions are relatively low

accurate but (essentially) non-oscillatory .

In order to justify this statement, we apply the approximate dispersion relation (ADR) anal-

ysis described in [Pir06] to the THINC scheme with different wave numbers w. The numerical

dissipation is quantified through the imaginary parts of the modified wave number and the re-

sults are shown on the right-panel of figure 4. Beyond β ' 1.1 the numerical scheme presents an
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anti-dissipative behavior. In order to compare with other popularly TVD schemes, we also show

the numerical dissipation of the 2nd order FV scheme with Minmod, Van Leer and Superbee

limiters [Lee79]. THINC scheme with β = 1.1 has a much smaller numerical dissipation than the

TVD scheme employing the Minmod limiter. It presents a similar or slightly better performance

than the scheme with Van Leer limiter. THINC schemes with larger parameters β = 1.2 (or

1.3) have a similar spectral property compared to the TVD method with the Superbee limiter.

They both show a positive imaginary part at low wave number band leading to the well-known

staircase/squaring effect [Pir06] on the solution profile. For the purpose of designing an essen-

tially non-oscillatory scheme it is reasonable to choose THINC reconstructions with β = 1.2 and

possibly β = 1.1 for a more important dissipation.

RSHARP: THINC reconstruction with β ≥ 1.6. The last THINC reconstruction operator in this

paper uses β = 1.6 to capture sharper discontinuous profiles by employing the staircase/squaring

behavior. The associated scheme to the reconstruction operator RSHARP is therefore anti-

dissipative, leading to staircase shapes even for smooth profiles.

3.4. Robustness and physical admissibility via an a posteriori MOOD procedure

The last property corresponds to the ability of the numerical method to handle extreme phys-

ical and numerical situations, for instance the lack of positivity for density or energy for Euler

equations or the occurrence of Not-A-Number (NaN) value, etc. None of the previous recon-

struction procedures can ensure neither the positivity nor a fail-safe behavior. For this matter we

employ the so-called a posteriori Multi-dimensional Optimal Order Detection (MOOD) proce-

dure. In a MOOD algorithm a candidate solution at time tn+1 is tested against several goodness

criteria (physical or numerical). This detection procedure separates the cells into ‘valid’ ones

for which the numerical solution is accepted, and, ‘troubled’ ones. The troubled cells are lo-

cally recomputed with a first-order Godunov scheme, that is employing no reconstruction (i.e.

a P0 polynomial). This first-order finite volume method has an excessive numerical dissipation

and tends to smear out cell flow structures. However, it is known to be monotone, robust and

positivity-preserving. Therefore this scheme should be used only as a last resort. The detec-

tion criteria are split into a Physical Admissible Detection (PAD) and a Numerical Admissible

12



Detection (NAD)

Detect: PAD(Un+1,∗
i ), and NAD(Un+1,∗

i ), (10)

where ∗ denotes the fact that the solution is not the final one, but only a candidate solution.

A cell is marked as NAD troubled if, for instance, Un+1,∗
i = NaN, otherwise the cell is valid.

In the case of Euler equations, a cell is PAD troubled if Un+1,∗
i ≤ 0 with U = ρ, the density

or ε the specific internal energy. This corresponds to ensuring the physical admissibility of the

solution for Euler equations. In the case of a linear advection equation a cell is PAD troubled if

Un+1,∗
i < minj(U

0
j ) or Un+1,∗

i > maxj(U
0
j ).

If the cell Ii is troubled, then it is locally recomputed by the first-order Godunov scheme. For

safety reason, its direct neighbors may also be marked as troubled cells. In figure 5, we complete

the sketch of a the Finite Volume scheme with an a posteriori MOOD procedure. Remark that

only troubled cells are re-computed, which is expected to occur only in rare events. The direct

neighbors of a troubled cell (i.e. sharing a flux with Ii) must also be re-updated for conservation

purposes.

U
n

U
n+1,*

DETECT

U
n+1

valid cells

no reconstruction

RECONSTRUCTION FLUX COMPUT.

troubled cells

RK STEP

Figure 5: Sketch of the Finite Volume scheme with a posteriori MOOD procedure which detects troubled cells

(the ones where positivity is violated, or where NaN is occurring), then recomputes the solution by a first order

Godunov scheme (no reconstruction). The neighbor cells of a troubled cell must also be re-updated. Contrarily

valid cells are accepted without any modification.

3.5. Illustration of the behavior of the reconstructions R

In this section, we illustrate the behavior of the FV schemes with different reconstructions,

namely using RHO with the unlimited 5th order polynomial (P4), RENO2 with THINCβ=1.2,
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RENO1 with THINCβ=1.1, RSHARP with THINCβ=1.6 and RLO with piece-wise constant data

(P0). Recall that the FV scheme is 1D, using a 4th order SSPRK time discretization, a HLLC

flux function and one of the reconstruction operator listed above.

Smooth sine profile. Let us consider in 1D on Ω = [0, 1] the smooth function U(x) = sin(2πx)

subject to a scalar advection equation with constant velocity a = 1. The domain is meshed

with 20 uniform cells and 40 time iterations with ∆t = 0.025 are performed. Periodic boundary

conditions are considered. The exact solution consists of the same profile after one revolution.

In figure 6 (left panel), we present the numerical solution obtained by each of the FV scheme

using one of the 5 reconstruction operators. As expected for a smooth profile the reconstruc-

tion RHO (unlimited P4 FV scheme) provides the most accurate results. RENO2 and RENO1

produce monotone but diffuse results, with RENO2 results being more accurate. They match

approximately TVD-van Leer and TVD-superbee results. RSHARP results present the staircase

behavior and RLO ones are extremely diffused.

-1
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u

X

Initial=Exact

THINC beta=1.6

THINC beta=1.1

THINC beta=1.2

P0

unlimited P4
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THINC beta=1.6
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THINC beta=1.2

P0

unlimited P4

Figure 6: Advection of a sine profile (left panel) and a step profile (right panel) by the FV schemes using different

reconstruction operators R. Displays are the results of RHO, RLO, RENO2 , RENO1 and RSHARP reconstructions

against the exact solution.

Discontinuous step profile. Next we consider in 1D the step like function U(x) = 1/2(1 + (x−

1/4)/|x − 1/4|), discontinuous at x = 1/4. 10 time steps and 50 uniform cells are considered.

The exact solution corresponds to the initial one shifted by distance D = 0.25. In figure 6

(right panel), we present the results of the FV scheme with different reconstructions. As ex-
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pected for a discontinuous profile, the reconstruction RHO (unlimited P4 FV scheme) generates

spurious oscillations but with the discontinuity maintained over 3 − 4 cells. Accordingly RLO

results are monotone but truly diffusive (∼ 15 cells). Contrarily the reconstructions RENO1,2

produce monotone but a somewhat diffuse discontinuity (5− 6 cells). RSHARP results presents

a sharper discontinuity spread over the same number of cells than the one obtained with RHO

reconstruction.

The five reconstructions listed in table 1 are appropriately behaving for different situations;

on regular solution, on discontinuous profile, to suppress spurious oscillations and to handle

extreme situations. As a consequence it is important to correctly choose which reconstruction

is the most appropriate one at a given time and location. This is the goal of the ‘selector’

introduced in section 3 which is designed in the following section.

Acronym Reconstruction Parameter Solution property

HO Pk unlimited polynomial k = 4 smooth profiles

ENO2 THINC β = 1.2 (damp) spurious oscillations

ENO1 THINC β = 1.1 (kill) spurious oscillations

SHARP THINC β = 1.6 discontinuities

LO P0, no reconstruction — positivity issue, extreme phenomena

Table 1: Table of reconstructions used in this work and their associated target property.

3.6. Local selection of reconstruction operator: a 3-stage BVD algorithm

In this work, the selector relies on a 3-stage Boundary Variation Diminishing (BVD) algo-

rithm [SIX16, DSX19, DSX18]. The total boundary variation (TBV) in a 1D cell Ii is defined

by the sum of the jumps generated by the reconstructed values (using reconstruction operator

R) at the cell interfaces:

TBVRi (U) =
∣∣∣UL,Ri−1/2 − U

R,R
i−1/2

∣∣∣+
∣∣∣UL,Ri+1/2 − U

R,R
i+1/2

∣∣∣ ≥ 0. (11)

Each term represents the amount of dissipation introduced in the numerical flux in (5) for one

edge of cell Ii, therefore TBVi scales like the numerical dissipation in the cell. When two
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reconstructions R1 and R2 of the same data U are available then the comparison of TBVR1
i and

TBVR2
i allows to choose the least dissipative one in cell Ii. BVD algorithm exploits this fact.

More precisely, in this work, the following 3-stage procedure is employed in spirit of [DSX19,

DSX18]. Let us call the actual reconstruction used in cell i by ri where ri can be HO, ENO1,

ENO2, SHARP or LO.

Stage 1. Selection between RHO and RENO2 → RST1

For all cell i, if TBVRHO
i > TBV

RENO2
i then (ri−1, ri, ri+1) = ENO2, else ri = HO.

RST1 = {ri, i = 1, . . . , N}

Stage 2. Selection between RST1 and RENO1 → RST2

For all cell i, if TBV
RST1
i > TBV

RENO1
i then (ri−1, ri, ri+1) = ENO1, else ri = ST1.

RST2 = {ri, i = 1, . . . , N}

Stage 3. Selection between RST2 and RSHARP → RST3

For all cell i, if TBV
RST2
i > TBVRSHARP

i then ri = SHARP, else ri = ST2.

RST3 = {ri, i = 1, . . . , N}

In the case of a scalar equation the selector (11) acts on the only variable u, while in the case

of systems of three variables, say W1, W2, W3 being the characteristic variables corresponding

to u− c, u and u+ c, respectively, we may have several options, for instance:

• W1,W2,W3 may be considered as variables independent from each other, and, consequently

each of them goes through the selector (11) and the selection of reconstruction. Numerical

tests have shown that this option is too diffusive and the solution may even get noisy.

• W1,W2,W3 are considered as variables connected each other. Extensive numerical tests

have shown that an acceptable strategy then consists in

Stage 1: the selector (11) is computed for W1,W2 and W3, their neighbor cells will recon-

structed based on the selection of W3 use as RST1

Stage 2: the selector (11) is computed for W1,W2 and W3, their neighbor cells will recon-

structed based on the selection of W1 use as RST2

Stage 3: each variable is independently sharpened use as RST3 .
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Remark 1. In stage 1, if the THINC reconstruction is selected by W3 for cell Ii then its

two direct neighbors Ii−1, Ii+1 are reconstructed with the same THINC function and also for

the neighbor cells of other variables W1 and W2.

Remark 2. In stage 2, similar to stage 1 if the THINC reconstruction is selected by W1 for

cell Ii then its two direct neighbors Ii−1, Ii+1 are reconstructed with the same THINC function

and also for the neighbor cells of other variables W2 and W3. Indeed this cell has been selected

due to a smaller TBVi which is computed with genuinely THINC fluxes on both sides and this

implies that the neighbor cells use the same reconstruction operator as Ii. The neighbor cells

Ii−1 and Ii+1 may be mixed cells with one flux calculated by THINC reconstruction on one side

and a polynomial calculated flux on the other.

The role of W3 in stage 1 and W1 in stage 2 could be reversed without much changes in the

results. The reason why stage 3 is treated differently relies on the fact that if sharpening should

be conducted (because the TBV selector says so) then it must be constructed in order to steepen

any interface present for any variable. This ends the description of the 3-stage BVD algorithm.

Remark 3. The oscillation-free solution is obtained after stage 1 and stage 2 occurring.

The numerical dissipation at discontinuous/steep gradients is reduced after stage 3 if needed. It

means that the desired numerical solution properties are attained respectively at different stages

by this multi-stage BVD approach.

Remark 4. In the multi-stage of reconstruction operators HO → ENO → SHARP → LO

other TVD numerical methods could be used in replacement of THINC function with β = 1.1

or β = 1.2 (ENO). On the contrary the unlimited high order polynomial reconstruction (HO)

as well as THINC with β = 1.6 used to sharpen discontinuities (SHARP) are mandatory. The

first one ensures the highest possible accuracy (because no dissipative mechanism is employed),

while the second one allows to maintain extremely sharp discontinuities. Up to our knowledge,

we are not aware of better reconstruction operators for these situations. For the same reason,

the low order (LO) scheme must be carefully chosen to ensure positivity and valid representation

of numbers. In this work, the first order accurate Godunov scheme is employed as being one of

the simplest and more robust positivity-preserving schemes.

Remark 5. The use of characteristics variables is not mandatory and we have experimented

17



the BVD algorithm using the primitive variables as well. Similar to the results shown in [SIX16],

using primitive variables result in somewhat more oscillatory solutions. If characteristics vari-

ables are not available, for instance when a complex tabulated equation of state is employed,

then the BVD algorithm must be used with primitive variables.

4. Extension to 2D

The extension of the 2D structured grid is carried on by dimensional splitting in a straight-

forward manner. Our goal with this extension is to maintain the simplicity and efficiency of

the method. Recall that our goal is to design a genuinely efficient and accurate limiter-free

scheme, to sharply capture shocks and steep gradients, and at the same time to deal robustly

with near-vacuum states. For this reason, some approximations are produced from the classical

high-accurate polynomial-based FV scheme. However, it will be evident in the numerical tests,

and those approximations do not deteriorate the efficiency of our non-linear numerical method.

Let us directly focus on some essential points for this 2D extension.

4.1. Two dimensional finite volume framework

The computational domain is assumed to be a rectangular box Ω = [xL, xR]×[yL, yR] divided

into rectangular uniform cells Ii,j = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]. A point vector is denoted

by a capital letter X = (x, y)t. The cell center is denoted by Xi,j = (xi, yj)
t and the cell sizes

are ∆x and ∆y with zk =
zk−1/2+zk+1/2

2 , and ∆z = zk+1/2− zk−1/2 where z is standing for x and

y, and, k for i and j respectively. We write the 2D equation of hyperbolic conservation law into

∂U

∂t
+
∂F (U)

∂x
+
∂G(U)

∂y
= 0, (12)

where F (U) and G(U) stand for the flux functions in x and y directions respectively. The

numerical solution of U(X, t) over a mesh cell Ii,j at time t is approximated by a piecewise

constant value

Ui,j(t) =
1

∆x∆y

∫
Ii,j

U(X, t) dx dy where i, j = 1, 2, . . . , N. (13)
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Let us denote by U(t) = (Ui,j(t))i,j=1,2,...,N the vector of discrete FV data in the mesh. The

semi-discretization of (12) over cell Ii,j after the application of Green theorem yields

dUi,j(t)

dt
+

1

∆x∆y

∫
∂Ii,j

F(U(t)) · ni,j ds = 0, (14)

where ni,j is the outward pointing unit normal of the cell boundary ∂Ii,j , and F(U) = (F (U(t)), G(U(t))).

Let us call the four edges forming ∂Ii,j by ei±1/2,j and ei,j±1/2 and rewrite the previous equation

into
dUi,j(t)

dt
+

1

∆x
(Fi+1/2,j(t)− Fi−1/2,j(t)) +

1

∆y
(Gi,j+1/2(t)−Gi,j−1/2(t)) = 0, (15)

which is then updated in time using the aforementioned Runge-Kutta scheme. The fluxes

Fi±1/2,j(t) and Gi,j±1/2(t) are computed likewise their 1D counterparts. For instance to compute

Fi+1/2,j(t) along the vertical edge ei+1/2,j , the left and right states, ULi+1/2,j and URi+1/2,j , are first

computed by the use of left/right 1D reconstructions in cells Ii,j and Ii+1,j . These reconstructions

are both evaluated at the center point of edge denoted by xi+1/2,j at instant t for each time level

as well as Runge-Kutta sub-step. Then, a Riemann solver is further employed to get the final

value of the flux

Fi+1/2,j(t) = FRiemann
i+1/2,j

(
ULi+1/2,j , U

R
i+1/2,j , t

)
. (16)

The same procedure is employed in y-direction to compute the fluxes Gi,j+1/2(t). In this work a

HLLC Riemann solver is used [Tor09]. Following the 1D section, a fourth-order accurate SSPRK

scheme [Ruu, SR02, Got05] is employed for a high accurate time discretization.

4.2. Reconstruction operators

As previously mentioned the reconstructions are performed direction by direction. In other

words, the same P4 reconstructions as described in (8) are first made for data aligned in x

direction: Ui−2,j , Ui−1,j , Ui,j , Ui+1,j , Ui+2,j , to get the edge centered values ULi+1/2,j and URi−1/2,j

for cell Ii,j . Then, the 1D reconstructions in y direction consider y-aligned data Ui,j−2, Ui,j−1,

Ui,j , Ui,j+1, Ui,j+2 to get values ULi,j+1/2 and URi,j−1/2 in cell Ii,j .

The THINC reconstructions are exactly the same as in 1D, their stencils are thus restricted

to two aligned neighbor cells only. The a posteriori MOOD loop operates also alike. The local

selection of reconstruction operator follows the same algorithm depicted in section 3.6 and the
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Figure 7: Stencil in 2D.

selection of reconstruction operator is independent in x and y directions.. Consequently we do

not repeat those descriptions.

4.3. Discussion on accuracy and efficiency

The 1D formulation and time discretization lead to a 5th order of accuracy for smooth solu-

tion of linear advection equation as in [DSX18]. However, it is noted that our scheme is formally

only second-order accurate for 1D Euler equations and in 2D due to variable dependent selection

of BVD algorithm and a simple multi-dimensional implementation. Indeed the flux integration

along the edges is calculated using only one integration point at the edge center. This choice

has been made for three reasons. First, in order to maintain the scheme as efficient as possi-

ble, we have not multiplied the number of function evaluations (P4, THINC) by using Gauss

quadrature points per edge, which would led to a formal 5th order accuracy for the integration,

matching the target order of accuracy of the scheme. Unfortunately this would also led to a cost

of 8 Riemann solvers, one for each of the 8 integration points, and, consequently, 16 function
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evaluations. This is usually one of the costly part of a FV scheme. Contrarily, in our scheme,

the number of function evaluations is reduced to 8 for 4 Riemann solvers.

Second, in our work the P4 reconstructions are not multi-dimensional ones. Hence the expected

5th order of accuracy is somewhat spoiled by the dimensional splitting during the reconstruction

step. If one decides to reconstruct a true 2D P4 polynomial, then about 25 neighbor cell values

must be used for 15 polynomial coefficients, leading to a 15× 25 linear system to invert per cell.

Third, our scheme is intrinsically non-linear due to the presence of THINC reconstructions.

Therefore the formal notion of ‘order of accuracy on smooth flow’ is more complicated to handle

than for linear schemes. Only the accuracy at given mesh remains a valid and comprehensive

notion, and, our 2D numerical results show that the scheme is accurate and efficient with this

choice of one only integration point per edge.

Recall that the goal in this work is not to build a genuine 5th order accurate numerical

method which would certainly demand true 2D polynomial reconstructions and accurate enough

quadrature rule. On the contrary, this work is intended to build a genuine simple, efficient, robust

and accurate enough scheme emphasizing that an appropriate mixing of linear and non-linear

reconstruction operators may replace classical limiting techniques (slope/flux limiters, artificial

viscosity, WENO, etc.). The following numerical section is intended to provide some numerical

evidences.
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5. Numerical Results

In this section, we validate the numerical scheme for some benchmark tests for a linear

advection equation and the Euler equations involving strong interacting discontinuities. In

addition, we also show some typical test cases involving near vacuum states to test the positivity-

preserving property of the scheme. The numerical in-house FV code is built on the following

key tools: the reconstruction procedure is conducted in terms of characteristic decomposition,

the HLLC Riemann solver [Tor09] is used for flux computation, a SPPRK of fourth order in

time discretisation is employed, the BVD algorithm for the space reconstruction is used, and,

at last a a posteriori MOOD loop is implemented for the positivity-preservation. In order to

demonstrate the performance of the present scheme, some numerical results are compared to

5th order WENO-Z scheme with the same reconstruction procedure and time discretization.

The WENOZ-Z scheme generally presents good accuracy on smooth flows and a non-oscillatory

behavior near discontinuity, see [FHA16, ABC16]. The numerical results produced by the current

scheme in this work will be compared to this reference scheme. The CFL number is set to 0.4.

5.1. One-dimensional Linear Advection Equation

The scalar advection equation consists in considering U as a scalar field, and F (U) = aU

with a the convective velocity. We set a = 1 in this work. As such, any profile U(x, t = 0)

is convected so that the exact solution at t ≥ 0 is given by U(x, t) = U(x − a t, 0). For this

equation the physical admissibility (PAD criteria) is set to mini(U
0
i ) ≤ Un+1

i ≤ maxi(U
0
i ).

In order to evaluate if the present scheme can resolve different smooth profiles and dis-

continuity of different kinds, one simulates the test which was proposed in [JS96]. The initial

condition on the computation domain [−1, 1] is defined as

U(x, 0) =



1

6
(G(x, β, z − δ) +G(x, β, z + δ) + 4G(x, β, z)) , −0.8 ≤ x ≤ −0.6,

1, −0.4 ≤ x ≤ −0.2,

1− |10(x− 0.1)|, 0.0 ≤ x ≤ 0.2,

1

6
(F (x, α, a− δ) +G(x, α, a+ δ) + 4G(x, α, z)) 0.4 ≤ x ≤ 0.6,

0, otherwise.

(17)
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The functions F and G are defined by

G(x, β, z) = exp
(
−β(x− z)2

)
, F (x, α, a) =

√
max(1− α2(x− a)2, 0), (18)

and the coefficients are given by

a = 0.5, z = −0.7, δ = 0.005, α = 10, β = log 2/36(δ2). (19)

The numerical results of the test at final time t = 2.0 and for 200 uniform grid cells are shown

in figure 8. This test is used to evaluate the occurrence of spurious numerical oscillations, the

preservation of smooth and discontinuous extremes and smooth profiles. Compared to WENO-Z

scheme [ABC16]1 (figure 8-(left)), the proposed scheme (figure 8-(right)) can better resolve the

sharp discontinuous profiles, the step-like profile. It also effectively eliminates the numerical

oscillations generated by the Gibbs phenomenon.

Figure 8: Numerical results for the advection of complex waves with 200 grid cells after one period (t = 2.0)

computed by WENO-Z scheme and the proposed one.

5.2. One-dimensional Euler equations

The Euler equations of compressible gas dynamics consist of conservation laws of mass,

momentum and total energy with U = (ρ, ρu, ρE)T and F (U) = [ρu, ρu2 + p, (ρE + p)u]T and

1Recall that WENO-Z has been designed in particular to avoid loss of accuracy at critical points. Hence, for

this test it can be considered as a truly appropriate and adapted numerical method.
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ρ, u, p are the density, velocity and pressure, respectively. E is the total energy expressed as

E = e+
1

2
u2 and e is the specific internal energy. For ideal gas, the equation of state (EOS) is

defined as p = (γ − 1)ρe where γ is the ratio of specific heats. We set γ = 1.4 for the numerical

tests if not otherwise mentioned. For the Euler equations with an ideal EOS, a candidate solution

is physically admissible if ρni > 0 and pni > 0 and these are the PAD criterion checked by the

MOOD loop.

5.2.1. Problems involving simple waves

Double rarefaction or 123 problem. The 123 problem is one of benchmark tests presenting near

vacuum state as it involves two rarefaction fans moving in opposite direction, therefore emptying

a central zone. The initial condition on computational domain Ω = [−1, 1] is given in Table

2 [LR97] 400 cells are considered and the final time is set to tfinal = 0.6. Outflow boundary

conditions are implemented. The numerical results of the current scheme are compared to the

exact solution (straight line) and represented in figure 9 with symbols. The numerical solution is

in good agreement with the exact solution and the quality is comparable to positivity-preserving

fifth-order finite difference WENO scheme [ZS12] and positivity-preserving DG method [ZS10].

The spurious peak in the internal energy profile is a classical flaw of many numerical methods

when dealing with near vacuum state [LW03].

Figure 9: Numerical results for Euler equations – 123 problem – 400 cells – From left to right: density, velocity

and internal energy.

Sedov blast-waves. We also evaluate the scheme on the Sedov blast-wave involving low density

and low pressure [Sed59]. The initial condition is such that the density is 1, the fluid is at rest

and the total energy is 10−12 everywhere except for the center cell where E0
∆x with E0 = 3.2×106
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emulating a δ-function at the origin. The exact solution at t > 0 is constituted by two shock

waves emanating from the origin and traveling in opposite directions and an exponentially

rarefaction after the shocks leading to near-vacuum states. The computational domain is set

to Ω = [−2, 2] and outflow boundary conditions are considered. The mesh size is ∆x = 1
200

and final time is tfinal = 0.001. The computational results in figure 10 show that the proposed

scheme provides sharp solutions for the shocks and maintains an admissible solution throughout

the simulation. Notice that the original high-order reconstruction schemes like PQM [WA08]

or WENO sometimes fail due to the generation of non-admissible numerical states, which leads

to code termination. In this work such a situation is avoided by the a posteriori MOOD loop

which locally uses a first-order but extremely robust scheme to cure such situations when they

are observed by the detection criteria.

Figure 10: Numerical results for Euler equations – Sedov problem – 800 cells – From left to right: density, velocity

and pressure.

Sod and Lax shock tube problems. We simulate the 1D planar Sod shock tube problem and the

classical Lax shock tube problem to assess the ability of the schemes to capture simple waves.

The initial conditions for density, velocity and pressure are listed in Table 2. An exact solution

for both problems can be derived from the one-dimensional Riemann problem, see [Tor09]. The

computational domain Ω = [0, 1] is covered by 200 cells and Dirichlet boundary conditions are

imposed on both ends of the domain. The numerical solution depicted in figure 11 is is good

agreement with the exact solutions. The shock waves are sharply captured essentially on one or

two cells. More notably is the ability of the scheme to capture the contact discontinuity over

two cells only which is a rare ability for Eulerian schemes, even for high accurate ones.
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Problems ρ0
L u0

L p0
L ρ0

R u0
R p0

R tfinal Ω xd

123 1.0 -1.0 0.2 1.0 1.0 0.2 0.6 [-2,2] 0

Sod 1.0 0.0 1.0 0.125 0.0 0.1 0.2 [0,1] 0.5

Lax 0.445 0.698 3.528 0.5 0.0 0.571 0.14 [0,1] 0.5

Le Blanc 1 0.0 2
3 × 10−1 10−3 0.0 2

3 × 10−10 6 [0,9] 3

Table 2: Initial left and right states for the density ρ, velocity u and the pressure p for the shock tube problems.

The final simulation times tfinal, domain size and the position of the initial discontinuity xd are also given.

Le Blanc shock tube problem. In this test, we consider the so-called Le Blanc shock tube problem

with specific heat ratio γ = 5/3, with the initial condition given in Table 2. The domain

is Ω = [0, 9] and the discontinuity is initially at location xd = 3. This test is an extreme

version of a shock tube for which the jump in density is 103 while the jump in pressure is 109

leading to violent waves, which, however are still simple waves that can be exactly computed

[Tor09]. The numerical results at final time tfinal = 6 are presented in figure 12 when 800 cells

are used. The computed density and internal energy are plotted using a log scale to enhance

the structure of the solution while we use a linear scale for the velocity. We observe that

the present scheme provides a high resolution solution with sharp discontinuities without any

lack of positivity. The shock wave is not at the exact location due to the fact that, for this

extreme shock tube, 800 cells are not sufficient to reach the mesh convergence. Therefore, even

if the numerical method is conservative and converges towards a weak solution of the Euler

equations, for a coarse resolution, any numerical solution may present such misbehavior due to

inaccuracy. This is classically observed for other high resolution schemes in the literature, see

[LDD14, LS05, LCS09, RSS13] for a non-exhaustive variety of numerical results on this problem.
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Figure 11: Numerical results for Euler equations – Sod (top) and Lax (bottom) shock tube problems – 200 cells

– From left to right: density, velocity and pressure.

Figure 12: Numerical results for Euler equations – Le Blanc problem – 800 cells – From left to right: density,

velocity and specific internal energy.

5.2.2. Problems involving interacting waves

Collela-Woodward blast-wave. This test was first introduced by Collela and Woodward [CW84]

and it involves interactions of simple waves. The initial condition is given by

(ρ0, u0, p0) =


(1, 0, 1000) if 0 < x < 0.1,

(1, 0, 0.01) if 0.1 < x < 0.9,

(1, 0, 100) otherwise

(20)

and the final time is set to tfinal = 0.38. Reflective boundary conditions are set on the left and

right ends of the computational domain. We compute the numerical results with 400 mesh cells.
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In figure 13 we observe that the proposed scheme can capture sharply the shock waves and,

more notably, the contact discontinuities on very few cells (1 or 2). Recall that contrarily to

classical Eulerian FV schemes based on polynomial reconstructions (with embedded limiter), our

approach considers non-polynomial reconstructions (THINC) in conjunction with high accurate

polynomial ones. This combination shows its importance on such test case on the left-most

contact discontinuity. Obviously our approach is not exempt from drawbacks for instance the

smooth region between x = 0 and x = 0.5 seems to reveal some oscillations in the velocity

field. However, our numerical experiments show that using a smaller β in the first two stages

effectively reduces such oscillations in velocity field.

Figure 13: Numerical results for Euler equations – Collela-Woodward blast-wave problem – 400 cells – From left

to right: density, velocity and pressure.

Shu-Osher oscillatory problem. This test problem [SO89, SIX16] is a particular shock tube where

the downstream flow has a sinusoidal density fluctuation ρ = 1−ε sin(λx−A) with a wave length

of λ = 50, an amplitude of ε = 0.2 and the constant value A = 25. A Mach 3 shock front is

initially located at x = 0.1 on domain Ω = [0, 1]. The left and the right states are given by

ρ0
L = 3.857143, u0

L = 2.629369, p0
L = 10.33333 and ρ0

R = 1 + 0.2 sin(50x − 25), u0
R = 0 and

p0
R = 1. The final time is tfinal = 0.18. This problem involves small scale oscillating structures

after the shock has interacted with the initial sine wave. We present the results for 300, 600

and 1000 uniform cells against a reference solution computed with WENO-Z scheme with 1000

cells. In figure 14 are presented the density variable (top panels) and a zoom on the oscillatory

section (bottom panels) for the three mesh resolutions. We can observe that, as expected when

the number of cells increases then the scheme captures more accurately the physical oscillations.
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While our scheme does not outperform WENO-Z scheme on this test case, its performance

is acceptable for 1000 cells. Notice that the shock wave on the left-most part of the domain

presents a tiny oscillation. Also our approach can not produce accurate results for 200 cells, the

selector being less performing on coarse meshes.

Figure 14: Numerical results for Euler equations – Shu-Osher problem – Density for 300, 600, 1000 cells from left

to right – Top panels: full view – Bottom panels: zoom.

5.2.3. Diagnostics on reconstruction selection

In this section we provide some figures related to the selectors. In figure 15, for the Collela-

Woodward blast-wave we color the cells according to the type of reconstruction selected (red

for HO, blue for SHARP and green for ENO1 or ENO2) for each of the Nt = 1605 time-steps

needed to complete the simulation in y-direction . The three characteristic variables W1,W2,W3

are displayed on left, middle and right panels respectively. From this figure it is interesting to

notice that the main waves and their interactions are somewhat captured. Moreover a majority

of cells are dealt with the HO reconstruction (red cells), a relative important number of cells

are sharpened (blue cells), and, only few need some numerical dissipation (green cells). In

table 3 we present the percentage of cells dealt with the HO, SHARP, or ENO reconstructions
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Test Nt, Nc

W1 W2 W3

SH HO ENO SH HO ENO SH HO ENO

Sod 263, 200 18.9% 43.1% 38.0% 35.8% 42.1% 22.0% 36.2% 43.8% 20.0%

Blast-w 1605, 400 15.1% 70.7% 14.3% 25.8% 64.0% 10.2% 11.0% 74.7% 14.4%

Le Blanc 1488, 800 2.2% 75.4% 22.4% 28.4% 63.4% 8.2% 8.5% 75.6% 15.8%

Table 3: Percentage of cells dealt with the SHARP,HO,ENO reconstructions for the three characteristic variables

W1,W2,W3 and three 1D test cases.

for Sod, Collela-Woodward and Le Blanc test cases. More precisely one sums up for all time

steps the number of cells using the same reconstruction and take the percentage with respect

to the total number Nt × Nc. As expected the percentages in table 3 do not allow to extract

a general behavior because each test case presents different flow characteristics which demand

the adaptation of the scheme and its reconstructions. However it seems that the optimally

accurate HO reconstruction is chosen for 40% up to 75% of cells. In other words those cells are

updated with the 5th order of accuracy without any dissipation mechanism. The dissipative

ENO reconstructions are chosen for 10% up to 38% of cells to avoid spurious oscillations. At

last the sharp reconstruction is selected for 2% up to 36% of cells.
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Figure 15: Numerical results for Sod (top panels), Collela-Woodward blast-wave (middle panels) and Le Blanc

(bottom panels) problems – Cell number in x axis, time iteration in y axis – Each cell (x-direction) is colored

according to the selector as a function of time-steps, red for HO, blue for SHARP and green for ENO1 or ENO2

reconstruction – From left to right: characteristic variables W1,W2,W3.
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5.3. Two-dimensional Euler equations

5.3.1. Riemann problems

In order to verify that the multi-stage BVD-MOOD scheme is accurate, robust, and produces

non-oscillatory solutions, we test a set of two-dimensional Riemann problems which have been

introduced and widely studied in [SR93, KT02]. Recently, Balsara et al [Bal10, Bal12, BDA14],

have employed the 2D Riemann problems to build a genuinely multi-dimensional HLL type

Riemann Solvers. The computational domain is Ω = [−0.5, 0.5] × [−0.5, 0.5] and the initial

conditions are given by

u(x, y, t = 0) =



u1 if x > 0 ∧ y > 0,

u2 if x ≤ 0 ∧ y > 0,

u3 if x ≤ 0 ∧ y ≤ 0,

u4 if x > 0 ∧ y ≤ 0.

(21)

# ρ u v p ρ u v p
tfinal

x ≤ 0 x > 0

R
P
1 y > 0 0.5323 1.206 0.0 0.3 1.5 0.0 0.0 1.5

0.3
y ≤ 0 0.138 1.206 1.206 0.029 0.5323 0.0 1.206 0.3

R
P
2 y > 0 0.5065 0.8939 0.0 0.35 1.1 0.0 0.0 1.1

0.25
y ≤ 0 1.1 0.8939 0.8939 1.1 0.5065 0.0 0.8939 0.35

R
P
3 y > 0 2.0 0.75 0.5 1.0 1.0 0.75 -0.5 1.0

0.30
y ≤ 0 1.0 -0.75 0.5 1.0 3.0 -0.75 -0.5 1.0

R
P
4 y > 0 1.0 -0.6259 0.1 1.0 0.5197 0.1 0.1 0.4

0.25
y ≤ 0 0.8 0.1 0.1 1.0 1.0 0.1 -0.6259 1.0

R
P
5 y > 0 1.0 0.7276 0.0 1.0 0.5313 0.0 0.0 0.4

0.25
y ≤ 0 0.8 0.0 0.0 1.0 1.0 0.0 0.7276 1.0

Table 4: Initial conditions for the 2D Riemann problems numbered from 1 to 5. These further correspond to

Configurations 3, 4, 6, 8 and 12 in [KT02]
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Figure 16: Numerical results for Riemann problems computed by WENO-Z and the present scheme with 400×400

mesh cells – 30 contours from min and max values for density – Left: WENO-Z scheme; Right: Present scheme.

The initial conditions and the final solution time, tfinal, for the five configurations tested

in this article are listed in Table 4. For more information about the other configurations the
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Figure 17: Numerical results for Riemann problems computed by WENO-Z and the present scheme with 400×400

mesh cells – 30 contours from min and max values for density – Left: WENO-Z scheme; Right: Present scheme.

reader is referred to [SR93, KT02]. For the computation we have employed a uniform grid of

400×400 mesh cells for both schemes (WENO-Z and multi-stage BVD-MOOD). The numerical

solutions are illustrated for the first three and the last two configurations in figure 16 and 17,

respectively. In the left panels and the right panels we respectively show the density profile at

the final time computed by WENO-Z and present scheme, with 30 equidistant iso-lines between

the minimum and maximum values. We observe that the computational results of two schemes

equivalently produce numerical solutions for the main flow structures of all 2D Riemann problems

with this mesh. Therefore, the multi-stage BVD-MOOD scheme performs well in capturing the

discontinuities without spurious oscillations and also without excessive numerical dissipation

for the smooth part of the flow structures. Furthermore, we also show the results of RP3 for
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Figure 18: Numerical results for Riemann problems computed by WENO-Z and the present scheme with 600×600

mesh cells – 40 contours from min and max values for density – Left: WENO-Z scheme; Right: Present scheme,

showing the Kelvin-Helmholtz instability on the shear waves.

both schemes with 600 × 600 mesh cells in figure 18. We can observe that the present scheme

has better performance than WENO-Z scheme by showing the birth of the Kelvin-Helmholtz

instability on the shear waves as an evidence of a lower dissipation.
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5.3.2. Double Mach reflection

Next we have run the 2D double Mach reflection problem of a strong shock that was proposed

by Woodward and Colella [WC84]. This test problem involves a Mach 10 shock in a perfect gas

with γ = 1.4 which hits a 30◦ ramp with the x-axis. Using Rankine-Hugoniot conditions we can

deduce the initial conditions (t = 0) in front of and after the shock wave

(ρ, u, v, p)(x, y, 0) =

 (8.0, 8.25 cos(π/6),−8.25 sin(π/6), 116.5), if x < x0 = 1
6 + y√

3
,

(1.4, 0.0, 0.0, 1.0), if x ≥ x0 = 1
6 + y√

3
,

on the domain Ω = [0, 3.2] × [0, 1]. Reflecting wall boundary conditions are prescribed on

the bottom and inflow and outflow boundary conditions on the left side and the right side,

respectively. The exact solution of an isolated moving oblique shock wave with Mach number

Ms = 10 is imposed on the upper boundary. The location of shock-wave at any time t on top

boundary y = 1 is s(t) = x0 + 1+20t√
3

. The boundary conditions on the top boundary are therefore

given by

(ρ, u, v, p)(x, y = 1, t) =

 (8.0, 8.25 cos(π/6),−8.25 sin(π/6), 116.5), if 0 ≤ x < s(t),

(1.4, 0.0, 0.0, 1.0), if s(t) ≤ x ≤ 4

and the final time is set to tfinal = 0.2. The mesh is made of Nx×Ny cells with Nx = 320, 640, 960

and Ny = 100, 200, 300, respectively. Although there exists no exact solution for this problem,

it has become a classical bench-marking test in the literature because it involves shock waves

and smooth recirculating flow zones. In figure 19 we present the density variable in color with

30 contour iso-lines spanning the interval [1.4, 22.5] computed by three different grid resolutions,

∆x = ∆y =
1

100
for the top panels, ∆x = ∆y =

1

200
for the middle panels and ∆x = ∆y =

1

300
for the bottom panels of figure 19. The zoomed-in part of the numerical results are presented

in figure 20. The results obtained by the present scheme and those simulated by high order

schemes in [FHA16] (page 352 and figure 17) are in good agreement. Moreover, the present

scheme has properly detected the shock waves without spurious oscillations and the vortexes

along the slip line are more visible as shown by the fine grid computation.
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Figure 19: Numerical results for the 2D Euler equations – Double Mach reflection problem at time t = 0.2

simulated by the present scheme with different mesh numbers – Density variable in colour and with 30 contour

iso-lines spanning the interval [1.4, 22.5] – Top panels: 320× 100 mesh cells; Middle panels: 640× 200 mesh cells;

Bottom panels: 960× 300 mesh cells.
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Figure 20: Zooms in the numerical solutions displayed in figure 19 – Double Mach reflection problem at time

t = 0.2 simulated by the present scheme with different mesh numbers – Density variable in colour and with 30

contour iso-lines spanning the interval [1.4, 22.5] – From left to right: 320× 100 mesh cells; 640× 200 mesh cells;

960× 300 mesh cells.
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5.3.3. Shock-vortex interaction

Another classical test in two space dimensions is the interaction of a vortex with a steady

shock wave. Originally proposed by [RCD03], this test involves complex flow patterns with

smooth features and discontinuous waves. The initial conditions, defined over the computational

domain Ω = [0, 1]× [0, 1], are given by a stationary normal shock wave placed at x = 0.5 and by

a vortex, which is centered at (xc, yc) = (0.25, 0.5). The left and right states separated by the

shock wave are given by

(ρ, u, v, p)(x, y, 0) =


(1,
√
γ, 0, 1), if x < 1

2 ,(
γ−1+1.3(γ+1)
γ+1+1.3(γ−1) ,

√
γ −
√

2

(
0.3√

γ−1+1.3(γ+1)

)
, 0, 1.3

)
, if x ≥ 1

2 ,

The left state is supplemented by an isentropic vortex of the form

(δu, δv) =

(
ε
y − yc
rc

eα(1−r2),−εx− xc
rc

eα(1−r2)

)
, δT = −ε2γ − 1

4αγ
e2α(1−r2),

with r2 =
‖X −Xc‖2

r2
c

. The numerical simulations are performed over a uniformly mesh using

200 grid points per direction. Transmitive boundary conditions are imposed on the boundary

and the final time is taken to be tfinal = 0.5. The remaining parameters are set to ε = 0.3,

α = 0.204 and rc = 0.05. In figure 21 we present the 30 contours of density profile spanning

[0.998296, 1.30234] at final time for the WENO-Z (left panel) and [0.997274, 1.29747] for the

present scheme (right panel). We observe that both of the schemes have captured appropriately

the shock waves without spurious oscillations as well as the smooth solution region. The CPU

times observed for both schemes are 1953 seconds for WENO and 6% more expensive for the

present scheme (2070 seconds) both ran on DEV-C++ Integrated Development Environment.

Hence, the present scheme can reproduce the quality of WENO-Z results for a comparable CPU

time.
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Figure 21: Numerical results for the 2D Euler equations – Shock-vortex interaction problem at final time – 30

contours from 0.95 to 1.35 for density – Left: WENO-Z scheme; Right: Present scheme.
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5.3.4. The 2D Sedov Blast Waves

For this cylindrical Sedov test [Sed59], the computational domain is reduced to [0, 1.2] ×

[0, 1.2] where only the lower left corner cell contains the high energy of a perfect gas at rest

(γ = 1.4). The initial condition is given by

(ρ0, u0, v0, p0) =


(1, 0, 0,

0.244816

∆x∆y
) if x < ∆x and y < ∆y

(1, 0, 0, 4× 10−13) otherwise,

(22)

where ∆x = ∆y =
1.2

120
(120×120 square cells) and the final time is tfinal = 1. For the boundary

conditions, an outflow boundary is applied to the right and upper boundaries while a reflective

boundary is considered on the left and bottom boundaries. Figure 22 shows the density profiles

computed by the present scheme at final time. We can observe that the results are in good

agreement with the exact solution as a function of cell radius on the first panel. The cylindrical

waves (shock and rarefaction) is well captured and preserved and the shock is maintained on

few cells. Even though the value of density is very low towards the origin, the present scheme

can simulate the test without any blow-up or code crash.

Figure 22: The numerical results for 2D Sedov Blast waves problem at time tfinal = 1 with 120 mesh cells — Left:

Density profile along y = 0 line vs the exact solution; Middle: 10 density contours from 0 to 6; Right: Surface of

density profile (color and azimuth).
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5.3.5. High Mach number astrophysical jets

For this case we simulate some high speed of gas flows without radiative cooling, see [HGGS05,

ZS10, ZS11a]. Notice that negative density and pressure could occur for such flows.

We simulate two jets, a Mach 80 and a Mach 2000, described in [ZS10] with γ = 5/3 on a

computational domain Ω. The initial condition is defined by

(ρ, u, v, p) =


(5, uin, 0, 0.4127) if y ∈ [−0.05, 0.05]

(5, 0, 0, 0.4127) otherwise

(23)

where uin > 0 is the inflow jet set on a portion of the left boundary. The boundary conditions

are set to outflow for the right, top and bottom boundaries. The left boundary is an inflow

boundary condition.

First, we simulate a Mach 80 on Ω = [0, 2]× [−0.5, 0.5] with uin = 30. The numerical solutions

is computed up to time tfinal = 0.07 with 448× 224 mesh cells. Figure 23 presents the numerical

results for the density, pressure and temperature profiles in logarithmic scale. Even though

very low density and pressure value occur in this test, the present scheme still performs well.

The numerical results are comparable to those in [ZS10]. Moreover the present scheme captures

more complex small scale structures of the flow. Second, we simulate a Mach 2000 jet on

Ω = [0, 1]× [−0.25, 0.25] by considering an inflow velocity magnitude uin = 800. The numerical

solution is computed up to time tfinal = 0.001 with 640 × 320 mesh cells. Figure 24 presents

the numerical results for density, pressure and temperature profiles in logarithmic scale. The

numerical results are comparable to those in [ZS10, ZS12]. Again, the current method seems

to capture more flow structures. This flow is obviously more violent than the previous one,

emphasizing that the proposed numerical method is genuinely robust thanks to the MOOD loop

and the first-order FV scheme used as a last resort.
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Figure 23: Numerical results for the 2D Euler equations – Mach jet 80 problem at time tfinal = 0.07 with 448×224

mesh cells simulated by the present scheme. Density, pressure and temperature maps in logarithmic scales.
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Figure 24: Numerical results for the 2D Euler equations – Mach jet 2000 problem at time tfinal = 0.001 with

640 × 320 mesh cells simulated by the present scheme. Density, pressure and temperature maps in logarithmic

scales.
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5.3.6. Shock Diffraction Problem

As a last test case, the shock diffraction problem has been simulated. We can find this test

in the literature for the DG method [CS98, ZS10] as well as finite difference WENO schemes

[ZS12]. Physically it consists of the diffraction of a shock wave at a sharp convex corner. Yet,

no general theory exists which may describe this problem completely. Numerical simulations

have been widely employed to understand the flow features generated by the shock diffraction,

and, this problem has become popular to challenge new numerical methods. The main reason is

that spurious negative density and/or pressure may be generated below and on the right of the

corner. The computational domain is the union of Ω1 = [0, 1]× [6, 11] and Ω2 = [1, 13]× [0, 11].

The initial condition is a pure right-moving shock of mach 5.09, initially located at x = 0.5

and 6 ≤ y ≤ 11, and moving into the undisturbed air ahead of the shock characterized by a

density of 1.4 and a pressure of 1. The boundary conditions are set to inflow at the left-most

boundary x = 0 (for 6 ≤ y ≤ 11), outflow at the right, top and bottom ones, 0 ≤ y ≤ 11,

1 ≤ x ≤ 13, y=0, and 0 ≤ x ≤ 13, y=11, and reflective walls are considered on boundary

Γ1 = {(x, y), s.t. 0 ≤ x ≤ 1, y = 6} and Γ2 = {(x, y), s.t. 0 ≤ y ≤ 6, x = 1}. The specific heat

ratio γ = 1.4 and final time of the computation is tfinal = 2.3. In figure 25 and figure 26 we

Figure 25: Numerical results for the 2D Euler equations – Shock Diffraction Problem 20 contours from 0.06 to

7.1 for density variable – Left: ∆x = ∆y = 1
32

; Right: ∆x = ∆y = 1
64

.

present respectively the density variable in color with 20 contour iso-lines spanning the interval
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Figure 26: Numerical results for the 2D Euler equations – Shock Diffraction Problem 40 contours from 0.08 to 32

for pressure variable – Left: ∆x = ∆y = 1
32

; Right: ∆x = ∆y = 1
64

.

[0.06, 7.1] and the pressure variable with 40 contour iso-lines spanning the interval [0.08, 32]. Two

different grid resolutions are considered, ∆x = ∆y =
1

32
for the left panels and ∆x = ∆y =

1

64
for the right panels. We observe that the results are comparable to those in [CS98, ZS10, ZS12]

for the main flow structures. In our simulations, the MOOD loop allows to handle appropriately

the occurrence of negative density or pressure which are cured by the use of the first-order FV

scheme when needed. This allows the present scheme to become ”fail-safe” to non-admissible

physical Moreover the finer grid resolution allows to observe sharper discontinuities without the

creation of spurious oscillations.
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5.3.7. Diagnostics on reconstruction selection for 2D Euler equations

Likewise for the 1D tests, in table 5 we present the percentage of cells for the four charac-

teristic variables W1,W2,W3,W4 which are dealt with the HO, SHARP, ENO and piece-wise

constant (P0) reconstructions. The tests are the 2D Sedov Blast waves, Mach 80 jet, Mach 2000

jet, shock-vortex interaction and shock diffraction problem with ∆x = ∆y =
1

32
. One sums up

for every 10 time steps and final time step the number of cells using the same reconstruction

and further takes the percentage with respect to the total number:
Nt

10
× (Nx×Ny) +Nx×Ny.

Each test case produces different flow patterns and the scheme does adapt. Consequently, for

the reconstructions, we can not identify a general behavior which was expected. However, it

seems that the HO reconstruction (target 5th order accuracy without dissipation) is selected for

about 30% up to 83% of cells. The dissipative ENO reconstructions are selected between 9%

to 28% of cells while the sharp reconstruction is chosen for 6% up to 58% of cells. At last the

piece-wise constant reconstruction is almost never selected (maximal 0.05%). But, recall that

each time it is selected then it means that the code has created a non-physical state. In other

words the code has been simply saved from code-crashing2.

2Note that 0.05% of the cells for the Mach 80 jet problem may seem rather small. However it corresponds to

about 81000 cells among the 162 millions of cell updates computed during the whole simulation.
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Test Nt, Nx ×Ny

W1/W3 W2/W4

SH HO ENO P0 SH HO ENO P0

Shock-V 657, 200x200
6.56% 65.32% 28.12% 0% 58.72% 31.63% 9.64% 0%

10.38% 65.49% 25.06% 0% 7.94% 64.24% 27.82% 0%

Sedov 3441, 120x120
7.22% 81.41% 11.37% 0% 6.51% 81.1% 12.39% 0%

5.99% 81.79% 12.22% 0% 9.75% 80.57% 9.68% 0%

M-80 1613, 448x224
9.25% 77.9% 12.8% 0.05% 9.85% 76.49% 13.61% 0.05%

9.64% 78.09% 12.22% 0.05% 9.77% 77.28% 12.9% 0.05%

M-2000 1904, 640x320
6.95% 83.20% 9.81% 0.04% 7.58% 82.25% 10.13% 0.04%

7.27% 83.33% 9.36% 0.04% 8.00% 82.44% 9.51% 0.04%

Shock-D 1708, 416x352
8.28% 77.74% 13.98% 1E-4% 7.97% 78.14% 13.89% 1E-4%

17.06% 71.89% 11.05% 1E-4% 10.43% 76.8% 12.77% 1E-4%

Table 5: Percentage of cells dealt with the SHARP,HO,ENO,P0 reconstructions for the four characteristic

variables W1,W2,W3,W4 and five test cases.
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6. Conclusions and perspectives

In this paper we have presented a reconstruction strategy to be employed in Finite Volume

(FV) scheme which differs from classical polynomial-based with a priori limiting strategy. Most

of classical schemes are based on a (linear) polynomial reconstruction, which is further sup-

plemented with a non-linear limiter: classical slope limiter for piece-wise linear reconstruction,

(C)WENO blending, hierarchical moment limiter, artificial viscosity, etc. As such the accu-

racy in space of such FV schemes, measured for smooth solutions, is obtained by the accuracy

with which the polynomials are reconstructed. In other words the polynomial degree drives the

scheme accuracy. Meanwhile, the robustness and non-oscillatory behavior are obtained by the

non-linear limiter which is often computed just after the reconstructions.

Our approach differs because our cell-based reconstruction procedure relies on several types of

reconstructions: (1) 5th order accurate polynomials for smooth solutions, (2) viscous non-linear

THINC functions to add dissipation and (3) sharp non-linear ones to handle discontinuity and

steep gradients, and, at last, (4) no reconstruction at all for extreme situations.

The fundamental mechanism in our approach to choose between these reconstructions relies on

the BVD (Bounded Variation Diminishing) strategy. The reconstruction in one cell is chosen

to be the one producing the smallest jumps at the cell interfaces. With BVD the reconstruc-

tion is polynomial P4 for smooth solutions, viscous on non-smooth solution (like a limited P1

reconstruction) and adopts a step-like shape for genuine discontinuous solution. Moreover, an a

posteriori loop is added to the scheme to ensure that in the case the obtained numerical solution

at time tn+1 does not ensure fundamental properties like the positivity, computer representation,

then, locally, the solution is recomputed with a first-order accurate FV scheme, i.e. without

any reconstruction. As such a solution property preserving non-linear reconstruction procedure

for Finite Volume scheme is designed. The rest of the FV scheme employs a HLLC flux, a

Runge-Kutta time discretisation and dimension splitting to avoid costly multidimensional poly-

nomial reconstructions. The goal is not to develop a provable optimal high accurate numerical

method for smooth flows. Rather, the purpose of this work is to provide an efficient replacement

for the pair (polynomial reconstruction, limiter) used in classical FV scheme (TVD, WENO,

etc.). Indeed in our approach the scheme must select among several reconstructions, the most
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appropriate one according to goodness criteria. Some criteria are set a priori with BVD, some

are verified a posteriori with MOOD. Being fundamentally 1D, the FV scheme proposed in this

work is genuinely inexpensive. The numerical results prove that the scheme can capture both

contact discontinuities and shocks on only two cells in 1D. Remarkably, such sharp interfaces

can not generally be obtained with the state of the art FV schemes of high accuracy. This be-

havior is confirmed on 2D test problems for which the numerical method present genuinely sharp

discontinuity for a second-order accurate scheme according to classical numerical analysis. The

scheme is extremely robust to positivity issues due to the a posteriori treatment and, at last,

the directional splitting yields a very reasonable cost for such apparent accuracy. In the future,

we plan to extend the approach to unstructured meshes and three dimensions. Moreover, the

application of this scheme to more complex PDEs with stiff source terms (chemical reactions,

multiphase flows, etc.) is a clear nearby perspective because the accuracy in capturing sharp

fronts is of paramount importance for such models.

Acknowledgments

Parts of this work has been managed while R.L. was invited to visit Xiao’s Lab at the Tokyo

Institute of Technology, R.L. acknowledges the financial support for this visit by Pr. F. Xiao.

This work was supported in part by the fund from JSPS (Japan Society for the Promotion of

Science) under Grant Nos. 17K18838 and 18H01366.

References

[ABC16] F. Acker, R. Borges, and B. Costa. An improved weno-z scheme. J. Comput. Phys.,

313:726–753, 2016.

[Bal10] D.S. Balsara. Multidimensional HLLE Riemann solver: Application to Euler and

magnetohydrodynamic flows. Journal of Computational Physics, 229:1970–1993,

2010.

[Bal12] D.S. Balsara. A two-dimensional HLLC Riemann solver for conservation laws: Appli-

cation to Euler and magnetohydrodynamic flows. Journal of Computational Physics,

231:7476–7503, 2012.

50



[BDA14] D.S. Balsara, M. Dumbser, and R. Abgrall. Multidimensional HLLC Riemann Solver

for Unstructured Meshes - With Application to Euler and MHD Flows. Journal of

Computational Physics, 261:172–208, 2014.

[BDLM18] W. Boscheri, M. Dumbser, R. Loubère, and P.H. Maire. A second-order cell-

centered lagrangian ader-mood finite volume scheme on multidimensional unstruc-

tured meshes for hydrodynamics. Journal of Computational Physics, 358:103 – 129,

2018.

[BLD15] W. Boscheri, R. Loubère, and M. Dumbser. Direct arbitrary-lagrangian–eulerian

ader-mood finite volume schemes for multidimensional hyperbolic conservation laws.

Journal of Computational Physics, 292:56 – 87, 2015.

[BT17] F. Blachère and R. Turpault. An admissibility and asymptotic preserving scheme

for systems of conservation laws with source term on 2d unstructured meshes with

high-order mood reconstruction. Computer Methods in Applied Mechanics and En-

gineering, 317:836 – 867, 2017.

[CDL11] S. Clain, S. Diot, and R. Loubère. A high-order finite volume method for systems of

conservation laws—multi-dimensional optimal order detection (mood). J. Comput.

Phys., 230:4028–4050, 2011.

[CF17] S. Clain and J. Figueiredo. The mood method for the non-conservative shallow-water

system. Computers & Fluids, 145:99 – 128, 2017.

[CS98] B. Cockburn and C.W. Shu. The runge–kutta discontinuous galerkin method for

conservation laws v: Multidimensional systems. Journal of Computational Physics,

141(2):199 – 224, 1998.

[CW84] P. Colella and P. Woodward. The piecewise parabolic method (ppm) for gas-

dynamical simulations. J. Comput. Phys., 54(1):174 – 201, 1984.

[DCL12] S. Diot, S. Clain, and R. Loubère. Improved detection criteria for the multi-

dimensional optimal order detection (mood) on unstructured meshes with very high-

order polynomials. Computers & Fluids, 64:43–63, 2012.

51



[DIX+18] X. Deng, S. Inaba, B. Xie, K.M. Shyue, and F. Xiao. High fidelity discontinuity-

resolving reconstruction for compressible multiphase flows with moving interfaces.

Journal of Computational Physics, 371:945 – 966, 2018.

[DL16] M. Dumbser and R. Loubère. A simple robust and accurate a posteriori sub-cell

finite volume limiter for the discontinuous galerkin method on unstructured meshes.

Journal of Computational Physics, 319:163 – 199, 2016.

[DSX18] X. Deng, Y. Shimizu, and F. Xiao. Constructing high-order discontinuity-capturing

schemes with linear-weight polynomials and boundary variation diminishing algo-

rithm. arXiv preprint, arXiv:1811.08316, 2018.

[DSX19] X. Deng, Y. Shimizu, and F. Xiao. A fifth-order shock capturing scheme with two-

stage boundary variation diminishing algorithm. Journal of Computational Physics,

386:323–349, 2019.

[DXL+18] X. Deng, B. Xie, R. Loubère, Y. Shimizu, and F. Xiao. Limiter-free discontinuity-

capturing scheme for compressible gas dynamics with reactive fronts. Computers &

Fluids, 171:1–14, 2018.

[DZLD14] M. Dumbser, O. Zanotti, R. Loubère, and S. Diot. A posteriori subcell limiting of

the discontinuous galerkin finite element method for hyperbolic conservation laws.

J. Comput. Phys., 278:47–75, 2014.

[FHA16] L. Fu, X.Y. Hu, and N.A. Adams. A family of high-order targeted eno schemes for

compressible-fluid simulations. Journal of Computational Physics, 305:333 – 359,

2016.

[God59] S.K. Godunov. A difference method for numerical calculation of discontinuous so-

lutions of the equations of hydrodynamics. Matematicheskii Sbornik, 89:271–306,

1959.

[Got05] S. Gottlieb. On high order strong stability preserving runge-kutta and multi step

time discretizations. J. Sci. Comput., 25:105–128, 2005.

52



[HGGS05] Y. Ha, C. Gardner, A. Gelb, and C.W. Shu. Numerical simulation of high mach

number astrophysical jets with radiative cooling. Journal of Scientific Computing,

24(1):29–44, Jul 2005.

[Huy97] H.T. Huynh. Schemes and constraints for advection time stepping method with flux

reconstruction view project. Art. Lec. Notes Phys., 1997.

[JS96] G.S. Jiang and C.W. Shu. Efficient implementation of weighted eno schemes. J.

Comput. Phys., 126:202–228, 1996.

[JYY18] Z.H. Jiang, C. Yan, and J. Yu. Efficient methods with higher order interpolation and

mood strategy for compressible turbulence simulations. Journal of Computational

Physics, 371:528 – 550, 2018.

[KT02] A. Kurganov and E. Tadmor. Solution of two-dimensional Riemann problems for gas

dynamics without Riemann problem solvers. Numer. Methods Partial Differential

Equations, 18:584–608, 2002.

[LCS09] W. Liu, J. Cheng, and C.W. Shu. High order conservative lagrangian schemes with

lax-wendroff type time discretization for the compressible euler equations. J. Com-

put. Phys., 228(23):8872–8891, December 2009.

[LDD14] R. Loubère, M. Dumbser, and S. Diot. A new family of high order unstructured

mood and ader finite volume schemes for multidimensional systems of hyperbolic

conservation laws. Communications in Computational Physics, 16(3):718–763, 2014.

[Lee79] B. Van Leer. Towards the ultimate conservative difference scheme. v. a second-order

sequel to godunov’s method. Journal of Computational Physics, 32(1):101 – 136,

1979.

[LK16] C. Lohmann and D. Kuzmin. Synchronized flux limiting for gas dynamics variables.

Journal of Computational Physics, 326:973 – 990, 2016.

53



[LLZ15] Q. Li, P. Liu, and H. Zhang. Piecewise polynomial mapping method and correspond-

ing weno scheme with improved resolution. Commun. Computat. Phys., 18(5):1417–

1444, 2015.

[LR97] T. Linde and P.L. Roe. Robust euler codes. in: Thirteenth Computational Fluid

Dynamics Conference, pages AIAA–97–2098, 1997.

[LS05] R. Loubère and M.J. Shashkov. A subcell remapping method on staggered polygonal

grids for arbitrary-lagrangian–eulerian methods. Journal of Computational Physics,

209(1):105 – 138, 2005.

[LW03] R. Liska and B. Wendroff. Comparison of several difference schemes on 1d and 2d

test problems for the euler equations. SIAM J. Scientific Computing, 25(3):995–1017,

2003.

[Pir06] S. Pirozzoli. On the spectral properties of shock-capturing schemes. Journal of

Computational Physics, 219(2):489 – 497, 2006.

[RCD03] A. Rault, G. Chiavassa, and R. Donat. Shock-vortex interactions at high mach

numbers. Journal of Scientific Computing, 19:347–371, 2003.

[RLZ03] Y.X. Ren, M. Liu, and H. Zhang. Efficient implementation of weighted eno schemes.

J. Comput. Phys., 192:365–386, 2003.

[RSS13] J. Reisner, J. Serencsa, and S. Shkoller. A space–time smooth artificial viscosity

method for nonlinear conservation laws. Journal of Computational Physics, 235:912

– 933, 2013.

[Ruu] Steven J. Ruuth. Global optimization of explicit strong-stability-preserving runge-

kutta methods.

[Sed59] L.I. Sedov. Similarity and Dimensional Methods in Mechanics. Academic Press,

New York, 1959.

[SIX16] Z. Sun, S. Inaba, and F. Xiao. Boundary variation diminishing (bvd) reconstruction:

A new approach to improve godunov schemes. J. Comput. Phys., 322:309–325, 2016.

54



[SO88] C.W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-

capturing schemes. J. Comput. Phys., 77:439–471, 1988.

[SO89] C.W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-

capturing schemes, ii. J. Comput. Phys., 83:32–78, 1989.

[SR93] C.W. Schulz-Rinne. Classification of the Riemann problem for two-dimensional gas

dynamics. SIAM J. Math. Anal., 24:76–88, 1993.

[SR02] R. J. Spiteri and S. J. Ruuth. A new class of optimal high-order strong-stability-

preserving time discretization methods. SIAM J. Numer. Anal., 40(2):469–491,

February 2002.

[SX14] K.M. Shyue and F. Xiao. An eulerian interface sharpening algorithm for compressible

two-phase flow: The algebraic thinc approach. J. Comput. Phys., 268:326–354, 2014.

[TB19] R. Turpault and T.H. Nguyen Bui. A high order mood method for compressible

navier-stokes equations: application to hypersonic viscous flows. Progress in Com-

putational Fluid Dynamics,, 2019. in press.

[Tor09] E.F. Toro. Riemann solvers and numerical methods for fluid dynamics: a practical

introduction. Springer Verlag, 2009.

[Vil18] F. Vilar. A posteriori correction of high-order discontinuous galerkin scheme through

subcell finite volume formulation and flux reconstruction. Journal of Computational

Physics, 2018.

[WA08] L. White and A. Adcroft. A high-order finite volume remapping scheme for nonuni-

form grids: The piecewise quartic method (pqm). J. Computat. Phys., 227(15):7394–

7422, 2008.

[WC84] P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow

with strong shocks. Journal of Computational Physics, 54:115–173, 1984.

[XHK05] F. Xiao, K. Honma, and T. Kono. A simple algebraic interface capturing scheme

using hyperbolic tangent function. int. J. Methods Fluids, 48:1023–1040, 2005.

55



[XIC11] F. Xiao, S. Ii, and C. Chen. Revisit to the thinc scheme: A simple algebraic vof

algorithm. J. Comput. Phys., 230:7086–7092, 2011.

[XZ17] Z. Xu and X. Zhang. Chapter 4 - bound-preserving high-order schemes. In R. Abgrall

and C.W. Shu, editors, Handbook of Numerical Methods for Hyperbolic Problems,

volume 18 of Handbook of Numerical Analysis, pages 81 – 102. Elsevier, 2017.

[ZS10] X. Zhang and C.W. Shu. On positivity-preserving high order discontinuous galerkin

schemes for compressible euler equations on rectangular meshes. J. Comput. Phys.,

229:8918–8934, 2010.

[ZS11a] X. Zhang and C.W. Shu. Maximum-principle-satisfying and positivity-preserving

high-order schemes for conservation laws: survey and new developments. Pro-

ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,

467(2134):2752–2776, 2011.

[ZS11b] X. Zhang and C.W. Shu. Positivity-preserving high order discontinuous galerkin

schemes for compressible euler equations with source terms. J. Comput. Phys.,

230(4):1238–1248, 2011.

[ZS12] X. Zhang and C.W. Shu. Positivity-preserving high order finite difference weno

schemes for compressible euler equations. J. Comput. Phys., 231:2245–2258, 2012.

56


