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Abstract1

We consider robust power-distance functions that approximate the distance function to a compact2

set, from a noisy sample. We pay particular interest to robust power-distance functions that are3

anisotropic, in the sense that their sublevel sets are unions of ellipsoids, and not necessarily unions4

of balls. Using persistence homology on such power-distance functions provides robust clustering5

schemes. We investigate such clustering schemes and compare the different procedures on synthetic6

and real datasets. In particular, we enhance the good performance of the anisotropic method for7

some cases for which classical methods fail.8
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1 Introduction9

Often data can be represented as a point cloud X in a Euclidean space Rd. Grouping data10

into clusters as homogeneous and well-separated as possible is the purpose of clustering.11

When no label is know in advance, we talk about unsupervised clustering. Topological data12

analysis (TDA) tools are designed to understand the shape of the data. Thereby, such tools13

may help to understand the shape of clusters in which to group the data. In this paper, we14

develop and study a TDA-based unsupervised clustering scheme. In addition, our method15

detects and removes points that do not really belong to any cluster; the outliers.16

Clustering datasets is of extreme importance in multiple domains including medicine and17

social networks among others. The classical k-means method clusters data into isotropic18

clusters. In particular, the trimmed version of k-means of [14] that removes outliers, supplies19

balls-shaped clusters. These two algorithms have been extended by [2, 5] for Bregman-balls-20

shaped clusters, see also tclust [17] for ellipsoidal clusters. Such methods are well-suited for21

data generated according to mixtures of distributions which sublevel-set are Bregman balls22

themselves. For more general datasets, for instance, a sample of point from a disconnected23

manifold, these methods are no longer appropriate. Spectral clustering methods [27] perform24

such tasks, but are not robust to outliers. DBSCAN [19] is an algorithm based on a fixed25

upper-level set of an approximation of the density, and consequently, does not provide a26

multiscale information. Via a dendrogram, the classical single-linkage hierarchical clustering27

algorithm provides such a multiscale information. The dendrogram encodes information about28

the connectivity of unions of balls centered at points in X, or equivalently, of the sublevel29

sets of the distance function to X. For a fixed radius r, the Čech complex is a simplicial30

complex defined as the collection of simplices (vertex, edge, triangle, tetrahedron) for which31

the r-balls centered at the vertices have a non-empty common intersection. We call 1-skeleton32
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2 Robust Anisotropic Power-Functions Filtrations

its subcomplex (a graph) that contains only vertices and edges. The non-decreasing family33

of such graphs indexed by r ∈ R is called a filtration. Single-linkage is a persistence-based34

method since is based on the persistence, prominence or equivalently lifetime of the connected35

components into this graph filtration, however, it is not robust to outliers. The algorithm36

ToMATo in [12] is robust and persistence-based. Indeed, it is based on a graph filtration37

built from a neighborhood graph and a (robust) distance-like function whose values guide38

the appearance of vertices and edges in the graph filtration. An example of robust distance39

function that Chazal et al. consider in [12] is given by the distance-to-measure (DTM) [10].40

Note that the graph is a priori not intrinsic to the distance function, which may cause bad41

clustering. For instance, an edge that links two vertices with small distance-function value42

but intersects an area with large distance function value, may link two clusters that should43

not be. This problem was the cause of failure of the single-linkage method for data corrupted44

by outliers. Alternative filtrations that do not suffer from this problem are the DTM-filtration45

[1], or the power filtrations [7], based on the 1-skeleton of the Čech filtration associated to46

the sublevel sets of a power distance function: a function of type x 7→ mini∈I ‖x−mi‖2 + ωi47

for some (mi)i∈I in Rd and (ωi)i∈I in R. Some approximations of the DTM that are power48

functions have been introduced and studied in the literature: the k-witnessed distance [18],49

the power distance [7], the c-PDTM [6] whose sublevel sets are unions of c balls, and the50

c-PLM [4] whose sublevel sets are unions of c ellipsoids, with c possibly much smaller than51

the sample size. The last two functions are robust to outliers since their construction is52

based on the principle of trimmed least squares [26].53

Contributions54

By replacing balls with ellipsoids, we enlarge the notion of weighted Čech filtration into the55

anisotropic weighted Čech filtration. We derive an expression for the radius of intersection of56

two ellipsoids. We introduce a clustering algorithm based on persistence. Such a clustering57

algorithm can be run from any graph filtration, in particular, from the 1-skeleton of the58

anisotropic weighted Čech filtration, which corresponds to the filtration of sublevel sets of an59

anisotropic power function. We experiment this algorithm on the filtration of the c-PLM [4].60

Practical interests61

A clustering algorithm based on the persistence filtration of the sublevel sets of a power62

function is pertinent since unlike ToMATo, the graph is intrinsic to the distance function.63

So, no additional parameters are required for the algorithm. The main advantage of using64

an anisotropic power function is that its sublevel sets are ellipsoids. Much less ellipsoids are65

required than balls to Hausdorff-approximate a compact manifold with intrinsic dimension66

smaller than the ambient dimension. The clustering scheme can also be applied to decompose67

a set of points generated on a polygonal line into segments. Once the ellipsoids computed,68

the persistence algorithm runs fast. Its complexity in terms of number of comparisons is at69

worst O(c4), with c, the number of ellipsoids, which is much smaller than the sample size.70

Most importantly, the robustness of the persistence algorithm relies on the robustness of71

the distance function. The c-PLM [4] is robust to outliers. The guaranty for the clustering72

method follows from the ‖·‖∞-distance closeness between the power distance function and the73

distance function to the underlying manifold X , relatively to the minimal distance between74

the connected components of X . Note that such a proximity condition is sufficient but not75

necessary, as illustrated by the different numerical examples, with the c-PLM.76
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Organisation of the paper77

In Section 2, we recall the notions of power function and weighted Čech filtration, the78

filtration of the nerves of its sublevel sets, that we extend to anisotropic power functions.79

We prove some stability and approximation properties for such filtrations. Examples of80

robust power filtrations are also displayed. The main clustering algorithm, Algorithm 1 is81

given in Section 3. This algorithm applies to any filtration of graphs, including the graph82

filtrations obtained as the 1-skeleton of a weighted Čech filtration. We enumerate other types83

of filtrations that fit into this framework. Finally, we implement Algorithm 1 with the robust84

anisotropic aforementioned power function in Section 4. We compare this method to other85

clustering methods on synthetic and real datasets.86

2 Power-functions-based filtrations for robust clustering87

In the sequel, we will recall the notion of filtration for subsets of Rd (equipped with the88

Euclidean norm ‖ · ‖) and for simplicial complexes. We will consider a class of functions for89

which filtrations associated to sublevel sets are easily represented by filtrations of simplicial90

complexes, making the evolution of their connected components tractable: the power functions.91

In addition, we will give an example of robust power-functions [6] that can be built from92

a probability distribution or a pointset X. Their sublevel sets are unions of c balls, with c93

possibly much smaller than the size of X. Most importantly, we will also give an example of94

a robust anisotropic power-function, whose sublevel sets are unions of c ellipsoids [4]. Both95

of these power functions will be considered in the next sections for clustering purposes.96

2.1 Generalities on filtrations97

A filtration indexed by a time set T ⊂ R is a family (V t)t∈T of subsets of Rd, non-decreasing98

for the inclusion (i.e. ∀t ≤ t′, V t ⊂ V t′). A typical example is the filtration of the sub-level99

sets of a function f : Rd 7→ R,
(
f−1((−∞, t])

)
t∈T . For any simplex S with finite vertex set X,100

a filtration of simplicial complexes of S is a non-decreasing family (St)t∈T of subcomplexes101

of S, meaning that for every t ≤ t′, any simplex of St is also a simplex of St′ .102

The interleaving pseudo-distance between two filtrations (V t)t∈T and (W t)t∈T is defined103

as the smallest ε > 0 such that (V t)t∈T and (W t)t∈T are ε-interleaved, i.e. such that:104

∀t ∈ T , V t ⊂W t+ε and W t ⊂ V t+ε. This definition extends to simplicial complexes. Note105

that the sub-level-sets filtrations of two functions f and g satisfying ‖f − g‖∞ ≤ ε are106

ε-interleaved. We will see in Section 3 that the notion of interleaving is primordial, since it107

measures the difference of topology between two filtrations. In particular, the stability of our108

sub-level-sets-based clustering scheme will be guarantied from the closeness of the functions.109

2.2 Power-functions-based filtrations110

In this paper, we consider classes of functions whose sub-level sets filtration has a sparse111

representation, the power functions. The sublevel sets of these functions can be represented112

by simplicial complexes in so-called weighted Čech filtrations. We will consider two types of113

power functions, the isotropic and the anisotropic ones.114

2.2.1 The isotropic case115

An isotropic power function is a function fm,ω : Rd → R defined from an index set I = [[1, c]],116

a family of centers m = (mi)i∈I in Rd and a family of weights ω = (ωi)i∈I in R by117
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fm,ω : x 7→ mini∈I ‖x − mi‖2 + ωi. A simple example of power function is the squared118

Euclidean distance function to a set of points X, d2
X : x ∈ Rd 7→ minm∈X ‖x −m‖2. The119

sublevel sets of fm,ω, V tm,ω = f−1
m,ω((−∞, t]), are unions of at most c balls Bti = B(mi,

√
t− ωi)120

with B(m, r) = {x ∈ Rd | ‖x −m‖ ≤ r}. Note that Bti is empty for t < ωi and two balls121

Bti and Btj intersect if and only if t ≥ ti,j with ti,j = (ωj−ωi)2+2(ωj+ωi)‖mj−mi‖2+‖mj−mi‖4

4‖mj−mi‖2 .122

The connectivity of V tm,ω can be encoded in a graph Gtm,ω, whose vertices are indices i ∈ I123

such that ωi ≤ t and whose edges are pairs of vertices [i, j] such that ti,j ≤ t. Indeed, Gtm,ω124

and V tm,ω have the same number of connected components, and mi and mj are in the same125

connected component in V tm,ω if and only if i and j are also in the same component in Gtm,ω.126

More generally, the topological information of V tm,ω (number of connected components,127

loops, voids etc.) can be encoded in the weighted Čech complex Cechm,ω(t), defined as128

the nerve of the union of balls (Bti)i∈I : Cechm,ω(t) = {σ ⊂ I |
⋂
i∈σ Bti 6= ∅}, [1, 7, 3].129

According to the Nerve Lemma [20, Corollary 4G.3], any sublevel set V tm,ω is homotopic130

to Cechm,ω(t) and thus contains the same topological information. For computational131

reasons, the weighted Vietoris-Rips filtration is frequently considered as a provably good132

surrogate for the weighted Čech filtration (Cechm,ω(t))t∈T . The weighted Vietoris-Rips133

complex VRm,ω(t) is the flag complex of Gtm,ω (Gtm,ω is the 1-skeleton of the weighted Čech134

complex): VRm,ω(t) = {σ ⊂ I | ∀i, j ∈ σ,Bti ∩ Btj 6= ∅}. Indeed, as a direct consequence of135

[3, Theorem 3.2] which is a generalization of the non-weighted case in [15, Theorem 2.5.], if136

the weights in ω are non-negative, then these two filtrations are interleaved:137

∀0 < t′ ≤ d+ 1
2d t,VRm,ω(t′) ⊂ Cechm,ω(t) ⊂ VRm,ω(t). (1)138

These notions can all be extended to anisotropic power functions.139

2.2.2 The anisotropic case140

Consider I = [[1, c]], centers m = (mi)i∈I in Rd, weights ω = (ωi)i∈I in R and matrices141

Σ = (Σi)i∈I inMd, the set of definite positive symmetric matrices. An anisotropic power142

function is a function fm,ω,Σ : Rd → R defined from I, m, ω and Σ by fm,ω,Σ : x 7→143

mini∈I ‖x−mi‖2Σ−1
i

+ωi. For any matrix Σ ∈Md and x ∈ Rd, ‖x‖Σ−1 =
√
xTΣ−1x denotes144

the Σ-Mahalanobis norm of x. The sublevel sets of fm,ω,Σ, V tm,ω,Σ = f−1
m,ω,Σ((−∞, t]), are145

unions of at most c ellipsoids Eti = BΣi(mi,
√
t− ωi) = {x ∈ Rd | ‖x −mi‖2Σ−1

i

≤ t − ωi}.146

Again, Eti is empty for t < ωi and the intersection time ti,j of Eti and Etj is given below. The147

relative question of the emptiness of the intersection of two ellipsoids is tackled in [28, 25].148

I Proposition 1. Consider two ellipsoids Eti = BΣi(mi,
√
t− ωi) and Etj = BΣj (mj ,

√
t− ωj)149

with ωi ≤ ωj in R, mi and mj in Rd, Σi = PiDiP
T
i and Σj = PjDjP

T
j in Md, with two150

positive diagonal matrices Di and Dj and two orthogonal matrices Pi and Pj from the spectral151

theorem. Set Σ̃ =
√
DiP

T
i Σ−1

j Pi
√
Di = P̃ D̃P̃T , for orthogonal and diagonal matrices P̃ and152

D̃ = diag(λ1, λ2, . . . , λd), and m̃ = P̃T
√
D−1
i PTi (mj −mi). Ellipsoids Eti and Etj intersect153

if and only if t ≥ ti,j for ti,j = ωj when ‖m̃‖ ≤ √ωj − ωi, and ti,j = ωj +
∑d
k=1

(
λm̃k

λ+λk

)2
λk154

when ‖m̃‖ > √ωj − ωi. The positive number λ is the unique solution of the following equation:155

156

d∑
k=1

λk − λ2

(λ+ λk)2λkm̃
2
k = ωj − ωi. (2)157
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The proof of Proposition 1 is to be found in Section A. It is based on the fact that the158

ellipsoids Eti and Etj are tangent at their first intersection point, and the corresponding159

gradients are collinear. In the context of isotropy (i.e. for Σi = Σj = Id, the identity160

matrix of Rd) m̃ = mj −mi, and when ‖mj −mi‖ >
√
ωj − ωi, (2) has a unique positive161

solution given by λ = ωi−ωj+‖mj−mi‖2

ωj−ωi+‖mj−mi‖2 . We recover the merging time ti,j given in Section162

2.2.1. Now, define Gtm,ω,Σ, Cechm,ω,Σ(t) and VRm,ω,Σ(t), the anisotropic counterparts of163

Gtm,ω, Cechm,ω(t) and VRm,ω(t). The nerve lemma still applies, since unions of ellipsoids164

are contractible. Although this paper is mostly based on the study of connected components165

for clustering, anisotropic weighted Čech and Vietoris-Rips filtrations are primordial to have166

a tractable estimation of the topology of compact sets from suitable approximations as167

finite unions of ellipsoids. In fact, as their isotropic counterparts (1), these filtrations are168

interleaved, provided that the eigenvalues of the matrices in Σ are positive.169

I Proposition 2. If ω is a set on non-negative weights in R and Σ a family of matrices with170

eigenvalues in [λmin, λmax] for some λmin > 0, then for every t > 0 and 0 < t′ ≤ λmin
λmax

d+1
2d t,171

VRm,ω,Σ(t′) ⊂ Cechm,ω,Σ(t) ⊂ VRm,ω,Σ(t). (3)172

The condition of non-negative weights is not too restrictive since for general weights, it suffices173

to replace ω, t and t′ by ω −mini∈I ωi, t−mini∈I ωi and t′ −mini∈I ωi in the proposition.174

Then, the condition on t′ becomes mini∈I ωi < t′ ≤ λmin
λmax

d+1
2d t +

(
1− λmin

λmax
d+1
2d

)
mini∈I ωi.175

As noted in [15], when λmin equals λmax and the weights in ω are null, the term λmin
λmax

d+1
2d is176

optimal. When m is the set of vertices of a regular d-simplex, the left inclusion is an equality.177

The proof of Proposition 2 is available in Section B.178

Often, less ellipsoids than balls are required to describe a compact set X , for a fixed179

level of precision (e.g. for the Hausdorff distance). For instance, a segment in R2, and more180

generally, any d′-dimensional submanifold in Rd, with d′ < d. For this reason, anisotropic181

Čech and Vietoris-Rips filtrations are pertinent tools to compute and store the topological182

information about X efficiently. The requisite condition is that we dispose of an anisotropic183

power function that is a good approximation of d2
X . Such examples of functions follow.184

2.3 Examples of filtrations based on robust power functions185

2.3.1 Isotropic robust power functions186

Set X, a set of n points generated on the neighborhood of a compact subset X of Rd. In order187

to face the non robustness of the distance function to X, dX, Chazal et al. have introduced188

the notion of distance-to-measure (DTM), in [10]. The DTM is a counterpart of dX robust189

to noise and outliers. Its robustness follows from some parameter k ∈ [[1, n]], the number190

of nearest-neighbors X1, X2, . . . , Xk of x in X, used to estimate dX(x). The DTM dX,k is191

defined by d2
X,k : x 7→ 1

k

∑k
i=1 ‖x −Xi‖2 = ‖x −mx,k‖2 + vx,k with mx,k =

∑k
i=1X

i, the192

mean of the k nearest neighbours of x in X and vx,k = 1
k

∑k
i=1 ‖Xi −mx,k‖2 their variance.193

Note that dX,1 coincides with dX and is not robust, whereas dX,n(x) is the distance of x to194

the barycenter of the point cloud X, up to some factor, which is robust, but very poor in195

terms of topological information. The DTM is actually a weighted power function [18]:196

d2
X,k(x) = inf

y∈Rd
‖x−my,k‖2 + vy,k. (4)197

This follows from the fact that the mean distance between x and its k nearest neighbors is198

not larger than the mean distance between x and the k nearest neighbors of any other point199
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y ∈ Rd. This infimum is actually a minimum over a set of c points y = (yi)i∈[[1,c]] in Rd, with200

c of order
(
n

k

)
. A power approximation of the DTM, the k-witnessed distance, was defined201

in [18] by replacing Rd by X in (4). Its sublevel sets are unions of n balls. An approximation202

of the DTM with c (possibly much smaller than n) balls, the c-PDTM, was defined in [6], by203

replacing Rd by a set yc,k of c points in Rd. This set yc,k is a minimum of a “k-means”-type204

criterion [24], y 7→
∑n
i=1 miny∈y ‖Xi −my,k‖2 + vy,k, for y with cardinality c. Morally, yc,k205

is chosen such that on average on X, x 7→ miny∈y ‖x−my,k‖2 + vy,k is small. Note that the206

graph of the c-PDTM is necessarily above the graph of the DTM. According to [6], for a207

sample on a regular d′-dimensional manifold, c can be chosen of order n
d′

d′+4 , which is much208

smaller than n. Moreover, the c-PDTM is a good approximation of d2
X , despite noise.209

2.3.2 An anisotropic robust power function210

An anisotropic version of the c-PDTM has been introduced in [4], the c-power likelihood to211

measure (c-PLM). It consists in replacing Euclidean norms with Mahalanobis norms. For212

every x ∈ Rd and Σ ∈ Md, set X1, X2,. . .Xk the k-nearest neighbors of x in X, for the213

Σ−1-Mahalanobis norm: ‖Xi−x‖Σ−1 ≤ ‖Xj−x‖Σ−1 for every i ≤ j. Denote by mx,Σ,k their214

mean, and by vx,Σ,k = 1
k

∑k
i=1 ‖Xi−mx,Σ,k‖2Σ−1 their variance, relative to the Σ-Mahalanobis215

norm. Set θc,k, a family of c pairs (y,Σ) ∈ Rd ×Md that minimizes (or which criterion is as216

close as possible to the optimal criterion, in case of non existence of a minimum) the following217

“k-means”-type criterion Rc,k among all θs of cardinality c: Rc,k(θ) =
∑n
i=1 min(y,Σ)∈θ ‖Xi−218

my,Σ,k‖2Σ−1 +vy,Σ,k+log(det(Σ)). The term log(det(Σ)) prevents optimal covariance matrices219

to be degenerated, with Σ−1 going to 0. In some sense, minimizing such a criterion boils220

down to fit Gaussian distributions to the data set X, at best. The c-PLM is the power221

function defined from θc,k by: x 7→ min(y,Σ)∈θc,k
‖x−my,Σ,k‖2Σ−1 + vy,Σ,k + log(det(Σ)). A222

modification of the criterion Rc,k has been introduced in [4], to remove some datapoints223

(|X|−sig for some parameter sig), when X is corrupted with outliers. The criterion is given by224

Rc,k,sig(θ) = min(i1,i2,...,isig)∈[[1,|X|]]
∑sig
j=1 min(y,Σ)∈θ ‖Xij−my,Σ,k‖2Σ−1 +vy,Σ,k+log(det(Σ)).225

Iterative Lloyd-type algorithms [22] provide local minima θ̃c,k and θ̃c,k,sig for the criteria226

Rc,k and Rc,k,sig [4]. These algorithms run in O(ncd2 + nkd2 + n log(n)c)it operations, with227

it the number of iterations of the algorithm. They consist, given θ = (y,Σ), in splitting the228

space Rd into weighted Σ-curved Voronoi cells, replacing centers y by the centroid of the cells,229

and updating the matrices in Σ by a close formula from the points in the cells and ellipsoids.230

To compute θ̃c,k,sig, a trimming step is added at each iteration. For clustering, disposing of231

a local minimum is enough, as enhanced in the numerical illustration section, since we can232

remove bad centers in θ̃c,k or in θ̃c,k,sig with the parameter Threshold in Algorithm 1.233

3 Persistence-based clustering from power-functions-based filtrations234

3.1 Persistence for power-functions-based filtrations235

Set fm,ω,Σ : x ∈ Rd 7→ mini∈I ‖x−mi‖2Σ−1
i

+ ωi, an anisotropic power-function indexed by236

a set I = [[1, c]] and with the ωis sorted in non-decreasing order. As above-mentioned, the237

sublevel sets V t = f−1
m,ω,Σ((−∞, t]) are unions of at most c ellipsoids Eti = BΣi

(mi,
√
t− ωi),238

non empty as soon as t ≥ ωi. In particular, each sublevel set of fm,ω,Σ contains at most c239

connected components. Each connected component of V t, V ti is indexed by the smallest index240

i ∈ I such that mi belongs to the component. With a language abuse, we call connected241

component Vi, the family of connected components (V ti )t∈T that gets born at time t = bi = ωi242
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and dies at a time t = di when V ti merges with another connected component V tj for some243

j ≤ i. Note that d1 = ∞. The lifetime of the component V ti , di − bi, is called persistence244

or prominence of the component i. This merging information is encoded in a barcode or a245

dendrogram. In these two representations, each line is associated to a component Vi, has246

length di − bi, and begins at the height bi. The dendrogram is obtained from the barcode by247

linking the bars associated to merging components, at a height given by the merging time.248

When m is a point set X, Σi = Id and ωi = 0 for every i, clustering points accordingly249

to the connected components of V t boils down to the classical single-linkage clustering250

procedure, with t > 0, calibrated in accordance with the dendrogram. This procedure is not251

robust to outliers. In this paper, we consider an adjacent procedure, similar to the ToMATo252

algorithm [12], based on the prominence of components. To be precise, in the clustering253

scheme, a component Vi cannot merge with another component Vj at a time t larger than254

ωi + Stop, for some parameter Stop. In other words, components with large prominence will255

never die in this clustering procedure. This is the purpose of Algorithm 1 in the next section.256

257

In order to better visualize the prominence of the components, we represent their lifetimes258

in a persistence diagram. A persistence diagram is a multiset of points (bi, di) ∈ R2 that lie259

above the diagonal b = d. Each point (bi, di) is associated to a connected component Vi. The260

notion of persistence diagram was introduced by Edelsbrunner et al. in [16], in the broader261

framework of homology, and allows to compute lifetimes of additionnal features such as loops,262

voids etc. It is defined for filtrations that are regular enough, on triangulable spaces such263

as Rd. The proper notion of regularity is the notion of q-tameness [11]. In [7, Proposition264

3.5], Buchet et al. proved that the DTM is q-tame. The proof of [7] can be straightforwardly265

adjusted for distance functions to compact sets and most importantly, for anisotropic power266

functions, provided that the eigenvalues of the matrices Σi are all positive. A sketch of proof267

is given in the Appendix, in Section C.268

Since distance to compact sets, distance-to-measure and anisotropic power functions are269

q-tame, the persistence diagrams associated to their filtrations are well defined. They can270

be compared through the bottleneck distance, a distance between two diagrams D and D′271

defined as the minimal value of maxx∈D,y∈D′ |y−φ(x)|∞ among functions φ that pair points272

in D with points in D′, with some points potentially paired to diagonal points. Diagrams273

associated to interleaved filtrations are close, according to the following theorem.274

I Theorem 3 (Stability of persistence diagrams [11, 9, 13]). If two filtrations V and W are275

q-tame and ε-interleaved, then the persistence diagrams of these filtrations are ε-close in276

bottleneck distance.277

According to Theorem 3, the persistence diagram of any anisotropic power function278

fm,ω,Σ that is ε− ‖ · ‖∞ close to dX is ε-bottleneck close to the persistence diagram of the279

sublevel sets of dX . Consequently, prominence of the connected components of X can be280

deduced from the diagram associated to fm,ω,Σ, for ε small enough. This bottleneck closeness281

occurs with large probability for a regular manifold X for the c-PDTM built from a noisy282

sample from X , according to [6]. No such result has been proved yet for the c-PLM. Anyway,283

intuitively, its sublevel sets are good approximations of the manifold X , with the advantage284

that they are made of less ellipsoids, and that these ellipsoids are oriented accordingly to285

the manifold, i.e. with large eigenvalues on the tangent space and small eigenvalues on its286

orthogonal. This will be confirmed in the numerical illustrations section.287

By construction, the persistence diagram (for connected components) associated to the288

filtration of the sublevel sets of fm,ω,Σ coincides with the persistence diagram associated to289

the anisotropic weighted Čech complex Cech(fm,ω,Σ). Consequently, we can forget about the290
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ellipsoids and focus on the simplicial complex filtration, which can be computed and stored291

efficiently, in a c× c matrix Mat = (ti,j)i,j∈I . Such a matrix contains the times of appearance292

of vertices and of merging of connected components in Cech(fm,ω,Σ). The clustering scheme293

of this paper exposed just below is based on such a merging matrix Mat.294

3.2 An algorithm for persistence-based clustering295

Consider (Gt)t∈R a filtration of sub-graphs of G, a graph with c nodes. Based on this filtration,296

we define an algorithm, strongly inspired from the ToMATo algorithm [12]. The clustering297

scheme is guided by the persistence of the connected components in (Gt)t∈R, and preserves298

components with large prominence. We assume that the nodes of G are labeled such that the299

node labeled i gets born before the node labeled j, when i ≤ j. The procedure is as follows.300

A connected component gets born when a node gets born, with the same label. A component301

changes of label at each time t for which it merges with a component with smaller label in Gt,302

unless its prominence is larger than some parameter Stop. The prominence of a node or a303

component is defined as the lifetime of the component in the filtration (i.e. the elapsed time304

between the birth of the node and the time t such that a node with smaller index is present305

in its connected component in Gt). The resulting clustering is given by the label of the nodes306

at time t = +∞. It contains exactly labels of edges with a prominence larger than Stop. In307

this clustering scheme, we decide that nodes born after some time parameter Threshold are308

not relevant; they are removed. This procedure is implemented in Algorithm 1.309

Algorithm 1 Persistence-based Clustering Algorithm310

310 Data: Mat, Threshold, Stop
311 Result: Color, Birth, Death
312 Initialization ;
313 c ← max{i | Mat[i,i] ≤ Threshold} ; Mat ← Mat[1:c,1:c] ;
314 Birth ← [Mat[i,i] for i in 1:c] ; Death ← [∞ for i in 1:c] ;
315 indice ← 1 ; I ← 1 ; time ← Mat[I,I] ; Color ← [] ;
316 while time <∞ do
317 if time = Mat[I,I] then
318 Component I appears ;
319 indice ← indice + 1 ; Mat[I,I] ← ∞ ; Color[I] ← I;
320 else
321 (col_max, col_min) ← (max(Color[I],Color[J]) , min(Color[I],Color[J]));
322 if time - Birth[col_max] ≤ Stop then
323 Components col_max and col_min merge ;
324 Replace all entries col_max by col_min in Color ;
325 Death[col_max] ← time ;
326 else
327 Component col_max will never die ;
328 end
329 Mat[i,j] ←∞ for every i, j ≤ min(indice,c) such that
330 (Color[i],Color[j]) ∈ {(col_min, col_max), (col_max, col_min)};
331 end
332 I,J ← arg mini,j≤min(indice,c) Mat[i,j] ; time ← Mat[I,J]
333 end

This algorithm requires a merging matrix Mat = (ti,j)i,j∈I , with I = [[1, c]]. We define its311

coefficients by ti,i, the birth time of the node i in the filtration (Gt)t∈T ; for i > j, ti,j the312
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birth time of the edge [i, j] and for i < j, ti,j =∞. The vector Color contains the resulting313

clustering, the vector Birth, the birth time of the components and Death their death time.314

Note that Death[1] is always +∞. When (Gt)t∈T is the filtration of the sublevel sets of some315

power function fm,ω,Σ, the matrix Mat has coefficients given by ti,i = ωi and for i > j ≥ 1,316

ti,j the intersecting time of the ellipsoids Eti and Etj , given by Proposition 1.317

In practice, to label points in X (generated around X ), we consider an approximation318

of d2
X based on a family m of c centers. Set m′, the centers not removed and labeled by319

Algorithm 1, and ω′ and Σ′ the corresponding parameters. Clustering points in X is made320

accordingly to these labels and to the Voronoi decomposition of Rd, based on m′, ω′ and Σ′:321

x ∈ X has the same label as m′i if ‖x −m′i‖2Σ′−1
i

+ ω′i ≤ ‖x −m′j‖2Σ′−1
j

+ ω′j for every j.322

Since fm∗,ω∗,Σ∗ approximates d2
X , in order to deal with outliers, we remove (i.e. assign the323

label 0) the points x ∈ X for which fm′,ω′,Σ′(x) is the largest. Note that a power function is324

homogeneous to the square of a distance function. Therefore, for positive weights ω, it could325

be more appropriate to consider the filtration of sublevel sets of
√
fm,ω,Σ instead of fm,ω,Σ.326

The best complexity of Algorithm 1 (O(c3) comparisons) is obtained when Stop = ∞,327

with 2c iterations of the algorithm. The worst complexity (O(c4)) is obtained when Stop = 0,328

with O(c2) iterations. This is fast when c is much smaller than the sample size (e.g. for329

c-PLM and c-PDTM), and does not depend on the dimension. In the experiments of Section330

4, Algorithm 1 runs much faster than the computation of the c-PLM and the c-PDTM.331

332

In practice, just as Chazal et al. [12], we recommend to run Algorithm 1 several times. A333

first time with Threshold = Stop = ∞ to calibrate the parameter Threshold, in order to334

remove bad nodes (i.e. nodes with late birth and short lifetime). A second time with this335

parameter Threshold and Stop = ∞, to measure the prominence of the components and336

select the number of clusters (via the parameter Stop), as the number of components with337

prominence much larger than others. More details on the calibration of these two parameters,338

from the persistence diagrams (Birth[i], Death[i])i∈I , are given in Section 4.1. The final339

clustering is obtained from Color, after running Algorithm 1 with these two parameters.340

Giving a sense to an optimal minimal prominence Stop is possible for distance functions.341

For instance, for the sublevel-sets filtration of dX , Stop can be chosen as half of the minimal342

distance between two distinct components of X . Consequently, for any ε − ‖ · ‖∞-close343

approximation of dX , taking Stop− ε leads to a perfect clustering, provided that 2ε < Stop.344

The parameter Threshold is primordial, especially for the c-PLM function. Indeed, the345

algorithm for the c-PLM is based on θ̃c,k, a local minimizer of the criterion Rc,k. Consequently,346

some ellipsoids Ei are far from the support, or in a wrong direction. Thus, their weight347

ωi (and thus Birth[i]) is large with respect to other well-placed ellipsoids, due to a large348

variance term vyi,Σi,k. Such bad ellipsoids are removed for a suitable parameter Threshold.349

3.3 Connection to other persistence-based clustering methods350

In the sequel, we display different graph filtrations, to be used for persistence-based clustering,351

with Algorithm 1. For each of these filtrations, we give a summarize of the corresponding352

matrices Mat, in Table 1, with the convention that ti,i ≤ tj,j when i ≤ j.353

ToMATo Algorithm [12] rests on a graph filtration based on a graph G and a function354

f defined on the nodes of G. Morally, Gt is the sub-graph of G that contains the nodes i355

such that f(i) ≤ t, and the edges [i, j] if and only if i and j are in Gt. Chazal et al. mostly356

studied this method for G, a Rips graph of a set X ⊂ Rd, and for f(i), the DTM to X at Xi.357

The DTM-filtration [1] corresponds to the 1-skeleton of the nerve of the union of balls358
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(⋃
x∈X B(x, rt(x))

)
t>0 with rt(x) = −∞ for t < dX,k(x) and rt(x) = (tp − dpX,k(x))

1
p for359

t ≥ dX,k(x), for some p ≥ 1 and with the convention that B(x,−∞) is empty. In Table 1, we360

give the coefficients for p = 1. The DTM-filtration with p = 2 was actually introduced in [7],361

leading to what we call Power filtration, which coincides with the sublevel-sets filtration of362

the square of a power distance. We also consider additional power-functions-based filtrations,363

from the k-witnessed distance [18], the c-PDTM [6] and the c-PLM [4].364

Table 1 Coefficients of Mat for the different methods, with the notation f = dX,k for the DTM
to X with number of nearest neighbors parameter k.

365

366

367 Method ti,i ti,j for i < j

368 ToMATo f(i) max(f(i), f(j))(1[i,j]∈G)−1

369 DTM-filtration f(i)
(
‖Xi−Xj‖+f(i)+f(j)

2

)
1‖Xi−Xj‖>|f(i)−f(j)| + f(i)1f(i)−f(j)≥‖Xi−Xj‖

370 fm,ω ωi
(ωj−ωi)2+2(ωj+ωi)‖mj−mi‖2+‖mj−mi‖4

4‖mj−mi‖2

371
√

fm,ω
√

ωi

√
(ωj−ωi)2+2(ωj+ωi)‖mj−mi‖2+‖mj−mi‖4

4‖mj−mi‖2

372 fm,ω,Σ ωi Given by Proposition 1
373 Power filtration

√
fm,ω with m = X and ω = (f2(x))x∈X

374 Witnessed
√

fm,ω with (m,ω) = (mx,k, vx,k)x∈X
375 c-PDTM fm,ω with (m,ω) = (my,k, vy,k)y∈yc,k

376 c-PLM fm,ω,Σ with (m,ω, Σ) = (my,Σ,k, vy,Σ,k + log(det(Σ)), Σ)(y,Σ)∈θc,k

4 Numerical illustrations377

4.1 A complete illustration of the method378

Consider the target X , a set of three curves in R2. We generate X = (Xi)i∈[[1,Ns+No]],379

a set of Ns = 500 signal points (Xi = Yi + Zi)i∈[[1,Ns]], with Yi uniform on X and Zi380

Gaussian with standard deviation σ = 0.02 ; corrupted by No = 200 outliers, uniform on381

[−1.5, 2.5]2. We compare the clustering scheme based on Algorithm 1 with the sublevel382

sets of the c-PLM, to the target labels in Figure 2 (left). Parameters are set to c = 50383

centers, k = 10 nearest neighbors, sig = 520 points to consider as signal, and it = 100384

iterations and n_ini = 10 initializations to compute a suitable local optimum θ̃c,k,sig of the385

c-PLM-criterion Rc,k,sig. Since the DTM dX,k is large for outliers, we select sig from the386

curve ([dX,k(Xi), i ∈ [[1, Ns +No]]] in non-decreasing order), as the point of slope break ; see387

Figure 1 (left). The DTM can be replaced by any not-trimmed approximation of the c-PLM.388

We run Algorithm 1 a first time with the parameters Threshold =∞ and Stop =∞, and390

display the persistence diagram (Birth[i], Death[i])i∈[[1,c]], in Figure 1 (middle). In order to391

have 3 clusters, we select Stop = 5.62, the height of a line parallel to the diagonal, separating392

3 points from the others. We run Algorithm 1 a second time with this new parameter, which393

results in the clustering C1 of Figure 2 (middle). A sublevel set of the function fθ̃c,k
is394

represented by the union of ellipses. Note that some ellipses have a bad position. This results395

in a bad clustering. We use the parameter Threshold to remove them. In Figure 1 (middle),396

6 points are on the right side, separated from the other points with a vertical line (of abscissa397

−10.27). Then, we run Algorithm 1 with Threshold = −10.27 and Stop =∞. According to398

the persistence diagram in Figure 1 (right), since 3 points are well-separated from the other399

ones with a large band parallel to the diagonal (containing a line parallel to the diagonal,400

with height 12), we recover the number of clusters, 3, and set Stop = 12. The clustering C2401
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Figure 1 Parameters selection heuristics389

obtained with Threshold = −10.27 and Stop = 12 is represented in Figure 2 (right). The402

bad ellipses have been removed. Denote by θ̃′c,k,sig, the subfamily of θ̃c,k,sig made of centers403

not removed by the procedure. The color of any point x in Figure 2 (right) is given by the404

label in Color (label returned by the Algorithm 1) of its associated center (y,Σ) in θ̃′c,k,sig.405

This is the center (y,Σ) such that fθ̃′c,k,sig
(x) = ‖x−my,Σ,k‖2Σ−1 + vy,Σ,k + log(det(Σ))). The406

labels of the |X| − sig points with largest fθ̃′c,k,sig
-value are set to 0.407

Note that for large datasets, computing θ̃′c,k,sig may take some time. We can compute it408

from a sub-sample of X, run Algorithm 1, and label points in X accordingly.409
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Figure 2 Two resulting clusterings, with ellipses410

We compare the performance of the two clusterings C1 and C2. In terms of outliers411

detection, this can be assessed via the proportion of signal points labeled as outliers (0.034412

for C1, 0.016 for C2) and as the proportion of outliers labeled as signal points (0.185 for C1,413

0.14 for C2). As expected from Figure 2, removing bad ellipses reduces these proportions414

and thus improves the outliers detection performance. In terms of clusters recovering, the415

normalized mutual information (NMI) is classically used. It equals 1 for a perfect clustering416

and 0 for a terrible clustering. When considering outliers as a cluster with label 0, we got417

NMI = 0.586 for C1 and NMI = 0.841 for C2. The NMI computed on the signal points418

labeled as signal points is NMI = 0.634 for C1 and NMI = 1 for C2, a perfect clustering.419
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4.2 Comparison of the different methods on synthetic datasets420

We compare different clustering methods on two synthetic datasets : the previous dataset421

with 3 curves, and datapoints from a polygonal curve of 14 segments, as in [8]. We set422

parameters to Ns = 500, No = 200, σ = 0.02, c = 50, k = 10, it = 100, n_ini = 10 and423

Threshold chosen such that 10 means are removed from the c-PLM-centers θ̃c,k,sig. For424

the Tomato algorithm we set r = 0.12, the radius of the Rips graph. We used the function425

dbscan from the R packages dbscan [19], with parameters eps = 0.15 and minPts = 10;426

tclust and specc from the tclust [17] and kernlab [21] R packages.427
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Figure 3 Violin plots representing the NMI computed on signal points, detected as signal points.428

For the three curves, the parameter r for ToMATo is chosen such that the graph is not429

connected, the clusterings are acceptable but have more than 3 clusters. The c-PLM often430

performs perfectly, and sometimes performs poorly, since the number of bad ellipses removed431

is fixed to 10 and not calibrated according to the heuristics, and their is some instability. We432

observe the same clustering problem as in Figure 2 (middle) for the other methods since the433

lines are close, compared to the distance between sample points from the same line. For the434

polygonal line of 14 segments, all methods except the c-PLM and tclust put centers of clusters435

on massive parts of X (the center and the intersections of 3 segments). For the c-PLM and436

tclust, most clusters coincide with segments. Nonetheless, their is some instability (much437

less pronounced for the c-PLM), since the algorithms are based on local minimizers.438

4.3 Applications to real datasets439

4.3.1 Recovering fleas species, based on 6 measurements440

We picked the dataset flea from the R-package tourr [29], initially from [23]. This dataset441

contains records of 6 measurements for 74 males insects from the Palaeartic, from three442

different species : Heptapotamica, Concinna, Heikertingeri. The variables correspond to443

measurements on the tarsus, the aedeagus and the head. We normalized data so that the444

mean and variance of each of the 6 variables are respectively 0 and 1. In Table 2, we computed445

the NMI between the true species and the clustering returned by different methods. We ran446

each algorithm 10 times with at most 100 iterations. For every k-nearest-neighbours-based447

algorithm, we set k = 10. For ToMATo, we set r = 1.9 so that the graph is connected ;448

for the c-PLM and the c-PDTM, c = 50 and for dbscan, eps = 1.5 and minPts = 10. The449

3-PDTM and 3-PLM methods consists in clustering data according to the weighted Voronoi450

cells given by the optimal centers and covariance matrices.451



C. Brécheteau 13

Table 2 NMI between clustering of fleas and their true specie452

453 Without
Algorithm 1

k-means tclust DBSCAN Spectral clustering 3-PLM 3-PDTM
454 0.825 0.848 0.647 1 1 1

455 With
Algorithm 1

ToMATo Witnessed power DTM-filtration c-PLM hier. c-PDTM hier.
456 0.628 0.906 1 1 1 1

The methods based on the decomposition of R6 into 3 (weighted and/or curved) Voronoi457

cells are efficient: at most 3 bad labels for k-means and tclust and all labels correct for their458

“robust” versions, the 3-PDTM and the 3-PLM. The perfect performance of these two last459

functions is due to the weights that force the centers of cells to lie in massive areas for X. The460

bad performance of ToMATo is due to the difficulty to select the parameter r for the Rips461

graph, the small number of points, and the fact that the inverse of the DTM should be used462

instead of the DTM, as recommended by the authors. Nonetheless, we made the choice to463

use the DTM since the other methods (witnessed distance, power function, DTM-filtration,464

c-PLM and c-PDTM) are based on filtrations from approximations of the DTM, and almost465

all of these methods perform perfectly. The method dbscan performs poorly since labels 14466

points as outliers. Nonetheless, the points considered as signal are well clustered.467

4.3.2 Clustering a earthquake dataset468

We consider a set of 12790 points representing the longitude and latitude of measured earth-469

quakes of magnitude non smaller than 5.0, between the 01/01/1970 and the 01/01/2010. This470

dataset was picked from the website http://earthquake.usgs.gov/earthquakes/eqarchives/epic/.471

We used Algorithm 1 with an approximation of the c-PLM based on a sub-sample of472

2000 points from the dataset, with parameters c = 200, k = 10 and for it = 50 iterations.473

We restricted matrices Σ to have eigenvalues smaller than 50 by thresholding them. The474

persistence diagram in Figure 4 suggests that the dataset has 4 or 10 clusters. Moreover, the475

curve of the sorted values of the c-PLM approximation on the pointset in Figure 4 suggests476

to keep sig = 12250 points as signal points. See Figure 5 for the corresponding clustering.477
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Clustering, 4 groups
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Figure 5 Earthquake clustering with Algorithm 1, for the c-PLM function.479
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Therefore, we set m′1 =
√
D−1

1 PT1 m1 and y =
√
D−1

1 PT1 x−m′1. With this notation, it comes566

that yT y ≤ t − ω1 is the new equation of Et1, and (y −m′2)T Σ̃(y −m′2) ≤ t − ω2 the new567

equation of Et2, with Σ̃ =
√
D1P

T
1 Σ−1

2 P1
√
D1 and m′2 =

√
D−1

1 PT1 m2 −m′1. Set m̃ = P̃Tm′2568

and z = P̃T y, for P̃ orthogonal and D̃ diagonal matrices such that Σ̃ = P̃ D̃P̃T . With these569

notations, Et1 has equation zT z ≤ t− ω1 and Et2 has equation (z − m̃)T D̃(z − m̃) ≤ t− ω2 in570

some coordinate system.571

The ellipsoid Et1 appears at time t = ω1, this is before Et2 that appears at time t = ω2.572

Consequently, when ‖m̃‖ ≤
√
ω2 − ω1, the first time t for which Et1 and Et2 intersect is given573

by t1,2 = ω2.574

From now on, we may assume that ‖m̃‖ >
√
ω2 − ω1. Ellipsoids Et1 and Et2 merge at a575

time t1,2 > ω2, and their intersection is given by some point z ∈ Rd that satisfies:576 ∑
i(zi − m̃i)2λi = t1,2 − ω2577 ∑
i z

2
i = t1,2 − ω1578

∃λ > 0, λz = −D̃(z − m̃).579

The last assumption comes from the fact that Et1,2
1 and Et1,2

2 are tangent at their intersection580

point z. Moreover, the tangent space of Et1,2
1 at z is orthogonal to 2z, the gradient of z̃ 7→ z̃T z̃581

at z ; and the tangent space of Et1,2
2 at z is orthogonal to 2D̃(z − m̃). Then, necessarily, λ582

satisfies the following equation (c.f. Equation (2)):583

d∑
i=1

λi − λ2

(λ+ λi)2λim̃
2
i = ω2 − ω1.584

The eigenvalues of Σ̃, (λi)i∈[[1,d]] are positive. For every a > 0, fa : λ 7→ a−λ2

(λ+a)2 a is decreasing,585

with
∑d
i=1 fλi

(0)m̃2
i = ‖m̃‖2 > ω2 − ω1 and limλ→+∞

∑d
i=1 fλi

(λ)m̃2
i = −

∑d
i=1 λim̃

2
i < 0.586

Consequently, Equation (2) has a unique solution λ. It comes that the ellipsoids Et1 and Et2587

intersect at time t1,2 = ω2 +
∑d
i=1

(
λm̃i

λ+λi

)2
λi for this unique λ.588

B Proof of Proposition 2589

Since the anisotropic weighted Vietoris-Rips complex VRm,ω,Σ(t) is the flag complex of590

the 1-skeleton of the weighted anisotropic Čech complex Cechm,ω,Σ(t), Gtm,ω,Σ, the second591

inclusion of (3) is trivially satisfied. We now focus on the first inclusion of (3). For every592

i ∈ I and t > 0, we have that593

B
(
mi,

√
λmin
√
t− ωi

)
⊂ BΣi

(
mi,
√
t− ωi

)
⊂ B

(
mi,

√
λmax

√
t− ωi

)
. (5)594

Set t > 0 and 0 < t′ ≤ λmin
λmax

d+1
2d t. If σ ∈ VRm,ω,Σ(t′), then, for every i, j ∈ σ, the intersection595

BΣi
(mi,

√
t′ − ωi)∩BΣj

(mj ,
√
t′ − ωj) is nonempty and according to (5), B(mi,

√
λmax

√
t′ − ωi)∩596

B(mj ,
√
λmax

√
t′ − ωj) is nonempty. According to the Vietoris-Rips theorem of [3, Theorem597

3.2],
⋂
i∈σ B(mi,

√
λmax

√
2d
d+1
√
t′ − ωi) is nonempty and since the weights are non-negative598

and
√

λmax
λmin

2d
d+1 ≥ 1, it comes that

⋂
i∈σ B(mi,

√
λmin
√
t− ωi) is nonempty, and finally,599

according to (5), σ ∈ Cechm,ω,Σ(t).600

C Sketch of proof for the q-tameness of power functions601

Any function f of this type is both continuous and proper (the pre-image of any compact set602

is included in a union of ellipsoids and thus compact).603
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Since Rd is triangulable, there is some homeomorphism h between Rd and some locally604

finite simplicial complex C, then for any fixed t, we can define a complex Ct that contains605

f−1((−∞, t]), and f ◦ h|Ct
is continuous. Just as [7, Proposition 3.5], the conclusion follows606

from [11, Theorem 2.22] that states that the filtration of the sublevel sets of a continuous607

function defined on a finite polyhedron is q-tame.608
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