
HAL Id: hal-02397099
https://hal.science/hal-02397099

Submitted on 6 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping Imprecise Computation Tasks on
Cyber-Physical Systems

Lei Mo, Angeliki Kritikakou

To cite this version:
Lei Mo, Angeliki Kritikakou. Mapping Imprecise Computation Tasks on Cyber-Physical Systems.
Peer-to-Peer Networking and Applications, 2019, pp.1726-1740. �10.1007/s12083-019-00749-9�. �hal-
02397099�

https://hal.science/hal-02397099
https://hal.archives-ouvertes.fr

Peer-to-Peer Networking and Applications manuscript No.
(will be inserted by the editor)

Mapping Imprecise Computation Tasks on
Cyber-Physical Systems

Lei Mo · Angeliki Kritikakou

Received: date / Accepted: date

Abstract By allocating a set of tasks onto a set of nodes and adjusting the exe-
cution time of tasks, task mapping is an efficient approach to realize distributed
computing. Cyber-Physical Systems (CPS), as a particular case of distributed sys-
tems, raise new challenges in task mapping, because of the heterogeneity and other
properties traditionally associated with Wireless Sensor and Actuator Networks
(WSAN), including shared sensing, acting and real-time computing. In addition,
many of the real-time tasks of CPS can be executed in an imprecise way. Such
systems accept an approximate result as long as the baseline Quality-of-Service
(QoS) is satisfied and they can execute more computations to yield better results,
if more system resources is available. These systems are typically considered un-
der the Imprecise Computation (IC) model, achieving a better tradeoff between
QoS and limited system resources. However, determining a QoS-aware mapping
of these real-time IC-tasks onto the nodes of a CPS creates a set of interesting
problems. In this paper, we firstly propose a mathematical model to capture the
dependency, energy and real-time constraints of IC-tasks, as well as the sensing,
acting, and routing in the CPS. The problem is formulated as a Mixed-Integer
Non-Linear Programming (MINLP) due to the complex nature of the problem.
Secondly, to efficiently solve this problem, we provide a linearization method that
results in a Mixed-Integer Linear Programming (MILP) formulation of our original
problem. Finally, we decompose the transformed problem into a task allocation
subproblem and a task adjustment subproblem, and, then, we find the optimal
solution based on subproblem iteration. Through the simulations, we demonstrate
the effectiveness of the proposed method.

Keywords Cyber-Physical Systems · Task Mapping · Imprecise Computation ·
Problem Linearization and Decomposition

This research is funded by ANR ARTEFACT (AppRoximaTivE Flexible Circuits and Comput-
ing for IoT) project (Grant No. ANR-15-CE25-0015), and National Natural Science foundation
of China (Grant No. 61403340).

Lei Mo and Angeliki Kritikakou
Univ Rennes, INRIA, CNRS, IRISA, 35042 Rennes Cedex, France
E-mail: lei.mo@inria.fr, angeliki.kritikakou@irisa.fr

2 Lei Mo, Angeliki Kritikakou

1 Introduction

Cyber-Physical Systems (CPS) consist of a set of wireless nodes with sensors
and actuators that not only have the capability to measure the specific physical
variables (e.g., temperature, illumination intensity, voltage), but also have the ca-
pability to control them through the actions preformed by the actuators. Energy
efficiency and real-time execution are critical and challenging issues for the system
design [1]. This is because most of the nodes have energy constraints, especially
when they operate on battery power. In addition, real-time responsiveness is re-
quired by many CPS applications, e.g., target tracking, since missing of the task
deadline can cause serious results.

Processing and transmitting large amount of sensing data and control com-
mands in real-time applications require in-network processing [2]. To reduce the
network traffic, instead of collecting and sending all data to a remote base station,
part of the processing is done on-site with nodes have computational capability,
so that only a small part of pre-processed data needs to be sent. For instance, in
target tracking application, the sensor nodes analyze the captured images on-site
by extracting the important features, and send only the features for further pro-
cessing to the base station or actuator nodes. This model of computation is known
as “Fog/Edge-computing” [3]. In this context, task mapping plays an essential
role in in-network processing by solving the matching problem between tasks and
nodes subject to application requirements.

In some application domains, such as image processing, target tracking, real-
time heuristic search, and control engineering, less accurate results computed be-
fore the deadline are preferable than accurate, but too late, results [4]. This state-
ment holds because a real-time application has to provide a result before a given
deadline. When not enough time is available, approximate results are acceptable
as long as the baseline Quality-of-Service (QoS) is satisfied and the results are
provided in time. For instance, in target tracking application, frames with a lower
quality are better than missing frames; an estimation of target’s location in time
is better than an accurate location arriving too late. In these domains, the ap-
plications can be modeled as Imprecise Computation (IC) tasks [5], where a task
is logically decomposed into a mandatory subtask and an optional subtask. All
the mandatory subtasks must be completed before the deadline to have an ac-
ceptable result, while the optional subtasks can be left incomplete at the cost of
reduced quality. The QoS of such systems increases with the longer execution of
the optional subtasks [6].

We can classify prior work on task mapping according to the following criteria:
whether the: 1) tasks are precise or imprecise, 2) platform is multicore system
or networked system, and 3) solution is optimal or heuristic. Table 1 provides
a summary of some representative papers from the literature. Task mapping is
a well-known problem in embedded system community, no matter the tasks are
precise or imprecise, and the multicore platforms are homogeneous [4,7,8,12–15] or
heterogeneous [3,9–11,16]. However, the work deals with task mapping problem on
networked system is rare, and most of them consider precise tasks [2,6,17–20]. Two
main keypoints that differentiate our work compared to the existing literature:

1. Compared with the task allocation in multicore platform, the task allocation in
networked system, such as CPS, is constrained in the sense that some tasks have

Mapping Imprecise Computation Tasks on Cyber-Physical Systems 3

Table 1 Classification of some task mapping approaches

Reference
Task Targeted Platform Solution

Precise Imprecise Multicore Sys. Networked Sys. Optimal Heuristic
[3]

√ √ √

[7]
√ √ √

[8]
√ √ √

[9]
√ √ √

[10]
√ √ √

[11]
√ √ √

[4]
√ √ √

[6]
√ √ √

[12]
√ √ √

[13]
√ √ √

[14]
√ √ √

[15]
√ √ √

[16]
√ √ √

[2]
√ √ √

[17]
√ √ √

[18]
√ √ √

[19]
√ √ √

[20]
√ √ √

Proposed
√ √ √

a one-to-one correspondence with the nodes, while the allocation constraints
of other tasks may not be restricted. For example, a temperature measurement
task and a temperature control task can be placed only on nodes with tem-
perature sensors and actuators, respectively. On the other hand, the task that
processes the measurement readings and determines the control action has less
restriction in the allocation. Moreover, the applications in CPS consist of com-
munication tasks. This data communication between tasks on different nodes
in a CPS also affects other nodes in the system, because the nodes involved in
routing have to spend energy for the data transmission.

2. In the classical task mapping on networked system, the tasks are assumed to be
precise. However, in the cases where the tasks are imprecise, a set of additional
variables with respect to the optional subtask adjustment, are introduced into
problem. The values of these variables affect the 1) objective function, as the
aim of the QoS-aware task mapping is to maximize QoS function constructed
by the optional subtasks, and 2) energy and real-time constraints, since the
longer optional subtasks are executed, the more energy and time is required to
execute them. The extension from the precise task framework to the imprecise
task framework is not straightforward, as the non-linear relationship between
the optimization variables makes the problem hard to solve directly. Since
different task allocation schemes lead to different optional subtask adjustment,
the task allocation and optional subtask adjustment should be jointly addressed
to find the optimal solution.

1.1 Related Work

1.1.1 Energy-aware Task Mapping

Existing works that focus on the energy-aware task mapping problem aim at min-
imizing the energy consumption or the execution time of tasks (makespan) un-

4 Lei Mo, Angeliki Kritikakou

der system resource and application constraints. In multicore task mapping sce-
narios [3,7–11], Mixed-Integer Non-Linear Programming (MINLP) is a popular
method to formulate the problems of mapping independent tasks [9] or dependent
tasks [7,8] onto the multicore platforms. To efficiently solve these complex prob-
lems, in [9] the MINLP problem is relaxed to a convex problem by replacing the
binary variables with the continuous variables, and, then, the relaxed problem is
solved using polynomial-time methods. Based on the structure of the MINLP prob-
lem, it can be transformed to a Mixed-Integer Linear Programming (MILP) by
approximating the quadratic function with a linear function [7] or by introducing
additional constraints to decouple the non-linear items [8]. Thus, the transformed
problem (MILP) can be solved using commercial solver, such as CPLEX. In [10],
the independent task mapping problem on homogeneous multicore (e.g., ARM
big.LITTLE) is formulated as Linear Programming (LP) as the platform supports
task migration. When tasks are dependent, the task mapping problem is formu-
lated as Integer Non-Linear Programming (INLP) in [3] and solved using heuristic.
Similar problem is studied in [11], but the problem is formulated as Integer Lin-
ear Programming (ILP), and, thus, this problem can be optimally solved using
Benders Decomposition (BD) [21].

In networked system task mapping scenarios [2,17–20], the dependent task
mapping and Dynamic Voltage and Frequency Scaling (DVFS) joint-design prob-
lem is studied in [2]. This problem is formulated as MINLP and solved by a
heuristic method. The works in [17,20] mainly focus on the task-to-node allo-
cation problem, and, thus, INLP is used to formulate the problem of mapping
dependent tasks onto the nodes in networked system. The INLP problem is first
transformed to an ILP by introducing additional constraints, and, then, solved
using heuristics. In [18,19], the energy consumption of nodes spent in communica-
tion and the makespan can be minimized by allocating the tasks to proper nodes.
However, the tasks in aforementioned approaches are not modifiable, and, thus,
no exploration of the QoS improvement through the optional subtasks adjustment
is considered.

1.1.2 QoS-aware Task Mapping

Other works consider the QoS-aware task mapping problem using the IC-task
model and having as a goal to maximize the QoS under a set of real-time and/or
energy supply constraints, e.g., [4,6,12–16]. The target platform considered in [12]
is a single core platform. Therefore, the task allocation problem is not taken into
account. Although the works in [4,6,13–16] target at multicore platforms, some
assumptions are made during the problem formulation. More precisely, the task-
to-processor allocation is fixed and given in advance for all the tasks in [6], while
in [4,14,16] the tasks are independent, and in [13,15] the multicore platforms
are homogeneous. When taking multiple system requirements into account, the
complex coupling between the optimization variables makes the problem difficult
to solve, especially when the coupling is non-linear and non-convex. The methods
that used to solve the aforementioned problems can be classified into two main
classes. The first class includes the methods based on heuristics, e.g., [6,13,14,16].
The second class includes the methods that always produce an optimal solution,
e.g., [4,12,15]. Although the heuristics are able to find the feasible solution in a
short time, they do not provide the bounds on solution quality, whereas they are

Mapping Imprecise Computation Tasks on Cyber-Physical Systems 5

sensitive to changes in the problem structures. To the best of our knowledge, no
existing work consider QoS-aware task mapping problem in CPS.

1.2 Contributions

Our goal is to solve the mapping problem of data communication dependent IC-
tasks on the nodes in CPS. We determine which node the task should execute on
(task allocation), and adjust the optional part of each task (task adjustment), such
that the system QoS is maximized, while meeting the energy and the real-time
constraints of tasks. Our main contributions are summarized as follows:

1. We formulate the QoS-aware IC-task mapping problem in CPS as an MINLP
problem, which takes the dependency, energy and real-time constraints of IC-
tasks, as well as the sensing, acting, and routing of the CPS into account.

2. We prove that by introducing the auxiliary variables and the additional con-
straints into the problem, the nonlinear items, which are introduced by the
product of the variables related to the task allocation and optional subtask
adjustment, can be linearized. Thus, the MINLP problem can be transformed
to an MILP. As this linearization does not change the objective function as
well as the feasible region of the problem, the problem transformation does
not cause performance degradation.

3. A novel Optimal Task Mapping algorithm, referred to as OTM, is proposed to
optimally solve the transformed problem. The basic idea of OTM algorithm is
similar to closed-loop control and it is based on BD framework. BD decomposes
an MILP problem into a Master Problem (MP) and a Slave Problem (SP), and,
then, solves them iteratively by utilizing the solution of one into the other.
The MP involves an ILP only considering the binary variables. The continuous
variables are considered in the SP, which is a LP. Unlike the classical BD
approach, we prove that by relaxing the MP to an LP to find a feasible solution
and by replacing the optimal solution of MP with the feasible solution during
the iteration between the MP and the SP, the optimality of the solution is still
guaranteed.

1.3 Paper Organization

The remainder of this paper is organized as follows. Section 2 presents the system
model and formulates the problem under study. Section 3 and Section 4 design
the problem linearization method and the optimal task mapping algorithm, re-
spectively. Finally, Section 5 shows the simulation results and Section 6 concludes
this work.

2 System Models and Problem Formulation

2.1 Motivational Example

As the temperature control example [17] illustrated in Fig. 1, a room is instru-
mented with six wireless nodes {θ1, . . . , θ6}, where three nodes are equipped with

6 Lei Mo, Angeliki Kritikakou

temperature sensors, and two nodes are connected to actuators to control the tem-
perature of the room. The nodes equipped with temperature sensors and actuators
are marked with T and A, respectively. We need to periodically determine the av-
erage temperature in the room, compare it with a given threshold, and produce the
corresponding action. A task represents the sensing, processing, or action activity
in CPS. Tasks τ1, τ2 and τ3 are temperature measurement tasks and generate
temperature readings of size s14, s24, s34. Task τ4 processes these readings (e.g.,
calculates average value or performs state estimation [1]) and transmits the result
to task τ5, which determines the action to be taken through the control algorithm.
Tasks τ6 and τ7 act upon the data generated by task τ5 and control the outputs
of the actuators.

Device Level

!1

!2

!3

!4 !5

!6

!7

Data Level
s14

s24

s34

s45

s56

s57

? ?

"1

"2

"3

"4

"5

"6
T

A
T

T

A

Fig. 1 Temperature monitor and control application.

Each task τi is composed of a mandatory subtask and an optional subtask,
characterized in terms of the number of execution cycles Mi and oi, respectively.
The optional subtask executes immediately after its corresponding mandatory
subtask completes and the QoS of the obtained result highly depends on the
optional subtasks. Therefore, the execution time tei and computation energy of
each task τi will change with the optional part of this task.

The example of Fig. 1 shows the task mapping problem (i.e., task allocation
and adjustment) we address in this work.

– First, the placement (task allocation) of the sensing tasks (τ1, τ2, τ3) and the
action tasks (τ6, τ7) are restricted to the nodes that have relevant capabilities.
However, tasks (τ4, τ5) can be placed on any of the nodes. Moreover, the task
allocation scheme will influence the energy spend at the nodes during the
communication since the tasks are dependent.

– Second, of find an optimal schedule for the tasks (task adjustment), two ob-
jectives that must be simultaneously achieved, namely: 1) meet the deadlines
of mandatory and optional subtasks and the energy supply of the nodes, and
2) adjust the optional subtasks to maximize the QoS. Specifically, as the task
mapping example shown in Fig. 2, each task τi must be completed within a
relative deadline di and all the tasks assigned to each node θk (including task

Mapping Imprecise Computation Tasks on Cyber-Physical Systems 7

execution time tei and data communication time tij between τi and τj) must be
finished within a global deadline H. Moreover, the energy of node θk spent for
computation and communication should be no more than its available energy
Elk. These two objectives are both important, yet often incompatible one with
the other. In other words, the real-time and energy constraints may require to
sacrifice optional subtasks with great value of system.

!1

!2

!3

!4

!5

!6
t14

"1
"2
"3
"4
"5

"6 M1 o1
te1

t24
M2 o2

te2

t34
M3 o3

te3

d3

t45
M4 o4

te4

t57

M5 o5
te5

M7 o7
te7

t56
M6 o6
te6

H

!7

Fig. 2 Task mapping scheme associated with the example shown in Fig. 1.

The notations followed in this paper are: for a matrix m, mij is the (i, j)th

element of m; for a vector v, vi is the ith element of v; (·)T is the operator for the
transpose of a matrix/vector. Let x = [x1 . . . , xn]T and y = [y1 . . . , yn]T . x � y
represents xi ≤ yi, (1 ≤ i ≤ n).

2.2 Task Model

We consider a task set T = {τ1, . . . , τi, . . . , τN} of N real-time IC-tasks that are
released at the same time 0 and share a common scheduling horizon H. Tasks are
dependent, periodic and non-preemptive. The task set T is modeled by a Directed
Acyclic Graph (DAG) G(V,E), where V represents the tasks and E indicates the
data dependencies between the tasks. We introduce a N×N Task Execution Order
(TEO) matrix p = [pij] to describe the dependency on task execution. If pij = 1,
task τi precedes task τj and τj is the closest task of τi, otherwise, pij = 0. The
TEO matrix associated with the example illustrated in Fig. 1 is expressed as:

p =



0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0



8 Lei Mo, Angeliki Kritikakou

Each task τi is described by a tuple {oi,Mi, Oi, di, li}. li is the period of task
τi, which is also equal to the hyper-period H. Oi is the maximum cycles of the
optional subtask of τi, i.e., 0 ≤ oi ≤ Oi. A common assumption of existing studies
is that the QoS produced is a linear function of optional cycles [4,6], where this
function increases its value uniformly with the optional cycles. To quantify the
relationship between QoS and optional cycles, each task τi is associated with a
linear function fi(oi) [15].

2.3 System Model

We consider a CPS contains M wireless nodes where Ms nodes {θ1, . . . , θMs
}

equipped with sensors and Ma nodes {θMs+1, . . . , θMs+Ma
} equipped with actua-

tors (Ms+Ma ≤M). The system operates in rounds (i.e., scheduling horizon H),
where in each round all the tasks in task set T are executed once. The processor
of each node θk is characterized by a given Voltage/Frequency (V/F) pair (vk, fk).
Processors of sensors and actuators can operate in two model: one is run model,
where the power consumption consists of dynamic power P dk and static power P sk ,
i.e., P ck = P sk + P dk ; the other one is idle model, where the power consumption is
P idlek . The dynamic power and static power of a processor θk under the given V/F
pair (vk, fk) are expressed as P dk = Cdkfkv

2
k and P sk = Cskv

ρk
k , respectively [10].

Csk, ρk and Cdk are constants depending on processor type. We assume that when
a processor has no task to execute, it transmits into idle mode immediately. The
transition time and energy overhead is considered very small compared to that
required to execute a task, and is assumed to be incorporated into the execution
time and energy of the task [9]. Processors of sensors and actuators are assumed
to be heterogeneous. When task τi is executed on node θk, the corresponding task
execution time is calculated as Mi+oi

fkλik
, where λik ∈ (0, 1] is the execution efficiency

of processor θk when it executes task τi [9]. The energy consumption of transmit-
ting and receiving l-bit data over a distance d that is less than a threshold dth are
defined as Etx(l, d) = Eelecl + εampld

2 and Erx(l) = Eelecl, respectively, where
Eelec and εamp are the hardware parameters [2]. We consider system is energy
constrained in the sense that the energy budget Elk of θk at the lth round is fixed
that cannot be replenished during the scheduling horizon H.

2.4 Problem Formulation

The problem consists of the objective function to maximize the QoS of the system
subject to a set of real-time and energy constraints. Therefore, we determine 1)
which node the task should executed on (task allocation), and 2) the optional
cycles of each task (task scheduling). To formulate the problem, we introduce the
following variables: 1) task allocation matrix s = [qik]N×M , and 2) task scheduling
vector o = [oi]N×1. In addition, we assume that the networked system runs with
a given routing protocol [22], and, thus, the following matrices are known [17]:
1) routing energy cost matrix r = [rijk]M×M×M , 2) communication data matrix
s = [sij]N×N , and 3) communication time matrix t = [tij]N×N . The symbols used
in the problem formulation are summarized in Table 2.

Mapping Imprecise Computation Tasks on Cyber-Physical Systems 9

Table 2 Symbols used in the problem formulation

Parameters Description

Ma number of actuators
Ms number of sensors
M number of nodes
N number of tasks
Ra set of actuators
Rs set of sensors
T set of tasks
H scheduling horizon

θk the kth node

τi the ith task
(vk, fk) voltage/frequency pair of node θk
P sk power consumption of node θk
P idlek idle power consumption of node θk
Elk available energy of node θk at the lth round
Mi mandatory cycles of task τi
Oi maximum optional cycles of task τi
fi(oi) QoS function associated with task τi
λik execution efficiency of node θk when it executes task τi

pij =

{
1 if task τi proceeds τj and τj is the nearest task of τi

0 else

rijk energy consumed per unit of data at node θk while routing
messages from θi to θj

sij size of data that task τi produces for τj
tij upper bound of time required to transmit the data with

size sij from task τi to τj

Variables Description

qik =

{
1 if task τi executes on node θk

0 else

oi optional cycles of task τi
giβiγ auxiliary (binary) variable
hik auxiliary (continuous) variable

Let N = {1, . . . , N}, M = {1, . . . ,M}, Ms = {1, . . . ,Ms} and Ma = {Ms +
1, . . . ,Ms + Ma}. Taking the objective and all the constraints mentioned above,
the Primal Problem (PP) is given by

PP : min
q,o
−
∑
i∈N

fi(oi) (1)

s.t.

{
C1,C2,C3,C4,

qik ∈ Z+, oi ∈ R+, 0 ≤ oi ≤ Oi, ∀i ∈ N , ∀k ∈M.

In PP, we need to deal with the following constraints:

10 Lei Mo, Angeliki Kritikakou

– Task allocation constraints:

C1a :
∑
k∈M

qik = 1, ∀i ∈ N . (2)

C1b : qik = 1, ∀i, k ∈Mm. (3)

C1a imposes that each task τi is executed on one node. Let Mm denote the
subscript set of nodes (i.e., sensors and actuators) and tasks that have fixed
matching. C1b shows that some task allocation decisions are restricted. As the
example illustrated in Fig. 1, we have q16 = q22 = q31 = q65 = q74 = 1.

– Energy constraints:

C2a : Ecommk + Ecompk + Esk ≤ Elk, ∀k ∈Ms, (4)

C2b : Ecommk + Ecompk + Eak ≤ Elk, ∀k ∈Ma, (5)

C2c : Ecommk + Ecompk ≤ Elk, ∀k ∈M, ∀k /∈Ms,Ma. (6)

C2 indicates that the total energy consumed by node θk during the scheduling
horizon H should not exceed the energy supply Elk, where Ecommk , Ecompk , Esk
and Eak are the communication cost, computation cost, sensing cost and action
cost, respectively. At each node θk, the energy spent in data transmission in
each round is given by

Ecommk =
∑
i∈N

∑
j∈N

∑
β∈M

∑
γ∈M

sijqiβqiγrijk, ∀k ∈M.

On the other hand, if qik = 1, task τi is assigned to node θk. Based on the task
allocation vector [q1k, . . . , qNk]T with respect to node θk, the tasks allocated
to node θk is

∑
i∈N qik(Mi+oi). If node θk is assigned with V/F level (vk, fk),

the time required to executed the tasks allocated to θk is
∑
i∈N qik

Mi+oi
fkλik

.
Subtracting the task execution time, the idle time of node θk being in the
hyper-period H is H−

∑
i∈N qik

Mi+oi
fkλik

. At each node θk, the computation cost
in each round is given by

Ecompk =

(∑
i∈N

qik
Mi + oi
fkλik

)
P ck +

(
H −

∑
i∈N

qik
Mi + oi
fkλik

)
P idlek

=
(
P ck − P idlek

)(∑
i∈N

qik
Mi + oi
fkλik

)
+HP idlek , ∀k ∈M.

– Real-time constraints

C3 :
∑
k∈M

qik
Mi + oi
λikfk

≤ di, ∀i ∈ N , (7)

C4 :
∑
i∈N

qik

(
Mi + oi
λikfk

+
∑
m∈M

pmitmi

)
≤ H, ∀k ∈M. (8)

Before executing a task τi, we need to collect all the data generated from its
previous dependent tasks. If pmi = 1, task τm precedes τi is τm is the closest
task of τi, and, thus, in the worst case, the time spent to transmit the data
required by the execution of task τi is

∑
m∈M pmitmi. C3 bounds the execution

time of task τi cannot exceed the relative deadline di and C4 implies that all
the tasks assigned to node θk must be executed within the hyper-period H.

Mapping Imprecise Computation Tasks on Cyber-Physical Systems 11

For tractability reasons, when solving the above problem, we consider oi as
a continuous variables and then we round the result down. Since tasks execute
typically hundreds of thousands of cycles, one cycle is a very fine-grained unit [12].
Due to the product terms qiβqjγ and qikoi appear in C2 −C4, PP is an MINLP
problem, which is NP-hard.

3 Problem Linearization

Lemma 3.1 Let b1, b2 and g denote the binary variables. The nonlinear constraint
g = b1b2 can be replaced by the following three linear constraints: g ≤ b1, g ≤ b2
and g ≥ b1 + b2 − 1.

Proof The inequalities g ≤ b1 and g ≤ b2 ensure that g will be zero if either b1 or
b2 are zero. The inequality g ≥ b1 + b2 − 1 makes sure that g takes the value of 1
if both variables b1 and b2 are set to 1. ut

Lemma 3.2 Given constants s1, s2 > 0 and two constraint spaces S1 = {[h, b, x]|h =
bx,−s1 ≤ x ≤ s2, b ∈ {0, 1}} and S2 = {[h, b, x]|−bs1 ≤ h ≤ bs2, h+bs1−x−s1 ≤
0, h− bs2 − x+ s2 ≥ 0, b ∈ {0, 1}}, then S1 = S2.

Proof Based on h = bx and −s1 ≤ x ≤ s2, we have −bs1 ≤ h ≤ bs2. And further,
we obtain (b − 1)(x + s1) ≤ 0 and (b − 1)(x − s2) ≥ 0 due to −s1 ≤ x ≤ s2 and
b ∈ {0, 1}. Hence, we have h+ bs1− x− s1 ≤ 0 and h− bs2− x+ s2 ≥ 0. S1 → S2

holds.

If b = 0, based on −bs1 ≤ h ≤ bs2, h+bs1−x−s1 ≤ 0 and h−bs2−x+s2 ≥ 0,
we have h = 0 and −s1 ≤ x ≤ s2. For the same reason, if b = 1, we have
−s1 ≤ h = x ≤ s2. S2 → S1 holds. ut

Based on Lemma 3.1 and Lemma 3.2, we propose a two-step linearization
method. The details are as follows.

– Step 1: We replace each item qiβqiγ with an auxiliary (binary) variable giβiγ
and add the following constraints into the problem formulation:

C5 : giβjγ ≤ qiβ , ∀i, j ∈ N , ∀β, γ ∈M, (9)

C6 : giβjγ ≤ qjγ , ∀i, j ∈ N , ∀β, γ ∈M, (10)

C7 : giβjγ ≥ qiβ + qjγ − 1, ∀i, j ∈ N , ∀β, γ ∈M. (11)

– Step 2: We replace each item xikoi with an auxiliary (continuous) variable
hik and add the following constraints into the problem formulation:

C8 : hik ≤ qikOi, ∀i ∈ N , ∀k ∈M, (12)

C9 : hik − oi ≤ 0, ∀i ∈ N , ∀k ∈M, (13)

C10 : hik − qikOi − oi +Oi ≥ 0, ∀i ∈ N , ∀k ∈M. (14)

12 Lei Mo, Angeliki Kritikakou

Introducing the auxiliary variables giβiγ , hik and the additional constraints
C5 −C10 in PP, this problem can be linearized as follow:

PP1 : min
q,g,o,h

−
∑

i∈N
fi(oi) (15)

s.t.



∑
k∈M

qik = 1, ∀i ∈ N ,

qik = 1, ∀i, k ∈Mm,

Ecommk + Ecompk + Esk ≤ Elk, ∀k ∈Ms,

Ecommk + Ecompk + Eak ≤ Elk, ∀k ∈Ma,

Ecommk + Ecompk ≤ Elk, ∀k ∈M, ∀k /∈Ms,Ma,∑
k∈M

qikMi + hik
λikfk

≤ di, ∀i ∈ N ,

∑
i∈N

(
qikMi + hik

λikfk
+ qik

∑
m∈M

pmitmi

)
≤ H, ∀k ∈M,

C5 −C10,

qik, giβjγ ∈ Z+, oi, hik ∈ R+, 0 ≤ oi, hik ≤ Oi,
∀i, j ∈ N , ∀k, β, γ ∈M.

Since binary variables (q, g) and continuous variables (o,h) are coupled with
each other linearly, PP1 is an MILP problem, which is much easier to solve than
the MINLP-based PP.

Remark 3.1 Since the linearization does not change the feasible region of the prob-
lem, and the objective functions of PP and PP1 are the same, solving PP1 is
equivalent to solving PP, i.e., the optimal values of objective function of PP and
PP1 are the same.

4 Optimal Task Mapping Algorithm

In this section, we propose an optimal algorithm OTM to efficiently solve PP1.
Its structure is shown in Fig. 3. Using concise notions, the objective function and
constraints of PP1 are rewritten as

PP2 : min
x,y

Φ = fTy (16)

s.t.

{
Ax � b1,
Cx+Dy � b2,

where x (y) is the vector of binary (continuous) variables. f is the vector of the
objective function coefficient. A, C and D are the constraint coefficient matrices.
b1 (b2) is a u (v)-dimensional vector.

Instead of simultaneously solving the binary variables x and the continuous
variables y, OTM: 1) decomposes PP2 into two smaller subproblems with fewer
variables: an ILP-based Master Problem (MP) with binary variables x and an
LP-based Slave Problem (SP) with continuous variables y, and 2) solves them by
using the solution of one to the other. By doing so, the computational complexity
can be significantly reduced.

Mapping Imprecise Computation Tasks on Cyber-Physical Systems 13

MP
Task allocation

problem

SP
Task scheduling

problem

FCs
Exclude non-optimal solutions
for task allocation problem

ICs
Exclude infeasible solutions
for task allocation problem

Temporary solution for
task allocation problem

Corresponding solution for
task scheduling problem

Fig. 3 The structure of OTM algorithm.

4.1 MP and SP formulation

The MP considers all the binary variables x and the corresponding part of the
objective function and the constraints of PP2. It also includes a set of constraints
called Benders cuts. The SP, on the other hand, is a LP incorporating the binary
variables as parameters whose values are determined by solving the MP. Based
on the structure of PP2, at the kth iteration, the corresponding MP and SP are
formulated as follows:

MP : Φl(k) = min
x,Φ̂

Φ̂ (17)

s.t.


Ax � b1,
C11 : Φ̂ ≥ λ(i)T (Cx− b2), ∀i ∈ A,
C12 : 0 ≥ λ̂(j)T (Cx− b2), ∀j ∈ B,

SP : Φu(k) = min
y�0

fTy (18)

s.t. Cx(k) +Dy � b2,

where x(k) is the optimal solution of the MP at the kth iteration. C11 is the
set of Feasibility Constraints (FCs) and C12 is the set of Infeasibility Constraints
(ICs). The constraints in C11 and C12 are Benders cuts. A and B are the sets of
iterations that the dual of the SP (19) has the bounded and unbounded solution,
respectively. Comparing SP with PP2, we observe that they have the same problem
formulation with the exception that the binary variables x in the SP are fixed and
given in advance.

Let Φ∗ denote the optimal value of Φ. Note that MP is a minimization problem
and the constraints regarding the continuous variables y are relaxed. Solving the
MP yields a lower bound Φl(k) of Φ∗. On the other hand, as the values for binary
variables x(k) may be just a feasible solution (not optimal yet), solving the SP
yields an upper bound Φu(k) of Φ. The upper and lower bounds are updated by
introducing new constraints into C11 and C12.

14 Lei Mo, Angeliki Kritikakou

Remark 4.1 Since the objective function of the PP2 only contains the continuous
variables y, and the MP only considers the binary variables x, an auxiliary variable
(continuous) Φ̂, which has the same physical meaning as Φ, is introduced into the
MP as the objective function, as well as to facilitate the iteration between the MP
and the SP. Although the MP includes the continuous variable Φ̂, this problem
can be solved by only considering the binary variables x [23].

4.2 Iterations Between MP and SP

At the initial iteration (k = 0), C11 and C12 are set to null. The lower and upper
bounds are set to Φl(0) = −∞ and Φu(0) = +∞, respectively. The MP solution
x(0) is given arbitrarily, as long as it satisfies the constraints Ax(0) � b1. We
continue iterations until a stopping criterion Φu(k)− Φl(k) ≤ ε is met, where ε is
a small positive tolerance.

– Step 1: Solve the dual of the SP (DSP)

DSP : max
λ�0

λT (Cx(k)− b2) (19)

s.t. f +D′λ � 0.

where λ = [λi]v×1 are the Lagrange multipliers. Since DSP is a LP, it can be
solved very fast using polynomial-time algorithms such as simplex method.

– Step 2: Based on the solution of the DSP, a new constraint is generated.
Case 1 : If DSP is infeasible, PP2 has no feasible solution.
Case 2 : If DSP has a bounded solution λ(k), SP is feasible under the given
x(k) due to the strong duality [24]. Thus, we set A ← {k} ∪A, and the upper
bound is updated by

Φu(k + 1) = min{Φu(k),λ(k)T (Cx(k)− b2)}.

Since Φu(k) − Φl(k) > ε, x(k) is a non-optimal solution. To exclude the non-
optimal solution x(k), a new FC:

Φ̂ ≥ λ(k)T (Cx− b2) (20)

is generated and added into C11 at the (k + 1)th iteration.
Case 3 : If DSP has an unbounded solution, i.e., λ(k)T (Cx(k) − b2) = +∞,
SP is infeasible under the given x(k) due to the strong duality. Thus, we set
B ← {k} ∪ B. To exclude the infeasible solution x(k), a new IC:

0 ≥ λ̂(k)T (Cx− b2) (21)

is generated and added into C12 at the (k + 1)th iteration, where λ̂(k) is the
optimal solution of DFCP (23) at the kth iteration.

– Step 3: With a new FC or IC added into MP at the (k + 1)th iteration, the
MP is solved again to obtain a new solution x(k + 1) for the next iteration.

Mapping Imprecise Computation Tasks on Cyber-Physical Systems 15

4.3 Theoretical analysis

Theorem 4.1 The non-optimal and infeasible values of the binary variables x are
excluded by the constraints C11 and C12.

Proof Let Φ̂(k) denote the optimal solution of MP at the kth iteration. In Case
2, since x(k) is not the optimal solution of PP2, we have Φ̂(k) < λ(k)T (Cx(k)−
b2). Thus, the non-optimal solution x(k) can be excluded by the constraint Φ̂ ≥
λ(k)T (Cx− b2), i.e., we have (20).

In Case 3, the SP has no feasible solution under the given solution x(k). This
problem may be feasible if the positive variables ξ = [ξi]v×1 are introduced to relax
the constraints Cx(k) +Dy � b2. Based on this idea, we construct a Feasibility
Check Problem (FCP):

FCP : min
y,ξ�0

1T ξ (22)

s.t. Cx(k) +Dy � b2 + ξ,

and solve its dual problem (DFCP):

DFCP : max
λ̂�0

λ̂
T

(Cx(k)− b2) (23)

s.t.

{
1− λ̂ � 0,

DT λ̂ � 0,

where λ̂ = [λ̂i]v×1 are the Lagrange multipliers.

Since DFCP is a LP, it can be solved using the similar method for solving
DSP. Let ξ(k) denote the optimal solution of FCP at the kth iteration. If the SP
is infeasible, some constraints in (18) cannot be satisfied, and, thus, their related
relaxation variables are non-zero. We have 1T ξ(k) > 0, and further, 1T ξ(k) =
λ̂(k)T (Cx(k) − b2) > 0 due to the strong duality. Thus, the infeasible solution
x(k) can be excluded by the constraint 0 ≥ λ̂(k)T (Cx−b2), i.e., we have (21). ut

Theorem 4.2 The FC and IC generated by solving the DSP with x′(k) do not
exclude the optimal solution (x∗,y∗) of PP2, where x′(k) is an arbitrary feasible
solution of the MP.

Proof If the DSP has a bounded solution λ′(k) with x′(k), a new FC:

Φ̂ ≥ λ′(k)T (Cx− b2) (24)

is generated. On the other hand, if the DSP has an unbounded solution with x′(k),
a new IC:

0 ≥ λ̂′(k)T (Cx− b2) (25)

is generated, where λ̂
′
(k) is the solution of DFCP with x′(k) at the kth iteration.

Next, we prove that the solution (x∗,y∗) does not violate the constraints (24)
and (25). If the DSP has a bounded solution λ′(k) with x′(k), suppose that x∗

and Φ∗ = fTy∗ violate the constraint (24), i.e., Φ∗ < λ′(k)T (Cx∗ − b2). This

16 Lei Mo, Angeliki Kritikakou

contradicts the fact that Φ∗ is the optimal value of the objective function of the
DSP with x∗:

Φ∗ = max
λ�0

λ(k)T (Cx∗ − b2) ≥ λ′(k)T (Cx∗ − b2).

Hence, the FC does not exclude the optimal solution x∗. If the DSP has an
unbounded solution with x′(k), x′(k) is excluded by the constraint (25). Since
x∗ 6= x′(k), x∗ does not violate the constraint (25). ut

Remark 4.2 Since MP is an ILP, this problem is still hard to solve directly, com-
pared with the LP-based SP. Moreover, a new FC or IC is added into the MP at
each iteration. The size of MP will increase with the number of iterations. There-
fore, the computational complexity of OTM is dominated by the cost of solving
the MP at each iteration. Based on Theorem 4.2, we can circumvent the above
difficulties by replacing the optimal solution of MP x(k) with the feasible solution
x′(k) during the iteration between the MP and the SP. Such a feasible solution
can be efficiently found by using the heuristics such as Feasibility Pump (FP)
method [25].

Theorem 4.3 At each iteration with a new FC (24) or IC (25) added into the
MP, the solution obtained by OTM converges to the global optimal value Φ∗ within
a finite number of iterations.

Proof Based on Theorem 4.1 and Theorem 4.2, as well as the fact that the dimen-
sion of binary variables x is finite, the solution converges to the global optimal
value within a finite number of iterations. ut

Remark 4.3 Since SP and DSP are equivalent due to the strong duality, and FCs
and ICs can be constructed by the solution of DSP, we solve DSP instead of solve
SP. Similarly, since FCB and DFCB are equivalent due to the strong duality, and

λ̂
T

(Cx− b2) is a function with respect to variables x, but not 1T ξ (i.e., 0 ≥ 1T ξ
is an invalid constraint for the MP), we solve DFCB instead of solve FCB.

Algorithm 1 summarizes the implementation details of OTM algorithm.

5 Simulation Results

For evaluating our approach, we use an indoor environment management appli-
cation for monitoring Heating, Ventilation, and Air Conditioning (HVAC) [1,17].
We consider a set of nodes spread across a room, with some nodes equipped with
temperature sensors and actuators that are able to control the temperature of a
region. The aim of the system is to maintain a desirable temperature level at some
points of interesting in the room, by correlating and processing the data from the
sensors installed in the room, and using it to adjust the outputs of the actuators.

The processor parameters are adopted from [10] and listed in Table 3. We
assume that the nodes attached to actuators operate with V/F levels of big core,
while the other nodes operate with V/F levels of LITTLE core, as the actuator
nodes usually have higher capabilities than the sensor nodes. The Worst Case
Execution Cycles (WCECs) of Mi and Oi are assumed to be in the range of

Mapping Imprecise Computation Tasks on Cyber-Physical Systems 17

Algorithm 1: Optimal Task Allocation (OTM) Algorithm

Input: A,C,D, f , b1, b2;
Output: x∗,y∗;
Set initial values: k = 0, Φl(0) = −∞, Φu(0) = +∞, {x(0)|Ax(0) � b1}, ε;
C11 and C12 are set to null;
while |Φu(k)− Φl(k)| > ε do

Solve MP (17) to obtain x′(k) and Φl(k);
Solve DSP (19) with x′(k);
if DSP has bounded or unbounded solution then

if Solution is bounded then
A ← {k} ∪ A;
Add constraint (24) to C11;

Φu(k + 1) = min{Φu(k),λ′(k)T (Cx′(k)− b2)};
else
B ← {k} ∪ B;
Add constraint (25) to C12;

end

else
PP2 (16) is infeasible;

end
k ← k + 1;

end
x∗ = x(k);
Submit x∗ into PP2 to solve y∗;

Table 3 V/F levels and power model parameters of a big core and a little core

big
vk (V) 0.93 0.96 1.0 1.04 1.08 1.1 1.15 1.2 1.23
fk (GHz) 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Csk = 1.478, Cdk = 0.471, ρk = 0.379
LITTLE

vk (V) 0.9 0.94 1.01 1.09 1.2 Csk = 1.191, Cdk = 0.153
fk (GHz) 0.25 0.3 0.4 0.5 0.6 ρk = 0.757

[4 × 107, 6 × 108] [16]. The QoS function is set to
∑
i∈N fi(oi) =

∑
i∈N oi [15].

The relative deadline of task τi and the scheduling horizon are assumed to be
di = min∀k{Mi+Oi

fk
} and H =

∑
i∈N di, respectively. The available energy of

node θk at the lth round is set to Elk = ηEhk , where Ehk = pck

∑
i∈N (Mi+Oi)

fk
is

the minimum energy required to execute all the tasks and η = 0.9 is an energy
efficiency factor. The parameters of energy consumption of transmitting Etx and
receiving Erx are set to Eelec = 50 nJ/b, εamp = 10 pJ/b/m2 and dth = 10
m [2]. The nodes are randomly deployed. Each node can communicate with the
nodes within its communication range and the network is assumed to be fully
connected. The routing energy cost matrix r and the communication time matrix
t are obtained by using a shortest path algorithm on the network, assuming equal
energy spent by all nodes on a route, and all data items are assumed to be of unit
size (sij = 1) [17]. We set M = 20, Ms = 10, Ma = 5 and randomly generate
DAGs with 30, 35, 40, 45 and 50 tasks.

Note that different processor and task parameters lead to different values in the
parameters A,C,D, f , b1, b2 for the PP2. However, the problem structures under

18 Lei Mo, Angeliki Kritikakou

different values of parameters are the same, and, thus, the proposed methods are
still applicative.

In this section, we present the following evaluation results:

– The QoS, the convergence and the computation time of the proposed OTM
algorithm with optimal approach: Branch and Bound method (B&B) [26] and
evolutionary approach: Genetic Algorithm (GA) [27].

– The QoS and the energy consumption of the OTM solving another IC-task
mapping problem: Energy-Optimization (NRG-OPT).

NRG-OPT : min
q,g,o,h

Eall (26)

s.t.



∑
k∈M

qik = 1, ∀i ∈ N ,

qik = 1, ∀i, k ∈Mm,∑
k∈M

qikMi + hik
λikfk

≤ di, ∀i ∈ N ,

∑
i∈N

(
qikMi + hik

λikfk
+ qik

∑
m∈M

pmitmi

)
≤ H, ∀k ∈M,

C5 −C10,

qik, giβjγ ∈ Z+, oi, hik ∈ R+, 0 ≤ oi, hik ≤ Oi,
∀i, j ∈ N , ∀k, β, γ ∈M.

where Eall =
∑
k∈Ms

(Ecommk + Ecompk + Esk) +
∑
k∈Ma

(Ecommk + Ecompk +
Eak) +

∑
k∈M,k/∈Ms,Ma

(Ecommk + Ecompk) is the total energy consumption of
the nodes.

The simulations are performed on a laptop with quad-core 2.5 GHz Intel i7 pro-
cessor and 16 GB RAM, and the algorithms are implemented in Matlab 2016a.

The QoS of using OTM and B&B to solve PP1 and using GA to solve PP1
under different task number N is shown in Fig. 4(a). From it we observe that
the solutions achieved by OTM and B&B are same, and, thus, OTM also finds
the optimal solution. Moreover, the QoS achieved by OTM is higher than GA.
Although GA is able to solve complex non-linear programming problem, such as
MINLP, the optimality of the solution is hard to guarantee [28].

The computation time of OTM, B&B and GA under different task number N is
evaluated in Fig. 4(b). We observe that with N increasing, the computation time of
OTM, B&B and GA both grows. However, OTM has a shorter computation time
than B&B and GA. This is because for an optimization problem, its computational
complexity increases significantly with the number of variables and constraints.
Thus, solving smaller problems iteratively with less variables (i.e., MP and SP)
is more efficient than solving a single large problem. This result is in line with
the comparison in [29]. Moreover, compared with OTM, the structure of GA is
more complex. Thus, GA has a longer computation time. From Fig. 4, we can see
that the problem transformation from MINLP-based PP to MILP-based PP1 is
necessary, as it can simplify the problem structure and make the optimal solution
easier to find.

Fig. 5(a) shows the convergence of OTM algorithm, with task number N = 30.
From it we observe that by introducing the feasibility and infeasibility constraints

Mapping Imprecise Computation Tasks on Cyber-Physical Systems 19

30 35 40 45 50
Task number (N)

2

3

4

5

6

7

8

Q
o
S

×10
8

OTM

B&B

GA

(a)

30 35 40 45 50
Task number (N)

0

200

400

600

800

1000

1200

1400

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

OTM

B&B

GA

(b)

Fig. 4 (a) QoS of OTM, B&B and GA with N varying; (b) Computation time of OTM, B&B
and GA with N varying.

into the MP during the iterations {1, 2, 4, 5} and {3, 6}, respectively, the upper
bound θu(k) and the lower bound θl(k) quickly converge to the optimal value
θ∗. Fig. 5(b) shows the number of iterations required by OTM to converge under
different task number N . The result shows that the convergence iteration of OTM
almost increases linearly with N . An implementation detail about OTM is that
when the gap between the upper and lower bounds is small, the convergence speed
is slow. To deal with this limitation, we apply the classical BD when the gap close
to zero.

1 2 3 4 5 6

Iteration (k)

0

20

40

60

O
b
je

c
ti
v
e
 v

a
lu

e
 l
o
g
(-
Φ

)

Upper bound

Lower bound

1 2 3 4 5 6

Iteration (k)

0

1

2

3

4

5

C
o
n
s
tr

a
in

t
n
u
m

b
e
r

Feasibility constraint

Infeasibility constraint

(a)

30 35 40 45 50
Task number (N)

5

10

15

20

25

It
e
ra

ti
o
n
 n

u
m

b
e
r

(b)

Fig. 5 (a) Convergence of OTM; (b) Convergence iteration of OTM with N varying.

Fig. 6 explores the performance (QoS and computation time) of OTM with the
stopping criteria ε varying. We set task number N = 50 and change the value of
ε between the range of [0.1, 1, 10, 100]. We assume that when ε = 0.1, the optimal
solution is found. On the other hand, if we select ε 6= 0.1, the iterations between
the MP and the SP will continue until the gap between θu(k) and θl(k) is smaller
than ε and the DSP is feasible under the solution of the MP (x(k)). Thus, the

20 Lei Mo, Angeliki Kritikakou

value of ε can be used to control the quality of the solution. From Fig. 6, we
observe that the QoS and computation time decrease when ε increases and the
convergence speed of OTM are very fast at the beginning of the iteration process.
If we just want to find a feasible solution, we can run OTM and stop the iteration
when the fist time that the DSP has a bounded solution (assume that at the kth

iteration). Thus, the optimal task adjustment decision y(k) is found under the
given task allocation decision x(k).

0 20 40 60 80 100

ǫ

0

1

2

3

4

5

6

7

8

Q
o
S

×10
8

(a)

0 20 40 60 80 100

ǫ

0

100

200

300

400

500

600

700

800

900

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

(b)

Fig. 6 (a) QoS of OTM with ε varying; (b) Computation time of OTM with ε varying.

Fig. 7(a) compares the QoS and the energy consumption of QoS-OPT (15)
with NRG-OPT (26) under different task number N . From Fig. 7(a), we observe
that when using NRG-OPT to perform IC-task mapping, the QoS is always equal
to 0, which is obviously lower than the QoS achieved by QoS-OPT. This is because
if the mandatory subtask of a task is fixed, the smaller the optional subtask, the
lower the energy consumed to execute this task. On the other hand, Fig. 7(b) shows
that QoS-OPT consumes more energy than NRG-OPT, as QoS-OPT maximizes
QoS and therefore executes more optional subtasks than NRG-OPT. However,
the consumed energy of QoS-OPT is always no more than the supplied energy∑
k∈MElk, as the energy constraint C2 must be satisfied. Thus, using QoS-OPT

to perform IC-task mapping provides a better balance between QoS-enhancing
and energy-utilizing.

6 Conclusion

In this paper, we address the problem of IC-tasks mapping on CPS, with the goal
of maximizing system QoS without violating the real-time and the energy con-
straints. We first formulate an MINLP model to describe this joint-design problem.
And then, we propose an MILP formulation of this model without performance
degradation. By doing so, we avoid high computational complexity and we use a
simpler model to find an optimal solution. To efficiently solve the MILP problem,
we propose an OTM algorithm. It reduces the computational complexity by iter-
ating two smaller, but highly correlated, subproblems: an MP for task allocation,

Mapping Imprecise Computation Tasks on Cyber-Physical Systems 21

30 35 40 45 50
Task number (N)

0

1

2

3

4

5

6

7

8

Q
o
S

×10
8

QoS-OPT

NRG-OPT

(a)

30 35 40 45 50
Task number (N)

200

400

600

800

1000

1200

1400

1600

1800

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

m
J
)

QoS-OPT

NRG-OPT

(b)

Fig. 7 (a) QoS of QoS-OPT and NRG-OPT with N varying; (b) Energy consumption of
QoS-OPT and NRG-OPT with N varying.

and a SP for task adjustment. We prove that the proposed algorithm converges
to the optimal solution through finite number of iterations. The simulation re-
sults showed the effectiveness of our proposed algorithm, which outperforms other
algorithms with respect to QoS-enhancing and energy-utilizing.

References

1. L. Mo, X.H. Cao, Y.Q. Song and A. Kritikakou, “Distributed node coordination for real-
time energy-constrained control in wireless sensor and actuator networks,” IEEE Internet
Things J., vol. 5, no. 5, pp. 151–4163, 2018.

2. Y. Tian and E. Ekici, “Cross-layer collaborative in-network processing in multihop wireless
sensor networks,” IEEE Trans. Mobile Comput., vol. 6, no. 3, pp. 297–310, 2006.

3. H. Zahaf and A. E. H. Benyamina, R. Olejnik and G. Lipari, “Energy-efficient scheduling
for moldable real-time tasks on heterogeneous computing platforms,” Journal of Systems
Architecture, vol. 74, pp. 46–60, 2017.

4. H. Aydin, R. Melhem, D. Mosse and P. Mejia-Alvarez, “Optimal reward-based scheduling
for periodic real-time tasks,” IEEE Trans. Comput., vol. 50, no. 2, pp. 111–130, 2001.

5. J. W. S. Liu, W. K. Shih, K. J. Lin, R. Bettati and J. Y. Chung, “Imprecise computations,”
Proc. IEEE, vol. 82, no. 1, pp. 83–94, 1994.

6. H. Yu, Y. Ha and B. Veeravalli, “Quality-driven dynamic scheduling for real-time adaptive
applications on multiprocessor systems,” IEEE Trans. Comput., vol. 62, no. 10, pp. 2026–
2040, 2013.

7. L. Leung, C. Tsui and W. Ki, “Simultaneous task allocation, scheduling and voltage as-
signment for multiple-processors-core systems using mixed integer nonlinear programming,”
Proc. IEEE International Symposium on Circuits and Systems, pp. 309–312, 2003.

8. G. Chen, K. Huang and A. Knoll, “Energy optimization for real-time multiprocessor system-
on-chip with optimal DVFS and DPM combination,” ACM Trans. Embed. Comput. Syst.,
vol. 13, no. 3, pp. 111:1–111:21, 2014.

9. D. Li and J. Wu, “Minimizing energy consumption for frame-based tasks on heterogeneous
multiprocessor platforms,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 3, pp. 810–823,
2015.

10. H. S. Chwa and J. Seo and J. Lee and I. Shin, “Optimal real-time scheduling on two-
type heterogeneous multicore platforms,” Proc. IEEE Real-Time Systems Symposium, pp.
119–129, 2015.

11. A. Emeretlis, G. Theodoridis, P. Alefragis and N. Voros, “A logic-based Benders decom-
position approach for mapping applications on heterogeneous multicore platforms,” ACM
Trans. Embed. Comput. Syst., vol. 15, no. 1, pp. 1539–9087, 2016.

22 Lei Mo, Angeliki Kritikakou

12. L. A. Cortes, P. Eles and Z. Peng, “Quasi-static assignment of voltages and optional
cycles in imprecise-computation systems with energy considerations,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 14, no. 10, pp. 1117–1129, 2006.

13. R.C. Ravindran, C. M. Krishna, I. Koren and Z. Koren , “Scheduling imprecise task graphs
for real-time applications,” International Journal of Embedded Systems, vol. 6, no. 1, pp.
73–85, 2014.

14. I. Mendez-Diaz, J. Orozco, R. Santos and P. Zabala, “Energy-aware scheduling manda-
tory/optional tasks in multicore real-time systems,” International Transactions in Opera-
tional Research, vol. 24, no. 12, pp. 173–198, 2017.

15. L. Mo, A. Kritikakou and O. Sentieys, “Energy-quality-time optimized task mapping on
DVFS-enabled multicores,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.
37, no. 11, pp. 2428–2439, 2018.

16. T. Wei, J. Zhou, K. Cao, P. Cong, M. Chen, G. Zhang, X. S. Hu and J. Yan, “Cost-
constrained QoS optimization for approximate computation real-time tasks in heterogeneous
MPSoCs,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 9, pp.
1733–1746, 2018.

17. A. Pathak and V. K. Prasanna, “Energy-efficient task mapping for data-driven sensor
network macroprogramming,” IEEE Trans. Comput., vol. 59, no. 7, pp. 955–967, 2010.

18. A. Voinescu, D. S. Tudose and N. Tapus, “Task scheduling in wireless sensor networks,”
Proc. IEEE International Conference on Networking and Services, pp. 12–17, 2010.

19. L. Dai, Y. Chang and Z. Chen, “An optimal task scheduling algorithm in wireless sensor
networks,” International Journal of Computers Communications and Control, vol. 11, no.
1, pp. 101–112, 2011.

20. B. Billet and V. Issarny, “From task graphs to concrete actions: a new task mapping
algorithm for the future Internet of Things,” Proc. IEEE International Conference on Mobile
Ad Hoc and Sensor Systems, pp. 470–478, 2014.

21. J. F. Benders, “Partitioning procedures for solving mixed-variables programming prob-
lems,” Numerische Mathematik, vol. 4, no. 1, pp. 238–252, 1962.

22. K. Akkaya and M. Younis, “A survey on routing protocols for wireless sensor networks,”
Ad Hoc Networks, vol. 3, no. 3, pp. 325–349, 2005.

23. L. Mo, A. Kritikakou and O. Sentieys, “Decomposed task mapping to maximize QoS
in energy-constrained real-time multicores,” IEEE International Conference on Computer
Design, pp. 493–500, 2017.

24. S. Boyd and L. Vandenberghe, “Convex optimization,” Cambridge University Press, 2004.
25. M. Fischetti, F. Glover and A. Lodi, “The feasibility pump,” Math. Program., vol. 104,

no. 1, pp. 91–104, 2005.
26. S. Boyd, A. Ghosh and A. Magnani, “Branch and bound methods,” Notes for EE364b,
Stanford University, pp. 1–11, 2007.

27. E. Rothberg, “An evolutionary algorithm for polishing mixed integer programming solu-
tions,” INFORMS Journal on Computing, vol. 19, no. 4, pp. 534–541, 2007.

28. K. Genova and V. Guliashki, “Linear integer programming methods and approaches - a
survey,” Cybernetics and Information Technologies, vol. 11, no. 1, pp. 1–23, 2011.

29. C. D. Randazzo and H. P. L. Luna, “A comparison of optimal methods for local access
uncapacitated network design,” Annals of Operations Research, vol. 106, no. 1, pp. 263–286,
2001.

