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Abstract
Stochastic Rank-One Bandits Katariya et al. (2017a,b) are a simple framework for regret minimiza-
tion problems over rank-one matrices of arms. The initially proposed algorithms are proved to
have logarithmic regret, but do not match the existing lower bound for this problem. We close this
gap by first proving that rank-one bandits are a particular instance of unimodal bandits, and then
providing a new analysis of Unimodal Thompson Sampling (UTS), initially proposed by Paladino
et al. (2017). We prove an asymptotically optimal regret bound on the frequentist regret of UTS
and we support our claims with simulations showing the significant improvement of our method
compared to the state-of-the-art.
Keywords: Multi-armed bandits, unimodal bandits, rank-one bandits.

1. Introduction

We consider Stochastic Rank-One Bandits, a class of bandit problems introduced by Katariya et al.
(2017b). These models provide a clear framework for the exploration-exploitation problem of adap-
tively sampling the entries of a rank-one matrix in order to find the largest one. Consider for instance
the problem of finding the best design of a display, say for example a colored shape to be used as
a button on a website. One may have at hand a set of different shapes, and a set of different colors
to be tested. A display is a combination of those two attributes, and a priori the tester has as many
options as there are different pairs of shapes and colors. Now let us assume the effect of each factor
is independent of the other factor. Then, the value of a combination, say for instance the click rate
on the constructed button, is the product of the values of each of its attributes. The better the shape,
the higher the rate, and similarly for the color. This type of independence assumptions is ubiquitous
in click models such as the position-based model Chuklin et al. (2015); Richardson et al. (2007). It
is also closely related to online learning to rank Zoghi et al. (2017) where sequential duels allow to
find the optimal ordering of a list of options. We review the related literature in Section 4.

We formalize our example above into a Bernoulli rank-one bandit model (Katariya et al., 2017a):
this model is parameterized by two nonzero vectors u = (u1, u2, ..uK) ∈ [0, 1]K and v =
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(v1, v2, ..vL) ∈ [0, 1]L. There are K × L arms, indexed by (i, j) ∈ [K] × [L], where we use the
notation [p] := {1, . . . , p} for any positive integer p. Each arm (i, j) is associated with a Bernoulli
distribution with mean µ(i,j) := uivj . Observe that the matrix of means µ = uvT has rank one,
hence the name. We denote Θ the class of all such instances (u× v). At each time step t an agent
selects an arm K(t) = (I(t), J(t)) ∈ [K]× [L] and receives a reward r(t) ∼ B(µ(I(t),J(t))), inde-
pendently from previous rewards. To select K(t), the agent may exploit the knowledge of previous
observations and possibly some external randomness U(t). Denoting by Ft the σ-field generated
by K(1), r(1),K(2), r(2), . . . ,K(t), r(t), K(t) is measurable with respect to σ(Ft−1, U(t)).

The objective of the learner is to adjust their selection strategy to maximize the expected total
reward accumulated. The oracle or optimal strategy here is to always play the arm with largest
mean. Thus, maximizing rewards is equivalent to designing a strategy A with small regret, where
the T -step regret Rµ(T,A) is defined as the difference between the expected cumulative rewards of
the oracle and the cumulative rewards of the strategy A:

Rµ(T,A) =

T∑
t=1

[
max

(i,j)∈[K]×[L]
µ(i,j) − Eµ[µ(I(t),J(t))]

]
. (1)

Letting i? = argmaxiui and j? = argmaxjvj , we assume that ui? > ui for all i 6= i? and vj? > vj
for all j 6= j?. This assumption is equivalent to assuming that the rank-one bandit instance has a
unique optimal action, which is (i?, j?) = argmax(i,j)∈[K]×[L]µ(i,j). We let Θ? denote this class of
rank-one instance with a unique optimal arm. In this paper, we will furthermore restrict our attention
to rank-one models for which either u � 0 or v � 0. This assumption is not very restrictive, but
it rules out the possibility that ui = 0 and vj = 0 for a certain arm (i, j) (i.e. neither shape i nor
color j attract any user). We found this assumption to be necessary to exhibit a unimodal structure
in rank-one bandits.

An algorithm is called uniformly efficient if its regret is sub-polynomial in any instance (u×v) ∈
Θ. That is, for all α > 0, for all (u × v) ∈ Θ, R(T ) = o(Tα). In their paper, Katariya et al.
(2017b) provide the first uniformly efficient algorithm, Rank1Elim, for stochastic rank-one bandits,
and Katariya et al. (2017a) propose an adaptation of this algorithm tailored for Bernoulli rewards,
Rank1ElimKL. They also provide a problem-dependent asymptotic lower bound on the regret in the
line of Lai and Robbins (1985). This type of result gives a precise characterization of the regret for
a specific instance of the problem that one should expect for any uniformly efficient algorithm. We
report their result below.

Proposition 1 For any algorithm A which is uniformly efficient and for any Bernoulli rank-one
bandit problem, (u× v) ∈ Θ?,

lim inf
T→∞

Rµ(A, T )

log(T )
≥

∑
i∈[K]\i?

µi?,j? − µi,j?
kl(µi,j? , µi?,j?)

+
∑

j∈[L]/j?

µi?,j? − µi?,j
kl(µi?,j , µi?,j?)

.

where kl(x, y) = x ln(x/y) + (1− x) ln((1− x)/(1− y)) is the binary relative entropy.

In contrast to this result, the Lai and Robbins (1985) lower bound, which applies to algorithms
that are uniformly efficient for any reward matrix µ, involves a sum over all matrix entries (i, j) ∈
[K] × [L] instead of restricting to arms in the best row and in the best column of the matrix. Thus
a good algorithm for the rank-one problem should manage to select all entries (i, j) that are not
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in this best row and column only o(ln(T )) times. However, neither Rank1Elim nor Rank1ElimKL
achieve the asymptotic performance of Proposition 1: the regret upper bounds provided by Katariya
et al. (2017b,a) show much larger constants, and the empirical performance is not much tighter. A
natural question one might ask then is: Is that lower bound achievable ?

Contributions The main contribution of this paper is to close this existing gap. To do so, we
notice and prove that a stochastic rank-one bandit satisfying u � 0 or v � 0 is a particular instance
of Unimodal Bandits (Combes and Proutière, 2014). Interestingly, when derived in the specific
rank-one bandits setting, the OSUB algorithm proposed in the latter reference achieves the optimal
asymptotic regret of Proposition 1. Unifying those two apparently independent lines of work sheds
a new light on stochastic rank-one bandits.

Indeed, follow-up works on unimodal bandits sought ways to construct more efficient algorithms
than OSUB. In particular Paladino et al. (2017) propose UTS, a Bayesian strategy based on Thompson
Sampling (Thompson, 1933). Unfortunately, the theoretical analysis they provide does not allow to
conclude an upper bound on the performance of their algorithm. We shall comment on that in
Section 2.3. Thus, a second major contribution of the present work is a new finite-time analysis
of the frequentist regret of UTS for Bernoulli stochastic rank-one bandits. Doing so, we provide an
optimal regret bound for an efficient and easy-to-implement rank-one bandit algorithm.

Finally, our analysis provides new insights on the calibration of the leader exploration parameter
which is present in other algorithms.

Outline The paper is organised as follows. Section 2 proves that rank-one bandits are an instance
of unimodal bandits, and describes the UTS algorithm. The regret upper bound is proved in Section 3.
In order to perform a fair empirical comparison with existing rank-one bandit algorithms, we give
more background on this literature in Section 4. Finally, experiments in Section 5 provide empirical
evidence of the optimality of UTS and show an improvement of an order of magnitude compared to
the state-of-the-art Rank1ElimKL.

2. Rank-One Bandits, a particular case of Unimodal Bandits

In this section, we explain why the rank-one bandit model can be seen as a graphical unimodal bandit
model as introduced by Yu and Mannor (2011); Combes and Proutière (2014). For completeness,
we recall the relevant definition.

Definition 2 Given a undirected graph G = (V,E), a vector µ = (µk)k∈V is unimodal with
respect to G if (i) there exists a unique k? ∈ V such that µk? = maxi µi and (ii) from any k 6= k?,
we can find an increasing path to the optimal arm: formally, ∀k 6= k?, there exists a path p =
(k1 = k, k2, ..., kmk = k?) of length mk, such that for all i = 1, ...,mk − 1, (ki, ki+1) ∈ E, and
µki < µki+1

. We denote by U(G) the set of vectors µ that are unimodal with respect to G.

A bandit instance is unimodal with respect to an undirected graph G = (V,E) if its vector of
means µ = (µk)k∈V is unimodal with respect to G: µ ∈ U(G). For a unimodal instance, we define
the set of neighbors of an arm k ∈ V as N (k) = {` : (k, `) ∈ E}. Without loss of generality, we
can assume that E does not contain self-edges (k, k) (which do not contribute to increasing paths),
therefore k /∈ N (k). The extended neighborhood of k is defined as N+(k) = N (k) ∪ {k}. In a
unimodal bandit problem, the learner knows the graph G (hence the neighborhoods N (k),N+(k)
for all k ∈ V ), but not its parameters µ.
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2.1. Rank-One Bandits are Unimodal

We define the undirected graph G1 = (V,E1) as the graph with vertices V = {1, . . . ,K} ×
{1, . . . , L} and such that ((i, j), (k, `)) ∈ E1 if and only if (i, j) 6= (k, `) and (i = k or j = `). In
words, viewing the vertices as a K × L matrix, two distinct entries are neighbors if they belong to
the same line or to the same column. In particular it can be observed that the graph G1 has diameter
two, and we shall exhibit below increasing paths of length at most two between any sub-optimal
arm (i, j) and the best arm (i?, j?). The main result of this section is Proposition 3. It allows us to
build on the existing results for unimodal bandits in order to close the remaining theoretical gap in
the understanding of rank-one bandits.

Proposition 3 Let u = (u1, u2, ..uK) and v = (v1, v2, ..vL) be two nonzero vectors such that
u � 0 or v � 0. A rank-one bandit instance parameterized by u,v satisfies µ ∈ U(G1).

Proof Let us denote the best arm by k? = (i?, j?). Then for any (i, j) ∈ V with (i, j) 6= k?,
one can find several increasing paths in G1 from (i, j) to (i?, j?). If i = i? or i = j?, then
(i, j) → (i?, j?) is valid as ((i, j), k?) ∈ E1 and µ(i,j) < µk? . Otherwise, either vj 6= 0 or
ui 6= 0. In the first case (i, j) → (i?, j) → (i?, j?) is a valid increasing path. Indeed, ui < ui? and
0 < vj < vj? implies that µ(i,j) = uivj < ui?vj = µ(i?,j) < ui?vj? = µ(i?,j?). In the second case,
one can similarly show that (i, j)→ (i, j?)→ (i?, j?) is a valid increasing path.

Figure 1 below illustrates a possible optimal path in a rank-one bandit with K = L = 4 and
also shows the neighbors of a particular arm in the graph G1.

(u1v1) (u1v2) (u1v3) (u1v4)
(u2v1) (u2v2) (u2v3) (u2v4)

(u3v1) (u3v2) (u3v3) (u3v4)

(u4v1) (u4v2) (u4v3) (u4v4)



(u1v1) (u1v2) (u1v3) (u1v4)
(u2v1) (u2v2) (u2v3) (u2v4)
(u3v1) (u3v2) (u3v3) (u3v4)
(u4v1) (u4v2) (u4v3) (u4v4)


Figure 1: N ((3, 3)) in bold (left). Increasing path from (3, 3) to (i? = 1, j? = 1) (right).

2.2. Solving Unimodal Bandits

In their initial paper, Yu and Mannor (2011) propose an algorithm based on sequential elimina-
tion that does not efficiently exploit the graph structure. Combes and Proutière (2014) tackle the
unimodal bandit problem and provide an analysis of the achievable regret in that setting. Their
Theorem 4.1 states an asymptotic regret lower bound that we recall below for Bernoulli rewards.

Proposition 4 Let G = (V,E) define a Bernoulli unimodal bandit problem, with NG(k) = {` :
(k, `) ∈ E} denoting the set of neighbors of arm k ∈ V . Let A be a uniformly efficient algorithm
for every Bernoulli bandit instance with means in U(G). Then

∀µ ∈ U(G), lim inf
T→∞

Rµ(A, T )

ln(T )
≥

∑
k∈NG(k?)

µk? − µk
kl (µk, µk?)

.

In the particular case G = G1, NG1((i?, j?)) = {(i, j) : i = i? or j = j?}\{(i?, j?)} we
recover Proposition 1. An asymptotically optimal algorithm for unimodal bandits therefore particu-
larizes into an asymptotically optimal algorithm for rank-one bandits.
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2.3. Candidate algorithms and their analysis

There exists only a few optimal algorithms for unimodal bandits. Combes and Proutière (2014) pro-
pose OSUB, a computationally efficient algorithm that is proved to have the best achievable regret.
Paladino et al. (2017) propose a Bayesian alternative, however for reasons detailed below we believe
their regret analysis does not hold as is. Another valid algorithm would be OSSB (Combes et al.,
2017), a generic method for structured bandits, however its implementation for rank-one bandits is
not obvious (the matrix of empirical mean µ̂(t) would need to have rank one), and its generality of-
ten makes it less empirically efficient when compared to algorithms exploiting a particular structure,
like here the rank-one structure.

Notation We now present the existing algorithms for unimodal bandits with respect to some undi-
rected graph G = (V,E). For k ∈ V , we let Nk(t) =

∑t
s=1 1(K(s)=k) be the number of selections

of arm k up to round t and µ̂k(t) = 1
Nk(t)

∑t
s=1Xs1(K(s)=k) be its empirical mean of rewards. We

define the (empirical) leader L(t) = argmaxk∈V µ̂k(t) and denote by `k(t) =
∑t

s=1 1(L(s)=k) the
number of times arm k has been leader up to round t.

Optimal Sampling for Unimodal Bandits (OSUB) OSUB (Combes and Proutière, 2014) is the
adaptation of the kl-UCB algorithm of Cappé et al. (2013), an asymptotically optimal algorithm for
(unstructured) Bernoulli bandits. The vanilla kl-UCB algorithm uses as upper confidence bounds
the indices uk(t) = max {q : Nk(t)kl (µ̂k(t), q) ≤ f(t)}, and selects at each round the arm with
largest index. The idea of OSUB is to restrict kl-UCB to the neighborhood of the leader while adding
a leader exploration mechanism to ensure that the leader gets “checked” enough and can eventually
be trusted. Letting ũk(t) = max

{
q : Nk(t)kl (µ̂k(t), q) ≤ f(`L(t)(t))

}
, OSUB selects at time t+ 1

At+1 =

{
L(t) if `L(t)(t) ≡ 1[γ],

argmax
k

ũk(t) else. (2)

The parameter γ quantifies how often the leader should be checked. OSUB is proved to be asymptot-
ically optimal when γ is equal to the maximal degree in G + 1, which yields γ = K + L − 1 for
rank-one bandits. Compared to kl-UCB, the alternative exploration rate f(`L(t)(t)) that appears in
the index ũk(t) makes the analysis of OSUB quite intricate.

Unimodal Thompson Sampling (UTS) For classical bandits, Thompson Sampling (TS) is known
to be a good alternative to kl-UCB as it shares its optimality property for Bernoulli distributions
(Kaufmann et al., 2012; Agrawal and Goyal, 2013) without the need to tune any confidence interval
and often with better performance. Paladino et al. (2017) therefore naturally proposed Unimodal
Thompson Sampling (UTS). The algorithm, described in detail in Section 3, consists in running
Thompson Sampling instead of kl-UCB in the neighborhood of the leader, while keeping a leader
exploration mechanism similar to the one in (2). The exploration parameter γ should also be set to
K + L− 1 in the rank-one case in order to prove the asymptotic optimality of UTS.

The analysis proposed by Paladino et al. (2017) (detailed in Appendix A of the extended version
Paladino et al. (2016)) hinges on adapting some elements of the Thompson Sampling proof of Kauf-
mann et al. (2012) and is not completely satisfying. Our main objection is the upper bound that is
proposed on the number of times a sub-optimal arm k is the leader (termR2 of the second equation
on page 8). To deal with this term, a quite imprecise reduction argument is given (definition of L̂k,t)
showing that one essentially needs to control the quantity

∑T
t=1 P (µ̂k(t) ≥ µ̂k2(t)) for Thompson
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Sampling playing in N (k) and k2 being the element with largest mean in this neighborhood. How-
ever, we do not believe this quantity can be easily controlled for Thompson Sampling, as we have
to handle a random number of observations (that may be small) from both k and k?. Besides, the
upper bound on R2 proposed by Paladino et al. (2017) holds for the choice γ = K + L − 1 in the
rank-one case, which we show is unnecessary.

Due to the lack of accuracy of the existing proof, we believe that a new, precise analysis of
Unimodal Thompson Sampling is needed to corroborate its good empirical performance for rank-
one bandits. Our analysis borrows elements from both the TS analysis of Agrawal and Goyal (2013)
and that of Kaufmann et al. (2012). It also reveals that unlike what was previously believed, the
leader exploration parameter can be set to an arbitrary value γ ≥ 2.

3. Analysis of Unimodal Thompson Sampling

In this section, we present the Unimodal Thompson Sampling algorithm (UTS) for Bernoulli rank-
one bandits, and we state our main theorem proving a problem-dependent regret upper bound for
this algorithm, which extends to the graphical unimodal case.

3.1. UTS for Rank-One Bandits

UTS is a very simple computationally efficient, anytime algorithm. Its pseudo-code for Bernoulli
rank-one bandits is given in Algorithm 1. It relies on one integer parameter γ ≥ 2 controlling the
fraction of rounds spent exploring the leader. After an initialization phase where each entry is pulled
once, at each round t > K × L, the algorithm computes the leader L(t), that is the empirical best
entry in the matrix. If the number of times L(t) has been leader is multiple of γ, UTS selects the
empirical leader. The rest of the time, it draws a posterior sample for every entry in the same row
and column as the leader, and selects the entry associated to the largest posterior sample. Any tie
is broken at random. This can be viewed as performing Thompson Sampling in N+

G1
(L(t)), the

augmented neighborhood of the leader in the graph G1 defined in Section 2.

3.2. Regret upper bound and asymptotic optimality

UTS can be easily extended to any graphical unimodal bandit problem with respect to a graph G, by
performing Thompson Sampling on N+

G instead of N+
G1

. For this more general algorithm, we state
the following theorem, which is our main technical contribution.

Theorem 5 Let µ be a unimodal bandit instance with respect to a graph G. For all γ ≥ 2, UTS
with parameter γ satisfies, for every ε > 0,

Rµ(T, UTS(γ)) ≤ (1 + ε)
∑

k∈N (k?)

(µ? − µk)
kl(µk, µ?)

ln(T ) + C(µ, γ, ε),

where C(µ, γ, ε) is some constant depending on the environment µ, on ε and on γ.

As a consequence lim supT→∞
Rµ(T,UTS(γ))

ln(T ) ≤
∑

k∈N (k?)
(µ?−µk)
kl(µk,µ?)

for every parameter γ ≥
2. Therefore, UTS(γ) is asymptotically optimal for any unimodal bandit problem. Particularizing
this result to rank-one bandits, one obtains that Algorithm 1 has a regret which is asymptotically
matching the lower bound in Proposition 1.
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Algorithm 1 UTS for Bernoulli rank-one bandits
Input: γ ∈ N, γ ≥ 2.

for (i, j) ∈ [K]× [L] do
N(i,j) = 1. L(i,j) = 0.
Draw arm (i, j), receive reward R and let S(i,j) = R.

end
for t = KL+ 1, . . . , T do

Compute the entry-wise empirical leader L(t) = (IL(t), JL(t)) = argmax
(i,j)∈[K]×[L]

µ̂i,j(t);
Update the leader count LL(t) ← LL(t) + 1

if LL(t) ≡ 0[γ] then
(I(t), J(t)) = L(t)

else
for k ∈ {(IL(t), j) : j ∈ [L]}

⋃
{(i, JL(t)) : i ∈ [K]} do

θk ∼ Beta (Sk + 1, Nk − Sk + 1)
end
(I(t), J(t)) = argmax

k
θk.

end
Receive reward Rt ∼ B(µ(It,Jt))
N(I(t),J(t)) ← N(I(t),J(t)) + 1. S(I(t),J(t)) ← S(I(t),J(t)) +Rt

end

Unlike previous work, in which logarithmic regret is proved only for the choice γ = K +L− 1
in the rank-one case1, we emphasize that this result holds for any choice of the leader exploration
parameter. We conjecture that UTS without any leader exploration scheme is also asymptotically op-
timal. However, our experiments of Section 5 reveal that this particular kind of “forced exploration”
is not hurting for rank-one bandits, and that the choice γ = 2 actually leads to the best empirical
performance.

3.3. Proof of Theorem 5

We consider a general K-armed graphical unimodal bandit problem with respect to some graph
G and let K(t) denote the arm selected at round t. We recall some important notations defined
in Section 2.3: the number of arms selections Nk(t), the empirical means µ̂k(t), the leader as
L(t) = argmaxk µ̂k(t), and the number of times arm k has been the leader up to time t: `k(t) =∑t

s=1 1 (L(s) = k). Observe that the leader exploration scheme ensures that ∀k ∈ {1, . . . ,K},∀t ∈
N, Nk(t) ≥ b`k(t)/γc.

Introducing the gap ∆k = µ? − µk, recall that the regret rewrites
∑

k 6=k? ∆kEµ[Nk(T )]. Just
like in the analysis of Combes and Proutière (2014); Paladino et al. (2017), we start by distinguishing

1. For general unimodal bandits, OSUB sets γ to be the maximal degree of an arm, whereas UTS adaptively sets γ to be
the degree of the current leader. Both parameterization coincide for rank-one bandits.
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the times when the leader is the optimal arm and when it is not:

Rµ(T,UTS(γ)) =
∑
k 6=k?

∆kE

[
T∑
t=1

1(K(t) = k)

]

=
∑
k 6=k?

∆kE

[
T∑
t=1

1(K(t) = k, L(t) = k?)

]
︸ ︷︷ ︸

R1(T )

+
∑
k 6=k?

∆kE

[
T∑
t=1

1(K(t) = k, L(t) 6= k?)

]
︸ ︷︷ ︸

R2(T )

.

To upper boundR1(T ), it can be noted that when k? is the leader, the selected arm k is necessar-
ily in the neighborhood of k?, hence the sum can be restricted to the neighborhood of k?. Therefore,
we expect to upper boundR1(T ) by the same quantity which upper bounds the regret of Thompson
Sampling restricted to N+(k?). Such an argument is used for KL-UCB and Thompson Sampling
by Combes and Proutière (2014) and Paladino et al. (2017) respectively, without much justification.
However, a proper justification does need some care, as between two times the leader is k?, UTS
may update the posterior of some arms in N+(k?) for they belong to the neighborhoods of other
potential leaders.

In this work, we carefully adapt the analysis Agrawal and Goyal (2013) to get the following
upper bound. The proof can be found in Appendix B.

Lemma 6 For all ε > 0 and all T ≥ 1,

R1(T ) ≤ (1 + ε)
∑

k∈N(k∗)

∆k

kl(µk, µ?)
ln(T ) + C̃(µ, ε),

for some quantity C̃(µ, ε) which depends on the means µ and on ε but not on T .

We now upper bound R2(T ), which can be related to the probability of choosing any given
suboptimal arm k as the leader:

R2(T ) ≤
∑
6̀=k?

∑
k 6=k?

∆kE

[
T∑
t=1

1(K(t) = k, L(t) = `)

]

≤
∑
6̀=k?

T∑
t=1

E

1(L(t) = `)
∑
k 6=k?

1(K(t) = k)

 =
∑
k 6=k?

T∑
t=1

P (L(t) = k) .

For each k 6= k?, we define the set of best neighbors of k, BN (k) = argmax`∈N (k)µ`. Due to the
unimodal structure, we know this set is nonempty because there exists at least one arm ` ∈ N (k)
such that µ` > µk (such an arm belongs to the path from k to k?). All arms belonging to BN (k) have
same mean, that we note µk2 = max`∈N (k) µ`. We also introduce B̃ = maxk∈[K]\{k?} |BN (k)|, the
maximal number of best arms in the neighborhood of all sub-optimal arms, which is bounded by

8
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the maximum degree of the graph. With these notations, one can write, for any b ∈ (0, 1),

T∑
t=1

P (L(t) = k) =

T∑
t=1

P
(
L(t) = k, ∃k2 ∈ BN (k), Nk2(t) > (`k(t))

b
)

︸ ︷︷ ︸
T k1 (T )

+
T∑
t=1

P
(
L(t) = k,∀k2 ∈ BN (k), Nk2(t) ≤ (`k(t))

b
)

︸ ︷︷ ︸
T k2 (T )

The first term can be easily upper bounded by using the fact that if both arm k and one of its
best neighbors k2 ∈ BN (k) are selected enough, it is unlikely that µ̂k(t) ≥ µ̂k2(t).

On the event {L(t) = k}, the empirical mean of the k-th arm is necessarily greater than that of
the other arms (especially those in BN (k)) . Therefore, letting δk =

µk2−µk
2 ,

T k1 (T ) =

T∑
t=1

P
(
L(t) = k, ∃k2 ∈ BN (k), µ̂k(t) ≥ µ̂k2(t), Nk2(t) > (`k(t))

b
)

≤
T∑
t=1

P (L(t) = k, µ̂k(t) > µk + δk, Nk(t) > b`k(t)/γc) (3)

+
T∑
t=1

P
(
L(t) = k, ∃k2 ∈ BN (k), µ̂k2(t) ≤ µk2 − δk, Nk2(t) > (`k(t))

b
)
, (4)

where in (3), we have used the leader exploration mechanism. (3) and (4) can be upper bounded in
the same way, by introducing the sequence of stopping times (τki )i, where τki is the instant at which
arm k is the leader for the i-th time (one can have τki > T or τki = +∞ if arm k would be the leader
only a finite number of time when UTS is run forever).

(4) ≤
∑

k2∈BN (k)

T∑
i=1

T∑
t=1

E[1(L(t) = k, `k(t) = i, µ̂k2(t) ≤ µk2 − δk, Nk2(t) > ib)]

= B̃

T∑
i=1

P
(
µ̂k2(τki ) ≤ µk2 − δk, Nk2(τki ) > ib, τki ≤ T

)
≤ B̃

T∑
i=1

T∑
u=ib

P
(
µ̂k2,u ≤ µk2 − δk, Nk2(τki ) = u

)
≤ B̃

∞∑
i=1

∞∑
u=ib

exp(−2δ2ku) ≤ B̃
∞∑
i=1

exp(−2δ2ki
b)

1− exp(−2δ2k)
.

The notation µ̂k2,u denotes the empirical mean of the first u observations from arm k2, which are
i.i.d. with mean µk2 . Thus Hoeffding’s inequality can be applied to obtain the last but one inequality.

To upper bound (3) we use the same approach (with ib replaced by bi/γc), which yields

T k1 (T ) ≤
∞∑
i=1

exp(−2δ2ki
b)

1− exp(−2δ2k)
+
∞∑
i=1

exp(−2δ2kbi/γc)
1− exp(−2δ2k)

:= Ck(µ, γ, b) <∞.

9
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To finish the proof, we upper bound T k2 (T ) for some well chosen value of b ∈ (0, 1). The upper
bound given in Lemma 7 is a careful adaptation (and generalization) of the proof of Proposition 1 in
Kaufmann et al. (2012), which says that for vanilla Thompson Sampling restricted to N+(k?), the
(unique) optimal arm k2 cannot be drawn too few times. Observe that Lemma 7 permits to handle
possible multiple optimal arms. Again, we emphasize that in UTS, there is an extra difficulty due
to the fact that arms in N+(k?) are not only selected when k is the leader. The proof of Lemma 7,
given in Appendix C overcomes this difficulty.

Lemma 7 When γ ≥ 2, there exists b ∈ (0, 1) and a constant Dk(µ, b, γ) such that

T∑
t=1

P
(
L(t) = k, ∀k2 ∈ BN (k), Nk2(t) ≤ (`k(t))

b
)
≤ Dk(µ, b, γ).

Putting things together, one obtains, for all ε > 0, with b chosen as in Lemma 7,

Rµ(A, T ) ≤ (1 + ε)
∑

k∈N(k∗)

∆k

kl(µk, µ?)
ln(T ) + C̃(µ, ε) +

∑
k 6=k?

[Ck(µ, γ, b) +Dk(µ, b, γ)] ,

which yields the claimed upper bound.

4. Related Work on Rank-One Bandits

Multi-armed bandits are a rich class of statistical models for sequential decision making (see Latti-
more and Szepesvári (2019); Bubeck et al. (2012) for two surveys). They offer a clear framework as
well as computationally efficient algorithms for many practical problems such as online advertising
Zoghi et al. (2017), a context in which the empirical efficiency of Thompson Sampling (Thompson,
1933) has often been noticed (Scott, 2010; Chapelle and Li, 2011). The wide success of Bayesian
methods in bandit or reinforcement learning problems can no longer be ignored Russo et al. (2018);
Osband and Van Roy (2017).

Stochastic rank-one bandits were introduced by Katariya et al. (2017b,a) which are indeed
among the closest works related to ours. The original algorithm proposed therein, Rank1Elim,
relies on a complex sequential elimination scheme. It operates in stages that progressively quadru-
ple in length. At the end of each stage, the significantly worst rows and columns are eliminated; this
is done using carefully tuned confidence intervals. The exploration is simple but costly: every re-
maining row is played with a randomly chosen remaining column, and conversely for the columns.
At the end of the stage, the value of each row is computed by averaging over all columns, such that
the estimate of the row parameter is scaled by some measurable constant that is the same for all
rows. Then, UCB or KL-UCB confidence intervals are used to perform the elimination by respectively
Rank1Elim or Rank1ElimKL. The advantage of this method is that the worst rows and columns dis-
appear very early from the game. However, eliminating them requires that their confidence intervals
no longer intersect, which is quite costly. Moreover, the averaging performed to compute individual
estimates for each parameter may be arbitrarily bad: if all columns but one have a parameter close
to zero, the scaling constant on the row estimates is close to zero and the rows become hard to dis-
tinguish. All those issues are mentioned in the according papers. Nonetheless, the advantage of a
rank-one algorithm, as opposed to playing a vanilla bandit algorithm, on a large (typically 64× 64)
matrix remains perfectly significant, which has motivated various further work on the topic.

10
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In particular, Kveton et al. (2017) generalizes this elimination scheme to low-rank matrices,
where the objective is to discover the d × d best set of entries. Jun et al. (2019) reformulate the
problem as Bilinear bandits, where the two chosen vector arms xt and yt have an expected payoff
of x>t Myt, where M is a low-rank matrix. Kotłowski and Neu (2019) study an adversarial version
of this problem, the Bandits Online PCA: the learner sequentially chooses vectors xt and observes
a loss xtx>t Lt, where the loss is arbitrarily and possibly adversarially chosen by the environment.
Zimmert and Seldin (2018) considers a more general problem where matrices are replaced by rank-
one tensors in dimension d ≥ 2. Their main message is to propose a unified view of Factored
Bandits encompassing both rank-one bandits and dueling bandits Yue and Joachims (2009).

5. Numerical Experiments

To assess the empirical efficiency of UTS against other competitors, we follow the same experi-
mental protocol as Katariya et al. (2017a) and run the algorithm on simulated matrices of arms.
We set K = L for different values of K. The parameters are defined symmetrically: u = v =
(0.75, 0.25, . . . , 0.25) such that the best entry of the matrix is always (i∗, j∗) = (1, 1). In our ex-
periments, the cumulative regret up to T = 300000 is estimated based on 100 independent runs.
The shaded areas on our plots show the 10% percentiles.

Study of the hyperparameter γ According to the original paper, the exploration parameter of
UTS should be set to γ = K+L−1 for rank-one bandits. However, in the proof we derived in Section
3, there is no need to fix γ to this value. To confirm this statement and study the influence of γ, we
ran UTS on theK = 4 toy problem described above, with different values of γ ∈ {2, 5, 10, 20}. We
also run the heuristic version of UTS that would use no leader exploration scheme (corresponding
to γ = +∞). In Figure 2, we show the cumulative regret in log-scale. We notice that all curves
align with the optimal logarithmic rate, with a lower offset for lower values of γ. Empirically, the
performance seems the best for γ = 2.

Figure 2: Cumulative regret of UTS for γ varying in {2, 5, 10, 15, 30,+∞} for K = 4.
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Cumulative regret and optimality of UTS We now compare the regret of UTS run with γ = 2
to that of other algorithms on the above mentioned family of instances for K = 4 (Figure 3) and
K = 8, 16 (Figure 4). Note that in Katariya et al. (2017a), the simulations are run on larger matrices,
for K = 32, 64, 128. In those settings, Rank1ElimKL only outperforms KL-UCB for K = 128 but
it is better than Rank1Elim and one can easily see that it scales better with the problem size than
UCB1. However, given the much better performance of UTS and OSUB, we were able to show the
same trends with much smaller problem sizes. Still, we also ran experiments with K = 32, 64, 128
and report the results in Appendix D.1, which confirm the superiority of UTS. In Appendix D.2, we
also present results on a rank-one bandit with different choices of u and v leading to closer means.

In Figure 3 on the next page we compare the cumulative regret of Rank1ElimKL with OSUB,
UTS (with γ = 2) and KL-UCB. One first obvious observation is that Rank1ElimKL has a regret
an order of magnitude larger than all other policies, including KL-UCB on this size of problems.
We also notice that the final regret, at T = 300K, roughly doubles for all rank-one policies while
it quadruples for KL-UCB, as expected. To illustrate the asymptotic optimality of OSUB and UTS

compared to KL-UCB, we show in Figure 3 (right) the results of the simulation in log-scale, and
we plot the lower bound of Proposition 1. We observe that both optimal policies asymptotically
align with the lower bound, while KL-UCB adopts a faster growth rate, that would correspond to
the constant in the Lai & Robbins lower bound, which is larger than the constant in Proposition 1.
Figure 4 confirms this observation for K = 8 and K = 16.

6. Conclusion

This paper proposed a new perspective on the rank-one bandit problem by showing it can be cast
into the unimodal bandit framework. This led us to propose an algorithm closing the gap between
existing regret upper and lower bound for Bernoulli rank-one bandits: Unimodal Thompson Sam-
pling (UTS). UTS is easy to implement and very efficient in practice, as our experimental study
reveals an improvement of a factor at least 20 with respect to the state-of-the art Rank1ElimKL al-
gorithm. Our main theoretical contribution is a novel regret analysis of this algorithm in the general
unimodal setting, which sheds a new light on the leader exploration parameter to use. Interestingly,
we show that forcing exploration of the leader appears to help in practice in the rank-one example,
and it may be interesting to investigate whether this remains the case for other structured bandit
problems (Combes et al., 2017).
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Figure 3: Cumulative regret of Rank1ElimKL, OSUB, UTS, KL-UCB, on 4×4 rank-one matrices (left).
Regret in log-scale: the lower bound (in blue) shows the optimal asymptotic logarithmic
growth of the regret. UTS and OSUB align with it, while KL-UCB has a larger slope (right).

Figure 4: Cumulative regret of OSUB, UTS and KL-UCB, on K ×K rank-one matrices with K = 8
(left) and K = 16 (right), in log scale.
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Appendix A. Important Results

We recall two important results that are repeatedly used in our analysis.

Lemma 8 (Hoeffding’s inequality) Let X1, ..., Xn be independent bounded random variables sup-
ported in [0, 1]. For all t ≥ 0,

P

(
1

n

n∑
i=1

(Xi − E[Xi]) ≥ t

)
≤ exp(−2nt2)

and

P

(
1

n

n∑
i=1

(Xi − E[Xi]) ≤ −t

)
≤ exp(−2nt2)

Lemma 9 (Beta Binomial trick) Letting FBeta
α,β and FBin

n,p respectively denote the cumulative distri-
bution function of a Beta distribution with parameters α, β, and of a Binomial distribution with
parameters (n, p). It holds that

FBeta
α,β (y) = 1− FBin

α+β−1,y(α− 1)
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Appendix B. Proof of Lemma 6

In this section, we adapt the analysis of Agrawal and Goyal (2013), highlighting the steps that need
extra justification.

Let k be a sub-optimal arm. We introduce two thresholds xk and yk such that µk < xk < yk <
µk? , that we specify later. We define the following “good” events: Eµk (t) = {µ̂k(t) ≤ xk} and Eθk
(t) = {θk(t) ≤ yk}. The event {K(t) = k, L(t) = k?} can be decomposed as follows:

{K(t) = k, L(t) = k?} = {K(t) = k, L(t) = k?, E
µ
k (t), Eθk(t)} (5)

∪ {K(t) = k, L(t) = k?, E
µ
k (t), Eθk(t)} (6)

∪ {K(t) = k, L(t) = k?, E
µ
k (t)} (7)

Observe that for k /∈ N (k?), by definition of the algorithm, {K(t) = k, L(t) = k?} = ∅. For
k ∈ N (k?), we now upper bound the probability of the three events in the decomposition.

Upper Bound on the Probability of (5) We prove the following lemma.

Lemma 10 For all k ∈ N (k?), there exists a constant C̄1(µk? , yk) such that
T∑
t=1

P
(
K(t) = k, L(t) = k?, E

µ
k (t), Eθk(t)

)
≤ C̄1(µk? , yk)

Proof We first prove the following inequality

P
(
K(t) = k, L(t) = k?, E

µ
k (t), Eθk(t)|Ft−1

)
≤ 1− pkt

pkt
P
(
K(t) = k?, L(t) = k?, E

µ
k (t), Eθk(t)|Ft−1

)
(8)

where pkt = P(θ1(t) > yk|Ft−1) = P(Eθk(t)|Ft−1). To do so, notice that Eµk (t) and {L(t) = k?}
are Ft−1-measurable, since µ̂k(t) is completely determined by the rewards and arms drawn up to
time t − 1. Therefore, one can assume that Ft−1 is such that Eµk (t) and {L(t) = k?} hold, and it
suffices to show that

P(K(t) = k,Eθk(t)|Ft−1) ≤
1− pkt
pkt

P(K(t) = k?, E
θ
k(t)|Ft−1)

which can be proved as in Agrawal and Goyal (2013). With (8), we get
T∑
t=1

P(K(t) = k, L(t) = k?, E
µ
k (t), Eθk(t))

=
T∑
t=1

E
[
P(K(t) = k, L(t) = k?, E

µ
k (t), Eθk(t)|Ft−1)

]
≤

T∑
t=1

E
[
E
[

1− pkt
pkt

1(K(t) = k?, L(t) = k?, E
µ
k (t), Eθk(t)|Ft−1

]]

≤
T∑
t=1

E
[

1− pkt
pkt

1(K(t) = k?, L(t) = k?, E
µ
k (t), Eθk(t))

]

≤
T∑
t=1

E
[

1− pkt
pkt

1(K(t) = k?, E
µ
k (t), Eθk(t))

]
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which allows to continue with the same proof as Theorem 1 in Agrawal and Goyal (2013).

Upper Bound on the Probability of (6) We prove the following lemma.

Lemma 11 For all k ∈ N (k?), letting Lk(T ) = lnT
kl(xk,yk)

, it holds that

T∑
t=1

P
(
K(t) = k, L(t) = k?, Eθk(t), Eµk (t)

)
≤ Lk(T ) + 1.

Proof We start by the following decomposition:
T∑
t=1

P
(
K(t) = k, L(t) = k?, Eθk(t), Eµk (t)

)
≤ E

[
T∑
t=1

1
(
K(t) = k, L(t) = k?, Nk(t) ≤ Lk(T ), Eθk(t), Eµk (t)

)]

+ E

[
T∑
t=1

1
(
K(t) = k, L(t) = k?, Nk(t) > Lk(T ), Eθk(t), Eµk (t)

)]
The first term of the sum is clearly bounded by Lk(T ). As for the second term, we can directly
upper bound it as follows

E

[
T∑
t=1

1
(
K(t) = k, L(t) = k?, Nk(t) > Lk(T ), Eθk(t), Eµk (t)

)]

≤ E

[
T∑
t=1

1
(
K(t) = k,Nk(t) > Lk(T ), Eθk(t), Eµk (t)

)]
and the conclusion follows from the same steps used in the proof of Lemma 4 of Agrawal and Goyal
(2013).

Upper Bound on the Probability of (7) We prove the following lemma.

Lemma 12 For k ∈ N (k?),

T∑
t=1

P
(
K(t) = k, L(t) = k?, E

µ
k (t)

)
≤ 1

kl(xk, µk)
+ 1

Proof To prove this lemma, one can write
T∑
t=1

P(K(t) = k, L(t) = k?, E
µ
k (t)) = E

[
T∑
t=1

1(K(t) = k, L(t) = k?, E
µ
k (t))

]

≤ E

[
T∑
t=1

1(K(t) = k,Eµk (t))

]
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and use the same steps as in the proof of Lemma 3 of Agrawal and Goyal (2013).

Conclusion For 0 < ε ≤ 1, we can choose xk and yk in (µk, µk?) such that kl(xk, yk) =
kl(µk,µk? )

(1+ε) . Using the three above lemmas yields, for all k ∈ N (k?):

E

[
T∑
t=1

1(K(t) = k, L(t) = k?)

]
≤ (1 + ε)

∆k

kl(µk, µ?)
ln(T ) + C̃(µ, ε).

Since when the leader is k?, 1(K(t) = k, L(t) = k?) = 0 for all k /∈ N+(k?), we only need to
sum over the arms k ∈ N (k?) to get the result of Lemma 6.
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Appendix C. Proof of Lemma 7

Let k ∈ [K] \ {k?}.

Notation Recall from Section 3.3 that BN (k) = argmax`∈N (k)µ` is the set of best arms in the
neighborhood of k. This set is such that 1 ≤ |BN (k)| ≤ B̃, and arms belonging to BN (k) have
same mean, that we denote µk2 = max`∈N (k) µ`. We also define NBN (k)

(t) =
∑

k2∈BN (k)
Nk2(t),

the number of times arms belonging to BN (k) have been drawn up to time t. We will say that
k′ ∈ N+(k) is sub-optimal if µk′ < µk2 . We denote by M̃k = |N+(k) \ BN (k)| ≤ |N (k)|, the
number of sub-optimal arms belonging to N (k).

We introduce, for every arm k′,

δk′ =
µk2 − µk′

2
, and let δ = min

k′∈N+(k)\BN (k)

δk′ and C :=
6

δ2
.

We denote by k̃ any arm satisfying δk̃ = δ.
Just like in Section 3, we introduce the consecutive instants in which arm k is the leader, τki .

Assuming that UTS(γ) would be played forever, the instant of the i-th time arm k is the leader, τki ,
can be formally written as such

τki = inf{t ∈ N : L(t) = k, `k(t) = i},

with the convention that inf ∅ = +∞.

For all i ∈ {1, . . . , T}, for all b ∈ (0, 1), by definition of τki , it holds that

T∑
t=1

1
(
L(t) = k, `k(t) = i,∀k2 ∈ BN (k), Nk2(t) ≤ (`k(t))

b
)

= 1
(
∀k2 ∈ BN (k), Nk2(τki ) ≤ ib

)
1
(
τki ≤ T

)
,

which permits to rewrite

T∑
t=1

P
(
L(t) = k, ∀k2 ∈ BN (k), Nk2(t) ≤ (`k(t))

b
)

=
T∑
i=1

P
(
∀k2 ∈ BN (k), Nk2

(
τki

)
≤ ib, τki ≤ T

)
≤

T∑
i=1

P
(
NBN (k)

(
τki

)
≤ B̃ib, τki ≤ T

)
,

(9)

where we recall that NBN (k)
(t) is the total number of pulls of all arms in BN (k).

We now provide an upper bound on (9), for a well chosen value of b.
Our analysis bears similarity with that of Kaufmann et al. (2012): we use the fact that if arms

belonging to BN (k) are not drawn much at time τki , there must exist many consecutive instants
τk` < τki in which those arms are not selected at all. To formalize this idea, we introduce for every
pair i, j the first instant preceeding τki in which arms of BN (k) have been played at least j times
while arm k is the leader:

νi,j = inf{` ≤ i : NBN (k)
(τk` ) ≥ j},
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with the convention inf ∅ = i+ 1. It holds that

(
NBN (k)

(
τki

)
≤ B̃ib

)
=
(
νi,dB̃ibe = i+ 1

)
⊆
bB̃ibc⋃
j=0

(
νi,j+1 − νi,j ≥

i1−b

B̃
− 1

)
.

We now introduce Ii,j ⊆
(
νi,j , νi,j + d i1−b

B̃
− 2e

]
, the subset of instants belonging to

(
νi,j , νi,j + d i1−b

B̃
− 2e

]
where no leader exploration is performed. The j-th event in the union implies that no arm belonging
to BN (k) is selected in any instant τk` for ` ∈ Ii,j . More precisely, introducing

Ei,j = {Ii,j ⊆ [i]}
⋂{
∀` ∈ Ii,j ,K(τk` ) /∈ BN (k)

}
one has

P
(
NBN (k)

(
τki

)
≤ ib, τki ≤ T

)
≤
bB̃ibc∑
j=0

P
(
Ei,j , τki ≤ T

)
. (10)

Interval sub-division and saturated arms To further upper bound (10), we introduce for m =
1, . . . , M̃k + 1, the intervals Ii,j,m:

Ii,j,m :=

(
νi,j + (m− 1)

⌊ i1−b/B̃ − 2

M̃k + 1

⌋
, νi,j +m

⌊ i1−b/B̃ − 2

M̃k + 1

⌋]
∩ Ii,j ,

whose length is lower bounded as follows, substracting the instant in which leader exploration is
performed (that are not included in Ii,j):

|Ii,j,m| =
⌊ i1−b/B̃ − 2

M̃k + 1

⌋
−
⌈1

γ

(
i1−b/B̃ − 2

M̃k + 1

)⌉
≥
⌊(

1− 1

γ

)(
i1−b/B̃ − 2

M̃k + 1

)
− 2
⌋

:= H̃i,b,k,γ .

As in Kaufmann et al. (2012), we introduce the notion of saturated sub-optimal arm: we say an
arm k′ /∈ BN (k) is saturated at ` if Nk′(τ

k
` ) > C ln(i). Otherwise, it is unsaturated. For an interval

Ii,j,m, we denote by ni,j,m the number of interruptions, that is, the number of times we draw an
unsaturated arm during Ii,j,m. We introduce Fi,j,m, the event that by the end of Ii,j,m , at least m
sub-optimal arms are saturated, and Si,j,m, the set of saturated arms at the end of Ii,j,m.

We decompose the probability of the event {Ei,j , τki ≤ T} as follows

P[Ei,j , τki ≤ T ] ≤ P[Ei,j , Fi,j,M̃k
, τki ≤ T ] (11)

+ P[Ei,j , F ci,j,M̃k
, τki ≤ T ] (12)

We will prove below that

(11) ≤ 2M̃k

i2(1− exp(−δ2/2))
+ g1(µ, j, b, i, k, γ) (13)

and that for i larger than some constant Nµ,b,

(12) ≤ (M̃k − 1)

(
2M̃k

i2(1− exp(−δ2/2))
+ g2(µ, j, b, i, k, γ)

)
(14)
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where for a well-chosen b ∈ (0, 1) and γ ≥ 2

∞∑
i=1

bB̃ibc∑
j=0

g1(µ, j, b, i, k, γ) <∞ and
∞∑
i=1

bB̃ibc∑
j=0

g2(µ, j, b, i, k, γ) <∞.

Combining (10) with the upper bounds (13) and (14), we get

(9) ≤Mµ,b +

T∑
i=Nµ,b+1

bB̃ibc∑
j=0

P[Ei,j , τki ≤ T ]

≤Mµ,b +
T∑
i=1

bB̃ibc∑
j=0

[
2M̃k

i2(1− exp(−δ2/2))
+ g1(µ, j, b, i, k, γ)

]

+

T∑
i=1

bB̃ibc∑
j=0

[
(M̃k − 1)

(
2M̃k

i2(1− exp(−δ2/2))
+ g2(µ, j, b, i, k, γ)

)]

≤Mµ,b +

∞∑
i=1

2B̃M̃2
k

i2−b(1− exp(−δ2/2))
+

∞∑
i=1

bB̃ibc∑
j=0

[g1(µ, j, b, i, k, γ) + g2(µ, j, b, i, k, γ)]

:= Dk(µ, b, γ),

which concludes the proof. We now prove the two crucial upper bounds (13) and (14).

Main ingredients We introduce two useful lemmas whose proofs are postponed to the end of this
appendix. Lemma 13 establishes that it is unlikely that the Thompson sample associated to some
saturated arm exceeds its true mean by too much.

Lemma 13 Let k ∈ [K].

P
(
∃` ≤ i,∃k′ /∈ BN (k), θk′(τ

k
` ) > µk′ + δ,Nk′(τ

k
` ) > C ln(i), τki < T

)
≤ 2M̃k

i2(1− exp(−δ2/2))

Lemma 14 shows that the Thompson samples of an arm belonging to BN (k) are unlikely to fall
below µk̃ + δ during a long interval in which the posterior of this arm doesn’t evolve.

Lemma 14 Let Ĩ be a random interval such that ∀` ∈ Ĩ, NBN (k)
(τk` ) = j and |Ĩ| ≥ x for some

deterministic constant x. There exists λ0 = λ0(µk2 , µk̃, δ) > 1 such that for λ ∈]1, λ0[,

P
(
∀` ∈ Ĩ,∀k2 ∈ BN (k), θk2(τk` ) ≤ µk̃ + δ

)
≤ jB̃(αµk̃,δ)

x + Cλ,µk2 ,µk̃

exp(−jdλ,µk2 ,µk̃/B̃)

xλ
,

where Cλ,µk2 ,µk̃ , dλ,µk2 ,µk̃ > 0, and αµk̃,δ =
(
1
2

)1−µk̃−δ.
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Proof of the Upper bound (13) On the event Ei,j ∩Fi,j,M̃k
, only saturated arms are drawn during

the interval Ii,j,M̃k+1, so that one has the following decomposition:

P[Ei,j ∩ Fi,j,M̃k
∩ {τki ≤ T}]

≤ P[{∃` ∈ Ii,j,M̃k+1, ∃k
′ /∈ BN (k), θk′(τ

k
` ) > µk′ + δ} ∩ {Nk′(τ

k
` ) > C ln(i)} ∩ Ei,j ∩ {τki ≤ T}]

+ P[{∀` ∈ Ii,j,M̃k+1,∀k
′ /∈ BN (k), θk′(τ

k
` ) ≤ µk′ + δ} ∩ Ei,j ∩ Fi,j,|N+(k)|−1]

≤ P
(
∃` ≤ i,∃k′ /∈ BN (k), θk′(τ

k
` ) > µk′ + δ,Nk′(τ

k
` ) > C ln(i), τki ≤ T

)
+ P(∀` ∈ Ii,j,M̃k+1, ∀k2 ∈ BN (k), θk2(τk` ) ≤ µk̃ + δ, Ei,j)

Using Lemma 13, we can bound the first term in this sum by

2M̃k

i2(1− exp(−δ2/2))
.

On the event Ei,j , NBN (k)
(τk` ) = j for all ` ∈ Ii,j,M̃k+1. Lemma 14 with Ĩ = Ii,j,M̃k+1 and

x = H̃i,b,k,γ yields the following upper bound for the second term

jB̃(αµk̃,δ)
H̃i,b,k,γ + Cλ,µk2 ,µk̃

exp(−jdλ,µk2 ,µk̃/B̃)

H̃λ
i,b,k,γ

:= g1(µ, j, b, i, k, γ).

Summing g1(µ, j, b, i, k, γ) over j ≤ bB̃ibc and expliciting H̃i,b,k,γ gives

∑
j≤bB̃ibc

g1(µ, j, b, i, k, γ) = B̃
bB̃ibc(bB̃ibc+ 1)

2
(αµk̃,δ)

⌊(
1− 1

γ

)
i1−b/B̃−2

M̃k+1
−2
⌋

+
C ′λ,µk2 ,µk̃⌊(

1− 1
γ

)
i1−b/B̃−2
M̃k+1

− 2
⌋λ .

The first term of the sum is o
(
1
i2

)
, and by choosing b < 1 − 1

λ for the second term, we obtain that∑
i≤∞

∑
j≤bibc g1(µ, j, b, i, k, γ) is finite when γ > 1.

Proof of the Upper Bound (14) Similarly to Kaufmann et al. (2012), we prove by induction that
for all 2 ≤ m ≤ M̃k + 1, if i is larger than some deterministic constant Nµ,b,

P[Ei,j ∩ F ci,j,m−1 ∩ {τki ≤ T}] ≤ (m− 2)

(
2M̃k

i2(1− exp(−δ2/2))
+ g2(µ, j, b, i, k, γ)

)
,

where Nµ,b and g2(µ, j, b, i, k, γ) are made precise below.

Base case of the induction: On the event Ei,j , only suboptimal arms are played during the interval
Ii,j,1, of length larger than H̃i,b,k,γ . Hence at least one suboptimal arm must be played more than

d H̃i,b,k,γ
M̃k

e times. Besides, there exists some deterministic constant Nµ,b such that for i > Nµ,b,

d H̃i,b,k,γ
M̃k

e ≥ C ln(i).
Therefore, when i ≥ Nµ,b, at least one suboptimal arm is saturated by the end of Ii,j,1, so that

for i ≥ Nµ,b, P(Ei,j ∩ F ci,j,1 ∩ {τki ≤ T}) = 0. Hence, the inequality holds for m = 2.
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Induction: Let us assume the following, for some m ∈ {2, . . . , M̃k}:

P(Ei,j ∩ F ci,j,m−1 ∩ {τki ≤ T}) ≤ (m− 2)

(
2M̃k

i2(1− exp(−δ2/2))
+ g2(µ, j, b, i, k.γ)

)
.

Exploiting this inductive hypothesis, one obtains

P(Ei,j ∩ F ci,j,m ∩ {τki ≤ T})
≤ P(Ei,j ∩ F ci,j,m−1 ∩ {τki ≤ T}) + P(Ei,j ∩ F ci,j,m ∩ Fi,j,m−1 ∩ {τki ≤ T})

≤ (m− 2)

(
2M̃k

i2(1− exp(−δ2/2))
+ g2(µ, j, b, i, k, γ)

)
+ P(Ei,j ∩ F ci,j,m ∩ Fj,m−1 ∩ {τki ≤ T}) .

Let us prove that the second term of the sum is bounded by 2M̃k
i2(1−exp(−δ2/2)) + g2(µ, j, b, i, k).

On the event (Ei,j ∩ F ci,j,m ∩ Fi,j,m−1), there are exactly m− 1 saturated arms at the beginning
of interval Ii,j,m and no new arm is saturated during this interval, so that Si,j,m−1 = Si,j,m. As a
result, there cannot be more than M̃kC ln(i) interruptions during this interval, so that

P(Ei,j ∩ F ci,j,m ∩ Fi,j,m−1 ∩ {τki ≤ T})
≤ P(Ei,j ∩ Fi,j,m−1 ∩ {ni,j,m ≤ M̃kC ln(i)} ∩ {τki ≤ T})
≤ P({∃` ∈ Ii,j,m,∃k′ ∈ Si,j,m−1\BN (k), θk′(τ

k
` ) > µk′ + δ} ∩ Ei,j ∩ {τki ≤ T}) (15)

+ P({∀` ∈ Ii,j,m,∀k′ ∈ Si,j,m−1\BN (k), θk′(τ
k
` ) ≤ µk′ + δ} ∩ Ei,j ∩ Fi,j,m−1 ∩ {ni,j,m ≤ M̃kC ln(i)})

(16)

Lemma 13 allows us to bound the term (15):

(15) ≤ 2M̃k

i2(1− exp(−δ2/2))
.

To deal with (16), we introduce the random intervals

Jh = {` ∈ Ii,j,m, between the h-th and (h+ 1)-th interrruptions}.

On the event in the probability of (16), there exists an interval Jh of length larger than d H̃i,b,k,γ
M̃kC ln(i)

e
such that there is no interruption at times τk` , for ` ∈ Jh. This means that, at these time steps, all
Thompson samples are smaller than that of the greatest sample among the saturated arms (which
are themselves smaller than µk̃ + δ). In particular, in this interval, ∀k2 ∈ BN (k), θk2(τk` ) ≤ µk̃ + δ,
and we get

(16) ≤ P

(
{∃h ∈ 0, ..., ni,j,m − 1, |Jh| ≥

⌈ H̃i,b,k,γ

M̃kC ln(i)

⌉
}

∩{∀` ∈ Jh,∀k′ ∈ Si,j,m−1\BN (k), θk′(τ
k
` ) ≤ µk̃ + δ} ∩ Ei,j ∩ Fi,j,m−1

)
≤

M̃kC ln(i)∑
h=0

P

(
{|Jh| ≥

⌈ H̃i,b,k,γ

M̃kC ln(i)

⌉
} ∩ {∀` ∈ Jh,∀k2 ∈ BN (k), θk2(τk` ) ≤ µk̃ + δ} ∩ Ei,j

)
.
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Applying Lemma 14 with Ĩ = Jh, we get

(16) ≤ M̃kC ln(i)

jB̃(αµk̃,δ)

⌈
(1−1/γ)(i1−b/B̃−2)−2(M̃k+1)

M̃k(M̃k+1)C ln(i)

⌉
+ Cλ,µk2 ,µk̃

exp(−jdλ,µk2 ,µk̃/B̃)⌈
(1−1/γ)(i1−b/B̃−2)−2(M̃k+1)

M̃k(M̃k+1)C ln(i)

⌉λ


:= g2(µ, j, b, i, k, γ).

This proves that

P(Ei,j ∩ F ci,j,m ∩ {τki ≤ T}) ≤ (m− 1)

(
2M̃k

i2(1− exp(−δ2/2))
+ g2(µ, j, b, i, k, γ)

)

and the induction is verified.
As for g1(µ, j, b, i, k, γ), we observe that when γ > 1,

∑
i≤∞

∑
j≤bB̃ibc g2(µ, j, b, i, k, γ) is

finite by choosing b < 1− 1
λ .

Proof of Lemma 13 It holds that

P
(
∃` ≤ i,∃k′ /∈ BN (k), θk′(τ

k
` ) > µk′ + δ,Nk′(τ

k
` ) > C ln(i), τki ≤ T

)
≤

i∑
`=1

∑
k′∈N+(k)\BN (k)

P
(
θk′(τ

k
` ) > µk′ + δ,Nk′(τ

k
` ) > C ln(i), τk` ≤ T

)

Let ` ≤ i, k′ ∈ N+(k) \ BN (k).

P
(
θk′(τ

k
` ) > µk′ + δ,Nk′(τ

k
` ) > C ln(i), τk` ≤ T

)
(17)

≤ P
(
µ̂k′(τ

k
` ) > µk′ + δ/2, Nk′(τ

k
` ) > C ln(i), τk` ≤ T

)
(18)

+ P
(
µ̂k′(τ

k
` ) ≤ µk′ + δ/2, θk′(τ

k
` ) > µk′ + δ,Nk′(τ

k
` ) > C ln(i), τk` ≤ T

)
(19)

Using a union bound over the values of Nk′(τ
k
` ) ≥ C ln(i) together with Hoeffding’s inequality

(Lemma 8) yields

(18) ≤
T∑

u=C ln(i)

P(µ̂k′,u > µk′ + δ/2) ≤
∞∑

u=C ln(i)

exp

(
−δ

2u

2

)
=

exp(−C ln(i)δ2/2)

1− exp(−δ2/2)
,

where we denote by µ̂k′,u the estimated mean of the k′-th arm at the u-th draw.
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We upper bound (19) by

T∑
u=C ln(i)

P
(
µ̂k′(τ

k
` ) ≤ µk′ + δ/2, θk′(τ

k
` ) ≥ µk′ + δ,Nk′(τ

k
` ) = u, τk` ≤ T

)

≤
T∑

u=C ln(i)

P
(
µk′ ≥ µ̂k′,u − δ/2, θk′(τk` ) ≥ µk′ + δ,Nk′(τ

k
` ) = u, τk` ≤ T

)

≤
T∑

u=C ln(i)

P
(
θk′(τ

k
` ) ≥ µ̂k′,u + δ/2, Nk′(τ

k
` ) = u, τk` ≤ T

)

≤ E

 T∑
u=C ln(i)

(
1− FBeta

uµ̂k′,u+1,u−uµ̂k′,u+1(µ̂k′,u + δ/2)
)

= E

 T∑
u=C ln(i)

FBin
u+1,µ̂k′,u+δ/2

(uµ̂k′,u)


≤ E

 T∑
u=C ln(i)

FBin
u,µ̂k′,u+δ/2

(uµ̂k′,u)


≤ E

 ∞∑
u=C ln(i)

exp(−uδ2/2)


=

exp(−C ln(i)δ2/2)

1− exp(−δ2/2)
,

where the first equality comes from the Beta-Binomial trick (Lemma 9), and the last inequality
comes from Hoeffding’s inequality.

Combining (18) and (19), and recalling that C = 6/δ2, we get

P
(
∃` ≤ i,∃k′ /∈ BN (k), θk′(τ

k
` ) > µk′ + δ,Nk′(τ

k
` ) > C ln(i), τki ≤ T

)
≤

i∑
`=1

∑
k′∈N+(k)\BN (k)

2
exp(−C ln(i)δ2/2)

1− exp(−δ2/2)

≤ 2M̃k

iCδ2/2−1(1− exp(−δ2/2))
=

2M̃k

i2(1− exp(−δ2/2))
.

Proof of Lemma 14 The interval Ĩ is such that for all ` ∈ Ĩ, NBN (k)
(τk` ) = j. This implies

that there exists k2 ∈ BN (k) which has been drawn at least j

B̃
and is not drawn during that interval.

Hence,

25



TRINH KAUFMANN VERNADE COMBES

P
(
∀` ∈ Ĩ, NBN (k)

(τk` ) = j,∀k2 ∈ BN (k), θk2(τk` ) ≤ µk̃ + δ
)

≤ P
(
∀` ∈ Ĩ,∃k2 ∈ BN (k),

j

B̃
≤ Nk2(τk` ) ≤ j, θk2(τk` ) ≤ µk̃ + δ

)
≤

∑
k2∈BN (k)

j∑
jk2=

j

B̃

P
(
∀` ∈ Ĩ, Nk2(τk` ) = jk2 , θk2(τk` ) ≤ µk̃ + δ

)
(20)

If Nk2(τk` ) = jk2 for all ` ∈ Ĩ, conditioned on Sk2,jk2 (sum of first jk2 observations from
arm k2), the Thompson samples of arm k2 drawn during this interval are an i.i.d. sequence with
distribution Beta(Sk2,jk2 + 1, jk2 − Sk2,jk2 + 1). Therefore,

P
(
∀` ∈ Ĩ, Nk2(τk` ) = jk2 , θk2(τk` ) ≤ µk̃ + δ|Sk2,jk2

)
=
(
FBeta
Sk2,jk2

+1,jk2−Sk2,jk2+1(µk̃ + δ)
)|Ĩ|

≤
(
FBeta
Sk2,jk2

+1,jk2−Sk2,jk2+1(µk̃ + δ)
)x

=
(

1− FBin
jk2+1,µk̃+δ

(Sk2,jk2 )
)x

where the inequality holds because |Ĩ| ≥ x, and the last equality is obtained by using the Beta-
Binomial trick (Lemma 9).

It follows that

P
(
∀` ∈ Ĩ, Nk2(τk` ) = jk2 , θk2(τk` ) ≤ µk̃ + δ

)
= E

[
P
(
∀` ∈ Ĩ, Nk2(τk` ) = jk2 , θk2(τk` ) ≤ µk̃ + δ|Sk2,jk2

)]
≤ E

[(
1− FBin

jk2+1,µk̃+δ
(Sk2,jk2 )

)x]
where the expectation is taken with respect to Sk2,jk2 ∼ Bin(jk2 , µk2).

An upper bound on this expectation is provided by the following lemma that can be extracted
from the proof of Lemma 3 in Kaufmann et al. (2012).

Lemma 15 Let X be a random variable with Binomial distribution of parameter (j, µ1). Let δ and
µ2 be such that 0 < µ2 + δ < µ1. There exists λ0 = λ0(µ1, µ2, δ) > 1 such that for λ ∈ (1, λ0),

E
[(

1− F Bin
j+1,µ2+δ(X)

)x] ≤ (αµ2,δ)
x + Cλ,µ1,µ2

exp(−jdλ,µ1,µ2)

xλ

where Cλ,µ1,µ2 , dλ,µ1,µ2 > 0, and αµ2,δ =
(
1
2

)1−µ2−δ
Finally,

(20) ≤ B̃
j∑

jk2=
j

B̃

[
(αµk̃,δ)

x + C̃λ,µk2 ,µk̃

exp(−jk2dλ,µk2 ,µk̃)

xλ

]

≤ jB̃(αµk̃,δ)
x + Cλ,µk2 ,µk̃

exp(−jdλ,µk2 ,µk̃/B̃)

xλ
,

which concludes the proof.
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Appendix D. Additional experiments

In this section, we report the results of additional experiments. Section D.1 provides results from
experiments carried out in larger environments, whereas Section D.2 presents experiments in envi-
ronments where the means of the arms are closer to each other.

D.1. Experiments in larger environments

For better comparison with the work of Katariya et al. (2017a), we carry out experiments in the
same environments as theirs. That is, we run the algorithm on simulated matrices of arms, for
K = L = 32, 64, 128, with u = v = (0.75, 0.25, . . . , 0.25), and a horizon T = 2 × 106. The
shaded areas on our plots show the 10% percentiles.

Additionally, we run the UTS algorithm without the warm-up phase where each arm is drawn
once at the beginning. Figure 5 shows that removing this warm-up phase is not harmful to the
performance of UTS, and that in all cases, the unimodal algorithms UTS and OSUB clearly outperform
Rank1ElimKL and KL-UCB.

Figure 5: Cumulative regret of Rank1ElimKL, OSUB, UTS, UTS without warm-up and KL-UCB, on
K × K rank-one matrices with K = 32 (top left), K = 64 (top right) and K = 128
(bottom). Regrets are averaged over 50 runs, except for KLUCB for K = 128 which is
averaged over 20 runs.
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D.2. Experiments with closer means

To conclude with our experiments, we additionally run the algorithms in an environment where the
means of the arms are closer to each other. We set u = v = (0.55, 0.50, . . . , 0.50) and run the
experiments for K = L = 8, 16, 32.

Figure 6: Cumulative regret of Rank1ElimKL, OSUB, UTS, UTS without warm-up and KL-UCB, on
K × K rank-one matrices with K = 8 (top left), K = 16 (top right) and K = 32
(bottom). Regrets are averaged over 50 runs.
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