
HAL Id: hal-02396943
https://hal.science/hal-02396943v1

Preprint submitted on 6 Dec 2019 (v1), last revised 17 Feb 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Bernoulli Rank-One Bandits with Unimodal
Thompson Sampling

Cindy Trinh, Emilie Kaufmann, Claire Vernade, Richard Combes

To cite this version:
Cindy Trinh, Emilie Kaufmann, Claire Vernade, Richard Combes. Solving Bernoulli Rank-One Ban-
dits with Unimodal Thompson Sampling. 2019. �hal-02396943v1�

https://hal.science/hal-02396943v1
https://hal.archives-ouvertes.fr


Solving Bernoulli Rank-One Bandits

Solving Bernoulli Rank-One Bandits with
Unimodal Thompson Sampling

Cindy Trinh cindy.trinh.sridykhan@gmail.com
ENS Paris-Saclay

Emilie Kaufmann emilie.kaufmann@univ-lille.fr
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Abstract

Stochastic Rank-One Bandits Katariya et al. (2017a,b) are a simple framework for regret
minimization problems over rank-one matrices of arms. The initially proposed algorithms
are proved to have logarithmic regret, but do not match the existing lower bound for this
problem. We close this gap by first proving that rank-one bandits are a particular instance
of unimodal bandits, and then providing a new analysis of Unimodal Thompson Sampling
(UTS), initially proposed by Paladino et al. (2017). We prove an asymptotically optimal
regret bound on the frequentist regret of UTS and we support our claims with simulations
showing the significant improvement of our method compared to the state-of-the-art.

Keywords: Multi-armed bandits, unimodal bandits, rank-one bandits.

1. Introduction

We consider Stochastic Rank-One Bandits, a class of bandit problems introduced by Katariya
et al. (2017b). These models provide a clear framework for the exploration-exploitation
problem of adaptively sampling the entries of a rank-one matrix in order to find the largest
one. Consider for instance the problem of finding the best design of a display, say for in-
stance a colored shape to be used as a button on a website. One may have at hand a set
of different shapes, and a set of different colors to be tested. A display is a combination
of those two attributes, and a priori the tester has as many options as there are different
pairs of shapes and colors. Now let us assume the effect of each factor is independent of
the other factor. Then, the value of a combination, say for instance the click rate on the
constructed button, is the product of the values of each of its attributes. The better the
shape, the higher the rate, and similarly for the color. This type of independence assump-
tions is ubiquitous in click models such as the position-based model Chuklin et al. (2015);
Richardson et al. (2007). It is also closely related to online learning to rank Zoghi et al.
(2017) where sequential duels allow to find the optimal ordering of a list of options. We
review the related literature in Section 4 further below.
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We formalize our example above into a Bernoulli rank-one bandit model (Katariya et al.,
2017a): this model is parameterized by two nonzero vectors u = (u1, u2, ..uK) ∈ [0, 1]K and
v = (v1, v2, ..vL) ∈ [0, 1]L. There are K×L arms, indexed by (i, j) ∈ [K]× [L], where we use
the notation [p] := {1, . . . , p} for any positive integer p. Each arm (i, j) is associated with a
Bernoulli distribution with mean µ(i,j) := uivj . Observe that the matrix of means µ = uvT

has rank one, hence the name. We denote Θ the class of all such instances (u×v). At each
time step t an agent selects an arm K(t) = (I(t), J(t)) ∈ [K] × [L] and receives a reward
r(t) ∼ B(µ(I(t),J(t))), independently from previous rewards. To select K(t), the agent may
exploit the knowledge of previous observations and possibly some external randomness U(t).
Formally, letting Ft denote the σ-field generated by K(1), r(1),K(2), r(2), . . . ,K(t), r(t),
K(t) is measurable with respect to σ(Ft−1, U(t)).

The objective of the learner is to adjust their selection strategy to maximize the expected
total reward accumulated. The oracle or optimal strategy here is to always play the arm
with largest mean. Thus, maximizing rewards is equivalent to designing a strategy A with
small regret, where the T -step regret Rµ(T,A) is defined as the difference between the
expected cumulative rewards of the oracle and the cumulative rewards of the strategy A:

Rµ(T,A) =

T∑
t=1

[
max

(i,j)∈[K]×[L]
µ(i,j) − Eµ[µ(I(t),J(t))]

]
. (1)

Letting i? = argmaxiui and j? = argmaxjvj , we assume that ui? > ui for all i 6= i? and
v? > vj for all j 6= j?. This assumption is equivalent to assuming that the rank-one bandit
instance has a unique optimal action, which is (i?, j?) = argmax(i,j)∈[K]×[L]µ(i,j). We let Θ?

denote this class of rank-one instance with a unique optimal arm. In this paper, we will
furthermore restrict our attention to rank-one models for which either u � 0 or v � 0. This
assumption is not very restrictive, but it rules out the possibility that ui = 0 and vj = 0
for a certain arm (i, j) (i.e. neither shape i nor color j attract any user). We found this
assumption to be necessary to exhibit a unimodal structure in rank-one bandits.

An algorithm is called uniformly efficient if its regret is sub-polynomial in any instance
(u × v) ∈ Θ. That is, for all α > 0, for all (u × v) ∈ Θ, R(T ) = o(Tα). In their pa-
per, Katariya et al. (2017b) provide the first uniformly efficient algorithm, Rank1Elim, for
stochastic rank-one bandits, and Katariya et al. (2017a) propose an adaptation of this algo-
rithm tailored for Bernoulli rewards, Rank1ElimKL. They also provide a problem-dependent
asymptotic lower bound on the regret in the line of Lai and Robbins (1985). This type of
result gives a precise characterization of the regret for a specific instance of the problem
that one should expect for any uniformly efficient algorithm. We report their result below.

Proposition 1 For any algorithm A which is uniformly efficient and for any Bernoulli
rank-one bandit problem, (u× v) ∈ Θ?,

lim inf
T→∞

Rµ(A, T )

log(T )
≥

∑
i∈[K]\i?

µi?,j? − µi,j?
kl(µi,j? , µi?,j?)

+
∑

j∈[L]/j?

µi?,j? − µi?,j
kl(µi?,j , µi?,j?)

.

where kl(x, y) = x ln(x/y) + (1− x) ln((1− x)/(1− y)) is the binary relative entropy.

In contrast to this result, the Lai and Robbins (1985) lower bound, which applies to
algorithms that are uniformly efficient for any reward matrix µ, involves a sum over all
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matrix entries (i, j) ∈ [K]× [L] instead of restricting to arms in the best row and in the best
column of the matrix. Thus a good algorithm for the rank-one problem should manage to
select all entries (i, j) that are not in this best row and column only o(ln(T )) times. However,
neither Rank1Elim nor Rank1ElimKL achieve the asymptotic performance of Proposition 1:
the regret upper bounds provided by Katariya et al. (2017b,a) show much larger constants,
and the empirical performance is not much tighter. A natural question one might ask then
is: Is that lower bound achievable ?

Contributions The main contribution of this paper is to close this existing gap. To do
so, we notice and prove that a stochastic rank-one bandit satisfying u � 0 or v � 0 is
a particular instance of Unimodal Bandits (Combes and Proutière, 2014). Interestingly,
when derived in the specific rank-one bandits setting, the OSUB algorithm proposed in the
latter reference achieves the optimal asymptotic regret of Proposition 1. Unifying those two
apparently independent lines of work sheds a new light on stochastic rank-one bandits.

Indeed, follow-up works on unimodal bandits sought ways to construct more efficient
algorithms than OSUB. In particular Paladino et al. (2017) propose UTS, a Bayesian strategy
based on Thompson Sampling (Thompson, 1933). Unfortunately, the theoretical analysis
they provide does not allow to conclude an upper bound on the performance of their al-
gorithm. We shall comment on that in Section 2.3. Thus, a second major contribution of
the present work is a new finite-time analysis of the frequentist regret of UTS for Bernoulli
stochastic rank-one bandits. Doing so, we provide an optimal regret bound for an efficient
and easy-to-implement rank-one bandit algorithm.

Finally, our analysis provides new insights on the calibration of the leader exploration
parameter which is present in other algorithms.

Outline The paper is organised as follows. Section 2 proves that rank-one bandits are an
instance of unimodal bandits, and describes the UTS algorithm. The regret upper bound is
proved in Section 3. In order to perform a fair empirical comparison with existing rank-
one bandit algorithms, we give more background on this literature in Section 4. Finally,
experiments in Section 5 provide empirical evidence of the optimality of UTS and show an
improvement of an order of magnitude compared to the state-of-the-art Rank1ElimKL.

2. Rank-One Bandits, a particular case of Unimodal Bandits

In this section, we explain why the rank-one bandit model can be seen as a graphical
unimodal bandit model as introduced by Yu and Mannor (2011); Combes and Proutière
(2014). For completeness, we recall the relevant definition.

Definition 2 Given a undirected graph G = (V,E), a vector µ = (µk)k∈V is unimodal
with respect to G if

• there exists a unique k? ∈ V such that µk? = maxi µi

• from any k 6= k?, we can find an increasing path to the optimal arm. Formally:
∀k 6= k?, there exists a path p = (k1 = k, k2, ..., kmk = k?) of length mk, such that for
all i = 1, ...,mk − 1, (ki, ki+1) ∈ E, and µki < µki+1

.

We denote by U(G) the set of vectors µ that are unimodal with respect to G.
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A bandit instance is unimodal with respect to an undirected graph G = (E, V ) if its
vector of means µ = (µk)k∈V is unimodal with respect to G: µ ∈ U(G). For a unimodal
instance, we define the set of neighbors of an arm k ∈ V as N (k) = {` : (k, `) ∈ E}.
Without loss of generality, we can assume that E does not contain self-edges (k, k) (which
do not contribute to increasing paths), therefore k /∈ N (k). The extended neighborhood of
k is defined as N+(k) = N (k) ∪ {k}.

In a unimodal bandit problem, the learner knows the graph G (hence the neighborhoods
N (k),N+(k) for all k ∈ V ), but not its parameters µ, which must be learnt adaptively by
sampling the vertices of the graph.

2.1 Rank-One Bandits are Unimodal

We define the undirected graph G1 = (V,E1) as the graph with vertices V = {1, . . . ,K} ×
{1, . . . , L} and such that ((i, j), (k, `)) ∈ E1 if and only if (i, j) 6= (k, `) and (i = k or j = `).
In words, viewing the vertices as a K ×L matrix, two distinct entries are neighbors if they
belong to the same line or to the same column. In particular it can be observed that the
graph G1 has diameter two, and we shall exhibit below increasing paths of length at most
two between any sub-optimal arm (i, j) and the best arm (i?, j?).

The main result of this section is Proposition 3. It allows us to build on the existing
results for unimodal bandits in order to close the remaining theoretical gap in the under-
standing of rank-one bandits.

Proposition 3 Let u = (u1, u2, ..uK) and v = (v1, v2, ..vL) be two nonzero vectors such
that u � 0 or v � 0. A rank-one bandit instance parameterized by u,v satisfies µ ∈ U(G1).

Proof Let u = (u1, u2, ..uK) and v = (v1, v2, ..vL) be the two vectors parameterizing the
rank-one bandit model, and denote the best arm by k? = (i?, j?). Then for any (i, j) ∈ V
with (i, j) 6= k?, one can find several increasing paths in G1 from (i, j) to (i?, j?):

• If i = i? or i = j?, then (i, j)→ (i?, j?) is valid as ((i, j), k?) ∈ E1 and µ(i,j) < µk? ;

• Otherwise, first note that either vj 6= 0 or ui 6= 0. In the first case (i, j) → (i?, j) →
(i?, j?) is a valid increasing path. Indeed, ui < ui? and 0 < vj < vj? allow us to
conclude that µ(i,j) = uivj < ui?vj = µ(i?,j) < ui?vj? = µ(i?,j?). In the second case,
one can similarly show that (i, j)→ (i, j?)→ (i?, j?) is a valid increasing path.

�

Figure 1 below illustrates a possible optimal path in a rank-one bandit with K = L = 4
and also shows the neighbors of a particular arm in the graph G1.

(u1v1) (u1v2) (u1v3) (u1v4)
(u2v1) (u2v2) (u2v3) (u2v4)

(u3v1) (u3v2) (u3v3) (u3v4)

(u4v1) (u4v2) (u4v3) (u4v4)




(u1v1) (u1v2) (u1v3) (u1v4)
(u2v1) (u2v2) (u2v3) (u2v4)
(u3v1) (u3v2) (u3v3) (u3v4)
(u4v1) (u4v2) (u4v3) (u4v4)


Figure 1: N ((3, 3)) in bold (left). Increasing path from (3, 3) to (i? = 1, j? = 1) (right).
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2.2 Solving Unimodal Bandits

In their initial paper, Yu and Mannor (2011) propose an algorithm based on sequential elim-
ination that does not efficiently exploit the structure of the graph. Combes and Proutière
(2014) take over the unimodal bandit problem and provide a more in-depth analysis of the
achievable regret in that setting. In particular, their Theorem 4.1 states an asymptotic
regret lower bound that we state below for Bernoulli rewards.

Proposition 4 Let G = (V,E) define a Bernoulli unimodal bandit problem, with NG(k) =
{` : (k, `) ∈ E} denoting the set of neighbors of arm k ∈ V . Let A be a uniformly efficient
algorithm for every Bernoulli bandit instance with means in U(G). Then

∀µ ∈ U(G), lim inf
T→∞

Rµ(A, T )

ln(T )
≥

∑
k∈NG(k?)

µk? − µk
kl (µk, µk?)

.

In the particular case G = G1, NG1((i?, j?)) = {(i, j) : i = i? or j = j?}\{(i?, j?)}
and we recover Proposition 1. An asymptotically optimal algorithm for unimodal bandits
therefore particularizes into an asymptotically optimal algorithm for rank-one bandits.

2.3 Candidate algorithms and their analysis

There exists only a few optimal algorithms for unimodal bandits. Combes and Proutière
(2014) propose OSUB, a computationally efficient algorithm that is proved to have the best
achievable regret. Paladino et al. (2017) propose a Bayesian alternative, however for reasons
detailed below we believe their regret analysis does not hold as is. Another valid algorithm
would be OSSB (Combes et al., 2017), a generic method for structured bandits, however
its implementation for rank-one bandits is not obvious (the matrix of empirical mean µ̂(t)
would need to have rank one), and its generality often makes it less empirically efficient when
compared to algorithms exploiting a particular structure, like here the rank-one structure.

Notation We now present the existing algorithms for unimodal bandits with respect
to some undirected graph G = (V,E). For k ∈ V , we let Nk(t) =

∑t
s=1 1(K(s)=k) be

the number of selections of arm k up to round t and µ̂k(t) = 1
Nk(t)

∑t
s=1Xs1(K(s)=k) be

the empirical means of the rewards from that arm. We also define the (empirical) leader
L(t) = argmaxk∈V µ̂k(t) and keep track of how many times each arm has been the leader
in the past by defining `k(t) =

∑t
s=1 1(L(s)=k).

Optimal Sampling for Unimodal Bandits (OSUB) OSUB (Combes and Proutière, 2014)
is the adaptation of the kl-UCB algorithm of Cappé et al. (2013), an asymptotically optimal
algorithm for (unstructured) Bernoulli bandits. The vanilla kl-UCB algorithm uses as upper
confidence bounds the indices

uk(t) = max {q : Nk(t)kl (µ̂k(t), q) ≤ f(t)} ,

and selects at each round the arm with largest index.
The idea of OSUB is to restrict kl-UCB to the neighborhood of the leader while adding

a leader exploration mechanism to ensure that the leader gets “checked” enough and can
eventually be trusted. Letting

ũk(t) = max
{
q : Nk(t)kl (µ̂k(t), q) ≤ f(`L(t)(t))

}
, (2)
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OSUB selects at time t+ 1

At+1 =

{
L(t) if `L(t)(t) ≡ 1[γ],

argmax
k

ũk(t) else. (3)

The parameter γ quantifies how often the leader should be checked. OSUB is proved to
be asymptotically optimal when γ is equal to the maximal degree in G + 1, which yields
γ = K +L− 1 for rank-one bandits. Compared to kl-UCB, the alternative exploration rate
f(`L(t)(t)) that appears in the index (2) makes the analysis of OSUB quite intricate.

Unimodal Thompson Sampling (UTS) For classical bandits, Thompson Sampling (TS)
is known to be a good alternative to kl-UCB as it shares its optimality property for Bernoulli
distributions (Kaufmann et al., 2012; Agrawal and Goyal, 2013) without the need to tune
any confidence interval and often with better performance. Paladino et al. (2017) therefore
naturally proposed Unimodal Thompson Sampling (UTS). The algorithm, described in
detail in Section 3.1, consists in running Thompson Sampling instead of kl-UCB in the
neighborhood of the leader, while keeping a leader exploration mechanism similar to the
one in (3). The exploration parameter γ should also be set to K + L − 1 in the rank-one
case in order to prove the asymptotic optimality of UTS.

The analysis proposed by Paladino et al. (2017) (detailed in Appendix A of the extended
version Paladino et al. (2016)) hinges on adapting some elements of the Thompson Sampling
proof of Kaufmann et al. (2012) and is not completely satisfying. Our main objection is the
upper bound that is proposed on the number of times a sub-optimal arm k is the leader (term
R2 of the second equation on page 8). To deal with this term, a quite imprecise reduction
argument is given (definition of L̂k,t) showing that one essentially needs to control the

quantity
∑T

t=1 P (µ̂k(t) ≥ µ̂k2(t)) for Thompson Sampling playing in N (k) and k2 being the
element with largest mean in this neighborhood. However, we do not believe this quantity
can be easily controlled for Thompson Sampling, as we have to handle a random number
of observations (that may be small) from both k and k?. Besides, the upper bound on R2

proposed by Paladino et al. (2017) holds for the choice γ = K +L− 1 in the rank-one case,
which we show is unnecessary.

Due to the lack of accuracy of the existing proof, we believe that a new, precise analysis
of Unimodal Thompson Sampling is needed to corroborate its good empirical performance
for rank-one bandits, which we provide in the next section. Our analysis borrows elements
from both the TS analysis of Agrawal and Goyal (2013) and that of Kaufmann et al. (2012).
It also reveals that unlike what was previously believed, the leader exploration parameter
can be set to an arbitrary value γ ≥ 2.

3. Analysis of Unimodal Thompson Sampling

In this section, we present the Unimodal Thompson Sampling algorithm (UTS) for Bernoulli
rank-one bandits, and we state our main theorem proving a problem-dependent regret upper
bound for this algorithm, which extends to the graphical unimodal case.
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3.1 UTS for Rank-One Bandits

UTS is a very simple computationally efficient, anytime algorithm. Its pseudo-code for
Bernoulli rank-one bandits is given in Algorithm 1. It relies on one integer parameter γ ≥ 2
controlling the fraction of rounds spent exploring the leader. After an initialization phase
where each entry is pulled once, at each round t > K × L, the algorithm computes the
leader L(t), that is the empirical best entry in the matrix. If the number of times L(t) has
been leader is multiple of γ, UTS selects the empirical leader. The rest of the time, it draws
a posterior sample for every entry in the same row and column as the leader, and selects
the entry associated to the largest posterior sample. This can be viewed as performing
Thompson Sampling in N+

G1
(L(t)), the augmented neighborhood of the leader in the graph

G1 defined in Section 2.

Algorithm 1 UTS for Bernoulli rank-one bandits

Input: γ ∈ N, γ ≥ 2.
for (i, j) ∈ [K]× [L] do

N(i,j) = 1. L(i,j) = 0.
Draw arm (i, j), receive reward R and let S(i,j) = R.

end for
for t = KL+ 1, . . . , T do

Compute the entry-wise empirical leader L(t) = argmax
(i,j)∈[K]×[L]

µ̂i,j(t);
Update the leader count LL(t) ← LL(t) + 1
if LL(t) ≡ 0 [γ] then,

(I(t), J(t)) = L(t)
else

for k ∈ {(I(t), j) : j ∈ [L]}
⋃
{(i, J(t)) : i ∈ [K]} do

θk ∼ Beta (Sk + 1, Nk − Sk + 1)
end for
(I(t), J(t)) = argmax

k
θk.

end if
Receive reward Rt ∼ B(µ(It,Jt))
N(I(t),J(t)) ← N(I(t),J(t)) + 1. S(I(t),J(t)) ← S(I(t),J(t)) +Rt

end for

For completeness, we recall that given a prior distribution Thompson Sampling main-
tains a posterior distribution for each hidden Bernoulli parameter of the problem, that is,
for each entry of the matrix. To do so, it uses a convenient uniform (Beta(1, 1)) prior, for
which the posterior distribution is a Beta distribution. We refer the interested reader to
the recent survey Russo et al. (2018) for more details on the topic.

3.2 Regret upper bound and asymptotic optimality

UTS can be easily extended to any graphical unimodal bandit problem with respect to a
graph G, by performing Thompson Sampling on N+

G instead of N+
G1

. For this more general
algorithm, we state the following theorem, which is our main technical contribution.
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Theorem 5 Let µ be a graphical unimodal bandit instance with respect to a graph G. For
all γ ≥ 2, UTS with parameter γ satisfies, for every ε > 0,

Rµ(T, UTS(γ)) ≤ (1 + ε)
∑

k∈N (k?)

(µ? − µk)
kl(µk, µ?)

ln(T ) + C(µ, γ, ε),

where C(µ, γ, ε) is some constant depending on the environment µ, on ε and on γ.

A consequence of this finite-time bound is that, for every parameter γ ≥ 2,

lim sup
T→∞

Rµ(T, UTS(γ))

ln(T )
≤

∑
k∈N (k?)

(µ? − µk)
kl(µk, µ?)

,

therefore UTS(γ) is asymptotically optimal for any graphical unimodal bandit problem.
Particularizing this result to rank-one bandits, one obtains that Algorithm 1 has a regret
which is asymptotically matching the lower bound in Proposition 1.

Unlike previous work, in which logarithmic regret is proved only for the choice γ =
K + L − 1 in the rank-one case1, we emphasize that this result holds for any choice of
the leader exploration parameter. We conjecture that UTS without any leader exploration
scheme is also asymptotically optimal. However, our experiments of Section 5 reveal that
this particular kind of “forced exploration” is not hurting for rank-one bandits, and that
the choice γ = 2 actually leads to the best empirical performance.

3.3 Proof of Theorem 5

We consider a general K-armed graphical unimodal bandit problem with respect to some
graph G and let K(t) denote the arm selected at round t. We recall some important
notations defined in Section 2.3: the number of arms selections Nk(t), the empirical means
µ̂k(t), the leader as L(t) = argmaxk µ̂k(t), and the number of times arm k has been the
leader up to time t: `k(t) =

∑t
s=1 1 (L(s) = k). Observe that the leader exploration scheme

ensures that
∀k ∈ {1, . . . ,K},∀t ∈ N, Nk(t) ≥ b`k(t)/γc. (4)

Introducing the gap ∆k = µ? − µk, recall that the regret rewrites
∑

k 6=k? ∆kEµ[Nk(T )].
Just like in the analysis of Combes and Proutière (2014); Paladino et al. (2017), we start
by distinguishing the times when the leader is the optimal arm, and the times when the
leader is a sub-optimal arm:

Rµ(T,UTS(γ)) =
∑
k 6=k?

∆kE

[
T∑
t=1

1(K(t) = k)

]

=
∑
k 6=k?

∆kE

[
T∑
t=1

1(K(t) = k, L(t) = k?)

]
︸ ︷︷ ︸

R1(T )

+
∑
k 6=k?

∆kE

[
T∑
t=1

1(K(t) = k, L(t) 6= k?)

]
︸ ︷︷ ︸

R2(T )

.

1. For general unimodal bandits, OSUB sets γ to be the maximal degree of an arm, whereas UTS adaptively
sets γ to be the degree of the current leader. Both parameterization coincide for rank-one bandits.
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To upper bound R1(T ), it can be noted that when k? is the leader, the selected arm k is
necessarily in the neighborhood of k?, hence the sum can be restricted to the neighborhood
of k?. Therefore, we expect to upper bound R1(T ) by the same quantity which upper
bounds the regret of Thompson Sampling restricted to N+(k?). Such an argument is used
for KL-UCB and Thompson Sampling by Combes and Proutière (2014) and Paladino et al.
(2017) respectively, without much justification. However, a proper justification does need
some care, as between two times the leader is k?, UTS may update the posterior of some
arms in N+(k?) for they belong to the neighborhoods of other potential leaders.

In this work, we carefully adapt the analysis Agrawal and Goyal (2013) to get the
following upper bound. The proof can be found in Appendix B.

Lemma 6 For all ε > 0 and all T ≥ 1,

R1(T ) ≤ (1 + ε)
∑

k∈N(k∗)

∆k

kl(µk, µ?)
ln(T ) + C̃(µ, ε),

for some quantity C̃(µ, ε) which depends on the means µ and on ε but not on T .

We now upper bound R2(T ), which can be related to the probability of choosing any
given suboptimal arm k as the leader:

R2(T ) ≤
∑
6̀=k?

∑
k 6=k?

∆kE

[
T∑
t=1

1(K(t) = k, L(t) = `)

]

≤
∑
6̀=k?

T∑
t=1

E

1(L(t) = `)
∑
k 6=k?

1(K(t) = k)

 =
∑
k 6=k?

T∑
t=1

P (L(t) = k) .

For each k 6= k?, we define the set of best neighbors of k, BN (k) = argmax`∈N (k)µ`. Due
to the unimodal structure, we know this set is nonempty because there exists at least one
arm ` ∈ N (k) such that µ` > µk (such an arm belongs to the path from k to k?). All arms
belonging to BN (k) have same mean, that we note µk2 = max`∈N (k) µ`. We also introduce

B̃ = maxk∈[K]\{k?} |BN (k)|, the maximal number of best arms in the neighborhood of all sub-
optimal arms, which is bounded by the maximum degree of the graph. With this notation,
one can write, for any b ∈ (0, 1),

T∑
t=1

P (L(t) = k) =
T∑
t=1

P
(
L(t) = k, ∃k2 ∈ BN (k), Nk2(t) > (`k(t))

b
)

︸ ︷︷ ︸
T k1 (T )

+
T∑
t=1

P
(
L(t) = k,∀k2 ∈ BN (k), Nk2(t) ≤ (`k(t))

b
)

︸ ︷︷ ︸
T k2 (T )

The first term can be easily upper bounded by using the fact that if both arm k and
one of its best neighbors k2 ∈ BN (k) are selected enough, it is unlikely that µ̂k(t) ≥ µ̂k2(t).

9
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On the event {L(t) = k}, the empirical mean of the k-th arm is necessarily greater than

that of the other arms (especially those in BN (k)) . Therefore, letting δk =
µk2−µk

2 ,

T k1 (T ) =
T∑
t=1

P
(
L(t) = k, ∃k2 ∈ BN (k), µ̂k(t) ≥ µ̂k2(t), Nk2(t) > (`k(t))

b
)

≤
T∑
t=1

P (L(t) = k, µ̂k(t) > µk + δk, Nk(t) > b`k(t)/γc) (5)

+
T∑
t=1

P
(
L(t) = k, ∃k2 ∈ BN (k), µ̂k2(t) ≤ µk2 − δk, Nk2(t) > (`k(t))

b
)
, (6)

where in (5), we have used the leader exploration mechanism (4). (5) and (6) can be upper
bounded in the same way, by introducing the sequence of stopping times (τki )i, where τki is
the instant at which arm k is the leader for the i-th time (one can have τki > T or τki = +∞
if arm k would be the leader only a finite number of time when UTS is run forever).

(6) ≤
∑

k2∈BN (k)

T∑
i=1

T∑
t=1

E[1(L(t) = k, `k(t) = i, µ̂k2(t) ≤ µk2 − δk, Nk2(t) > ib)]

= B̃
T∑
i=1

P
(
µ̂k2(τki ) ≤ µk2 − δk, Nk2(τki ) > ib, τki ≤ T

)
≤ B̃

T∑
i=1

T∑
u=ib

P
(
µ̂k2,u ≤ µk2 − δk, Nk2(τki ) = u

)
≤ B̃

∞∑
i=1

∞∑
u=ib

exp(−2δ2ku) ≤ B̃
∞∑
i=1

exp(−2δ2ki
b)

1− exp(−2δ2k)
.

The notation µ̂k2,u used above denotes the empirical mean of the first u observations from
arm k2, which are i.i.d. with mean µk2 . Thus, Hoeffding’s inequality can be applied to
obtain the last but one inequality.

To upper bound (5) we use the same approach (with ib replaced by bi/γc), which yields

T k1 (T ) ≤
∞∑
i=1

exp(−2δ2ki
b)

1− exp(−2δ2k)
+

∞∑
i=1

exp(−2δ2kbi/γc)
1− exp(−2δ2k)

:= Ck(µ, γ, b) <∞.

To finish the proof, we upper bound T k2 (T ) for some well chosen value of b ∈ (0, 1). The
upper bound given in Lemma 7 is a careful adaptation (and generalization) of the proof of
Proposition 1 in Kaufmann et al. (2012), which says that for vanilla Thompson Sampling
restricted to N+(k?), the (unique) optimal arm k2 cannot be drawn too few times. Observe
that Lemma 7 permits to handle possible multiple optimal arms. Again, we emphasize that
in UTS, there is an extra difficulty due to the fact that arms in N+(k?) are not only selected
when k is the leader. The proof of Lemma 7, given in Appendix C overcomes this difficulty.
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Lemma 7 When γ ≥ 2, there exists b ∈ (0, 1) and a constant Dk(µ, b, γ) such that

T∑
t=1

P
(
L(t) = k, ∀k2 ∈ BN (k), Nk2(t) ≤ (`k(t))

b
)
≤ Dk(µ, b, γ).

Putting things together, one obtains, for all ε > 0, with b chosen as in Lemma 7,

Rµ(A, T ) ≤ (1 + ε)
∑

k∈N(k∗)

∆k

kl(µk, µ?)
ln(T ) + C̃(µ, ε) +

∑
k 6=k?

[Ck(µ, γ, b) +Dk(µ, b, γ)] ,

which yields the claimed upper bound.

4. Related Work on Rank-One Bandits

Multi-armed bandits are a rich class of statistical models for sequential decision making
(see Lattimore and Szepesvári (2019); Bubeck et al. (2012) for two surveys). They offer a
clear framework as well as computationally efficient algorithms for many practical problems
such as online advertising Zoghi et al. (2017), a context in which the empirical efficiency
of Thompson Sampling (Thompson, 1933) has often been noticed (Scott, 2010; Chapelle
and Li, 2011). The wide success of Bayesian methods in bandit or reinforcement learning
problems can no longer be ignored Russo et al. (2018); Osband and Van Roy (2017).

As already mentioned, stochastic rank-one bandits were introduced by Katariya et al.
(2017b,a) which are indeed among the closest works related to ours. The original algorithm
proposed therein, Rank1Elim, relies on a complex sequential elimination scheme. It operates
in stages that progressively quadruple in length. At the end of each stage, the significantly
worst rows and columns are eliminated; this is done using carefully tuned confidence inter-
vals. The exploration is simple but costly: every remaining row is played with a randomly
chosen remaining column, and conversely for the columns. At the end of the stage, the
value of each row is computed by averaging over all columns, such that the estimate of
the row parameter is scaled by some measurable constant that is the same for all rows.
Then, UCB or KL-UCB confidence intervals are used to perform the elimination by respec-
tively Rank1Elim or Rank1ElimKL. The advantage of this method is that the worst rows
and columns disappear very early from the game. However, eliminating them requires that
their confidence intervals no longer intersect, which is quite costly. Moreover, the averaging
performed to compute individual estimates for each parameter may be arbitrarily bad: if all
columns but one have a parameter close to zero, the scaling constant on the row estimates
is close to zero and the rows become hard to distinguish. All those issues are mentioned in
the according papers. Nonetheless, the advantage of a rank-one algorithm, as opposed to
playing a vanilla bandit algorithm, on a large (typically 64× 64) matrix remains perfectly
significant, which has motivated various further work on the topic.

In particular, Kveton et al. (2017) generalizes this elimination scheme to low-rank ma-
trices, where the objective is to discover the d × d best set of entries. Jun et al. (2019)
modify a bit the problem and formulate it as Bilinear bandits, where the two chosen vec-
tor arms xt and yt have an expected payoff of x>t Myt, where M is a low-rank matrix.
Kot lowski and Neu (2019) study an adversarial version of this problem, the Bandits Online
PCA: the learner sequentially chooses vectors xt and observes a loss xtx

>
t Lt, where the loss

11
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is arbitrarily and possibly adversarially chosen by the environment. Zimmert and Seldin
(2018) considers a more general problem where matrices are replaced by rank-one tensors
in dimension d ≥ 2. The main message of the paper is to propose a unified view of Factored
Bandits encompassing both rank-one bandits and dueling bandits Yue and Joachims (2009).

5. Numerical Experiments

To assess the empirical efficiency of UTS against other competitors, we follow the same ex-
perimental protocol as Katariya et al. (2017a) and run the algorithm on simulated matrices
of arms of increasing sizes. We set K = L for different values of K. The parameters are
defined symmetrically: u = v = (0.75, 0.25, . . . , 0.25) such that the best entry of the ma-
trix is always (i∗, j∗) = (1, 1). In our experiments, the cumulative regret up to an horizon
T = 300000 is estimated based on 100 independent runs. The shaded areas on our plots
show the 10% percentiles.

Study of hyperparameter γ According to the original paper, the exploration parameter
of UTS should be set to γ = K+L−1 for rank-one bandits. However, in the proof we derived
in Section 3, there is no need to fix γ to this value. To confirm this statement and study
the influence of γ, we ran UTS on a the K = 4 toy problem described above, with different
values of γ ∈ {2, 5, 10, 20}. We also run the heuristic version of UTS that would use no
leader exploration scheme (corresponding to γ = +∞).

On Figure 2, we show the cumulative regret in log-scale. We notice that all curves align
with the optimal logarithmic rate, with a lower offset for lower values of γ. Empirically, the
performance seems the best for γ = 2.

Figure 2: Cumulative regret of UTS for γ varying in {2, 5, 10, 20,+∞} for K = 4.
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Figure 3: Cumulative regret of Rank1ElimKL, OSUB, UTS and KL-UCB, on K × K rank-one
matrices with K = 4 (top left), K = 8 (top right) and K = 16 (bottom)
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Cumulative regret and optimality of UTS. We now compare the regret of UTS run
with γ = 2 to that of other algorithms on the above mentioned family of instances for
different values of K in {4, 8, 16}. Note that in Katariya et al. (2017a), the simulations are
run on larger matrices, forK = 32, 64, 128. In those settings, Rank1ElimKL only outperforms
KL-UCB for K = 128 but it is better than Rank1Elim and one can easily see that it scales
better with the problem size than UCB1. However, given the much better performance of
UTS and OSUB, we were able to show the same trends with much smaller problem sizes.

In Figure 3 we compare the cumulative regret of Rank1ElimKL with OSUB, UTS (with
γ = 2) and KL-UCB. One first obvious observation is that Rank1ElimKL has a regret an order
of magnitude larger than all other policies, including KL-UCB on this size of problems. We
also notice that the final regret, at T = 300K, roughly doubles for all rank-one policies
while it quadruples for KL-UCB, as expected. To illustrate the asymptotic optimality of OSUB
and UTS compared to KL-UCB, we show on Figure 4 the results of the K = 4 simulations
in log-scale, and we plot the lower bound of Proposition 1. We observe that both optimal
policies asymptotically align with the lower bound, while KL-UCB adopts a faster growth
rate, that indeed corresponds to the constant of Lai & Robbins.

Figure 4: Regret for K = 4 in log-scale: the lower bound (in blue) shows the optimal
asymptotic logarithmic growth of the regret. UTS and OSUB align with it, while
KL-UCB has a larger slope.

6. Conclusion

This paper proposed a new perspective on the rank-one bandit problem by showing it can
be cast into the unimodal bandit framework. This led us to propose an algorithm closing
the gap between existing regret upper and lower bound for Bernoulli rank-one bandits: Uni-
modal Thompson Sampling (UTS). UTS is easy to implement and very efficient in practice,
as our experimental study reveals an improvement of a factor at least 20 with respect to
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the state-of-the art Rank1ElimKL algorithm. Our main theoretical contribution is a novel
regret analysis of this algorithm in the general unimodal setting, which sheds a new light
on the leader exploration parameter to use. Interestingly, forcing exploration of the leader
appears to help in practice in the rank-one example, and it may be interesting to investigate
whether this remains the case for other structured bandit problems (Combes et al., 2017).

Acknowledgement The authors acknowledge the French National Research Agency un-
der projects BADASS (ANR-16-CE40-0002) and BOLD (ANR-19-CE23-0026-04).
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Appendix A. Important Results

We recall two important results that are repeatedly used in our analysis.

Lemma 8 (Hoeffding’s inequality) Let X1, ..., Xn be independent bounded random variables
supported in [0, 1]. For all t ≥ 0,

P

(
1

n

n∑
i=1

(Xi − E[Xi]) ≥ t

)
≤ exp(−2nt2)

and

P

(
1

n

n∑
i=1

(Xi − E[Xi]) ≤ −t

)
≤ exp(−2nt2)

Lemma 9 (Beta Binomial trick) Letting FBeta
α,β and FBin

n,p respectively denote the cumula-
tive distribution function of a Beta distribution with parameters α, β, and of a Binomial
distribution with parameters (n, p). It holds that

FBeta
α,β (y) = 1− FBin

α+β−1,y(α− 1)

Appendix B. Proof of Lemma 6

In this section, we adapt the analysis of Agrawal and Goyal (2013), highlighting the steps
that need extra justification.

Let k be a sub-optimal arm. We introduce two thresholds xk and yk such that µk <
xk < yk < µk? , that we specify later. We define the following “good” events: Eµk (t)
= {µ̂k(t) ≤ xk} and Eθk (t) = {θk(t) ≤ yk}. The event {K(t) = k, L(t) = k?} can be
decomposed as follows:

{K(t) = k, L(t) = k?} = {K(t) = k, L(t) = k?, E
µ
k (t), Eθk(t)} (7)

∪ {K(t) = k, L(t) = k?, E
µ
k (t), Eθk(t)} (8)

∪ {K(t) = k, L(t) = k?, E
µ
k (t)} (9)

Observe that for k /∈ N (k?), by definition of the algorithm, {K(t) = k, L(t) = k?} = ∅. For
k ∈ N (k?), we now upper bound the probability of the three events in the decomposition.

Upper Bound on the Probability of (7) We prove the following lemma.

Lemma 10 For all k ∈ N (k?), there exists a constant C̄1(µk? , yk) such that

T∑
t=1

P
(
K(t) = k, L(t) = k?, E

µ
k (t), Eθk(t)

)
≤ C̄1(µk? , yk)

Proof We first prove the following inequality

P
(
K(t) = k, L(t) = k?, E

µ
k (t), Eθk(t)|Ft−1

)
≤ 1− pkt

pkt
P
(
K(t) = k?, L(t) = k?, E

µ
k (t), Eθk(t)|Ft−1

)
(10)
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where pkt = P(θ1(t) > yk|Ft−1) = P(Eθk(t)|Ft−1). To do so, notice that Eµk (t) and
{L(t) = k?} are Ft−1-measurable, since µ̂k(t) is completely determined by the rewards and
arms drawn up to time t− 1. Therefore, one can assume that Ft−1 is such that Eµk (t) and
{L(t) = k?} hold, and it suffices to show that

P(K(t) = k,Eθk(t)|Ft−1) ≤
1− pkt
pkt

P(K(t) = k?, E
θ
k(t)|Ft−1)

which can be proved as in Agrawal and Goyal (2013). With (10), we get

T∑
t=1

P(K(t) = k, L(t) = k?, E
µ
k (t), Eθk(t))

=

T∑
t=1

E
[
P(K(t) = k, L(t) = k?, E

µ
k (t), Eθk(t)|Ft−1)

]
≤

T∑
t=1

E
[
E
[

1− pkt
pkt

1(K(t) = k?, L(t) = k?, E
µ
k (t), Eθk(t)|Ft−1

]]

≤
T∑
t=1

E
[

1− pkt
pkt

1(K(t) = k?, L(t) = k?, E
µ
k (t), Eθk(t))

]

≤
T∑
t=1

E
[

1− pkt
pkt

1(K(t) = k?, E
µ
k (t), Eθk(t))

]

which allows to continue with the same proof as Theorem 1 in Agrawal and Goyal (2013).

Upper Bound on the Probability of (8) We prove the following lemma.

Lemma 11 For all k ∈ N (k?), letting Lk(T ) = lnT
kl(xk,yk)

, it holds that

T∑
t=1

P
(
K(t) = k, L(t) = k?, Eθk(t), Eµk (t)

)
≤ Lk(T ) + 1.

Proof We start by the following decomposition:

T∑
t=1

P
(
K(t) = k, L(t) = k?, Eθk(t), Eµk (t)

)
≤ E

[
T∑
t=1

1
(
K(t) = k, L(t) = k?, Nk(t) ≤ Lk(T ), Eθk(t), Eµk (t)

)]

+ E

[
T∑
t=1

1
(
K(t) = k, L(t) = k?, Nk(t) > Lk(T ), Eθk(t), Eµk (t)

)]
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The first term of the sum is clearly bounded by Lk(T ). As for the second term, we can
directly upper bound it as follows

E

[
T∑
t=1

1
(
K(t) = k, L(t) = k?, Nk(t) > Lk(T ), Eθk(t), Eµk (t)

)]

≤ E

[
T∑
t=1

1
(
K(t) = k,Nk(t) > Lk(T ), Eθk(t), Eµk (t)

)]

and the conclusion follows from the same steps used in the proof of Lemma 4 of Agrawal
and Goyal (2013).

Upper Bound on the Probability of (9) We prove the following lemma.

Lemma 12 For k ∈ N (k?),

T∑
t=1

P
(
K(t) = k, L(t) = k?, E

µ
k (t)

)
≤ 1

kl(xk, µk)
+ 1

Proof To prove this lemma, one can write

T∑
t=1

P(K(t) = k, L(t) = k?, E
µ
k (t)) = E

[
T∑
t=1

1(K(t) = k, L(t) = k?, E
µ
k (t))

]

≤ E

[
T∑
t=1

1(K(t) = k,Eµk (t))

]

and use the same steps as in the proof of Lemma 3 of Agrawal and Goyal (2013).

Conclusion For 0 < ε ≤ 1, we can choose xk and yk in (µk, µk?) such that kl(xk, yk) =
kl(µk,µk? )

(1+ε) . Using the three above lemmas yields, for all k ∈ N (k?):

E

[
T∑
t=1

1(K(t) = k, L(t) = k?)

]
≤ (1 + ε)

∆k

kl(µk, µ?)
ln(T ) + C̃(µ, ε).

Since when the leader is k?, 1(K(t) = k, L(t) = k?) = 0 for all k /∈ N+(k?), we only need
to sum over the arms k ∈ N (k?) to get the result of Lemma 6.
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Appendix C. Proof of Lemma 7

Let k ∈ [K] \ {k?}.

Notation Recall from Section 3.3 that BN (k) = argmax`∈N (k)µ` is the set of best arms

in the neighborhood of k. This set is such that 1 ≤ |BN (k)| ≤ B̃, and arms belonging to
BN (k) have same mean, that we denote µk2 = max`∈N (k) µ`. We also define NBN (k)

(t) =∑
k2∈BN (k)

Nk2(t), the number of times arms belonging to BN (k) have been drawn up to

time t. We will say that k′ ∈ N+(k) is sub-optimal if µk′ < µk2 . We denote by M̃k =
|N+(k) \ BN (k)| ≤ |N (k)|, the number of sub-optimal arms belonging to N (k).

We introduce, for every arm k′,

δk′ =
µk2 − µk′

2
, and let δ = min

k′∈N+(k)\BN (k)

δk′ and C :=
6

δ2
.

We denote by k̃ any arm satisfying δk̃ = δ.
Just like in Section 3, we introduce the consecutive instants in which arm k is the leader,

τki . Assuming that UTS(γ) would be played forever, the instant of the i-th time arm k is
the leader, τki , can be formally written as such

τki = inf{t ∈ N : L(t) = k, `k(t) = i},

with the convention that inf ∅ = +∞.

For all i ∈ {1, . . . , T}, for all b ∈ (0, 1), by definition of τki , it holds that

T∑
t=1

1
(
L(t) = k, `k(t) = i,∀k2 ∈ BN (k), Nk2(t) ≤ (`k(t))

b
)

= 1
(
∀k2 ∈ BN (k), Nk2(τki ) ≤ ib

)
1
(
τki ≤ T

)
,

which permits to rewrite

T∑
t=1

P
(
L(t) = k, ∀k2 ∈ BN (k), Nk2(t) ≤ (`k(t))

b
)

=

T∑
i=1

P
(
∀k2 ∈ BN (k), Nk2

(
τki

)
≤ ib, τki ≤ T

)
≤

T∑
i=1

P
(
NBN (k)

(
τki

)
≤ B̃ib, τki ≤ T

)
,

(11)

where we recall that NBN (k)
(t) is the total number of pulls of all arms in BN (k).

We now provide an upper bound on (11), for a well chosen value of b.
Our analysis bears similarity with that of Kaufmann et al. (2012): we use the fact that if

arms belonging to BN (k) are not drawn much at time τki , there must exist many consecutive

instants τk` < τki in which those arms are not selected at all. To formalize this idea, we
introduce for every pair i, j the first instant preceeding τki in which arms of BN (k) have been
played at least j times while arm k is the leader:

νi,j = inf{` ≤ i : NBN (k)
(τk` ) ≥ j},
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with the convention inf ∅ = i+ 1. It holds that

(
NBN (k)

(
τki

)
≤ B̃ib

)
=
(
νi,dB̃ibe = i+ 1

)
⊆
bB̃ibc⋃
j=0

(
νi,j+1 − νi,j ≥

i1−b

B̃
− 1

)
.

We now introduce Ii,j ⊆
(
νi,j , νi,j + d i1−b

B̃
− 2e

]
, the subset of instants belonging to(

νi,j , νi,j + d i1−b
B̃
− 2e

]
where no leader exploration is performed. The j-th event in the

union implies that no arm belonging to BN (k) is selected in any instant τk` for ` ∈ Ii,j . More
precisely, introducing

Ei,j = {Ii,j ⊆ [i]}
⋂{
∀` ∈ Ii,j ,K(τk` ) /∈ BN (k)

}
one has

P
(
NBN (k)

(
τki

)
≤ ib, τki ≤ T

)
≤
bB̃ibc∑
j=0

P
(
Ei,j , τki ≤ T

)
. (12)

Interval sub-division and saturated arms To further upper bound (12), we introduce
for m = 1, . . . , M̃k + 1, the intervals Ii,j,m:

Ii,j,m :=

(
νi,j + (m− 1)

⌊ i1−b/B̃ − 2

M̃k + 1

⌋
, νi,j +m

⌊ i1−b/B̃ − 2

M̃k + 1

⌋]
∩ Ii,j ,

whose length is lower bounded as follows, substracting the instant in which leader explo-
ration is performed (that are not included in Ii,j):

|Ii,j,m| =
⌊ i1−b/B̃ − 2

M̃k + 1

⌋
−
⌈1

γ

(
i1−b/B̃ − 2

M̃k + 1

)⌉
≥
⌊(

1− 1

γ

)(
i1−b/B̃ − 2

M̃k + 1

)
− 2
⌋

:= H̃i,b,k,γ .

As in Kaufmann et al. (2012), we introduce the notion of saturated sub-optimal arm: we
say an arm k′ /∈ BN (k) is saturated at ` if Nk′(τ

k
` ) > C ln(i). Otherwise, it is unsaturated.

For an interval Ii,j,m, we denote by ni,j,m the number of interruptions, that is, the number
of times we draw an unsaturated arm during Ii,j,m. We introduce Fi,j,m, the event that by
the end of Ii,j,m , at least m sub-optimal arms are saturated, and Si,j,m, the set of saturated
arms at the end of Ii,j,m.

We decompose the probability of the event {Ei,j , τki ≤ T} as follows

P[Ei,j , τki ≤ T ] ≤ P[Ei,j , Fi,j,M̃k
, τki ≤ T ] (13)

+ P[Ei,j , F ci,j,M̃k
, τki ≤ T ] (14)

We will prove below that

(13) ≤ 2M̃k

i2(1− exp(−δ2/2))
+ g1(µ, j, b, i, k, γ) (15)
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and that for i larger than some constant Nµ,b,

(14) ≤ (M̃k − 1)

(
2M̃k

i2(1− exp(−δ2/2))
+ g2(µ, j, b, i, k, γ)

)
(16)

where for a well-chosen b ∈ (0, 1) and γ ≥ 2

∞∑
i=1

bB̃ibc∑
j=0

g1(µ, j, b, i, k, γ) <∞ and

∞∑
i=1

bB̃ibc∑
j=0

g2(µ, j, b, i, k, γ) <∞.

Combining (12) with the upper bounds (15) and (16), we get

(11) ≤Mµ,b +
T∑

i=Nµ,b+1

bB̃ibc∑
j=0

P[Ei,j , τki ≤ T ]

≤Mµ,b +

T∑
i=1

bB̃ibc∑
j=0

[
2M̃k

i2(1− exp(−δ2/2))
+ g1(µ, j, b, i, k, γ)

]

+
T∑
i=1

bB̃ibc∑
j=0

[
(M̃k − 1)

(
2M̃k

i2(1− exp(−δ2/2))
+ g2(µ, j, b, i, k, γ)

)]

≤Mµ,b +
∞∑
i=1

2B̃M̃2
k

i2−b(1− exp(−δ2/2))
+
∞∑
i=1

bB̃ibc∑
j=0

[g1(µ, j, b, i, k, γ) + g2(µ, j, b, i, k, γ)]

:= Dk(µ, b, γ),

which concludes the proof. We now prove the two crucial upper bounds (15) and (16).

Main ingredients We introduce two useful lemmas whose proofs are postponed to the
end of this appendix. Lemma 13 establishes that it is unlikely that the Thompson sample
associated to some saturated arm exceeds its true mean by too much.

Lemma 13 Let k ∈ [K].

P
(
∃` ≤ i,∃k′ /∈ BN (k), θk′(τ

k
` ) > µk′ + δ,Nk′(τ

k
` ) > C ln(i), τki < T

)
≤ 2M̃k

i2(1− exp(−δ2/2))

Lemma 14 shows that the Thompson samples of an arm belonging to BN (k) are unlikely to
fall below µk̃ + δ during a long interval in which the posterior of this arm doesn’t evolve.

Lemma 14 Let Ĩ be a random interval such that ∀` ∈ Ĩ, NBN (k)
(τk` ) = j and |Ĩ| ≥ x for

some deterministic constant x. There exists λ0 = λ0(µk2 , µk̃, δ) > 1 such that for λ ∈]1, λ0[,

P
(
∀` ∈ Ĩ,∀k2 ∈ BN (k), θk2(τk` ) ≤ µk̃ + δ

)
≤ jB̃(αµk̃,δ)

x + Cλ,µk2 ,µk̃

exp(−jdλ,µk2 ,µk̃/B̃)

xλ
,

where Cλ,µk2 ,µk̃ , dλ,µk2 ,µk̃ > 0, and αµk̃,δ =
(
1
2

)1−µk̃−δ.
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Proof of the Upper bound (15) On the event Ei,j ∩ Fi,j,M̃k
, only saturated arms are

drawn during the interval Ii,j,M̃k+1, so that one has the following decomposition:

P[Ei,j ∩ Fi,j,M̃k
∩ {τki ≤ T}]

≤ P[{∃` ∈ Ii,j,M̃k+1,∃k
′ /∈ BN (k), θk′(τ

k
` ) > µk′ + δ} ∩ {Nk′(τ

k
` ) > C ln(i)} ∩ Ei,j ∩ {τki ≤ T}]

+ P[{∀` ∈ Ii,j,M̃k+1,∀k
′ /∈ BN (k), θk′(τ

k
` ) ≤ µk′ + δ} ∩ Ei,j ∩ Fi,j,|N+(k)|−1]

≤ P
(
∃` ≤ i,∃k′ /∈ BN (k), θk′(τ

k
` ) > µk′ + δ,Nk′(τ

k
` ) > C ln(i), τki ≤ T

)
+ P(∀` ∈ Ii,j,M̃k+1, ∀k2 ∈ BN (k), θk2(τk` ) ≤ µk̃ + δ, Ei,j)

Using Lemma 13, we can bound the first term in this sum by

2M̃k

i2(1− exp(−δ2/2))
.

On the event Ei,j , NBN (k)
(τk` ) = j for all ` ∈ Ii,j,M̃k+1. Lemma 14 with Ĩ = Ii,j,M̃k+1

and x = H̃i,b,k,γ yields the following upper bound for the second term

jB̃(αµk̃,δ)
H̃i,b,k,γ + Cλ,µk2 ,µk̃

exp(−jdλ,µk2 ,µk̃/B̃)

H̃λ
i,b,k,γ

:= g1(µ, j, b, i, k, γ).

Summing g1(µ, j, b, i, k, γ) over j ≤ bB̃ibc and expliciting H̃i,b,k,γ gives

∑
j≤bB̃ibc

g1(µ, j, b, i, k, γ) = B̃
bB̃ibc(bB̃ibc+ 1)

2
(αµk̃,δ)

⌊(
1− 1

γ

)
i1−b/B̃−2

M̃k+1
−2
⌋

+
C ′λ,µk2 ,µk̃⌊(

1− 1
γ

)
i1−b/B̃−2
M̃k+1

− 2
⌋λ .

The first term of the sum is o
(
1
i2

)
, and by choosing b < 1− 1

λ for the second term, we obtain
that

∑
i≤∞

∑
j≤bibc g1(µ, j, b, i, k, γ) is finite when γ > 1.

Proof of the Upper Bound (16) Similarly to Kaufmann et al. (2012), we prove by
induction that for all 2 ≤ m ≤ M̃k + 1, if i is larger than some deterministic constant Nµ,b,

P[Ei,j ∩ F ci,j,m−1 ∩ {τki ≤ T}] ≤ (m− 2)

(
2M̃k

i2(1− exp(−δ2/2))
+ g2(µ, j, b, i, k, γ)

)
,

where Nµ,b and g2(µ, j, b, i, k, γ) are made precise below.

Base case of the induction: On the event Ei,j , only suboptimal arms are played during the
interval Ii,j,1, of length larger than H̃i,b,k,γ . Hence at least one suboptimal arm must be

played more than d H̃i,b,k,γ
M̃k

e times. Besides, there exists some deterministic constant Nµ,b

such that for i > Nµ,b, d
H̃i,b,k,γ
M̃k

e ≥ C ln(i).

Therefore, when i ≥ Nµ,b, at least one suboptimal arm is saturated by the end of Ii,j,1,
so that for i ≥ Nµ,b, P(Ei,j ∩ F ci,j,1 ∩ {τki ≤ T}) = 0. Hence, the inequality holds for m = 2.
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Induction: Let us assume the following, for some m ∈ {2, . . . , M̃k}:

P(Ei,j ∩ F ci,j,m−1 ∩ {τki ≤ T}) ≤ (m− 2)

(
2M̃k

i2(1− exp(−δ2/2))
+ g2(µ, j, b, i, k.γ)

)
.

Exploiting this inductive hypothesis, one obtains

P(Ei,j ∩ F ci,j,m ∩ {τki ≤ T})
≤ P(Ei,j ∩ F ci,j,m−1 ∩ {τki ≤ T}) + P(Ei,j ∩ F ci,j,m ∩ Fi,j,m−1 ∩ {τki ≤ T})

≤ (m− 2)

(
2M̃k

i2(1− exp(−δ2/2))
+ g2(µ, j, b, i, k, γ)

)
+ P(Ei,j ∩ F ci,j,m ∩ Fj,m−1 ∩ {τki ≤ T}) .

Let us prove that the second term of the sum is bounded by 2M̃k
i2(1−exp(−δ2/2))+g2(µ, j, b, i, k).

On the event (Ei,j ∩ F ci,j,m ∩ Fi,j,m−1), there are exactly m − 1 saturated arms at the
beginning of interval Ii,j,m and no new arm is saturated during this interval, so that
Si,j,m−1 = Si,j,m. As a result, there cannot be more than M̃kC ln(i) interruptions dur-
ing this interval, so that

P(Ei,j ∩ F ci,j,m ∩ Fi,j,m−1 ∩ {τki ≤ T})
≤ P(Ei,j ∩ Fi,j,m−1 ∩ {ni,j,m ≤ M̃kC ln(i)} ∩ {τki ≤ T})
≤ P({∃` ∈ Ii,j,m,∃k′ ∈ Si,j,m−1\BN (k), θk′(τ

k
` ) > µk′ + δ} ∩ Ei,j ∩ {τki ≤ T}) (17)

+ P({∀` ∈ Ii,j,m, ∀k′ ∈ Si,j,m−1\BN (k), θk′(τ
k
` ) ≤ µk′ + δ} ∩ Ei,j ∩ Fi,j,m−1 ∩ {ni,j,m ≤ M̃kC ln(i)})

(18)

Lemma 13 allows us to bound the term (17):

(17) ≤ 2M̃k

i2(1− exp(−δ2/2))
.

To deal with (18), we introduce the random intervals

Jh = {` ∈ Ii,j,m,between the h-th and (h+ 1)-th interrruptions}.

On the event in the probability of (18), there exists an interval Jh of length larger than

d H̃i,b,k,γ
M̃kC ln(i)

e such that there is no interruption at times τk` , for ` ∈ Jh. This means that,

at these time steps, all Thompson samples are smaller than that of the greatest sample
among the saturated arms (which are themselves smaller than µk̃+δ). In particular, in this
interval, ∀k2 ∈ BN (k), θk2(τk` ) ≤ µk̃ + δ, and we get

(18) ≤ P

(
{∃h ∈ 0, ..., ni,j,m − 1, |Jh| ≥

⌈ H̃i,b,k,γ

M̃kC ln(i)

⌉
}

∩{∀` ∈ Jh, ∀k′ ∈ Si,j,m−1\BN (k), θk′(τ
k
` ) ≤ µk̃ + δ} ∩ Ei,j ∩ Fi,j,m−1

)
≤

M̃kC ln(i)∑
h=0

P

(
{|Jh| ≥

⌈ H̃i,b,k,γ

M̃kC ln(i)

⌉
} ∩ {∀` ∈ Jh, ∀k2 ∈ BN (k), θk2(τk` ) ≤ µk̃ + δ} ∩ Ei,j

)
.
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Applying Lemma 14 with Ĩ = Jh, we get

(18) ≤ M̃kC ln(i)

jB̃(αµk̃,δ)

⌈
(1−1/γ)(i1−b/B̃−2)−2(M̃k+1)

M̃k(M̃k+1)C ln(i)

⌉
+ Cλ,µk2 ,µk̃

exp(−jdλ,µk2 ,µk̃/B̃)⌈
(1−1/γ)(i1−b/B̃−2)−2(M̃k+1)

M̃k(M̃k+1)C ln(i)

⌉λ


:= g2(µ, j, b, i, k, γ).

This proves that

P(Ei,j ∩ F ci,j,m ∩ {τki ≤ T}) ≤ (m− 1)

(
2M̃k

i2(1− exp(−δ2/2))
+ g2(µ, j, b, i, k, γ)

)

and the induction is verified.

As for g1(µ, j, b, i, k, γ), we observe that when γ > 1,
∑

i≤∞
∑

j≤bB̃ibc g2(µ, j, b, i, k, γ) is

finite by choosing b < 1− 1
λ .

Proof of Lemma 13 It holds that

P
(
∃` ≤ i,∃k′ /∈ BN (k), θk′(τ

k
` ) > µk′ + δ,Nk′(τ

k
` ) > C ln(i), τki ≤ T

)
≤

i∑
`=1

∑
k′∈N+(k)\BN (k)

P
(
θk′(τ

k
` ) > µk′ + δ,Nk′(τ

k
` ) > C ln(i), τk` ≤ T

)

Let ` ≤ i, k′ ∈ N+(k) \ BN (k).

P
(
θk′(τ

k
` ) > µk′ + δ,Nk′(τ

k
` ) > C ln(i), τk` ≤ T

)
(19)

≤ P
(
µ̂k′(τ

k
` ) > µk′ + δ/2, Nk′(τ

k
` ) > C ln(i), τk` ≤ T

)
(20)

+ P
(
µ̂k′(τ

k
` ) ≤ µk′ + δ/2, θk′(τ

k
` ) > µk′ + δ,Nk′(τ

k
` ) > C ln(i), τk` ≤ T

)
(21)

Using a union bound over the values of Nk′(τ
k
` ) ≥ C ln(i) together with Hoeffding’s

inequality (Lemma 8) yields

(20) ≤
T∑

u=C ln(i)

P(µ̂k′,u > µk′ + δ/2) ≤
∞∑

u=C ln(i)

exp

(
−δ

2u

2

)
=

exp(−C ln(i)δ2/2)

1− exp(−δ2/2)
,

where we denote by µ̂k′,u the estimated mean of the k′-th arm at the u-th draw.
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We upper bound (21) by

T∑
u=C ln(i)

P
(
µ̂k′(τ

k
` ) ≤ µk′ + δ/2, θk′(τ

k
` ) ≥ µk′ + δ,Nk′(τ

k
` ) = u, τk` ≤ T

)

≤
T∑

u=C ln(i)

P
(
µk′ ≥ µ̂k′,u − δ/2, θk′(τk` ) ≥ µk′ + δ,Nk′(τ

k
` ) = u, τk` ≤ T

)

≤
T∑

u=C ln(i)

P
(
θk′(τ

k
` ) ≥ µ̂k′,u + δ/2, Nk′(τ

k
` ) = u, τk` ≤ T

)

≤ E

 T∑
u=C ln(i)

(
1− FBeta

uµ̂k′,u+1,u−uµ̂k′,u+1(µ̂k′,u + δ/2)
)

= E

 T∑
u=C ln(i)

FBin
u+1,µ̂k′,u+δ/2

(uµ̂k′,u)


≤ E

 T∑
u=C ln(i)

FBin
u,µ̂k′,u+δ/2

(uµ̂k′,u)


≤ E

 ∞∑
u=C ln(i)

exp(−uδ2/2)


=

exp(−C ln(i)δ2/2)

1− exp(−δ2/2)
,

where the first equality comes from the Beta-Binomial trick (Lemma 9), and the last in-
equality comes from Hoeffding’s inequality.

Combining (20) and (21), and recalling that C = 6/δ2, we get

P
(
∃` ≤ i,∃k′ /∈ BN (k), θk′(τ

k
` ) > µk′ + δ,Nk′(τ

k
` ) > C ln(i), τki ≤ T

)
≤

i∑
`=1

∑
k′∈N+(k)\BN (k)

2
exp(−C ln(i)δ2/2)

1− exp(−δ2/2)

≤ 2M̃k

iCδ2/2−1(1− exp(−δ2/2))
=

2M̃k

i2(1− exp(−δ2/2))
.

Proof of Lemma 14 The interval Ĩ is such that for all ` ∈ Ĩ, NBN (k)
(τk` ) = j. This

implies that there exists k2 ∈ BN (k) which has been drawn at least j

B̃
and is not drawn

during that interval. Hence,
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P
(
∀` ∈ Ĩ, NBN (k)

(τk` ) = j,∀k2 ∈ BN (k), θk2(τk` ) ≤ µk̃ + δ
)

≤ P
(
∀` ∈ Ĩ,∃k2 ∈ BN (k),

j

B̃
≤ Nk2(τk` ) ≤ j, θk2(τk` ) ≤ µk̃ + δ

)
≤

∑
k2∈BN (k)

j∑
jk2=

j

B̃

P
(
∀` ∈ Ĩ, Nk2(τk` ) = jk2 , θk2(τk` ) ≤ µk̃ + δ

)
(22)

If Nk2(τk` ) = jk2 for all ` ∈ Ĩ, conditioned on Sk2,jk2 (sum of first jk2 observations from
arm k2), the Thompson samples of arm k2 drawn during this interval are an i.i.d. sequence
with distribution Beta(Sk2,jk2 + 1, jk2 − Sk2,jk2 + 1). Therefore,

P
(
∀` ∈ Ĩ, Nk2(τk` ) = jk2 , θk2(τk` ) ≤ µk̃ + δ|Sk2,jk2

)
=
(
FBeta
Sk2,jk2

+1,jk2−Sk2,jk2+1(µk̃ + δ)
)|Ĩ|

≤
(
FBeta
Sk2,jk2

+1,jk2−Sk2,jk2+1(µk̃ + δ)
)x

=
(

1− FBin
jk2+1,µk̃+δ

(Sk2,jk2 )
)x

where the inequality holds because |Ĩ| ≥ x, and the last equality is obtained by using the
Beta-Binomial trick (Lemma 9).

It follows that

P
(
∀` ∈ Ĩ, Nk2(τk` ) = jk2 , θk2(τk` ) ≤ µk̃ + δ

)
= E

[
P
(
∀` ∈ Ĩ, Nk2(τk` ) = jk2 , θk2(τk` ) ≤ µk̃ + δ|Sk2,jk2

)]
≤ E

[(
1− FBin

jk2+1,µk̃+δ
(Sk2,jk2 )

)x]
where the expectation is taken with respect to Sk2,jk2 ∼ Bin(jk2 , µk2).

An upper bound on this expectation is provided by the following lemma that can be
extracted from the proof of Lemma 3 in Kaufmann et al. (2012).

Lemma 15 Let X be a random variable with Binomial distribution of parameter (j, µ1).
Let δ and µ2 be such that 0 < µ2 + δ < µ1. There exists λ0 = λ0(µ1, µ2, δ) > 1 such that
for λ ∈ (1, λ0),

E
[(

1− FBin
j+1,µ2+δ(X)

)x] ≤ (αµ2,δ)
x + Cλ,µ1,µ2

exp(−jdλ,µ1,µ2)

xλ

where Cλ,µ1,µ2 , dλ,µ1,µ2 > 0, and αµ2,δ =
(
1
2

)1−µ2−δ
Finally,

(22) ≤ B̃
j∑

jk2=
j

B̃

[
(αµk̃,δ)

x + C̃λ,µk2 ,µk̃

exp(−jk2dλ,µk2 ,µk̃)

xλ

]

≤ jB̃(αµk̃,δ)
x + Cλ,µk2 ,µk̃

exp(−jdλ,µk2 ,µk̃/B̃)

xλ
,

which concludes the proof.
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