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We present both a theoretical description and experimental observation of the nonlinear mutual
interactions between a pair of copropagative breathers in the framework of the focusing one-dimensional
nonlinear Schrodinger equation. As a general case, we show that the resulting bound state of breathers
exhibits moleculelike behavior with quasiperiodic oscillatory dynamics (i.e., internal coherent interactions
and pulsations), while for commensurate conditions the molecule oscillations become exactly periodic.
Our theoretical model is confirmed by an experimental observation of shaped moleculelike breather light
waves propagating in a nearly conservative optical fiber system. Our work sheds new light on the existence
of localized wave structures and recurrence dynamics beyond the multisoliton complexes.

DOI: 10.1103/PhysRevLett.122.084101

Introduction.—During the last decades, the formation
of localized wave structures has attracted significant
research interest in a variety of conservative and dis-
sipative systems of nonlinear science [1], including
photonics, plasma physics, Bose-Einstein condensates,
fluid mechanics, biology, and chemistry. For instance,
the notion of a soliton [2-3], is one of the most well-
known example of studies in which the initial concept [4]
has even been generalized to nonlinear dissipative sys-
tems [5]. The notion of dissipative solitons arises from
the balance between dispersion or diffraction and non-
linearity (as the conventional soliton) and between gain
and losses [6]. Besides their formation, their mutual
interactions such as collisions and even the emergence
of stable bound states have been particularly investigated
in laser physics [7-8]. Such dissipative multisoliton
complexes, also called photonic molecules, result from
self-organization phenomena. Such localized wave struc-
tures show dynamics similar to matter molecules, such as
synthesis and vibration. The build-up and transient
regimes of dissipative localized structures in mode-locked
fiber lasers are currently the subject of intense studies by
means of real-time ultrafast measurements [9-13]. It is
worth mentioning that distinct kinds of photonic mole-
cules have been theoretically and experimentally studied
by means of various models and physical systems such as
saturable nonlinear bulk media [14], dispersive-managed
fibers with periodically alternating dispersion [15], Bose-
Einstein condensates [16], time-delayed laser system [17],
and quantum nonlinear media [18].
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By contrast, the existence of bound states of conven-
tional solitons (also known as multisoliton complexes [19])
in the framework of their original studies, namely inte-
grable Hamiltonian systems like the focusing one-dimen-
sional nonlinear Schrodinger equation (ID-NLSE) [20],
have remained largely unexplored. Of course, bisolitons or
higher-order soliton solutions of the NLSE, have been
analyzed theoretically and numerically [19-22]. The bound
states of solitons in other integrable systems such as
sine-Gordon, modified Korteweg—de Vries and Gardner
equations were also found [23-25]. The key features of
multi-soliton complexes are the equal group-velocity of
elementary solitons and the molecule-like behavior of their
internal coherent interactions with exact periodic beatings.
In the simplest case, the bound state of two NLS solitons
is characterized only by one recurrence frequency, and
constitutes a periodic solution [20]. Such structures are
asymptotically unstable, since a small perturbation can
result in a change of the soliton velocities. However,
besides envelope solitons, the focusing 1D-NLSE admits
a wider range of exact solutions in the form of breathers on
finite background [26-31], for which the conventional
soliton can be considered as a limiting case. As NLSE is
viewed as the basic model for various systems including
plasmas, optical fibers, oceans, and cold atoms, propaga-
tion and interactions of NLS breathers in weakly nonlinear
media are of fundamental interest in recent theoretical
and experimental studies due to their important role in the
development of modulation instability (MI) and formation
of NLS rogue waves [32-35].

© 2019 American Physical Society
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In this work, we provide a generalization of the concept
of bound states of NLS solitons towards moving breather
waves. Note that particular bound states formed by NLS
breathers were previously studied theoretically in Refs. [31]
and [36], while more general investigations analyzing
space-time dynamics, more particularly their characteristic
frequencies which define breather molecules, are still
pending. More specifically, we present the theoretical
description of the breather molecule based on the exact
two-breather solution of the NLSE. We find that the
breather molecule exhibits quasiperiodic or periodic oscil-
latory dynamics according to the characteristic frequency
of elementary breather. Note that compared to the soliton
molecules in dissipative cavities, which are described by
Ginzburg-Landau equation [7,37,38], here we study
conservative fiber systems driven by the integrable
NLSE; i.e., in our case the external binding potential is
absent. Nevertheless, the precise control of the input optical
wave parameters and high accuracy detection allow us to
demonstrate the propagation of a breather molecule formed
by copropagative NLS breathers in optical fibers.

Theoretical models.—Our theoretical description is
based on the breather formalism obtained within the
framework of the self-focusing 1D-NLSE [39],

1

e+ 5y + Py =0, (1)
where subscripted variables stand for partial differentia-
tions. Here y is a wave envelope which is a function of £ (a
scaled propagation distance or longitudinal variable) and =
(a commoving time, or transverse variables, moving with
the wave-group velocity). This conventional form of the
NLSE has exact breather solutions, characterizing solitons
propagating on an unstable finite background and interact-
ing with it. Within this framework, different coherent
structures on finite background have been intensively
studied in different nonlinear dispersive media, such as
Akhmediev breathers, Kuznetsov-Ma solitons and, in
particular, the Peregrine solitons. The background is
usually modeled by a simple plane wave solution of the

NLSE w, = Ae’4’, where A is the background amplitude
which we set to unity. The background vy is unstable with
respect to long-wave perturbations (modulation instability
phenomena, see, e.g., Ref. [40]). Beyond the elementary
first-order breather solutions, higher-order breathers can be
found to describe MI wave evolution dynamics of more
complex initial wave systems. In particular, a special
subclass of breather solutions, the so-called super-regular
breathers, may also describe the development of modula-
tionally unstable localized background perturbations
[30,31,39,41]. In our work we use as in Ref. [30] notations
for parameters of each breather: R, @, u,and 6. R € (1, oo] and
a € (—n/2,7/2) to characterize the main breather proper-
ties: amplitude, group velocity and period of oscillations

while y € [—o0, 0] and 0 € [0, 2x] to describe breather’s
time position and phase. We study the breather molecule
using the general two-breather solution of NLSE which is
presented in explicit form in the Supplemental Material
[42]. We also refer to Refs. [30—31] for more details on the
mathematical derivations of this solution.

We study interactions of a couple of general-type moving
NLS breathers [29] and each breather is characterized by
group velocity V, ; (here i = 1 or 2, denoting one of the
two breathers),

Vyi=—sina;(Ri +1)/[R;(Rf = 1)]. (2)

and oscillation frequency W,
W, =2(k;V,; + ). (3)

where k;=—(R; +1/R;)sin(e;)/2 and §; = (R? — 1/R?)x
cos(2a;)/4 (see also Ref. [38]). The breather molecule
is formed when the group velocities of two breathers
coincide: V, =V, , =V, ,q (the subscript g mol
denotes the “molecule group velocity”) i.e., when

(Ri +1/RY)sinay _ (R3+1/Rj)sina,
(Ri —1/Ry) (Ry—1/Ry) ~

(4)

and relative temporal separation (p; — p,) is small (i.e.,
when nonlinear interaction occurs). In addition, the behav-
ior of the breather molecule is controlled by the relative
phase parameter (6; — 6,). Figure 1 shows several exam-
ples fulfilling the constraint (4), leading to independent
(al)—(cl) or bound (a2)—(c2) propagation of breathers.

As can be noted from Figs. 1(a2)-1(c2), the complete
nonlinear interaction (for a zero temporal separation) of
two copropagating breathers results in a bound state with
nontrivial oscillatory behavior (i.e., internal coherent inter-
actions and pulsations). We found that this state of two
copropagative breathers has four oscillation frequencies
Wiol- Two of them are the individual frequencies of
breathers W, W, and other two are their combinations:
Wi —W,, W + W, (see Supplemental Material [42]). For
each frequency we denote the corresponding space period
E; =21/Wyo, where j = 1,2, (1 —2), (1 4 2). When the
temporal separation of the breathers (u; — p») is large (the
case of a dissociated molecule), they propagate separately,
oscillating with their own periods E; and E,, as shown in
Figs. 1(al)—(cl). When the molecule is strongly associated,
one of the molecule frequencies can dominate, but in the
general case the behavior is quasiperiodic [see Fig. 1(a2)].

The breather molecule can exhibit exact periodic behav-
ior for a certain choice of parameters, namely when the
characteristic frequencies of two individual breathers sat-
isfy the commensurate condition W, /W, = m, /m,, where
m; and m, are integer numbers:
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FIG. 1.

False color density plots of the space-time evolution of || for representative cases of (a),(b),(c) two or (d) three copropagating

breathers with same group velocity, based on the N-breather solutions of NLSE. First column (a) R; = 4, a; = z/6, R, = 3.27558,
a, =n/5,0,, =0, u =0, (al) u, =2z, (a2) pu, = 0. Second column (b) R = 2.75, & = /6, R, = 4.113 528, a, = 0.376 306,
012 =0, =0, (1) u, =2x, (b2) pup = 0. Third column (¢) R =5, a; = 7/12, R, = 4.056 606, a, = 0.316726, 6,, = 0, u; =0,
(cl) py = 2m, (c2) u, = 0. Fourth column (d) R, = 2.75,a; = /6, R, = 4.113 528, a, = 0.376 306, R; = 5.083 628, a3 = 0.309 323,

0103 =0, 1) py =27, pp =0, py =2, (d2) p13 = 0.

kl Vg_l + 51 o ﬂ (5)
kz Vg_2 + 52 my

Note that Egs. (4) and (5) may have joint solutions
corresponding to physically adequate breather parameters
like those presented in Fig. 1 [42]. In this case, we denote
E o as the period of the breather molecule. As a general
rule, when the ratio between m; and m, is an integer
number, E,, = E; or E,, as shown in Fig. 1(b2) with
m,/m; = 2/1. Otherwise E, is equal to E;_, or E|,, see
Fig. 1(c2) with m,/m,; = 2/3. For the chosen parameters R
and a of one breather, the conditions (4) and (5) lead to a
high order polynomial equation that we solve numerically.
Thus, to obtain such breather molecule solutions we must
find parameters satisfying (4) and (5) and then use the
general two-breather solution of the NLSE [42].

As mentioned, the temporal matching of the breathers
(u; —up) is an essential parameter to generate the
bound state. For a relatively large temporal separation,
such as (u; — p») > /2, the two breathers can be regarded
as independent [i.e., dissociated molecule as in Figs. 1(al)—
1(c1)]. When this value is decreased below /2, the mutual
interaction is no longer negligible (i.e., molecule synthesis),
since the characteristic frequency of the molecule breather
begins to be noticeable. For a nearly zero temporal
separation, a chainlike bound state is then formed between
the two breathers, see Figs. 1(a2)—1(c2). This impact of the
temporal matching of two co-propagating breathers is
analyzed in the supplemental material [42].

In general, the breather molecule is formed by N > 2
copropagative breathers having individual frequencies W,
where j=1,...,N. The condition similar to Eq. (4):
Voi=Vyo=..=V, y can be easily fulfilled. Such a
molecule has N? oscillation frequencies (W; and all their
pairwise sums and differences) and usually demonstrates

quasiperiodic behavior. One can find parameters of the
N-breather molecule satisfying the general commensurate
condition W\ /W,/.../Wy=m/m,/.../my (here m; are
integer numbers) when its oscillations are exactly periodic.
An example of an exactly commensurate 3-breather
molecule with the following condition ms3/m,/m; =
3/2/1 is shown in Fig. 1(d2), whereas its dissociated
configuration is depicted in Fig. 1(d1). We construct this
three-breather molecule using a general N-breather solution
formula (see Refs. [30-31]) and find that the characteristic
space period of this three-breather molecule is here equal
to E 1-

Experiments.—Next, we performed experiments based
on the propagation of arbitrarily shaped light waves in
optical fibers to validate the existence of breather mole-
cules. Our experimental setup based on high-speed tele-
communication-grade components is depicted in Fig. 2.
The ideal excitation of two-breather solutions of NLSE is
obtained through Fourier-transform optical pulse shaping
with optimized phase and amplitude controls of the optical
field. Such an optical processing is based on spectral line-
by-line shaping of a frequency comb source whose band-
width can be designed specifically for the NLS solution
under study. Our homemade frequency comb is generated
by the implementation of a high-repetition-rate pulse
source centered at 1548 nm. This results from the 2.2-
km-long nonlinear compression of a 20-GHz modulated
wave. The spectral bandwidth of the comb is finely tuned
by optimizing both initial modulation depth and average
power of the modulated wave before compression. Note
that a phase modulator is also introduced to prevent the
detrimental effect of stimulated Brillouin backscattering.
Next the spectral comb passes through a programmable
optical filter (wave shaper) which provides an extremely
precise control of the amplitude and phase characteristics
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FIG. 2. Experimental setup. External cavity laser diode (ECL),
phase modulator (PM), intensity modulator (Im), erbium-doped
fiber amplifier (EDFA), single-mode fiber (SMF); polarization
controller (PC), optical spectrum analyzer (OSA), optical sam-
pling oscilloscope (OSO).

of each comb line. This allows us to synthesize tailored
perturbations of the background wave in a time-periodic
pattern whose frequency is equal to the comb spacing.
Exact excitation of the two-breather solutions can be
obtained in a standard single-mode fiber SMF-28 by an
appropriate choice of the input average power (here
Py =0.71 W). Our fiber properties are the following:
group velocity dispersion B, = —21.1 ps’km™!, linear
losses a=0.2dBkm™', and nonlinear coefficient
y = 1.2 W~'km~!. The propagation of the moleculelike
breather is then studied with different lengths of the same
fiber and characterized by means of an optical sampling
oscilloscope with subpicosecond resolution and a high-
dynamics-range optical spectrum analyzer. The maximum
propagation distance was fixed to 3 km, since the accu-
mulated linear loss begins to perturb the breather dynamics
for longer optical fibers. One can retrieve the correspon-
dence between normalized and physical units by making
use of the following relations between dimensional distance
z (m) and time ¢ (s) and previous normalized parameters:
7 = &Ly, and t = 71, where the characteristic (nonlinear)
length and time scales are Ly = (yPy)~' and t, =
\/|B2|Lni, respectively. The dimensional optical field
Az, t) (W) is A = \/Pyy.

In the following, we present our experimental results on
the space-time evolution of a pair of copropagating breath-
ers. We arbitrarily chose breather parameters m,/m; =
1.98/1 to be close to the commensurate condition (5). Here
our goal is twofold: (i) to reveal the possible domination of
specific E,, related to exact periodic behavior, and (ii) to
show typical asymmetric signatures in the breather mol-
ecule profile linked to general quasiperiodic oscillatory
dynamics. Figures 3(a)-3(b) show the theoretical evolution
of the breather molecule. For the zero temporal separation
of two copropagating breathers, we observe a chainlike
bound state that can propagate though infinite distance in

(b) Theory (c) Experiment

| [5/div]

Distance &
|| [5/div]

| [5/div]

0
Time t

0
Time t© Time t

FIG. 3. Space-time evolution of a bound state of breathers
(R, =5, a; =0.08337, R, =35, a,=0.1145z, 0,, =0,
1y = pr, = 0). (a) Two-breather solution. White rectangles denote
three nodes of the breather molecule. (b) Corresponding ampli-
tude profiles |y|. (c) Experimental measurements (square-root of
recorded intensity) performed in the region of those three nodes.
The periodic pattern results from our frequency-comb-based
system; each element of the pattern is delimited by dashed-black
lines.

the NLSE framework. However, we also notice that snap-
shots of the amplitude profiles, corresponding to nodes
of the chain away from the origin & = 0, reveal slight
asymmetries [this can be also observed in the typical
X-shape signature of the nodes in the plane (&,7)]. Such
asymmetric amplitude profiles simply result from the
general case of quasiperiodic oscillatory dynamics. We
then recorded the evolution of the breather molecule around
the most representative nodes, namely, for £ = —2, 0, and
2. More specifically, we started nonlinear wave propagation
at &y = —2.35, —0.35, and 1.65, and we followed wave
evolution by means of the different fiber lengths up to 3 km
to reach Eour = —1.7, 0.3, and 2.3, respectively. Our wave
measurements shown in Fig. 3(c) quantitatively confirm
theoretical predictions of the breather molecule dynamics.
The slight discrepancies between the two-breather solution
and the experimental observation are ascribed to the linear
fiber losses.

In order to assess the full dynamics of the breather
molecule in our experiments, we provide the full evolution
of both spectral and intensity profiles over one quasiperiod
by combining different optical fiber segments of the SMF
workbench in Fig. 2. This technique avoids the destructive
cutback method required for direct measurement of the
longitudinal evolution. With this method, we construct the
2D diagrams shown in Fig. 4 to depict the detailed spectral
and temporal evolutions of node 2 from Fig. 3. It is worth
mentioning that the maximum spectral broadening is
located at the center of the node, where the maximal
temporal localization of the breather pair is achieved. Again
an excellent agreement is obtained with the theory about
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FIG. 4. Evolution of the breather molecule around node 2 in the
temporal (top panels: amplitude profiles |y|) and spectral (bottom
panels: power spectrum in dB scale) domains. (a) Two-breather
solution. (b) Experimental wave measurements. (c) Comparison
of the mean group velocity of the breather molecule obtained
from spectral measurements to theoretical V ., (error bars
indicate the impact of limited OSA resolution). Breather param-
eters are the same as in Fig. 3.

the evolution of the envelope and its corresponding power
spectrum.

In our experiments, breathers propagate with a group
velocity different from the one of the background wave
(i.e., breathers acquire a negative temporal shift to the line
7 =0, as shown in Fig. 3), but this cannot be retrieved
directly from temporal measurements due to synchroniza-
tion change between each fiber segment. We then deter-
mined the group velocity of breathers from spectral
measurements to reconstruct exactly their space-time evo-
lution reported in Figs. 3(c) and 4(b). By combining the
dispersion relation of the optical fiber and the measured
asymmetry power spectrum S(&) = |r(&, w)|?, the group
velocity of the breather molecule can be approximatively
evaluated as V, (&) = f]@(E) — wp], where (&) =
[[ S(&)wdw]/[[ S(¢é)dw] is the weighted average angular
frequency, and w is the carrier angular frequency of the
background wave. Figure 4(c) shows the comparison
between this experimental estimation and the theoretical
prediction of Eq. (2). We retrieve a constant value of V
as a function of propagation distance and close to the
theoretical prediction. Here the discrepancies mainly come
from the limited resolution of our optical spectrum analyzer
equal to 2.5 GHz when compared to the low group velocity
to estimate, but also from the slight impact of the steady
background wave.

Finally, to reveal the synthesis of breather molecule,
additional measurements of the two individual breathers
and their interactions with different temporal separations
(U —pp = m, n/2, n/4 and n/8) are presented in the
Supplemental Material [42]. We also point out that numeri-
cal simulations based on the NLSE (1), taking into account
the experimental conditions of periodic wave shaping and

the fiber loss as well, were also performed. Corresponding
results are not shown here, since it would be almost
indistinguishable from experimental ones.

Conclusion.—In summary, we reported the theoretical
description and direct observation of the synthesis and
propagation of breather molecules, which can be fully
characterized by the two-breather solution of the NLSE.
More complex NLS photonic molecules can be formed by
multiple breathers (>3). The two-breather molecule exhib-
its much more complicated behavior, when compared to
the bound state of two solitons. In the latter case soliton
oscillations are simply periodic, while in the case of the
breather molecule the exact periodic behavior is observed
only when the commensurate condition is satisfied. It is
also worth mentioning that this particular case of com-
mensurate frequencies which we found is a potential
description of the local modulation instability problem
and related Fermi-Pasta-Ulam-Tsingou recurrence [43—45].
According to the universal applicability of NLSE, our
results pave the way for novel directions of studies in the
rich landscape of complex localized structures in wave
physics, such as hydrodynamics, plasmas physics, and
Bose-Einstein condensations. To conclude, our approach
may stimulate future extensions of the notion of breather
molecules towards dissipative systems, such as optical
resonators and lasers in which multisoliton molecules are
now extensively studied.
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