
HAL Id: hal-02396734
https://hal.science/hal-02396734

Preprint submitted on 6 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Karatsuba multiplication with temporary space of size ≤
n

Emmanuel Thomé

To cite this version:

Emmanuel Thomé. Karatsuba multiplication with temporary space of size ≤ n. 2002. �hal-02396734�

https://hal.science/hal-02396734
https://hal.archives-ouvertes.fr


Karatsuba multiplication with temporary space
of size ≤ n

Emmanuel Thomé

September 2002

Abstract
We describe in this short note how it is possible to perform a Karatsuba
multiplication of two polynomials of degree n− 1 using a buffer holding
at most n− 1 coefficients if n is even, and n coefficients if n is odd. This
method is valid for any n (in other words, when n ≥ 2). Similar results
can be obtained for the Karatsuba squaring.

1 Introduction and terminology
The Karatsuba multiplication method (see for instance [?]) is the second best-known mul-
tiplication algorithm after “schoolbook” multiplication. To multiply two polynomials of
degree n − 1 (having therefore n coefficients), a complexity of nlog2 3 = n1.58 is achieved
using the following recursive procedure:
Algorithm Mul(a, b, n)

Let p = bn
2
c and q = dn

2
e (such that p+ q = n).

Write a = a0 +Xpa1 and b = b0 +Xpb1.
Compute α = a0 − a1, β = b1 − b0. (see erratum)
return Mul(a0, b0, p)× (1 +Xp)+

Mul(α, β, q)×Xp+
Mul(a1, b1, q)× (Xp +X2p)

It is very easy to see that this procedure achieves the announced asymptotic complexity,
since a multiplication of size n is performed using three multiplications of size n

2
.

When concerns lean towards efficiency, the first thing to do is to evaluate the threshold
point above which this procedure is worthwhile. Below this threshold, the added linear
complexity of the Karatsuba algorithm is cumbersome, and the classical “schoolbook” mul-
tiplication performs better. The actual threshold value depends of course highly on the
ratio between the respective throughputs of addition and multiplication (and therefore de-
pends on the machine and on the nature of the coefficients). We refer to the multiplication
below the threshold as the “basecase” multiplication.

1



The second concern for implementations is the management of the temporary space.
How much temporary space is needed for the storage of the quantities α, β, and the three
intermediate products constructed (temporary space must also be provided for the recursive
steps) ? We assume that the multiplication procedure is not allowed to destroy its input
operands, but that any temporary data is allowed to be stored in the destination operand.
Requiring 4n coefficients of temporary space in addition to this makes the implementation
fairly trivial. With some additional care, 2n coefficients might be enough. Eventually, we
show that n coefficients of temporary space are sufficient, at the expense of some shuffling
of the data (more precisely, n + (n mod 2)− 1 coefficients of temporary space are used).
Our construction copes even with the limit case where basecase multiplication is only used
for n = 1.

2 Saving temporary space
We prove the following assertion.

Proposition 2.1 Mul(a, b, n) can be implemented to use n+ (n mod 2)− 1 coefficients
of temporary space.

This figure does deliberately not take into account the storage required on the stack
for the recursive implementation, which is of the order of log2 n.
Proof :

We prove the proposition by induction on n. Since the basecase multiplication uses no
temporary space, the result is trivially true for any n below the threshold. The basecase
multiplication being used at the very least for n = 1, let us assume that n ≥ 2, and that
the assertion is true for any strictly smaller value of n.

Assume that a, b are arrays of coefficients. We denote by a[[x . . . y[[ the range of y − x
coefficients stored in a, starting from coefficient indexed x. The first coefficient stored in
a is, by convention, indexed 0.

We choose p = bn
2
c and q = dn

2
e, such that p+ q = n, and p ≤ q ≤ p+ 1. Since n ≥ 2,

we have p ≥ 1 and q ≥ 1. One can also immediately notice that 2p ≥ q.
We assume that we have at our disposal the result area, denoted r[[0 . . . 2n − 1[[, and

some temporary space, denoted t[[0 . . . 2q − 1[[. Since 2q = n+ (n mod 2), this amount of
data corresponds with the announced amount of temporary space.

Our goal is of course to have a × b stored into r[[0 . . . 2n − 1[[. More precisely, the
product α × β will have to be stored in r[[p . . . p + 2q − 1[[ (since α and β both have q
coefficients, their product has 2q−1 coefficients), with the added contribution of a0× b0 to
r[[0 . . . 2p− 1[[ and r[[p . . . 3p− 1[[, and of a1 × b1 to r[[p . . . p+ 2q − 1[[ and r[[2p . . . 2n− 1[[.
We proceed through the following steps.

1. r[[0 . . . q[[← a[[0 . . . p[[−a[[p . . . n[[ (this is α).

2. r[[q . . . 2q[[← b[[p . . . n[[−b[[0 . . . p[[ (this is β ; see erratum).

2



3. t[[0 . . . 2q − 1[[← r[[0 . . . q[[×r[[q . . . 2q[[, using r[[2q . . . 2n− 1[[ for the temporary space.

4. r[[2p . . . 2n− 1[[← a[[p . . . n[[×b[[p . . . n[[, using r[[0 . . . q[[ for the temporary space.

5. t[[0 . . . 2q − 1[[← t[[0 . . . 2q − 1[[+r[[2p . . . 2n− 1[[.

6. r[[p . . . 2p[[← t[[0 . . . p[[.

7. r[[2p . . . p+ 2q − 1[[← r[[2p . . . p+ 2q − 1[[+t[[p . . . 2q − 1[[.

8. t[[0 . . . 2p− 1[[← a[[0 . . . p[[×b[[0 . . . p[[, using r[[0 . . . p[[ for the temporary space.

9. r[[0 . . . p[[← t[[0 . . . p[[.

10. r[[p . . . 2p− 1[[← r[[p . . . 2p− 1[[+t[[p . . . 2p− 1[[.

11. r[[p . . . 3p− 1[[← r[[p . . . 3p− 1[[+t[[0 . . . 2p− 1[[.

We need to explain why data never overlaps within this procedure. Step 3 is the only
delicate step. The amount of temporary step provided is 2n− 1− 2q coefficients, that is,
2p − 1 coefficients. Since step 3 performs a multiplication of size q, we must make sure
that 2p− 1 is always greater than or equal to q + (q mod 2)− 1. Let us first investigate
the cases where 2p− 1 < q. This inequality implies 2p ≤ q, hence 2p ≤ p+1, hence p ≤ 1,
which yields immediately p = 1, q = 2, n = 3. So n = 3 is the only possibly embarrassing
case. But then, q is an even number strictly smaller than n, which means that q + (q
mod 2)− 1 = q − 1 = 1 coefficient of temporary space is used. Since 2p− 1 = 1, this fits.

The absence of overlap in the other steps of the procedure is just the matter of a trivial
check. �

3 Code
This piece of code illustrates the proposition above. The objects considered are polynomi-
als over the 2-adic integers with precision equal to the wordsize. We use the syntax of the
software multiprecision library GMP [?]. We assume that the procedure mul(r,a,b,t,n)
compares n with the threshold, and then performs either kara_mul(r,a,b,t,n) or other-
wise basecase_mul(r,a,b,t,n). Here is the implementation of kara_mul(r,a,b,t,n):

void kara_mul(mp_limb_t * r, mp_limb_t * a, mp_limb_t * b,
mp_limb_t * t, mp_size_t n)

{
mp_size_t p, q;

p = n>>1;
q = n - p;

3



/* step 1 */
mpn_sub_n(r,a,a+p,p);
if (q!=p) r[p]=-a[n-1];

/* step 2 */
mpn_sub_n(r+q,b+p,b,p);
if (q!=p) r[n]=b[n-1];

/* step 3 */
mul(t,r,r+q,r+2*q,q);

/* step 4 */
mul(r+2*p,a+p,b+p,r,q);

/* step 5 */
mpn_add_n(t,t,r+2*p,2*q-1);

/* step 6 */
memcpy(r+p,t,p*sizeof(mp_limb_t));

/* step 7 */
mpn_add_n(r+2*p,r+2*p,t+p,t,2*q-1-p);

/* step 8 */
mul(t,a,b,r,p);

/* step 9 */
memcpy(r,t,p*sizeof(mp_limb_t));

/* step 10 */
mpn_add_n(r+p,r+p,t+p,p-1);

/* step 11 */
mpn_add_n(r+p,r+p,t,2*p-1);

}

4 Related problems
One can obviously obtain the same result for the Karatsuba squaring. However, be it
either for the multiplication or the squaring, it does not seem likely that anything better
than this result can be obtained. Step 8 of the algorithm is really tight, and uses all the

4



storage space available. This proves that less than n− O(1) of temporary storage cannot
be sufficient.

If one relaxes the requirement that the input operands be left untouched, then one can
do somewhat better. If one operand can be clobbered, then dn

2
e is probably not hard to

achieve.
The same kind of algorithm should work over the integers too, but the results might not

be as good (the fact that two polynomials with n coefficients multiply to form a product
with 2n − 1 coefficients is heavily used here – The size of the product is 2n with integers
instead of polynomials).

The brave reader might try to figure out how to achieve a similar temporary buffer size
for the Toom 3-way multiplication algorithm.

Erratum
20110215: F. Morain pointed out that the pseudo-code on page 1 and on the bottom of
page 2 had the sign of β wrong. This has been fixed.

5


