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OPINION PROPAGATION ON SOCIAL NETWORKS:

A MATHEMATICAL STANDPOINT ∗

H. Lavenant1 and B. Maury2

Abstract. These lecture notes address mathematical issues related to the modeling of opinion propa-
gation on networks of the social type. Starting from the behavior of the simplest discrete linear model,
we develop various standpoints and describe some extensions: stochastic interpretation, monitoring
of a network, time continuous evolution problem, charismatic networks, links with discretized Partial
Differential Equations, nonlinear models, inertial version and stability issues. These developments rely
on basic mathematical tools, which makes them accessible at an undergraduate level. In a last sec-
tion, we propose a new model of opinion propagation, where the opinion of an agent is described by
a Gaussian density, and the (discrete) evolution equation is based on barycenters with respect to the
Fisher metric.

Résumé. Ce support de cours traite de questions mathématiques en lien avec la modélisation de la
propagation d’opinion dans des réseaux sociaux. À partir du modèle le plus simple, discret et linéaire,
nous développons des points de vue divers et proposons des extensions: interprétation stochastique,
contrôle des opinions sur un réseau, modèle d’évolution continu en temps, réseaux «charismatiques »,
liens avec les équations aux dérivées partielles discrétisées, modèles non linéaires, modèle avec inertie
et questions de stabilité. Ces développements reposent sur un bagage limité d’outils mathématiques,
de telle sorte que l’essentiel est accessible au niveau licence. Dans une dernière section, nous proposons
un nouveau modèle de propagation d’opinion, où l’opinion est décrite par une densité gaussienne, et
l’évolution discrète est basée sur la notion de barycentre selon la métrique de Fisher.
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Introduction

We aim at modeling propagation of opinion over networks of the social type. As a typical example, consider
a collection of voters before the second round of a runoff voting process. The opinion of each voter, i.e. their
propensity to vote for one of the two candidates, can be encoded by a number in some interval, the ends of
which correspond to firm intentions. Other sorts of opinion can be encoded by a number, like the expected
temperature rise in 20 years due to global warming. In both cases, each agent is likely to progressively change
their opinion by interacting with other people. In this context, modeling the changes and the propagations of
opinion consists in identifying the agents who influence a given individual, and setting how the opinion of this
very individual are influenced by the opinions of those influential neighbors. The evolution models which are
obtained in this way present some similarities with diffusion processes over networks, and the equation which
will play a central role in these notes can be seen considered as a heat equation canonically associated to the
network. Yet, a crucial characteristic of social networks is the absence of symmetry, which makes them quite
different from standard diffusion processes. The influence of an agent x over an agent y is not correlated to the
influence that y exerts on x. This relation might even be fully asymmetric, i.e. x influences y whereas x does
not account for y (like in the Follower relation in Twitter network).

Let us emphasize that our work is rather academic. We aim here at building a theoretical framework rather
than confronting the models with experimental data. The topic of propagation of information over a network
has been widely studied, both from the modeling and statistical standpoints, and we refer to Section 10 at the
end of this article for a brief bibliographical survey. Compared to a large part of the existing literature, we will
concentrate on (over)simplified models, based on assumptions which are questionable, and we will not try to
justify these assumptions except by relying on the reader’s common sense. On the other hand, since the objects
studied in these notes have a strong mathematical structure, we will be able to draw a lot of conclusions without
relying on any numerical computations. Moreover, we hope that the structure of the models will be apparent
enough so that the reader would know how additional features could be incorporated.

More specifically, we will study evolution of numerical quantities (the opinion is encoded as a real number)
which will be defined on the vertices of weighted directed graphs. Each vertex will correspond to an entity
(individual, group of individuals, animal, . . . ) and we shall consider that there is an arrow (or directed edge)
from x to y whenever x is influenced by y. The asymmetry of the propagation of information is directly reflected
by the directed character of the graph: x → y does not imply y → x. We will mainly concentrate on linear
evolution models: in fact, our work is closely related to matrix theory and Markov chains, though the language
and questionings will differ. Through these notes, we will revisit some well known results, but we hope that the
reader will appreciate the relevance of the application of these results to our problem. Some proofs may appear
over-complicated at first glance: indeed, we have tried to choose the ones which rely on relevant modeling ideas,
and which are robust enough to be extended to more complicated settings, rather than“one-line” proofs which
would be too specific and rely on a general theory. As an example, we have tried to avoid as much as possible
to talk about reduction of linear operators, at least in the first sections.

We advise the reader to first take a look at Section 1: it provides the vocabulary about weighted directed
graphs, and present the simplest linear model. All the remaining sections are basically variations about the
model described in Section 1, and can be read independently from one another (up to some cross-references
which are mainly contained in remarks). In order to facilitate the reading, we have gathered most bibliographical
notes in a dedicated section (Section 10) at the end of these lecture notes.
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1. Propagation of information over a network

We consider here a simple model for influence spreading over a network, the nodes of which are entities
characterized by a real number which measures an opinion with respect to some subject. This number might
for exemple represent the odds that a national team is likely to win some competition, or individual tendency
to vote for some candidate at an election. It may also correspond to some specific quantity, the value of which
is involved in a public debate, like the expected temperature rise in 20 years due to global warming. The model
is quite crude from two standpoints: the evolution problem is linear and the opinion is represented by a single
real number. We refer to Section 7 for nonlinear evolution models, and to Section 9 for a model based on the
representation of the opinion by a probability measure, allowing to account for the degree of belief.

We consider a set V of N individuals, we denote by ut
x the opinion of the individual1 x at some time t, and by

ut = (ut
x)x∈V the collection of opinions over V . We first consider a discrete evolution setting: t corresponds to

successive times 0, 1, . . . , k, . . . . The influence of some y ∈ V upon individual x is quantified by Kxy ∈ [0, 1],
and we assume that these coefficients sum up to 1 :

∑

y∈V

Kxy = 1 ∀x ∈ V.

The collection (Kxy)(x,y)∈V 2 of nonnegative coefficients with the normalization above will be called, following
the standard terminology, a stochastic matrix (or row stochastic matrix).

A directed graph (V,E) can be associated to the field of influences (Kxy), where the set of directed edges
E ⊂ V × V is defined by

E = supp(Kxy) = {(x, y) ∈ V × V , Kxy > 0} .
We shall write x → y if Kxy > 0, which means that x listens to y, or x follows y, or more generally x is
influenced by y. With this convention, the information or influence flows upstream arrows.

We shall use extensively the notions of path and cycle:

Definition 1.1. (Path / cycle / loop)
A path is a finite sequence of connected vertices

x0 , x1 , . . . , xn with (xi, xi+1) ∈ E ∀i = 0, . . . , n− 1 , n ≥ 1.

When there exists a path from x to y, we shall write x−·→ y. Similarly, if there is a path from x to any vertex
of a subset X ⊂ V , we shall write x−·→ X , and V −·→ X if any vertex is connected to X .
A cycle is a path which ends where it starts, and which contains at least one vertex distinct from the origin.
A loop is a single edge of the form (x, x).
A strongly connected graph is such that there exists a path from any x to any y, i.e. V −·→ V .

Note that Kxx may be positive (i.e. there might be loops in the network), which represents some sort of inertia,
or resistance of x to external influence, possibly up to full disregard of opinion displayed by others. We shall
denote by Γ ⊂ V the subset of all vertices which only point to themselves:

Γ = {x ∈ V , Kxx = 1} , (1)

and by V̊ = V \ Γ the set of interior vertices. In terms of influence, Γ corresponds to individuals who do not
listen to anybody but themselves. We shall call those agents influencers2.

1We shall use interchangeably the words “person”, “individual”, “agent” or even “vertex”.
2 Those agents may also be qualified as stubborn, like in [33], since they never change their mind. We shall nevertheless keep

the term influencer to account for the fact that they may be seen as actors who exert a persistent influence over the network, while
being possibly controlled by an external planner (see Section 3).
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Evolution model in the discrete setting

Given an initial collection of opinions (u0
x)x∈V , we consider that the collection of opinions progressively

evolves according to

uk+1
x =

∑

x→y

Kxy u
k
y ∀x ∈ V. (2)

Note that the ‘x → y’ under the sum sign is not strictly mandatory since Kxy = 0 as soon as (x, y) /∈ E. We
may sometimes drop it, and simply write

∑
Kxy u

k
y.

Definition 1.2. (Fixed point)
We say that u = (ux)V ∈ RV is a fixed point for (2) whenever

ux =
∑

x→y

Kxy uy ∀x ∈ V. (3)

The set of fixed points is a linear space, the dimension of which can take any value between 1 and the number
N of vertices, depending on the structure of (Kxy). Any such fixed point will be said to be harmonic with
respect to K = (Kxy).

A fixed point is a configuration of opinions where no evolution takes place, where an equilibrium is reached.
Any vector of the form e = (1, . . . , 1) is a fixed point, and so is λe for any λ ∈ R. Such a fixed point is called
a consensus for obvious reasons: all agents have the same opinion. There might be other fixed points. For
instance, in the situation where the graph contains only loops (Γ = V ), any vector is a fixed point. In terms
of opinion, it simply means that, when there is no communication at all between the members of a group, all
individuals keep their initial opinion, which is arbitrary.

Remark 1.3. Equation (2) can be written

uk+1
x = uk

x +
∑

x→y

Kxy

(
uk
y − uk

x

)
= uk

x +
∑

x→y

F k
yx, (4)

where F k
yx = Kxy

(
uk
y − uk

x

)
can be interpreted as a flux of opinion from y to x. The definition of this flux

can be seen as some sort of Ohm’s Law (or Poiseuille’s Law in a fluid dynamics context) which states a linear
relation between a flux and a difference of potentials (or difference of pressures in the context of fluid dynamics).
From this standpoint, Kxy appears as a conductance parameter which characterizes the connection x → y in
terms of opinion propagation from y to x. Note that, unlike Ohm’s and Poiseuille’s laws, the present one does
not rely on symmetric interactions. Actually in many asymmetric social networks, it commonly happens that
Kxy > 0 while Kyx = 0 (fully asymmetric influence relation).

Proposition 1.4. (Maximum principle, dynamic version)
Let an initial state u0 ∈ RV be given, and let u1, . . . , uk, . . . be the fields recursively defined according to (2).
Then, for any k ≥ 0, for any x ∈ V ,

uk+1
x ∈ [minuk,maxuk] ⊂ [minu0,maxu0].

Proof. Since, for any x, the Kxy’s are nonnegative and sum up to 1, Equation (2) express that uk+1
x , is a convex

combination of the uk
y’s. As a direct consequence, one has

uk+1
x ∈ [minuk,maxuk].

The property follows by induction on k. �

Bertrand Maury
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The maximum principle can also be expressed in a static form, see Proposition 1.9 below.

Remark 1.5. The opinion variable u is not conservative, in the sense that the sum

∑

x∈V

uk
x,

which is the mean opinion (up to a factor 1/N), varies with k in general. Let us give an example of a highly
non-conservative evolution: consider a network of N agents, such that the set Γ of influencers reduces to a
single node x. Suppose also that all nodes are connected to x, i.e. for any y ∈ V , there exists a path (see
Definition 1.1) from y to x. Assume that the initial opinion of x is 1, whereas the opinion of all others is 0. If
N is large, the initial mean opinion is close to 0, while the evolution process (2) shall make this mean opinion
converge to 1, as a consequence of Proposition 1.10 proved below.

Remark 1.6. (Thermodynamics of opinion propagation)
If one sees the sum of opinion as an energy, the previous remark shows that the model does not obey the

First Law of Thermodynamics: the total energy is not conserved. On the other hand, the Ohm-like law (see
Remark 1.3) expresses that the opinion flows from higher values to smaller values, thereby tending to make
the distribution more uniform by decreasing the maximum and increasing the minimum (Maximum Principle
in Proposition 1.4). From this standpoint, the model can be said to obey the Second Law of Thermodynamics,
although a proper entropy may not always be defined, and convergence toward an equilibrium state may be
ruled out. As we shall see in Section 2, the transpose problem will present a reverse structure (see in particular
Diagram (8)).

Because of its hyper-academic character, we shall not consider in this section the non-diffusive case, i.e. the case
of graphs which correspond to a mapping, with Kxy taking values in {0, 1}. Yet, for the sake of mathematical
completeness, we develop this situation in Appendix A.

Let us first consider the situation of a complete graph, i.e. when everyone listens to everybody.

Proposition 1.7. (Convergence to a consensus)
We assume that Kxy > 0 for all (x, y) ∈ V × V . In other words, E = V × V . In that case the solution to (2)

converges to a uniform field.

Proof. It holds that

uk+1
x =

∑

y

Kxy u
k
y =

∑

y

Kxy maxuk +
∑

y

Kxy (uk
y −maxuk)

︸ ︷︷ ︸

≤0

≤ maxuk +Kxym
(uk

ym
−maxuk),

where ym realizes the minimum of uk
y . As a consequence

uk+1
x ≤ maxuk +Kmin(min uk −maxuk),

where Kmin > 0 is the smallest of the coefficients Kxy. Thus

maxuk+1 ≤ max uk +Kmin(min uk −maxuk),

Similarly

uk+1
x =

∑

y

Kxy u
k
y =

∑

y

Kxy minuk +
∑

y

Kxy (u
k
y −minuk)

≥ min uk +Kmin(maxuk −minuk),

so that
minuk+1 ≥ minuk +Kmin(maxuk −minuk).

Bertrand Maury
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Taking the difference between the two inequalities, we obtain

0 ≤ maxuk+1 −minuk+1 ≤ (1 − 2Kmin)
(
max uk −minuk

)
.

Since 1−2Kmin ∈ [0, 1) (as soon as N ≥ 2, as the graph is complete, it holds that Kmin ≤ 1/2), it proves that the
sequences (maxuk) and (minuk) are adjacent. Now as maxuk is non-increasing, and minuk is non-decreasing,
both converge to the same value, which implies convergence of the sequence (uk) toward some u ∈ RV , which
is uniform (the minimum and the maximal values are the same). �

The condition on the coefficients Kxy can be alleviated, as stated by the next corollary.

Corollary 1.8. Assume that there exists an integer m such that, for any vertices x and y, there exists a path
of length exactly m which connects x to y. Then, for any initial condition, the solution to (2) converges to a
uniform field.

Proof. By a slight abuse of notations, we denote by K the mapping which defines the relation (2), and by Km

the mapping K ◦ K ◦ · · · ◦K (m times). The previous proposition can be applied to this new process, which
proves convergence of (Km)ku0 to a uniform field. Since K is continuous and preserves uniform fields, we have
that Kmk+1u0 = K

(
Kmku0

)
converges to the same limit, and so is Kmk+2u0, etc. �

Evolution problem with influencers

We consider now the situation where Γ 6= ∅, i.e. some agents keep their initial opinion through the evolution
process. Given U ∈ RΓ, that is values of the opinions of the influencers, we introduce the Dirichlet problem







ux −
∑

x→y

Kxyuy = 0 ∀x ∈ V̊

ux = Ux ∀x ∈ Γ.
(5)

This is a reformulation of the fixed point equation (3). The difference is that the value of u’s on Γ are thought

as given, where those in V̊ are the unknowns.

We start by proving a static version of the maximum principle.

Proposition 1.9. (Maximum principle, static version)
Assume that Γ 6= ∅ and that any x ∈ V is forwardly connected to Γ, i.e. V −·→ Γ (see Definition 1.1). Then

for any u solution to the Dirichlet problem (5), the maximum and the minimum of u are attained on Γ.

Proof. Consider the point x at which the maximum of u is attained. Then for every y connected to x, uy is
also equal to the maximum. Progressing along the path which connectes x to Γ, we obtain that the maximum
is also realized at some point in Γ. Similarly, the minimum is attained on Γ. �

Proposition 1.10. Assume that Γ 6= ∅ and that V −·→ Γ. Then, for any given data U on Γ, then the Dirichlet
problem (5) admits a unique solution. Equivalently, the fixed point equation (3) admits a unique solution u ∈ RV

such that ux = Ux for all x ∈ Γ.

Proof. Let us first establish uniqueness. Consider two solutions associated to the same boundary data U . By
linearity, the difference u solves the same problem, with a zero data on the boundary. Since the maximum is
attained on Γ, it is 0, and so is the minimum. Therefore u is identically 0 over V . Since the problem consists in
solving a system of N◦ (number of inner vertices) equations with N◦ unknowns, uniqueness implies existence.
Note that the rank-nullity theorem, which strongly uses the linear character of the evolution model, can be
replaced by a more general topological argument. If one denotes by Λb

a ⊂ RN the subset of all those vectors

Bertrand Maury
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u ∈ RV (identified to RN ), with entries in the interval [a, b], and such that u identifies with U on Γ, it is clear
that the mapping

K : u ∈ R
N 7−→ v ∈ R

N , vx =
∑

x→y

Kxy uy,

is continuous and maps Λb
a to itself. Since Λb

a is convex and compact, Brouwer’s Theorem (see for instance
Theorem 6.6 in [17]) ensures existence of a fixed point. �

Proposition 1.11. Under the assumptions of the previous proposition, for any initial condition u0, the solution
to the evolution problem converges to the unique equilibrium point3, i.e. the unique solution to (5) when U is
the restriction of u0 to Γ.

Proof. Let ueq be the unique solution to (5) with boundary conditions given by u0
|Γ. Let (uk)k be the sequence

defined as the solution to the evolution problem (2).Then the difference wk = uk − ueq satisfies the same
evolution equation

wk+1
x =

∑

x→y

Kxy w
k
y .

and vanishes over Γ. By the maximum principle, max(wk) decreases, and it is nonnegative (because of the
boundary condition). It therefore converges to some limit ℓ ≥ 0. We aim at showing that ℓ = 0. If we are able
to do that, it will be possible to show in the same way that min(wk) ≤ 0 converges to 0, so that (wk) converges
to 0, thus (uk) converges to ueq.

Assume that ℓ > 0. Since the sequence (wk) is bounded, it admits a subsequence wϕ(k) which converges
to some w̄ ∈ RV , with max(w̄) = ℓ. Now consider the evolution problem associated to the initial state w̄, we
denote by (w̄k) the corresponding sequence. We aim at showing that max(w̄k), which is ℓ for k = 0, drops down
to strictly smaller values after some time. To that purpose we define Xk as the set of all those vertices x which
are in Γ, or connected to the boundary Γ by a path made of vertices at which the value of w̄k is (strictly) less
than ℓ. Consider a vertex x at which w̄0 is ℓ. This vertex is connected to the boundary by a path x = x0, . . . ,
xn ∈ Γ. Now consider the largest integer p such that w̄0

xp
= ℓ. Since xp is connected to a vertex xp+1 at which

the value is less than ℓ, its value will decrease to a smaller value, i.e. w̄1
xp

< ℓ, so that xp ∈ X̄1, while it was
not in X0. Since X0 ⊂ X1, X1 contains at least one vertex more than X0. Similarly, as far as Xk 6= V , it is
strictly included in Xk+1. Since the number of vertices is finite, there exists an index m such that Xk covers V
for k ≥ m. As a consequence, max(w̄m) = ℓ− ε, for some ε > 0

Now denote by Km the mapping which corresponds to m iterations of the recurrence relation, so that
w̄m = Kmw̄0. This mapping is continuous, and so is

w 7−→ max(Kmw).

As a consequence, there exists β > 0 such that, for any w at a distance to w̄ less than β, max(Kmw) < ℓ− ε/2.
Now since the sequence wϕ(k) converges to w̄0,

∃L , ∀k ≥ L ,
∣
∣
∣wϕ(k) − w̄0

∣
∣
∣ < β.

Finally, for k ≥ L,

max(Kmwϕ(k)) = max(wϕ(k)+m) < ℓ− ε/2,

which is a contradiction because max(wk) ≥ ℓ for any k ∈ N. �

3Note that this equilibrium point depends on the initial condition, because the fixed values at the vertices of Γ are those of the
initial state.

Bertrand Maury
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Figure 1. A node influence by Γ (circled nodes) and by a cycle.

In the case when some vertices are not connected to any influencer (i.e. there is no path toward a vertex in
Γ), the situation is more complicated. For instance, there might be cycles disconnected from Γ, in which the
solution is periodic. Note that, on vertices which are both connected to Γ and to such an autonomous cycle,
no convergence to a stationary state can be expected, because of the periodic influence of the cycle (see the
example of Figure 1).

Remark 1.12. (Lyapunov function)
The proof of Proposition (1.11) is an instantiation of a general approach to prove global asymptotic stability,
based on the notion of Lyapunov function. Consider a dynamical system in RN defined by uk+1 = F (uk), where
F is a continuous mapping. We assume that all trajectories are bounded, and that the system admits a unique
equilibrium point, i.e. a unique ueq ∈ RN such that ueq = F (ueq). Suppose now that there exists a continuous
function Ψ : RN → R, which admits ueq as unique minimizer over RN . Assume furthermore that F strictly
decreases along the trajectories in the following sense: for any u0 ∈ X \ {ueq}, (F (uk)) is non-increasing, and
there exists k such that F (uk) < F (u0). Then the sequence (uk) converges to ueq when k goes to +∞.

Proposition 1.13. (Uniform decay)
Under the assumptions of Proposition 1.10, let u be the solution of the evolution problem (2) and ueq the

equilibrium point to which it converges. There exists a sequence (rk)k∈N of real numbers tending to 0, which
depends only on the network (but not on u0) such that for any k and x,

|uk
x − ueq

x | ≤ rk

(

max
y∈V
|u0

y − ueq
y |
)

.

Proof. Let us start with the following observation. Let v be a nonnegative solution of the evolution process (2),
and w a subsolution, i.e. a field in RV such that, for every k and x,

wk+1
x ≤

∑

x→y

Kxy w
k
y .

Then, provided that w0
x ≤ v0x for every x ∈ V , a straightforward induction reasoning leads to wk

x ≤ vkx for any
k and x. Now consider wk

x = |uk
x − ueq

x |. It holds that

wk+1
x =

∣
∣uk+1

x − ueq
x

∣
∣ =

∣
∣
∣
∣
∣

∑

x→y

Kxy (u
y
x − ueq

y )

∣
∣
∣
∣
∣
≤
∑

x→y

Kxy

∣
∣uy

x − ueq
y

∣
∣ =

∑

x→y

Kxy w
k
x,

so that w is a subsolution. We now define v̂k as the solution of (2) with initial conditions given by

v̂0x =

{

1 if x ∈ V̊ = V \ Γ,
0 if x ∈ Γ,

Bertrand Maury
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and vkx = (maxy w
0
y)v̂

k
x. By linearity v is a solution of the evolution process (2) with w0

x ≤ v0x for every x.

Thanks to the observation above, we conclude that 0 ≤ wk
x ≤ vkx for every k, x.

Thanks to Proposition 1.11, we know that v̂k converges to a fixed point, which is the uniform field equal to 0
given the values of v̂0 on Γ. Moreover v̂ does not depend on w but only on the network. Calling rk = maxy v̂

k
y ,

we reach the conclusion. �

Remark 1.14. Using spectral theory, one could expect to bound rk by Ce−ck, where c is related to the spectrum
of K. However, if K is not normal (diagonalizable in C in a Hermitian basis), the constant C in front of the
exponential can be very large, hence this kind of upper bound might be of little value.

2. Stochastic setting

We describe here a stochastic interpretation of the so-called Dirichlet problem (3) studied in the previous
section. We consider the situation where Γ 6= ∅, and V −·→ Γ (see Def. 1.1). We denote by U a given boundary
field, defined on Γ.

A random walk4 can be canonically defined on the weighted graph (V,E,K), with a transition probability of
hopping from x to y equal to Kxy. From any x, we consider a random walk starting from x, according to the
transition probabilities (Kxy), and we denote by j the index which corresponds to the first hit with Γ:

X0 = x , X1 , . . . , Xj ∈ Γ , Xi /∈ Γ ∀i < j.

The value of U at Xj is a random variable associated to the starting point x. We denote its expected value by
ux.

Proposition 2.1. The field u ∈ RV defined above is a solution to the Dirichlet problem (5), which writes

{
(I −K)u = 0

ux = Ux ∀x ∈ Γ
(6)

where (I −K)u = 0 is the matrix formulation of

ux −
∑

x→y

Kxyuy = 0.

Proof. Let us first notice that u identifies to U on Γ (when x ∈ Γ then j = 0). The rest simply comes from a
local expression of conditional expectations: since, starting from x, Kxy is the probability to go to y, it holds
that

ux =
∑

x→y

Kxyuy,

i.e. u verifies (3). �

Let us denote by πk
x the probability that the particle lies at vertex x at step k. The probability field verifies

the following relation

πk+1
x =

∑

y→x

Kyxπ
k
y whereas uk+1

x =
∑

x→y

Kxyu
k
y. (7)

4This section is based on some basic properties of random walks, all of them are quite intuitive and not central in these notes,
so that we chose to alleviate the formalism of stochastic processes and rely on the reader’s common sense. We refer to [18] for a
rigorous presentation of Markov chains.
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Note the difference with the evolution equation for uk: the propagation occurs in the reverse direction. The two
evolution problems are mutually adjoints: the first one (equation on π associated to KT ) involves a probability
measure, and thus enjoys a conservation property. Indeed,

∑

x

πk+1
x =

∑

x

∑

y→x

Kyxπ
k
y =

∑

y

πk
y

∑

y→x

Kyx

︸ ︷︷ ︸

=1

=
∑

y

πk
y .

The second one (equation on u associated to K) enjoys a maximum principle property, by Proposition 1.4. It
suggests a natural framework in terms of norms for those two matrices seen as operators on Banach spaces: the
natural norm for u is ℓ∞, whereas the natural norm for π is ℓ1, as illustrated by the diagram:

(RN , ℓ∞)
K−−−−→ (RN , ℓ∞)

(RN , ℓ1)
KT

←−−−−− (RN , ℓ1),
(8)

and the straightforward properties

‖K‖∞ = sup
RN

‖Ku‖∞
‖u‖∞

= 1 = sup
RN

∥
∥KTπ

∥
∥
1

‖π‖1
=
∥
∥KT

∥
∥
1
.

From this standpoint, maximum principle and mass conservation can be seen as mutually adjoint properties.
We shall consider in Section 5 the situation where the matrices are self-adjoint in some sense (i.e. for some scalar
product), which then provides the evolution problem with both maximum principle and mass conservation (in
a certain sense, that is preservation of the expected value with respect to the stationary measure, or charisma,
see Equation (19)).

The probabilistic interpretation leads to the introduction of objects called harmonic measures.

Definition 2.2. (Harmonic measure)
Let x0 ∈ V a vertex of V . The harmonic measure with pole at x0, denoted by µx0,·, is a measure on Γ such

that µx0,y is the probability for a random walk starting from x0 and with probability transitions given by K to
hit the set Γ at y. Since we the random walk will (almost surely) hit the boundary after some time (see [18]),
it holds that that

∑

y∈Γ µx0,y = 1, i.e. it is a probability measure. This measure can be considered as a measure

over V by simply setting µx0,y = 0 for y /∈ Γ.

Proposition 2.3. Let U ∈ RΓ and u ∈ RV the unique solution of the associated Dirichlet problem (see
Proposition 1.10). Then, for any x0 ∈ V ,

ux0 =
∑

y∈Γ

µx0,yUy,

where µx0,y is the harmonic measure with pole at x0 (Definition 2.2).

Proof. We simply use Proposition 2.1. We know that ux0 is the expectation of UY , where Y is the point of Γ
hit by a random walk issued from x0. Hence,

ux0 = E[UY ] =
∑

y∈Γ

E[UY 1{Y=y}] =
∑

y∈Γ

Uy P (Y = y)
︸ ︷︷ ︸

=µx0,y

. �

The value ux0 is thus a convex combination of the values of U , and the coefficients of this convex combination
are given by the coefficients (µx0,y)y∈Γ. In particular, µx0,y is the equilibrium opinion at x0 associated to the
following boundary data: U = δy, i.e. y thinks 1, and all other influencers think 0.
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Proposition 2.4. Let x0 be given and let us consider the linear problem

{

(ν −KTν)x = δx0,x for all x ∈ V̊ = V \ Γ,
νy = 0 for y ∈ Γ.

(9)

where δ·,· is the Kronecker delta, i.e. δx0,x = 1 if x = x0, and 0 otherwise.
This problem admits a unique solution. Moreover, if we call ν this unique solution, it holds that

µx0,y = (KT ν − ν)y =
∑

x→y

Kxyνx ∀y ∈ Γ. (10)

Proof. We briefly say a word about existence and uniqueness. In fact, the problem defining ν is a linear system,
the matrix of which is the transpose of the one involved in Dirichlet Problem (5). Thanks to Proposition 1.10,
we know that the latter problem is well-posed, i.e the matrix is nonsingular.

We fix y0 ∈ Γ. Let u be the unique solution of the following problem:







(u−Ku)x = 0 for all x ∈ V̊ ,

uy0 = 1,

uy = 0 for y ∈ Γ , y 6= y0.

Actually, u is nothing else than the fixed point given by Proposition 1.10 if we take δy0,· as boundary data. In
particular, µx0,y = ux0. On the other hand, from the definition of the transposition, we have that

∑

(x,y)∈V 2

(ux −Kxyuy)νx = 〈u−Ku | ν〉 =
〈
u | ν −KT ν

〉
=

∑

(x,y)∈V 2

ux(Kyxνx − νy).

By the definitions of u and ν, the left hand side vanishes, so that

0 = ux0 − uy0(K
T ν − ν)y0 = µx0,y0 − (KT ν − ν)y0 ,

which ends the proof. �

We refer to Section 3 (see Remark 3.2) for an alternative standpoint on this harmonic measure, namely: u being
the solution to (6) for given boundary data U , µx0,y0 expresses the dependence of the opinion at x0 upon y0’s
opinion, more precisely it is the partial derivative of ux0 with respect to Uy0 .

Remark 2.5. Proposition 2.4 is a discrete analog, in the non-symmetric setting, of a general property on the
so called harmonic measure associated to a Euclidean domain (see e.g. [27], p. 651). Consider a smooth domain
Ω ⊂ Rd with boundary Γ = ∂Ω, x0 ∈ Ω, and denote by ν the solution to the Poisson problem

{
−∆ν = δx0 in Ω

ν = 0 on Γ.

The field −∂ν/∂n defined on ∂Ω, which is the continuous counterpart of (10), is also the probability density for
the location of the first hit of the boundary ∂Ω by a Brownian motion issued from x0. The Dirichlet problem
above is a continuous counterpart of the discrete problem (9). In the same spirit, Proposition 2.1 is the discrete
counterpart of a standard property in potential theory. Let us consider a smooth scalar field U defined on the
boundary Γ, and the associated Laplace problem

{
−∆u = 0 in Ω

u = U on Γ,
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that is the continuous counterpart of Problem (6). For any x ∈ Ω, consider the Brownian motion issued from
x, denote by X ∈ Γ the location of its first contact with Γ. The expected value of U(X) is u(x), where u is
the solution to the Laplace problem above (see again [27], p. 651). Note that, in the discrete, non-symmetric
setting, the two problems are natively set on different spaces in terms of norms: Problem (6) is set in (RN , ℓ∞),
whereas Problem (9) is set in (RN , ℓ1) (see Diagram (8)).

3. Monitoring of a network though influencers / influence coefficients

We describe in this section how the so-called adjoint method can be carried out to investigate the dependence
of some global quantities upon some parameters, called in this context control variables. We shall consider here
two options for the choice of control variables: opinions of influencers, and influence coefficients Kxy. We
consider as previously a set V of agent, a collection of influence coefficients (Kxy) encoded in a stochastic
matrix K. We recall that influencers are agents x such that Kxx = 1, that Γ denotes the set of influencers, and
that V̊ = V \Γ is the set of interior vertices. We assume that V −·→ Γ, i.e. each vertex is connected by a path
to the boundary (see Definition 1.1).

The core of the approach is the so-called state equation, which is in our case the static Dirichlet problem (5).
We shall reformulate it as a linear system on the unknowns associated to the interior vertices. We denote by

U ∈ R
Γ the collection of influencers’ opinions, and by ů ∈ RV̊ the collection of unknowns (opinions at interior

nodes), so that u = (̊u, U) ∈ RV is the full collection of opinions. The matrix formulation of (5) is Au = 0, with
A = I −K, and ux = Ux for any x ∈ Γ. It will be more convenient here to separate interior degrees of freedom
and influencers’ opinions. The problem can be written

ůx −
∑

x→y∈V̊

Kxyůy =
∑

x→y∈Γ

KxyUy ∀x ∈ V̊ ,

which can be written in a matrix form

Åů = −KΓU, (11)

where Å is a submatrix of A (restriction to interior degrees of freedom). The matrix KΓ, which encodes a

mapping from RΓ to RV̊ , integrates the effect of influencers’ opinions. For any U ∈ RΓ, Problem (11) admits a
unique solution (Proposition 1.10), which we denote by ůU . We introduce the so-called cost function5, that is
a function of U given as an expression of ůU , i.e.

J(U) = Φ(̊uU ),

where Φ(̊u) is typically a function which one aims at minimizing. To fix the idea, we may consider that Φ is
defined as

Φ(̊u) =
1

2
|̊u− û|2, (12)

where û ∈ RV̊ is a targeted collection of opinions. Minimizing Φ(̊uU ) with respect to U consists in finding the
collection of influencers’ opinions such that the associated opinions are the closest to û. An essential ingredient
to actually perform this minimization is the gradient of this functional with respect to U . We shall now describe
a classical method to estimate this gradient. Note that, beyond the actual use of this gradient in a minimization
procedure, it can be also useful in terms of modeling to actually estimate the sensitivity of a functional (possibly
the opinion of a specific agent, see Remak 3.2), with respect to influencers’ opinions, or any other parameter.

5Also called loss or objective function in the context of Machine Learning (see e.g. [39]).
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Description of the adjoint method

The approach is based on a so-called Lagrangian L defined as

L : (̊u, U, p) ∈ R
V̊ × R

Γ × R
V̊ 7−→ Φ(̊u) +

〈

Åů−KΓU | p
〉

.

It holds that, for any p ∈ RV̊ ,

J(U) = L(̊uU , U, p).

As a consequence

DJ(U) = DůL(̊uU , U, p) ◦DU ůU +DUL(̊uU , U, p).

(We underline here that DUL(̊uU , U, p) stands for the partial derivative of L(·, ·, ·) with respect to the second
variable U , taken at (̊uU , U, p), ůU being frozen at its current value.)

The strategy consists in building a p such that DůL(̊uU , U, p) = 0 in the expression above. For such a p,
DJ(U) is simply DUL, which depends on this very p. From the expression of the Lagrangian, we have that6

〈DůL, δů〉 = 〈DůΦ, δů〉+
〈

Åδů | p
〉

=
〈

∇Φ + ÅT p | δů
〉

.

The adjoint problem for the dual variable p is defined in order to vanish the quantity above. The problem
writes

ÅT p = −∇Φ (13)

Let p be the solution to this problem, it holds that

〈DJ(U), δU〉 = 〈DUL(̊uU , U, p), δU〉 = −〈KΓδU | p〉 = −
〈
KT

Γ p | δU
〉
.

As a consequence, ∇J(U) = −KT
Γ p, where p is the solution to the adjoint problem (13).

In the case of a cost function defined by (12), the right-hand side of (13) is û − ůU . In the case of a cost
function that is the value of u at some point x0, the right-hand side is the discrete Dirac mass −δx0 (see
Remark 3.2 below).

Remark 3.1. The adjoint problem can be interpreted as a discrete Laplace problem (based on the matrix
adjoint to the non-symmetric Laplacian I − K), with homogeneous Dirichlet boundary conditions. Indeed,
Problem (13) expresses

py −
∑

y←x∈V̊

Kyxpx = (∇Φ)x ∀y ∈ V̊ ,

and the sum over vertices can be extended to V if one sets px to 0 for any x ∈ Γ.

Remark 3.2. This approach makes it possible to recover the notion of harmonic measure introduced in Sec-
tion 2. The idea consists in choosing another functional, that is Φ(u) = ux0 for a certain x0 ∈ V̊ . The adjoint

problem reads ÅT p = −δx0 , which is another way to express (9). The gradient of J(U) = (uU )x0 is then a
vector defined on Γ, the entries of which are the weights of the opinions of the various influencers upon x0, i.e.
the values of the harmonic measure µx0,y, for y ∈ Γ.

6We use the notation 〈·, ·〉 to represent the duality pairing between the differential of a mapping and a variation of the considered

variable, whereas 〈· | ·〉 still represents the scalar product between two elements of the same Euclidean space, RV̊ or RΓ.

Bertrand Maury



14 ESAIM: PROCEEDINGS AND SURVEYS

Effective minimization of the cost functional

Considering a quadratic functional of the type J(U) = Φ(̊uU ), where Φ is given by (12), minimizing J(U)
amount to find a U ∈ RΓ at which the gradient is 0. A straightforward computation leads to the following
matrix formulation of this condition:

(Å−1KΓ)
T Å−1KΓU = −(Å−1KΓ)

T û.

Note that the matrix S = (Å−1KΓ)
T Å−1KΓU is symmetric definite positive. Indeed, it is of the form BTB,

therefore symmetric and nonnegative. Besides, SU = 0 implies BU = 0, which means that the solution to
Problem (11) (which is another way to write Dirichlet problem (5)) is zero, so that U = 0. A Conjugate
Gradient Method can then be implemented to solve this problem.

Derivative with respect to influence coefficients

We consider now the problem of determining the derivative of some function of the interior opinions with
respect to the influence coefficients Kxy. This field can be identified to a vector in RE , where E = supp(Kxy) is
the set of edges. We shall assume that influencers remain influencers, i.e. Kyy remains equal to 1 for any y ∈ Γ,
and variations are restricted to connections between interior vertices and their neighbors (possibly influencers).
We shall consider variations of coefficients on existing edges, but the approach may be extended to variations
on all possible links.

Since the vector of influencers’ opinions is no longer a variable, we shall drop the dependence of ů upon U ,
and replace it by a dependence upon K. We write the state equation as

ÅK ůK = bK , with bK = KΓU ∈ R
V̊ , i.e. (bK)x =

∑

x→y∈Γ

KxyUy ∀x ∈ V̊ , x→ Γ,

with (bK)x = 0 for any all vertices which are not directly connected to Γ. The Lagrangian now writes

L : (̊u,K, p) ∈ R
V̊ × R

E × R
V̊ 7−→ Φ(̊u) +

〈

ÅK ů− bK | p
〉

.

It can be used, as previously , to estimate the gradient of K 7→ J(K) = Φ(̊uK). The adjoint problem is the
same as previously, i.e. Equation (13). It remains to estimate the derivative of L with respect to K. The part
of L which depends on K writes

∑

x∈V̊

px
∑

x→y

Kxy(ux − uy) =
∑

e∈E̊

(
∑

x→y

px (ux − uy)

)

Kxy

where ux is Ux whenever x ∈ Γ, and E̊ is the set of edges except influencers’ loops. We finally obtain

∇J(K) = (px(ux − uy))(x,y)∈E̊ ,

where p is the solution to the adjoint problem (13).
N.B. : Implementing this approach to actually minimize the cost function necessitates to account for the

constraints on the Kxy’s: linear constraints on the sums of coefficients on each row, and unilateral constraints
Kxy ∈ [0, 1]. Notice also that the problem is quite different from the previous one, with influencers’ opinions as
control variables, because the mapping K 7−→ uK is not linear, and consequently the global functional J(·) is
not quadratic.
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4. From discrete to continuous in time problem

The fact that it takes some time for x to integrate the influence of their neighbors can be modelled by
introducing a parameter θ ∈ [0, 1], and write the relaxed problem

uk+1
x = (1− θ)uk

x + θ
∑

x→y

Kxy u
k
y. (14)

For θ = 1, we recover the initial problem. Note that this new problem actually fits in the previous frameworks,
by considering modified weights

K ′xx = (1− θ) + θKxx , K ′xy = θKxy for y 6= x.

Remark 4.1. The relaxation by θ ∈ [0, 1) is likely to change the behavior of the solution. In particular, if the
graph is strongly connected, then adding a loop from any vertex to itself makes it such that there exists an
integer m such that any two vertices x and y can be connected by a path of length m. This feature is quite
important in terms of asymptotic behavior, as expressed by Corollary 1.8.

Differential equation

Consider now that θ writes as ε/η, where η is a fixed relaxation time, and ε a small parameter (also homogeneous
to a time). It holds that

uk+1
x − uk

x

ε
=

1

η

(
∑

x→y

Kxy (u
k
y − uk

x)

)

.

It takes the form of the time discretization of a system ordinary differential equations for quantities t 7→ ut
x ∈ R,

which continuously vary in time, and the underlying equation is

d

dt
ut
x =

1

η

(
∑

x→y

Kxy (u
t
y − ut

x)

)

.

The time continuous problem thus takes the form

d

dt
ut = −1

η
Aut with A = I −K. (15)

Spectral stability

Thanks to Gershgorin theorem, the spectrum of K lies in the union of discs Dx ∈ C, centered at Kxx with a
radius equal to the sum of extradiagonal entries: defined by

Sp(K) ⊂
⋃

x∈V

Dx , Dx =






z ∈ C , |z −Kxx| ≤

∑

y 6=x

Kxy






(16)

Since Kxy ∈ [0, 1] and
∑

y Kxy = 1, all the Dx’s are contained in the unit disc, so that the spectrum of A = I−K
is contained in the disc of center 1 and radius 1. Notice that, since K is stochastic, Ke = e, with e = (1, 1, . . . , 1).
This matrix therefore admits 1 as an eigenvalue (possibly with multiplicity), so that the corresponding value 0
is an eigenvalue for A. As a consequence, the eigenvalues of A have a positive real part, (aside from 0), so that
the linear system is stable.
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Gradient flow structure

We aim here at characterizing the case when the evolution problem (15) has a gradient flow structure for
some scalar product.

For any symmetric positive definite matrix M , we denote by 〈· | ·〉M the associated scalar product, i.e.

〈u | v〉M = 〈Mu | v〉.

For any C1 functionnal Φ : RN → R, we denote by ∇MΦ(u) ∈ RN its gradient at u according to the scalar
product associated to M , i.e. the only vector such that

Φ(u+ h) = Φ(u) + 〈∇MΦ | h〉M + o(h).

Now assume that Φ is a quadratic functional, i.e. Φ(v) = 〈Bv | v〉/2 for some matrix B. Since 〈Cv | v〉 =
〈
v | CT v

〉
vanishes if C is skew-symmetric, the functional only depends on the symmetric part of B, hence we

may assume that B is symmetric. We have

Φ(u+ h) = Φ(u) + 〈Bu | h〉+ o(h) = Φ(u) +
〈
M−1Bu | h

〉

M
+ o(h),

so that ∇Φ(u) = Bu, and ∇MΦ = M−1Bu. As a consequence, Au is the gradient of a quadratic functional if
and only if A is symmetric, and it is the gradient of a quadratic functional according to some scalar product
associated to the s.p.d. matrix M if and only if A = M−1B for some symmetric matrix B.

In Section 5, we will concentrate of a particular type of networks which carry a gradient flow structure, namely
charismatic network (see Definition 5.1). For those networks, we shall have K = M−1B, where M is diagonal,
with diagonal coefficients corresponding to the charisma (ωx)x∈V of agents, and B defined by Bxy = ωxKxy is
symmetric. It corresponds to the case where the underlying Markov chain is reversible. More generally, we can
give a more explicit characterization of all those matrices for which Equation (15) has a gradient flow structure
(with a possibly non-diagonal matrix M).

Proposition 4.2. The evolution problem (15) has a gradient flow structure for some scalar product if and only
if A (or, equivalently, K) is diagonalizable, and all its eigenvalues are real.

Proof. If Au is the gradient of a quadratic functional at u for some scalar product 〈· | ·〉M , then there exists a
symmetric matrix B such that A = M−1B. Since M is s.d.p., it writes M = UDU−1, where U is an orthonormal
matrix and D is diagonal. We define M1/2 as UD1/2U−1. Then A is similar to

M1/2AM−1/2 = M1/2M−1BM−1/2 = M−1/2BM−1/2,

which is symmetric, since B is. As a consequence, A is similar to a symmetric matrix, therefore it is diagonal-
izable with real eigenvalues.

Now assume that A has only real eigenvalues: A = PDP−1 where D is diagonal, with real entries, and P is
a nonsingular matrix. We consider the scalar product associated to the s.d.p. matrix M = P−TP−1 :

〈u | v〉M =
〈
P−1u | P−1v

〉
=
〈
P−TP−1u | v

〉
.

It is a scalar product for which the columns of P form an orthonormal basis. The matrix A can be written

A = PDP−1 = PPTP−TDP−1 = M−1P−TDP−1 = M−1B

where B = P−TDP−1 is a symmetric real matrix. �
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Remark 4.3. In the gradient flow case, A is a maximal monotone operator in RV (see e.g. [19]) for a certain
scalar product. Indeed, as seen in the proof of Proposition 4.2, A = I −K writes PDP−1 where D is diagonal,
with real nonnegative entries, and P is a nonsingular matrix. Now M = P−TP−1 defines a scalar product for
which

〈Av | v〉M = 〈MAv | v〉 =
〈
P−TP−1PDP−1v | v

〉
=
〈
DP−1v | P−1v

〉
≥ 0.

Remark 4.4. With the help of this proposition, we deduce that the set of networks leading to an evolution
problem having a gradient flow structure is generically stable under small perturbations. Indeed, let us denote
by G ⊂ R

V×V the set of matrices which are diagonalizable with only real eigenvalues, and by D ⊂ R
V×V the

set of matrices which are diagonalizable with real and distinct eigenvalues. The latter set, which corresponds
to the one of matrices whose characteristic polynomial has only distinct real roots, is open in RV×V and clearly
included in G, with dense inclusion and full measure. On other other hand, each element of G belongs to D̄:
any diagonalizable matrix can be slightly perturb so that all its eigenvalues are distinct. In short,

D ⊂ G ⊂ D̄,

with strict and dense inclusions. As a consequence, a generic matrix in G, i.e. a matrix which does not belong to
G \ D ⊂ ∂D, belongs to the interior of G, and therefore remains of the gradient type under small pertubations.

Typical non-gradient like situations

As mentioned previously, the gradient flow character is generic and structurally stable in some regions of the
set of stochastic matrices. Yet, in general, the evolution problem (15) is not a gradient flow, and we shall describe
here two typical non-gradient situations: when the matrix has only real eigenvalues but is not diagonalizable,
and when the matrix is diagonalizable with non-real eigenvalues.

Hierarchical graph and non-diagonalizable matrices

We consider here acyclic graphs, i.e. graphs which do not contain cycles (see Definition 1.1). Such graphs are
called hierarchical, because it can be shown that there exists an ordering x1, x2, . . . , xN of the vertices in such
a way that xi → xj implies i ≤ j. Such an indexing, which is obviously not unique in general, can be built by
mean of topological sort (see e.g. [22]). To simplify the situation, we shall assume that Kxx > 0 only for the
influencers (and in this case Kxx = 1).

With these assumptions, under the chosen ordering of the vertices, the matrix K is upper-triangular, with
only 1 and 0 on the diagonal:

K =

(
B H
0 Im

)

,

where m is the number of influencers, Im is the identity matrix of size m, B is a (N −m) × (N −m) upper
triangular matrix with only zeros on the diagonal, and H is a (N −m)×m matrix. Note that B is nilpotent.
The matrix K has only two eigenvalues, namely 1 and 0, but the kernel of K, i.e. the eigenspace associated
to the eigenvalue 0, has a dimension strictly smaller than N −m. Note that, in the archetypal situation of a
linear network x1 → x2 → · · · → xN → xN , we have that m = 1, B is the (N − 1) square matrix with only
zeros except for the first upper diagonal filled with 1, and H is a column matrix filled with 0, except for the
last entry which is 1. The matrix K then natively identifies with its Jordan normal form.

Let us first consider the discrete model, i.e. the iterative process process (2). After at most N −m iterations,
the fixed point state will be reached and the opinion of every agent but the influencer will have been flushed
out of the network. Indeed, as BN−m = 0 (because B is strictly upper triangular), a straightforward induction
leads to

KN−m =

(
0 C
0 Im

)

, with C =

N−m−1∑

k=0

BkH,
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Figure 2. Three examples of networks which have not a gradient flow structure: a “dictatorial”
hierarchical one, where there is only one influencer (left), a hierarchical “democratic” one, where
the vertex in the bottom, thought as the leader, listens (indirectly) to everybody (middle), and
a cyclical network of length 5 (right). Influencers are circled.

and Kn = KN−m for all n ≥ N −m. If one denotes by u0, u1, . . . , uk = Kku0, . . . , the successive opinion
fields, the opinions of influencers propagates along the branches of the tree during the first iterates 1, . . . , up
to N −m at most, and it is then frozen to the fixed point for larger values of k.

Now consider the time continuous evolution problem (15). Given an initial condition u0, the solution can be
expressed as

ut = exp

(

− t

η
A

)

u0 = e−t/η
+∞∑

k=0

(
t

η

)k
Kk

k!
u0 =

+∞∑

k=0

ak(t)u
k, (17)

with

ak(t) =
1

k!
e−t/η

(
t

η

)k

.

The exact solution at time t is then an infinite barycentric combination of the discrete iterates (uk), weighted
by a Poisson distribution of parameter t/η. It makes it possible to distinguish two phases in the evolution: a
transitional phase, shorter than (N −m)η during which opinions evolves, and a second one, for t larger than
(N −m)η, where most of the mass of the Poisson distribution corresponds to discrete modes uk equal to the
equilibrium state uN−m, where the solution is close to this limit.

Remark 4.5. Note that the transitional phase can be significantly longer than η, which the characteristic time
given by the stability analysis. This is a typical behavior of evolution equations associated to non-diagonalizable
operators: flushing out the system of its initial state may take a time much longer than the characteristic
damping time.

Remark 4.6. Hierarchical graph can take two types of extremal, tree-like, forms, depending on the sense of
arrows (from the leafs to the root, or the other way around). The first one would be m = 1, namely if there
exists a unique influencer (see Figure 2, left). This corresponds to some kind of dictatorship since, at the end
of the process (in no more than N − 1 iterations for the discrete version of the model, where N is the number
of generations), the opinion of every agent will coincide with the one of the influencer. The other one would be
the case when the root of the tree is forwardly connected to all the other vertices (see Figure 2, middle). This
situation could be thought as a caricatural illustration of democracy, where the leafs are citizens (who are all
influencers), and inner nodes correspond to some processes to gather and merge opinions in a hierarchical way.
The opinion of the root is then a trade-off between the opinions of citizens.

Pure cycle

The second situation corresponds to diagonalizable matrices with complex eigenvalues. An archetypal exam-
ple is the case of a circulant matrix (see Figure 2, right, for the associated network), i.e. K is a permutation
matrix with a single cycle. We represent the set of vertices as IN = {1, . . . , N}, in such a way that the orbit
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of 1 is 1, 2, . . . , N , 1, etc. . . The matrix K is a circulant matrix (K1,2 = K2,3 = · · · = KN,1 = 1), so that
KN = I (identity matrix). Since the matrices Kn, for n = 0, . . . , N − 1 are linearly independent, the minimal
polynomial of K is XN −1. Its eigenvalues are therefore µk = exp (2ikπ/N), k = 0, . . . , N−1.This case appears
as a limit case in terms of spectrum: the eigenvalues of any stochastic matrix are in the unit disc of C while, for
this circulant matrix, they lie on the unit circle. To describe the time continuous solution, it is actually more
convenient to use the native form of K, which expresses a leftward shift, rather than diagonalizing it. Indeed,
for any initial vector u0, the iterated vectors uk = Kku0 are simply obtained by shifting the vector to the left,
with periodicity, i.e. uk+1

i = uk
i+1. As mentioned previously for the hierarchical situation, the vector ut is simply

the mean of the family (uk)k∈N with respect to the Poisson distribution of parameter t/η :

ut = exp

(

− t

η
A

)

u0 =

+∞∑

k=0

e−t/η

k!

(
t

η

)k

uk.

The evolution thus appears as a diffuse form of the backward transport phenomenon associated to the shift
matrix. Note that it behaves exactly like the semi-discretized in space transport equation (see Section 6).

Note also that this situation is not so far from the linear network mentioned above, with two real eigenvalues,
1 and 0, the latter being very degenerate. Indeed, simply disconnecting N from itself, and rather connecting it
to 1, transforms this linear network onto a pure cycle.

Remark 4.7. (Additional comments on diagonalizability)
It may sound curious that being diagonalizable or not for a matrix may affect the behavior of the associated
evolution model, because diagonalizability in C is generic for matrices (the set of diagonalizable matrices has
full measure). One may be tempted to disregard this pathological character of not being diagonalizable, since
it (almost) never happens in practice. Yet, we emphasize here that considering this case does actually make
sense. Indeed, for some matrices which are close to the set of non-diagonalizable matrices (and thus far away
from the set of normal matrices7), the behavior is better described by a formula of the type (17) rather than
by a formula based on eigenvectors. Consider for example the case of a N -linear network detailed previously,
with a single influencer, and a series of consecutive influenced agents. The corresponding matrix is “highly”
non-diagonalizable, if one may say: 1 is an eigenvalue with multiplicity 1, but 0 has multiplicity N − 1, with a
one-dimensional eigenspace. Now consider the case when the diagonal elements associated to 1, 2, . . . , N−1, are
replaced by K11, . . . , KN−1,N−1, all positive values of order ε, and pairwise distinct. Since all the eigenvalues
are now distinct, the matrix is diagonalizable with eigenvalues K11, . . . , KN−1,N−1 and 1, and diagonalizing it

makes it possible to express the solution as a linear combination of eigenvectors, with coefficients e−tK11/η, . . . ,
e−tη. In a modeling or numerical context, this approach must be avoided, because it does not allow a robust
description of the behavior of the solution. Indeed, it can be checked that the eigenvectors associated to the K ′iis
are almost colinear, so that the change of basis matrix has a very high condition number (its smallest eigenvalue
is close to 0), and the eigenvectors depend in a very stiff way upon the coefficients. To sum up, for such matrices
which are diagonalizable in theory, but very close to non-diagonalizable matrices, the expected behavior shall
be better described by an expression of the type (17), rather than on the expression based on eigenvectors. To
put it another way, it seems reasonable to consider that diagonalizing the matrix in order to express the exact
solution of the evolution problem should be restricted to matrices with a controlled non-normality (see e.g. [36]).

5. Charismatic networks

As mentioned above, we are interested in asymmetric networks: the influence that x exerts on y may be
different from the one that y exerts on x. However, by the introduction individual weights, one can recover
some sort of symmetry in the interactions. We shall call these networks charismatic given the situation we aim
at modeling, though a more standard name could be resistive networks or reversible Markov chains.

7A matrix which commutes with its adjoint or, equivalently, a matrix which can be diagonalized in an orthogonal basis.
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Definition 5.1. We say that the network V with the matrix (Kxy)x,y∈V describing mutual influence if charis-
matic if there exists a strictly positive scalar field ω : V → (0,+∞) such that for all x, y ∈ V ,

ωxKxy = ωyKyx. (18)

Any strictly positive field ω : V → (0,+∞) such that (18) holds for all x, y ∈ V will be called a charisma of the
network.

Remark 5.2. If we view K as a Markov kernel on the set V , which means that Kxy is the probability to
jump from x to y, then Definition 5.1 corresponds to a reversible Markov chains, and ω would be an invariant
measure.

Remark 5.3. If a network is charismatic, then, Kxy > 0 if and only if Kyx > 0. As a consequence, if there
exists a path from x to y, then there also exists a path from y to x. In particular, any influencer x ∈ Γ is
isolated, hence influencers will not have any effect upon the dynamic. Given the situation we aim at modeling,
we will be interested only in strongly connected charismatic network: it excludes the presence of influencers.

Remark 5.4. Equation (18) can be written

Kxy =
ωy

ωx
Kyx.

In other words, the influence that y exerts on x depends on the ratio of the charisma of x and y, and the
influence that x exerts on y. The higher the charisma of y is compared to the one of x, the more y influences x
compared to the reciprocal influence of x onto y. It justifies the name charisma: the higher the charisma of an
agent is, the more they influence the others while not being influenced by them.

In particular, the vertex x would have a behavior close to the one of an influencer if ωx is very large compared
to the other values taken by the charisma.

Remark 5.5. If a network is charismatic and if ω̄ : V → (0,+∞) is a charisma, then so is λω̄ for any λ > 0.
On the other hand, provided that the network is strongly connected, any charisma ω is of the form λω̄ for some
λ > 0. Indeed, let ω be another charisma. We define λ = ωx/ω̄x for some arbitrary x ∈ V . If y is any neighbor
of x,

ωy = ωx
Kxy

Kyx
= ωx

ω̄y

ω̄x
= λω̄y.

Propagating this relation from one vertex to its neighbors, and using the strong connectivity of the graph, we
conclude that ω = λω̄ on V .

The next proposition gives a description of the set of matrices associated to charismatic networks.

Proposition 5.6. Let S ⊂ R
V×V be the set of symmetric matrices C with nonnegative entries and such that

(V, supp(C)) is a strongly connected graph, and let ∼ the equivalence relation defined by C1 ∼ C2 if C1 = λC2

for some λ > 0.
There exists a homeomorphism between S/∼ and the set of matrices K ∈ RV×V for which (V,K) is a strongly

connected charismatic network.

As a consequence, we can think at the set of matrices K ∈ RV×V for which (V,K) is a charismatic network as
a (N(N + 1)/2− 1)-dimensional manifold, where N is the number of vertices of V .

Proof. If K describes a charismatic network with charisma ω, we map it onto F (K) the equivalence class of C
defined by Cxy = ωxKxy. Indeed, this matrix belongs to S by (18), and its equivalence class for the relation ∼
does not depend on the choice of charisma by Remark 5.5.

Conversely, if C ∈ S, we can define

ωx =
∑

y

Cxy.
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and then we map [C] onto K = G([C]) defined by Kxy = Cxy/ωx. The network described by K is charismatic,
the map is well-defined in the sense K does not depend on the choice of a representative in the equivalence class
of C for ∼: indeed, multiplying C by λ > 0 would also multiply ω by λ, hence K would be the same.

Moreover, both F and G are continuous, and it can be checked easily that F = G−1. �

Now, let us describe more in details the structure of charismatic networks. We wrote above in Remark 1.5
that the total opinion is in general not conservative. However, in the case of charismatic networks, a certain
quantity is conserved, that is the expected value of the opinion field with respect to the measure (ωx). At time
k, this quantity writes

vk =
∑

x∈V

ωxu
k
x.

It does not depend on k provided ω is an admissible charisma. Indeed, it holds that

vk+1 =
∑

x∈V

ωxu
k+1
x =

∑

x,y∈V

ωxKxyu
k
y =

∑

x,y∈V

ωyKyxu
k
y =

∑

y∈V

ωyu
k
y

∑

x∈V

Kyx =
∑

y∈V

ωyu
k
y = vk. (19)

It makes it possible to characterize the uniform field to which the distribution of opinions converges.

Proposition 5.7. Assume that the network is charismatic and that the assumption of Corollary 1.8 holds. Let
(ωx)x∈V the charisma satisfying the normalization condition

∑

x∈V ωx = 1 (given Remark 5.5 there is only one

such charisma). Then the solution uk of the evolution (2) converges to a uniform field defined by

u∞ =
∑

x∈V

ωxu
0
x.

In short: the final value of the distribution of opinions is a convex combination of the initial values of the
opinion, and the coefficients in the combination are nothing else than the charisma of the agents. In particular,
the higher the charisma of an agent x, the higher the influence of u0

x in the value reached by the opinion at
consensus.

Proof. By Corollary 1.8, we know that the distribution of opinions converges to a uniform field. Using the fact
that vk does not depend on k, and calling u∞ the final value, we obtain

∑

x∈V

ωxu
∞ = lim

k→+∞

∑

x∈V

ωxu
k
x =

∑

x∈V

ωxu
0
x.

Using the normalization of the charisma, we deduce the result. �

Variational standpoint, gradient flow structure & resistive networks

Another key feature, in a charismatic network, is the relevance of a variational point of view. The propagation
can be described with the help of an energy functional defined on the set of configurations. Assume that the
network is charismatic with charisma ω. We define Φ : RV → [0,+∞) in the following way: for any u ∈ R

V ,

Φ(u) =
∑

e∈E

ωxKxy

2
(ux − uy)

2. (20)

In the spirit of Section 4, the continuous time problem for a charismatic network K is the gradient flow of the
energy Φ with respect to the scalar product defined by

〈u | v〉ω =
∑

x∈V

ωxuxvx.
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As a consequence, the energy Φ decreases along the continuous time evolution, and converges (under the
assumption that the network is connected) to a minimizer of Φ, namely a uniform field.

With the help of this energy, we can make the link with resistive networks. The analogy would be to think
at ux as the potential at the vertex x, while the quantity ωxKxy (which is symmetric in x, y) would be the
conductance (the inverse of a resistance) of the edge joining x to y. Then, Φ(u) would be nothing else than
(twice) the energy dissipated in the electrical circuit with conductances ωxKxy and electrical potentials ux.

Extension to infinite networks

The variational structure of the problem makes it possible to explore the case of infinite networks with
standard tools in functional analysis. In particular, consider a connected resistive network (V,E,C, o) that is
rooted (an arbitrary vertex o has been singled out, and is considered to exchange flux with the outside world),
infinite, non oriented, i.e. E ⊂ V ×V is symmetric, and C ∈ (0,+∞)E is a symmetric collection of conductances
(inverse of resistances). Let us first say that the collection of conductances canonically defines a metric on the
graph: the length of a path is simply the sum of conductances of the edges, and the distances between two
vertices is the infimum of the lengths of paths joining them. Assuming that the number of neighbors for each
vertex is finite, one may define a natural “energy space”, discrete version of a standard Sobolev space for functions
defined over a Euclidean domain, as

H1 =






u ∈ R

V , u0 = 0 ,
∑

(x,y)∈E

Cxy(uy − ux)
2 < +∞






.

Here u can be interpreted as a collection of pressures at vertices (if one considers that a fluid flows within
edges), electric potentials, or opinion if one sticks to our main topic. In a fluid or electric context, the quantity
involved in the definition of H1 is the dissipated energy8, which is twice the quantity previously defined as Φ(u)
(see (20)). The core questions is now the following: are there nontrivial harmonic fields, i.e. solutions to

∑

x→y

Cxy(ux − uy) = 0 ∀x ∈ V̊ = V \ {o} ,

which belong to the Hilbert space H1 ? Such nontrivial solutions correspond, in the fluid dynamic context,
to the case when some fluid enters and exits the domain through infinity, with a finite amount of dissipated
energy. In the case of opinion networks, it would correspond to influencers “located at infinity”, who yet exert
some influence on standard agents. Note that, due to the infinite character of the network, those influencers
are not represented by vertices, they should rather be seen as particular paths toward infinity. Notice that, in
many situations (for example with binary trees), this set of ends is uncountable, while the set of vertices is.
Let us define Rn has the equivalent resistance between o and the vertices at distance n (in terms of number
of edges) from o. This quantity increases, thus converges to some limit value R ∈ (0,+∞]. It can be proved
(see [59]) that, as soon a R is finite, there exist nontrivial solutions to the problem above. In other words, if one
defines H1

0 as the closure of the fields which have a finite number of nonzero entries, the quotient space H1/H1
0

is not trivial. It makes it possible to properly define a Dirichlet problem, where the boundary condition (that
would be the collection of influencers’ opinions) is set (in some abstract way) at infinity. We refer the reader
to [14, 45] for an application of this approach to a fully different problem, that is the modeling of the human
respiratory system. To make a connection with Section 2, more precisely with Proposition 2.1, let us add that
the finite character of the resistance R is equivalent to the recurrent character of the random walk canonically
associated to the network, i.e. with transition probabilities

Kxy = Cxy/Cx , Cx =
∑

x→y

Cxy,

8We must admit that the H1 seminorm has no clear meaning in the context of opinion propagation.
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where the normalization constant Cx is actually the charisma ωx introduced at the beginning of this section.
We refer to [28, 59] for more details on these issues.

Remark 5.8. (Hierarchical / reversible networks & Wasserstein-like gradient flow structure)
In the situation considered in this section, i.e. if K is a charismatic network with charisma ω : V → (0,+∞),
we just noticed that the evolution equation

du

dt
= −(I −K)u,

has a gradient flow structure subject to an appropriate choice of the Euclidean structure, for the quadratic
functional given above. Recent advances in Optimal Transportation on networks have exhibited an other
underlying gradient flow structure, in a fully different sense. Let us first notice that, like in the discrete setting,
the quantity

∑
ωxuk is preserved by the time-continuous equation, so ωxux can be seen (up to an adapted

normalization of the initial condition), as a probability measure on V . The approach, introduced in [43], is
based on defining a metric on this very space of probability measures on V . This metric mimics the standard
Wasserstein distance defined for measures on a Euclidean domain (see e.g. [57]), it relies on an extension to the
discrete setting to the Benamou-Brenier approach (see [11]). It can be shown that the evolution equation is
indeed a gradient flow, in this framework, for a functional that is defined as the relative entropy of the probability
measure (ωxux) with respect to the stationary measure / charisma (ωx), i.e.

H(u) =
∑

x

ωxux log(ux).

We also refer the reader to [5] for a link between this framework and the space-discretization of Partial Differential
Equations of the transport-diffusion type (like in Section 6) with a transport velocity which is the gradient of
some scalar field.

6. Space time discretization schemes for Partial Differential Equations

We describe the discrete dynamical systems which come from the space and time discretization of standard
Partial Differential Equations. This section is independent of the rest, it aims at underlying the fact that
evolution problems of the type (2) can be seen as discrete generalization of standard PDE’s. In the one-
dimensional setting, we shall consider the transport equation at constant velocity U > 0

∂tu+ U∂xu = 0 , (21)

and the heat equation

∂tu−D∂xxu = 0, (22)

where D > 0 is the diffusion coefficient. The space-time variable (x, t) belongs to [0, L]× [0, T ]. We shall assume
periodic boundary conditions in space, i.e. L is identified to 0. The Finite Difference space-time discretization
of such equations is based on a time step ∆t = T/NT and space step ∆x = L/N . We shall denote by uk

j the

approximation of a solution to one of those equations at (j∆x, k∆t). Given an initial condition u0, we build an
initial discrete approximation according to u0

j = u0(j∆x). The so-call upwind scheme for (21) writes

uk+1
j − uk

j

∆t
+ U

uk
j − uk

j−1

∆x
= 0 j = 1, . . . , N ≡ 0 , k = 0, . . . , NT − 1.
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n = 0 (initial state)

n = 1

Figure 3. Upwind scheme graphs: space graph (top) and full space-time graph (bottom).

The previous scheme can be written

uk+1
j =

(

1− U∆t

∆x

)

︸ ︷︷ ︸

=Kjj

uk
j +

U∆t

∆x
︸ ︷︷ ︸

=Kj,j−1

uk
j−1, (23)

which fits into the framework described at the beginning of Section 1 (Equation 2), as soon as the so -called
CFL condition θ = U∆t/∆x ≤ 1 is satisfied. Vertices identify here with space discretization points, and the
underlying graph is represented in Figure 3 (top). Note that for θ = 1, we recover the one-to-one and onto
mapping situation. For θ ∈ (0, 1), the problems fits in the assumptions of Corollary 1.8 (for m = N), thus uk

converges to a uniform field. This results may appear as conflicting with pure transport phenomena, which do
not change the profile. It is a consequence of the so-called numerical diffusion, which is a consequence of space
discretization. Note that the set of harmonic fields is the line spanned by the uniform field (1, . . . , 1).

For the heat equation, the so-called explicit scheme writes

uk+1
j − uk

j

∆t
+D
−uk

j−1 + 2uk
j − uk

j+1

(∆x)2
= 0 j = 1, . . . , N ≡ 0 , k = 0, . . . , NT − 1,

which can be written

uk+1
j =

(

1− 2D∆t

(∆x)2

)

︸ ︷︷ ︸

=Kjj

uk
j +

D∆t

(∆x)2
︸ ︷︷ ︸

=Kj,j−1

uk
j−1 +

D∆t

(∆x)2
︸ ︷︷ ︸

=Kj,j+1

uk
j+1. (24)

Under the stability condition 2D∆t/Dxp2 ≤ 1, this expresses again an evolution of the type (2). Note that the
network associated to the heat equation (discretization scheme (24)) is charismatic (according to Definition 5.1),
whereas the transport network (associated to the discretization scheme (23)) is not.

Space-time graph

Now consider the space-time discrete field (un
j ) obtained by one of the previous schemes, for the transport

equation or the heat equation. We replace the index k by n because the time index no longer plays the role of
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Difference of opinions

Flux

Figure 4. Examples of admissible ϕ for the non linear model. The solid line corresponds to
the linear model. The dotted line is an example of admissible ϕ which satisfies ϕ′ ∈ (0, 1]. The
dashed line is an admissible ϕ with a bounded confidence effect, i.e. agents are not affected by
people with a very different opinion from theirs.

an incremental evolution index. It can be seen as a discrete field over the space-time grid

V = {(k, j) , 0 = 1, . . . , N , k = 0, . . . , NT} .

In this setting, the topology of the graph is represented in Figure 3 (bottom), and the vertices corresponding
to the initial states, at which the values are prescribed, play the role of influencers. The full discrete field
can thus be considered as harmonic in the sense of (1.2), over the space-time grid. For a given grid, there is
obviously a unique harmonic field in this sense for any collection of initial values (i.e. values at influencers), so
harmonic fields form a linear space of dimension N .

7. Nonlinear evolution models

In this section we investigate ways to model the opinion propagation between two agent in a more realistic
way. In the previous section, the “flux” of opinion was considered linear, which means in particular that a person
with an opinion far away from that of an agent is likely to exert a strong influence on this agent. It seems more
relevant to consider that the actual influence decreases when the opinion diverges. In order to incorporate this
effect, and possibly others, to the model, we consider now that the flux of opinion (see Remark 1.3) is no longer
linear. We denote this opinion flux from y to x by Kxyϕ(v − u), which leads to the following evolution model
(in the discrete setting):

uk+1
x = uk

x +
∑

x→y

Kxy ϕ(u
k
y − uk

x). (25)

To encode the bounded confidence effect mentioned previously, one may prescribe that ϕ(u) is small for large
values of u. Examples of functions ϕ that we will consider are displayed in Figure 4.

For an arbitrary function ϕ, conducting a full analysis of the system goes far beyond the scope of these
notes, and may be simply out of reach in full generality. We shall restrict ourselves to a particular class of
nonlinearities:

Definition 7.1. (Admissible non linearities)
We say that ϕ : R→ R is admissible if it is continuous, odd, and if 0 ≤ ϕ(u) ≤ u for all u ≥ 0.

The first assumption simply expresses stability with respect to opinions, and the odd-character corresponds to
the fact that agents are interchangeable as far as opinion propagation is concerned. Nonnegativity of ϕ rules
out any contradiction spirit: we restrict ourselves to model consensual tendencies. The last condition ϕ(u) ≤ u
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ensures that, if an agent x which thinks u is influenced by an agent y which thinks v, with u ≤ v, then the
opinion of agent x will be above u but below v, and not beyond v. The two latter conditions will ensure that
the maximum principle is preserved.

Remark 7.2. We require ϕ to be defined on the whole R but this is more a mathematical convenience than
a relevant modeling requirement. Indeed, as we will see later in Proposition 7.4, the maximum principle stays
true. As a consequence, it would be enough to define ϕ on [−M,M ], where M = maxu0 − minu0, where
(u0

x)x∈V is the initial distribution of the opinions. Nevertheless, not to overburden notations, we will keep the
assumption that ϕ is defined on R.

Similarly to the linear case, a fixed point is a situation where nobody changes their opinion.

Definition 7.3. (Nonlinear fixed point)
We say that u ∈ R

V is a fixed point for (25) whenever

ux = ux +
∑

x→y

Kxy ϕ(uy − ux). (26)

To prove the existence of at least one fixed point, we need first to state the maximum principle. Thanks to
the assumptions on ϕ, it stays valid

Proposition 7.4. (Nonlinear maximum principle)
Let ϕ be admissible in the sense of Definition 7.1. Let an initial state u0 ∈ RV be given, and let u1, . . . , uk,

. . . the fields recursively defined according to (25). Then, for any k ≥ 0, for any x ∈ V ,

uk+1
x ∈ [minuk,maxuk] ⊂ [minu0,maxu0].

Proof. Fix some k ≥ 0 and x ∈ V . Among the y such that x → y, there are some such that uk
y ≥ uk

x and the

ones for which uk
y < uk

x. The second ones yield a negative flux because ϕ is odd and takes nonnegative values
on R+. Thus we can write, using ϕ(u) ≤ u for u ≥ 0,

uk+1
x = uk

x +
∑

Kxy ϕ(u
k
y − uk

x) ≤ uk
x +

∑

uk
y≥u

k
x

Kxy ϕ(u
k
y − uk

x)

≤ uk
x +

∑

uk
y≥u

k
x

Kxy (u
k
y − uk

x) ≤ uk
x +




∑

uk
y≥u

k
x

Kxy





︸ ︷︷ ︸

≤1

(maxuk − uk
x) ≤ maxuk.

As ϕ is odd, −uk also satisfies (25) thus by the same reasoning uk+1
x ≥ minuk for all k ≥ 0 and x ∈ V . The

property follows by induction on k. �

The existence of at least at fixed point, in this non linear setting, is still guaranteed by Brouwer’s Theorem.

Proposition 7.5. Assume that ϕ is admissible in the sense of Definition 7.1. Let U ∈ RΓ be a given data on
Γ. Then there exists u ∈ RV a fixed point, i.e. a solution of (26) such that u = U on Γ.

Proof. We denote by a and b respectively the minimum and maximum of U over Γ. Recall that V̊ = V \Γ. We

denote Λb
a = [a, b]V̊ and we define F : Λb

a → Λb
a the map defined by

[F (u)]x = ux +
∑

x→y

Kxy ϕ(uy − ux)
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for all x ∈ V0. Thanks to Proposition 7.4, we know that this map, defined over Λb
a takes indeed its values in

Λb
a. The map F being continuous and as Λb

a is convex and compact, Brouwer’s Theorem (Theorem 6.6 in [17])
asserts that F admits a fixed point v ∈ Λb

a. Then, the fixed point u we are looking for is defined as u = U on Γ

and u = v on V̊ . �

The natural questions are the ones of uniqueness and stability of the fixed point. As examples below shall
show, this is not true in general. However, with a restrictive assumption on ϕ we can show that everything
happens like in the linear case.

Proposition 7.6. Take an admissible ϕ in the sense of Definition 7.1. We assume moreover that ϕ is differ-
entiable and ϕ′(u) ∈ (0, 1] for all u ∈ R.

Similarly to Proposition 1.10, assume that Γ 6= ∅ and that V −·→ Γ. Then, for any given data U on Γ, the
problem admits a unique fixed point, and, for any initial data u0 with u0 = U on Γ, the evolution problem (25)
converges to this fixed point as k → +∞.

Proof. Let u and v be two solutions of the evolution process. Using the mean value theorem, there exist numbers
(αk

xy) in (0, 1] such that for all k ≥ 0 and any x ∈ V ,

uk+1
x − vk+1

x = uk
x − vkx +

∑

x→y

Kxyα
k
xy (u

k
y − vky + vkx − uk

x).

Indeed, we know that αk
xy = ϕ′(z) for some z which depends on uk

x, v
k
x, u

k
y and vky . By boundedness of the

families (uk
x)k,x, (v

k
x)k,x (which derives from the maximum principle), we know that α ≤ αk

xy ≤ 1 where α > 0

is independent on k, x and y. Denoting wk = uk − vk, we know that wk = 0 on Γ and that wk satisfies a linear
evolution equation (with coefficients depending on k)

wk+1
x = wk

x +
∑

x→y

Kxyα
k
xy (w

k
y − wk

x).

As already underlined in the proof of Proposition 1.11, we just need to show that wk tends to 0 as k → +∞ to
prove our claim.

Let us denote by K̂k the matrix defined by

K̂k
xy =







αk
xyKxy if x 6= y,

1−
∑

z

αk
xzKxz if x = y.

With the help of this notation, the equation satisfies by w can be written wk+1 = K̂kwk, where the product
is understood as a matrix-vector product. As 0 ≤ αk

xy ≤ 1, the coefficients of K̂ are nonnegative. Moreover,

the sum of each row of K̂k is 1. In particular, the sum of each row of the matrix K̂kK̂k−1 · · · K̂1K̂0 is also
1. In consequence, for each x ∈ V and each k ≥ 0, wk

x is a weighted barycenters of the (w0
y)y∈V with weights

depending on k and x.
Now let us fix x ∈ V . Recall that E ⊂ V × V is the set of directed edges of the network. By assumption,

there exists an injective path (x = xℓ, xℓ−1, . . . , x1, x0 = y) connecting x to y ∈ Γ with (xi+1, xi) ∈ E for all i.

As a consequence, the coefficient xy in the matrix K̂ℓ−1K̂ℓ−2 · · · K̂1K̂0 is larger than

(αℓ−1
xℓxℓ−1

Kxℓxℓ−1
)(αℓ−2

xℓ−1xℓ−2
Kxℓ−1xℓ−2

) · · · (α0
x1x0

Kx1x0) ≥ (α)l
(

min
(z1,z2)∈E

Kz1z2

)ℓ

= cℓ

where we have set c = α(min(z1,z2)∈E Kz1z2) > 0. In other words, this coefficient is bounded from below by

a constant cℓ ∈ (0, 1] that depends only on α, K and ℓ. With the help of this estimate, given the worst case
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1/2 1/2

1 1

Figure 5. The very simple network with 3 vertices and 2 influencers (circled nodes) which
helps to understand what may happen if the assumption ϕ′ ∈ (0, 1] does not hold.

situation,

wℓ
x ≤ (1− cℓ)

(

max
z

w0
z

)

+ cℓw0
y = (1− cℓ)

(

max
z

w0
z

)

,

as we have used that y ∈ Γ so w0
y = 0. Notice that this estimate can be iterated. As the constant cℓ does not

depend on k, it leads to

wnl
x ≤ (1 − cℓ)n

(

max
z

w0
z

)

,

for all n ≥ 1. Now take k of the form nL where L is the least common multiple of all the lengths of paths
connecting elements of V to Γ. We can write

max
x∈V

wnL
x ≤ (1− cL)n

(

max
x

w0
x

)

.

As a similar inequality holds for −wnL, we conclude that wnL tends to 0 as n → +∞. By the maximum
principle, it in fact implies that wk tends to 0 as k → +∞, which concludes the proof. �

However, in the case when ϕ′ ∈ (0, 1] does not hold, we know that we cannot expect uniqueness nor stability
of fixed points, this is object of the two following remarks. Notice that if ϕ(u) tends to 0 as u grows, which
corresponds to a bounded confidence effect, we necessarily have ϕ′(u) < 0 for some u.

Remark 7.7. (Non uniqueness)
If ϕ is not injective, then uniqueness cannot hold. Indeed, if ϕ(ū) = ϕ(v̄) for ū 6= v̄ then it is enough to take
this simple model: V = {0, 1, 2} and 0 and 2 are influencers, see Figure 5. Moreover, 1 listens equally to 0 and
2, and not to itself. We put u0 = ū and u2 = −v̄. Then one easily check that both u1 = 0 and u1 = ū − v̄ are
fixed points. Moreover, as ϕ is odd, taking u1 = (ū− v̄)/2 yields a third fixed point.

Remark 7.8. (Instabilities)
Stability analysis is related to the values taken by ϕ′. Indeed, if u ∈ RV is a fixed point, the linearized system
around u, for a perturbation of the form u+ εv reads, at the first order in ε,

vk+1
x = vkx +

∑

x→y

Kxyϕ
′(uy − ux) (v

k
y − vkx). (27)

Now, if ϕ′(u) ∈ [0, 1], the linearized system can be written vk+1 = K̃vk where K̃xy = Kxyϕ
′(uy − ux) defines

a matrix with nonnegative entries such that the sum of the rows is smaller than 1. As a consequence, we can
use the maximum principle on the linearized system and conclude that it is stable. Actually, we already knew
it thanks to Proposition 7.6. On the other hand, let ū > 0 be some value of opinion. Consider again the very
simple graph V = {0, 1, 2} where 0 and 2 are influencers and 1 listens equally to both influencers, see Figure 5.
If u0 = ū and u2 = −ū then u1 = 0 is a fixed point. The linearized system around this fixed point reads

vk+1
1 = vk1 −

ϕ′(ū)

2
vk1 −

ϕ′(−ū)
2

vk1 = (1− ϕ′(ū)) vk1 ,
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where we use that ϕ′ is even as ϕ is odd. In particular, if ϕ′(ū) < 0 or ϕ′(ū) > 2, we see immediately that this
fixed point is unstable.

8. Inertial evolution model, instabilities

We previously introduced and analyzed in Section 4 the first order in time model

du

dt
= −1

η
(I −K)u = −1

η
Au,

where K is a stochastic matrix. The vector u ∈ RV represents opinions of agents indexed by vertices in a set
V , and u|t=0 = u0 ∈ R

V is prescribed as an initial opinion. As detailed in the previous sections, it models the
evolution of an opinion field u on a network (V,E), where E = supp(Kxy), and Kxy accounts for the influence
of y upon x.

We shall consider here an inertial version of this model. Let us make it clear that this model is more an abstract
development than a real attempt to better describe the reality of opinion propagation. Let us nevertheless give
a few words on the underlying principles, as questionable as they may be: we aim at implementing the idea
than someone may react to an influence (caused by the discrepancy between their own opinion and an another
agent’s opinion) with some “psychological inertia”: an agent x is submitted to the influence of y, this influence
can be formalized by a flux (see Remark 1.3) equal to Kxy

(
uk
y − uk

y

)
, and we shall consider that this flux pushes

in some way x’s mind, possibly further in the direction of y’s opinion than y itself. We describe at the end of
this section a framework in which this approach is more clearly justified, namely traffic modeling (pedestrians
or cars). This section also aims at highlighting the deep differences between classical mechanical systems of
the Hamiltonian type, which follow in particular the Law of Action-Reaction and conserve momentum, and the
propagation of a non-conservative quantity on a directed network.

We simply write than the “opinion velocity” du/dt relaxes to the expression given by the first-order model,
with some characteristic time τ > 0 :

d2u

dt2
+

1

τ

(
du

dt
+

1

η
Au

)

= 0. (28)

It appears as a discrete version of a standard Partial Differential Equation, namely the weakly damped wave
equation, which can be written

∂2u

∂t2
+

1

τ

(
∂u

∂t
− L2

η
∆u

)

= 0, (29)

where the constant L2, homogeneous to a squared distance, has been added in order to preserve homogeneity,
and where u is now a scalar function. Note that, in this setting, the wave speed is L/

√
ητ .

Indeed, the matrix A has some similarities with a Laplace operator (more precisely with its opposite):
the entries of its rows sum up to 0, diagonal elements are nonnegative, and extra-diagonal elements are non-
positive, which ensures the maximum principle. Considering this wave equation in a bounded, connected domain,
with homogeneous Neuman boundary conditions, the −∆ operator admits an infinite family of eigenvalues
0 = µ0 < µ1 ≤ µ2, . . . , µn → +∞, with associated eigenvectors w0, . . . , wn, . . . . The wave equation (29) can be
projected along any of these eigenmodes k ≥ 1, which yields a second order ODE of the spring-mass type:

d2ûk

dt2
+

1

τ

dûk

dt
+

L2µk

ητ
ûk = 0, (30)

where ûk = ûk(t) is the coefficient of the full solution u associated to the k-th mode (u(x, t) =
∑

uk(t)wk(x)).
For any µk > 0, this equation has two roots with negative real parts, which expresses asymptotic stability (pure
damping or damped oscillations, see details below).
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Now consider our non-symmetric discrete wave equation (28), we aim at showing that, in spite of the stabi-
lizing character of −A (the eigenvalues of A have a nonnegative real part), the inertial version of the evolution
model may develop instabilities. We shall assume here that the matrix A = I − K is diagonalizable, with
eigenelements (µk,Wk)1≤k≤N . For any eigenvector W with associated eigenvalue µ, we can build solutions
of (28) of the form

t 7→ eλt W,

where λ is a root of the characteristic equation

λ2 +
1

τ
λ+

1

τη
µ = 0.

We thus obtain

λ± =
1

2τ

(

−1±
√

1− 4
τ

η
µ

)

. (31)

Case of a real spectrum

Let us first consider the situation where the spectrum of A lies on the real line, which amounts to assume
an underlying gradient flow structure of the first-order evolution problem (see Proposition 4.2). In this case,
the system projected along any eigendirection W takes the form of a damped linear oscillator (30) (spring-mass
system). If one denotes by T the translation z ∈ C 7→ z + 1 and Q : z ∈ C 7→ z2, the pair of eigenvalues
associated to µ ≥ 0 can be written

λ± =
1

2τ
T−1Q−1T

(

−4τ
η
µ

)

.

The two possibilities are represented in Figure 6. Depending on whether −4µτ/η < −1 or not, we shall have
damped oscillations (case µ1 on the figure, with λ±1 have non-zero imaginary parts) or pure damping (case µ2

on the figure, where λ±2 are real and negative). The zone where all the λ±’s lie is the bold cross represented in
Figure 6.

General case

In the general situation, the evolution equation along any A eigendirection can be seen as a damped oscillator
equation with a possibly complex stiffness. We shall see that the complex character of some eigenvalues rules
out the asymptotic stability, i.e. some λ’s may have positive real parts. This question can be formulated by
means of the mappings T and Q introduced previously: The system is unstable as soon as

T−1Q−1T

(

−4τ
η
Sp(A)

)

∩ [ℜ(z) > 0] 6= ∅,

where Sp(A) is the spectrum of A. The previous condition is equivalent to

−4τ
η
Sp(A) ∩ T−1Q ([ℜ(z) > 1]) 6= ∅.

The set T−1Q ([ℜ(z) > 1]) can be explicitly described. Its boundary is

{
(1 + it)2 − 1 = −t2 + 2it , t ∈ R

}
,

which is the parabola [x = −y2/4]. The set T−1Q ([ℜ(z) > 1]) is then
{
z = x+ iy , x ≥ −y2/4

}
.

We may now express the stability property:
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Q−1

Q−1

Q−1

Q−1

T−1

T−1

T−1

T−1

T

T

−4 τ
ηµ1 −4 τ

ηµ2

ℜ(z) = 1

Figure 6. Damped oscillations and pure damping

Proposition 8.1. Let A = I −K be given, with K stochastic matrix. The evolution problem (28) is stable as
soon as

− 4
τ

η
Sp(A) ⊂ [x ≤ −y2/4]. (32)

In particular, if τ ≤ 2η, it is stable.
If at least one eigenvalue of A does not verify the inclusion above, the problem is unstable.

Proof. The stability condition has been established above. The condition on τ/η comes from the fact that
A = I −K, where K is stochastic, so that the eigenvalues of A lie in 1 − C, where C is the unit disc. Let us
introduce α = 4τ/η. The disc −4τ/η(1 − C) = −α(1 − C) is represented in Figure 7. It is contained in the
convex hull of the stability parabola as soon as its radius is not larger than 2, which is the reciprocal of the
curvature of the parabola at the origin. �

In the worst-case scenario in terms of stability, eigenvalues of K distribute over the unit circle, so that the
spectrum of A = I −K distribute over the circle centered at 1, with radius 1 (such a situation can occur in the
case of a pure cycle as presented in Section 4). The circle obtained by multiplying it by −4τ/η is represented
in Figure 7. Its image under T−1Q−1T is the quartic represented in the same figure. Unstable eigenvalues of
the inertial problem are represented in red (see more details below) .

Most unstable mode

A natural question arises: to which eigenmode of A does the most unstable mode of the inertial system
correspond ? We shall consider here the case when the spectrum of A = 1 −K is distributed along the circle
1 − C, centered at 1, with radius 1, where C is the unit circle in C. The circle −α(1 − C) is represented on
figure 7, with α = 4τ/η.

The approach which we propose consists in identifying the zone on which eigenvalues of the inertial system,
to locate on this zone the most unstable mode, and to investigate to which mode of A it corresponds. The set
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T−1Q−1T

T−1Q−1T

T−1Q−1T
−α(1− C)

x− y2/4 = 0

θ ≈ π/3

Figure 7. Stability parabola

T (−α(1− C)) ∈ C is the circle centered at 1− α, with radius α, i.e. the set of (x̃, ỹ) verifying

(x̃− 1 + α)
2
+ ỹ2 − α2 = 0.

A complex z = x+ iy, with square z2 = x2 − y2 + 2ixy, is then in Q−1T (−α(1− C)) if and only if

f(x, y) =
(
x2 − y2 − 1 + α

)2
+ 4x2y2 − α2 = 0.

The solution set is a quartic curve, which can be checked to delimit a convex domain for α ≤ 2. It has two
connected components for 0 ≤ α < 1/2. For α = 1/2 it is a Bernoulli Lemniscate, for α = 1 it coincides with
the unit disc, and for α = 2, it has a stadium-like shape. Convexity is lost for α > 2, which corresponds to the
emergence of instabilities. The 8-shaped closed curve in Figure 7 represented on of those curves, translated by
-1, for α > 2. The equation of this curve is obtained by replacing x by x+1 in the expression of f(x, y) above.
The most unstable modes correspond to the maximal real part, it corresponds to the black dots in the figure.
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At these points, the gradient of f is directed along the real x-axis, therefore

∂yf(x, y) = 4y
(
x2 + y2 −+1− α

)2
= 0 =⇒ y2 = −x2 − 1 + α.

From the equation of the curve itself, it comes x2 = α2/4(α−1). We now aim at locating the antecedent (by Q)
of this point on the circle T (−αC) . Coming back to the variables (x̃, ỹ)) , this point corresponds to x̃ = x2−y2.
Keeping in mind that we are considering the figure translated by 1, the radial vector (bold arrow in Figure 7))
has a first coordinate equal to

x̃− 1 + α = x2 − y2 − 1 + α = 2x2 =
α2

2(α− 1)
.

Since the radius of the circle is α, the cosine of angle θ is (x̃− 1 + α)/α, which yields

θ = arccos

(
α

2(α− 1)

)

.

For α slightly greater than 2 (emergence of instabilities), θ is close to 0, which corresponds to low frequencies.
The typical situation is that of a N cycle, with N large, and a mode at minimal frequency, i.e. (exp(2iπℓ/N))ℓ
(a single oscillation over the whole cycle). For larger values of α, the angle θ quickly approaches its asymptotic
value, that is arccos(1/2) = π/3. For a N -cycle, this corresponds to an eigenvector of the form (exp(2iπkℓ/N))ℓ
with k = N/6, which corresponds to oscillations of period 6. It reveals that, in the context we considered, the
configuration that is the most likely to lead to instabilities is the 6-cycle.

Remark 8.2. The situation where the spectrum of K lies on the unit circle corresponds to pure cycles. Those
cycles are not very realistic in real-life social network. Yet, they natively appear in another context, which
also involves “agents” of another kind: the modeling of car (or pedestrian) traffic. Consider a set of cars in a
periodic road, the positions of which are denoted by q1, . . . , qN . Consider a behavior function β(·), which maps
distances to speeds, i.e. a driver at a distance w to the next car will tend to adopt a velocity β(w). The function
is typically increasing from 0 to some limit value, and concave. If one accounts for the inertia of the vehicle and
the reaction time of driver, it is natural to write the model as

q̈i =
1

τ
(β(qi+1 − qi)− q̇i) .

Expressed in terms of distances wi = qi+1 − qi (with periodicity), the model takes the form

ẅi =
1

τ
(β(wi+1)− β(wi)− ẇi) .

This problem admits a trivial equilibrium point, with the cars uniformly distributed on the road (distance weq),
all driving at speed β(weq). Investigating the linear stability of this equilibrium point, we obtain the second
order linear equation

ẅ +
1

τ
ẇ +

1

ητ
Aw = 0,

with A = I −K, where K is a the stochastic matrix associated to the leftward shift (the associated “random”
walk is in fact purely deterministic), i.e. it exactly corresponds to the cycle which we considered previously.
The stability analysis detailed above shows that instabilities are likely to appear, and that the most unstable
mode correspond to a period of 6 in terms of cars (emergence of Stop and Go waves, see e.g. [52]). We refer the
reader to [44] for further details on this traffic model, and its stability analysis.
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General case

In the general setting, eigenvalues of K lie in the unit disc, possibly far from the circle for most of them
(see additional details below). Spotting the most unstable mode necessitates an alternative method. It can
be carried out by simply considering the images of the sets [ℜ(z) > r] by T−1QT , for r ≥ 0. For r = 0, we
recover the parabola represented in Figure 7, which delimits the stability domain, i.e. the model is unstable as
soon a −αSp(A) lies outside the convex domain D0 = [x+ y2/4 ≤ 0] . For larger values of r, a straightforward
computation leads to a family of domains delimited by parabolas:

Dr =

{

z = x+ iy , x+
4y2

(1 + r)2
− (1 + r)2 + 1 ≤ 0

}

.

The most unstable mode, i.e. the mode which give the largest real part to an eigenvalue of the global system, can
be obtained as follows: the smallest r > 0 such that −αSp(A) ⊂ Dr is the largest real part. This minimum is
realized by at least one (in fact two, since complex eigenvalues of the real matrix A come by pairs of conjugates)
eigenvalue of A, i.e. µ ∈ Sp(A) such that −αµ lies in the boundary of Dr, and any such eigenmode is maximal
in terms on instability.

Spectrum of stochastic matrices

Let us end this section by some comments on what can be expected concerning the spectrum, and consequently
stability properties of the inertial model, of a stochastic matrix associated to a social network. We established
that instabilities where likely to occur in the situation where the network contains pure cycles (like in the
caricatural situation presented in Section A). But we have to admit that, except for very special situations
like traffic-like problems in a periodic setting (see Remark 8.2), or Chinese Whispers game, pure 6-cycles have
little chance to be observed in real life social networks. Another extreme situation corresponds to charismatic
networks, which obey some sort of Law of Action Reaction, so that the matrix K has only real eigenvalues. In
this situation, the inertial problem evolves like a hamiltonian system (e.g. a spring mass system) with damping,
and asymptotic stability prevails. The generic situation for social networks can be expected to lie between those
extreme situations. A very general result has actually been proved recently (see [16]), for random matrices
which are built as follows: consider (Xij)1≤i,j≤N identically distributed and independent nonnegative random
variables with bounded density, expected value m, and finite variance σ2, and the associated random stochastic
matrix K of order N defined by

Kij =
Xij
∑

ℓ

Xiℓ

.

The spectrum of K tends to spread uniformly over the disc of radius 1/
√
N times a correcting factor σ/m. This

distribution is illustrated in Figure 7 by the cloud of little crosses gathered around the center of −α(1 − C)).
Note that this concentration of eigenvalues of K around the origin tends to keep −αSp(1 −K) away from the
boundary of the stability parabola D0, thereby contributing to stabilize the inertial system. Yet, as soon as
an eigenvalue of K is not purely real, the inertial problem will eventually become unstable for sufficiently large
values of α, i.e. large values of τ/η, and little is known about large deviations with respect to the asymptotic
behavior mentioned above. More precisely, the fact that most of those random stochastic matrices may have
individual eigenvalues close to the unit circle C may impair the stabilizing effect of generic concentration,
without contradicting the asymptotic results presented above. Besides, the family of matrices defined above is
not typical of real-life social networks, and a full understanding of spectral properties of large realistic social
network is still missing. We refer to [47] for a detailed account of typical properties of social networks, and
to [58] for a recent study of real-life dynamic networks.
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9. Fuzzy opinion, propagation of measures

The idea we aim at developping here was already present in the seminal paper [24]. The individual opinion is
described as a probability measure over some feasible set, to account for the fact that some agents may not be
so sure about their opinion, and the propagation affects those probability measures. More precisely the model
is based, like in the previous sections, on a known set of coefficients Kxy to quantify influences. Assuming
that agents form opinions about the value of some parameter u in a (measured) space Ω, the opinion of an
individual x is described by a probability measure ρx over Ω: for any set A ⊂ Ω, the mass given by ρx to A,
namely

∫

A
ρx(u) du is the degree of belief of agent x that the value of u belongs to A. If ρx is a Dirac mass, i.e.

a probability measure concentrated on a single point ū ∈ Ω, it means that agent x is fully convinced that the
value of the parameter u is ū.

9.1. Degroot original evolution model

The model proposed in [24] is based on a relation similar to (2):

ρk+1
x =

∑

x→y

Kxy ρ
k
y . (33)

In spite of the formal analogy, the model is actually quite different from (2) in terms of opinion propagation.
To fix the ideas, consider the case when the opinion pertains to the value of some sensitive quantity u (like the
mean temperature rise in 20 years). Now consider an agent x that equally points to two influencers y0 and y1,
the opinion of which strongly differ (say, 0 for y0 and 1 for y1), each of them being fully self confident, so that
the associated measures are Dirac masses. The model above builds the opinion of x as the half sum of Dirac
masses, so that x ends up considering that the value of u is either 0 or 1, with probability 1/2 (see Figure 8 (b)
for a case where the influencers are quite certain about their opinion). In this setting, the outcome is obviously
unrealistic. It is more appropriate to consider that x should be led to consider that the real value lies between
0 and 1. A first attempt in this direction is proposed in the next section.

9.2. Wasserstein metric

In order to circumvent the non-realistic character of the model presented above, which consists in interpolating
in a linear manner by using the straight addition of densities, it may be tempting to use an alternative definition
of this interpolation. This alternative way can be defined within the framework of optimal transportation (see
e.g. [57]). Since this strategy still suffers from important flaws in terms of modeling, we shall present it quite
shortly, as an intermediary step to reach the approach presented in the next section. The basic idea consists
in estimating distances between probability measures by means of optimal transportation. More precisely, in
the one-dimensional context, we consider two measures ρ0 and ρ1 (supported in a compact interval I, to fix the
ideas), and we denote by Π the set of probability measures γ on I × I with marginals ρ0 and ρ1, respectively.
For any given cost c(x, y) (which quantifies the cost to move one unit of “mass” from u to v), one can define the
total transportation cost from ρ0 to ρ1

C(ρ0, ρ1) = inf
γ∈Π

∫

I×I

c(u, v) dγ(u, v).

For the quadratic cost c(u, v) = (v− u)2, the quantity W2(ρ0, ρ1) = C(ρ0, ρ1)
1/2 can be shown to be a distance

on the space of probability measures supported over I, the so-called quadratic Wasserstein distance, and the
infimum above is attained. A geodesic curve between any two measures can also be built (see the seminal
paper [46]). In the case when the transport plan is actually a map, i.e. if the infimum above can be written

∫

I

c(u, T (u)) dρ0(u)
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(a) Two distributions (b) Linear interpolation

(c) Wasserstein interpolation (d) Fisher interpolation

Figure 8. Barycenters of two peaked Gaussian distributions: linear, Wasserstein, and Fisher.

where T pushes forward ρ0 to ρ1, then the geodesic curve is

ρt = (I − t(T − I))♯ρ0,

that is, for any t ∈ [0, 1], the image measure of ρ0 by the mapping u 7→ (1− t)u+ tT (u). For two Dirac masses
at u0 and u1, ρt is the Dirac mass at (1− t)u0+ tu1 (see Figure 8 (c) for the case t = 1/2 with peaked Gaussian
measures). An evolution model based on this approach could be built as follows (in the discrete setting), by
keeping the underlying framework of a set V of vertices (agents) together with weights (Kxy). The problem can
be written

ρk+1 = Bar
(
(ρky ,Kxy)x→y

)
,

which is the (Wasserstein) barycenter of the ρky’s with weights Kxy, for all the agents y that influence x. Such a

barycenter is indeed well-defined for probability measures defined on a real interval: specifically, ρk+1
x is defined

from the ρky ’s as the minimizer of
∑

x→y

Kxy W2(ρ, ρ
k
y)

2.

We shall not study further this approach, because it presents two serious flaws. Let us start by a mathematical
difficulty: in dimensions higher than 1, the Wasserstein space of probability measures has the wrong curvature
(namely it is positively curved) which makes the study of barycenters quite involved [2,48]. The second problem
is deeper, since it affects the very core of the model: consider again the case of a agent x equally influenced
by two agents y0 and y1, the opinion of which are characterized by Dirac masses at 0 and 1, respectively. The
opinion of x is, according to the previous model, represented by δ1/2, i.e. a Dirac mass at 1/2. This behavior
seems more reasonable that (δ0 + δ1)/2, but it is still not satisfactory. Indeed it would mean that the third
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agent is fully sure that the reality exactly lies at the mean between their influencers’ opinions. In particular,
x considers that there is a probability zero than one of the influencer may be right. It would be much more
reasonable to expect that the new opinion would be indeed centered at 1/2, but with some uncertainty, and
to leave some chance that one of the influencers may be right. More generally, with the Wasserstein metric
the evolutions of the mean opinion of an agent and its uncertainty about it are decoupled, which makes the
introduction of uncertainties in the agent’s judgment almost superfluous. A strategy to remedy to this effect is
presented in the next section.

We mention nevertheless that the equilibrium configurations of such models have been investigated (for
the case of a symmetric network) under the name of Wasserstein propagation and have found applications in
statistics [60].

9.3. Fisher metric

As previously said about the 3-agent toy problem proposed above, with the 2 fully convinced influencers,
it would be natural to consider that the agent x ends up by estimating the value around 1/2, but with some
uncertainty. The total self-confidence of the influencers has no reason to be contagious and propagate, especially
in the case where their opinion strongly differ. We propose here an approach based on the so-called Fisher metric,
which comes from the notion of relative entropy. We shall restrict it to the case of Gaussian densities. Other
families of densities might be considered, but the rigidity induced by the choice of a well-defined parametric
family is essential, as detailed in Remark 9.8. The idea is the following: consider a probability density ρ = ρ(u)
over some measurable set Ω (the set which contains all possible opinions), and a variation δρ, such that ρ+ δρ
is still a probability density. The relative entropy of ρ + δρ with respect to ρ (also called Kullback-Leibler
divergence) writes

KL(ρ+ δρ|ρ) =
∫

Ω

(ρ+ δρ) log

(
ρ+ δρ

ρ

)

du. (34)

Note that the previous quantity is also the standard entropy of the density ρ+ δρ with respect to ρ, measured
against ρ itself:

KL(ρ+ δρ|ρ) =
∫

Ω

ρ+ δρ

ρ
log

(
ρ+ δρ

ρ

)

ρ du.

Remark 9.1. (Relative entropy and measure of opinion discrepancy)
Measuring the difference between two densities in terms of relative entropy makes some sense in the context of
opinions. In particular, if an agent has an opinion described by ρ, with ρ almost vanishing in some zone ω of
Ω, it means that this agent considers as very unlikely that the value of u could belong to ω. Any opinion which
gives a significant probability that u may belong to ω can then be considered as very remote from ρ, which is
exactly expressed by (34). More precisely, if δρ has a positive value on ω, even a small value, KL divergence will
converge to +∞ when ρ converges to 0 on ω. Let us push this interpretation a little further: the non-symmetry
of the KL divergence makes some sense in the context of opinion: if an agent gives to ω some (small) positive
probability, the opinion which rules out u ∈ ω is not so far away from the initial one, which is again reflected
by (34). In other words, the way to measure discrepancy provided by the relative entropy is consistent with
the asymmetry which is natural in the world of opinions encoded by probabilities: ǫ > 0 is far away from 0,
whereas 0 is actually not so far away from ǫ.

The relative entropy of ρ+ δρ with respect to ρ can be expressed as follows, owing to the fact that
∫
δρ = 0,

KL(ρ+ δρ|ρ) =
∫

Ω

(ρ+ δρ)

(

δρ

ρ
− (δρ)

2

2ρ2
+ o

(

(δρ)2
)
)

du ∼ 1

2

∫

Ω

(δρ)
2

ρ
=

1

2

∫

Ω

(δ log ρ)2 ρ du. (35)

Now consider a family of probability densities (ρθ) parametrized by θ = (θ1, . . . , θp), in some parameter space
Θ. In this parametric context, the previous expansion yields

KL(ρθ+δθ|ρθ) = 〈Iδθ | δθ〉+ o(δθ2),
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where I is the so-called Fisher information matrix:

I = (Iij)1≤i,j≤p =

(∫

Ω

(
∂ log ρθ
∂θi

)(
∂ log ρθ
∂θj

)

ρθ du

)

1≤i,j≤p

.

This canonically defines a Riemannian metric, i.e. a expression of the square length of an infinitesimal variation
in the parameter space

dθ2 = 〈Idθ | dθ〉.
Consider now a smooth curve in this space of parametrized probability densities, between ρθ0 and ρθ1 . We
identify it with the corresponding curve in the parameter space Θ, that is t ∈ [0, 1] 7→ θ(t). The length of this
curve according to the metric we consider is then defined as

ℓ =

∫ 1

0

〈

Iθ̇ | θ̇
〉1/2

dt.

In the case when every two densities can be connected by at least such a curve with finite length, it makes it
possible to define a geodesic distance as

dF (ρθ0 , ρθ1) = inf
θ∈Ξ

∫ 1

0

〈

Iθ̇ | θ̇
〉1/2

dt, (36)

where Ξ is the set of all smooth curves t ∈ [0, 1] 7→ θ(t) ∈ Θ which connect θ0 and θ1. One may now wonder
whether such a setting makes it possible to properly define barycenters. More precisely, considering parameters
θ1, . . . , θp together with positive weights K1, . . . ,Kp, with

∑
Ki = 1, does the problem

min
θ∈Θ

p
∑

i=1

Ki dF (ρθ, ρθi)
2

admit a unique solution θ̄ ? If it does, we shall express it in terms of parameters or densities, depending on the
context:

θ̄ = Bar
(

(θi,Ki)1≤i≤p

)

or ρ = ρθ̄ = Bar
(

(ρθi ,Ki)1≤i≤p

)

.

Remark 9.2. (Geodesics and barycenters)
We mention that, in the case of two densities, parametrized by θ0, θ1, if there is a unique curve t 7→ θ(t) ∈ Ξ

which is optimal in (36) and which is traveled at constant-speed (i.e. such that < Iθ̇|θ̇ > is constant), then for
any K ∈ [0, 1],

Bar ((θ0, 1−K) , (θ1,K)) = θ(K).

Such a curve θ, which is nothing else than a constant-speed geodesic between θ0 and θ1, provides a way to
interpolate between these two parameters. The notion of barycenter can be seen as a way to generalize this
notion of interpolation between more than just two parameters.

In the case when barycenters are defined without ambiguity, one may define an evolution problem which
mimics (2) as

θk+1
x = Bar

((
θky ,Kxy

)

x→y

)

. (37)

Now consider the particular case of Gaussian densities over R:

ρθ(u) =
1√
2πσ

e−
(u−m)2

2σ2 ,
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Figure 9. In the Poincaré half-plane, where the horizontal axis stands for the mean and the
vertical axis for the standard deviation (up to a factor

√
2), four geodesics are displayed with

equidistant points (for the Fisher distance) on it. Notice that the points are not equidistant
for the usual Euclidean distance.

parametrized by θ = (m,σ) ∈ Θ = R× (0,+∞). Straightforward computations (see e.g. [23]) lead to a explicit
expression of the Riemannian metric

〈Idθ | dθ〉 = 1

σ2
dm2 +

2

σ2
dσ2. (38)

This is, up to the factor 2 in the second term, the metric associated to the so-called Poincaré half plane H
2,

see for instance Chapters 2 and 6 of [20], as well as [21]. We shall actually remove this factor 2 and consider
the standard situation where I is a scalar matrix, that is the identity multiplied by 1/σ2, and we put off until
the end of this section (see Remark 9.7) some comments on alternative choices, consisting in distorting the
metric in the vertical direction. This metric endows the half plane H2 = R× (0,+∞) of parameters with a non
Euclidean metric, which is such that geodesics are either vertical segments or circular segments, more precisely
portions of circles centered on the m (horizontal) axis: see Figure 9. For the interested reader, we provide an
analytical expression of the constant-speed geodesics, see Appendix B. Since this space has a negative curvature,
the barycenter of an arbitrary number of points is well-defined (see Appendix B and Proposition B.10 for more
details), and the discrete evolution problem (37) properly defines a family of densities (ρkx)x∈V which can be
expressed in terms of parameters (θkx)x∈V , which are points in H2.

Actually, in the H2 setting, the evolution defined by (37) is even amendable to numerical computations. As
this is not the main focus of these notes, we delay the description of the algorithm to compute barycenters until
Appendix B. Figure 10 shows an example of the computation of such an evolution.

This setting enjoys some theoretical properties which give some further reasons to use this distance in the
present context of opinion propagation.

Proposition 9.3. Let θ0 = (m0, σ0) and θ1 = (m1, σ1) be two elements of the Poincaré half-plane H2, K a fixed
coefficient in (0, 1), K0 = 1−K, K1 = K, and the barycenter between θ0 and θ1. We assume that m0 < m1.

θ = Bar
(

(θi,Ki)i=0,1

)

= (m,σ).
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k = 0 k = 1 k = 5 k = 10 k = 30

Figure 10. Example of propagation of opinion, both for the linear evolution model (2) (top
row) and the one with the Fisher metric (37) (bottom row). For the Fisher metric, we used
the conformal metric of the Poincaré half plane (κ = 1), not the distorted one. The network
is a Cartesian grid, with four influencers located in the four corners. Each agent (except the
influencers) listens equally to each of its neighbors, and slightly to himself. The color of the
square (from red to green) indicates the mean value of the opinion, while the size (for the bottom
row) is proportional to the standard deviation, i.e. the inverse of their degree of confidence.
One can observe that the Fisher evolution leads to an equilibrium situation (roughly reached
for k = 30) which is more polarized than for the linear evolution.

It holds that

(i) m belongs to (m0,m1) and m− (K0m0 +K1m1) has the same sign as σ0 − σ1.
(ii) σ > min(σ0, σ1).
(iii) m −→ m0 when σ0 goes to 0.
(iv) m −→ m1 when σ0 goes to +∞.

Proof. Given Remark 9.2, from a mathematical point of view we are rather making a statement about constant
speed geodesics in the Poincaré half plane. All the statements can be verified analytically with the formulas
given in Appendix B, but in fact are quite intuitive geometrically. �

Let us add some comments on the previous proposition, in terms of modelling:

(i) m ∈ (m0,m1) simply express that the resulting mean opinion is an interpolation between the mean value
of influencers, which reflects the consensual character of the model. Second inequality : the interpolated
value does not identify with the standard (affine) one, more precisely it bends in the direction of the
most convinced influencer: if σ0 < σ1, it means that 0 is more convinced than 1, and m will be closer
to m0 than the standard barycenter.

(ii) If an agent is influenced by two persons who disagree, their degree of confidence is less (i.e. the standard
deviation is larger) than that of the most convinced influencer. If one considers that the first agent is
actually the one with parameter θ0 (i.e. K0 is the self inertia of the influencee), it simply expresses that
discussing with a less convinced person with another opinion does not only change the opinion, but
reduces one’s confidence in their own opinion. Actually, we will state a more general result in Remark
9.6.
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(iii) If an influencer becomes fully convinced, they become fully convincing, i.e. their opinion wins. If
one considers than the influenced one is actually the one with parameter θ0, it expresses that a highly
convinced individual (with a tiny standard deviation) is actually stubborn (their mind cannot be changed
by someone more reasonably convinced). Mathematically, it expresses the fact that Dirac masses (i.e.
measures for which σ = 0) are at an infinite distance from all other points in H

2: stubborn individuals
end up far away from the social network core (including from agents which share the same belief, with
less self-confidence), while keeping a predominant ability to influence others.

(iv) If an influencer is poorly convinced, they lose the ability to convince anyone, and the influence power
of their opinion vanishes.

Similarly to the evolution in the linear case, we can prove that, in the situation where everyone is connected
to an influencer, the distribution of opinions, if it evolves according to (37), converges to an equilibrium. From a
mathematical point of view, such a result has been proved in a much more general context in [63]: the evolution
may take place not only a network, but on a arbitrary space endowed with a Markov semigroup, and the set
H2 could be replaced by a non-positively curved space in the sense of Alexandrov. We will try to give a flavor
of the proof of [63] by adapting it to our context. The main tool, which we will admit, is a version of Jensen’s
inequality suited to the geometry of (H2, dF ).

Proposition 9.4. (Jensen’s inequality)
Let (Ki)i=1,...n be a collection of positive weights which sum to 1. Take θ1, . . . , θn and θ′1, . . . , θ

′
n two families

of points in H2. Then

dF [Bar ((θi,Ki)i) , Bar ((θ′i,Ki)i)] ≤
n∑

i=1

KidF (θi, θ
′
i).

This property is not straightforward and we will admit it, only referring to the appropriate reference. Notice
that if H2 is replaced by the real line, and dF is replaced by the Euclidean distance, then the inequality is a
simple consequence of standard Jensen’s inequality and the fact that the Euclidean distance is a convex function.

Proof. As H2 endowed with the Fisher distance is a Hadamard manifold, the space (H2, dF ) is a non-positively
curved (NPC) space in the sense of Alexandrov [62, Proposition 3.1]. Hence the function dF is jointly convex,
see [62, Corollary 2.5]. Thus we can apply Jensen’s inequality for convex functions on NPC spaces, see [62,
Proposition 6.1]. �

Proposition 9.5. Similarly to Proposition 1.10, assume that Γ 6= ∅ and that V −·→ Γ. If θ is a solution of
the evolution process (37), then θk converges as k → +∞ to θ∞ which is an equilibrium point in the sense that
for any x ∈ V ,

θ∞x = Bar
((

θ∞y ,Kxy

)

x→y

)

. (39)

Moreover, θ∞ is uniquely determined by the values of θ0 on Γ.

Proof. As the reader will see, the proof relies on a reduction to the linear case. Everything starts with Jensen’s

inequality. If θ̂, θ̃ are two solutions of the evolution process (37), using Proposition 9.4,

dF (θ̂
k+1
x , θ̃k+1

x ) ≤
∑

x→y

KxydF (θ̂
k
y , θ̃

k
y). (40)

We take first θ̃kx = ϑ where ϑ any given point in H2, independent on k and x. Such a constant θ̃ is obviously
a solution to the evolution process. Then (40) reads as

dF (θ̂
k+1
x , ϑ) ≤

∑

x→y

KxydF (θ̂
k
y , ϑ).
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By the maximum principle, it implies that the sequence dF (θ̂
k+1
x , ϑ) is bounded independently on k and x, by a

constant which depends only on θ̂0. In other words, the family (θ̂kx)k,x belongs to a bounded set for the Fisher
distance.

Now take θ̂ and θ̃ two solutions of the evolution process sharing the same values on Γ. By (40), the real-valued

sequence u defined by uk
x = dF (θ̂

k
x, θ̃

k
x) is a subsolution of the linear evolution process (2). Moreover uk vanishes

on Γ for any k ≥ 0. Using Proposition 1.13, we deduce that there exists (rk)k∈N a sequence depending only on
the network and tending to 0 such that, for any k and x,

uk
x = dF (θ̂

k
x, θ̃

k
x) ≤ rk

(

max
y

dF (θ̂
0
y, θ̃

0
y)

)

. (41)

Now, take θk a solution of the evolution process (37). We also fix ℓ an integer. We set θ̂k = θk and θ̃k = θk+ℓ.
Using the estimate above and the fact that dF (θ

k
x, ϑ) is bounded uniformly in k and x, we deduce that for any

k and x

dF (θ
k
x, θ

k+ℓ
x ) ≤ Crk,

where C can be taken for instance equal to 2maxy dF (θ
0
y, ϑ).

Hence, we deduce that (θkx)k∈N is a Cauchy sequence for the Fisher metric for any x ∈ V , it implies that
it converges to some θ∞x . Using for instance [62, Theorem 6.3] to justify the continuity of the barycenter with

respect to the weights, we can pass to the limit in (37) to get (39). Eventually, if θ̂ and θ̃ are two solutions of
the evolution process sharing the same boundary conditions, passing to the limit k → +∞ in (41), we get that

θ̂∞ = θ̃∞, which shows that the limit depends only on the values of θ0 on Γ. �

Remark 9.6. Now that we have stated Jensen’s inequality, let us push further point (ii) of Proposition 9.3.
Indeed, thanks to the explicit formulas (44) and (45), one can check easily that the function θ = (m,σ) 7→ 1/σ
is convex, i.e. convex along geodesics in H2. As a consequence, Jensen’s inequality [62, Proposition 6.1] reads,
for points θ1, θ2, . . . , θn in H2 and nonnegative weights K1,K2, . . . ,Kn which sums up to 1: if θ = (m,σ) is the
barycenter of the θi’s with weights Ki’s then

1

σ
≤

n∑

i=1

Ki

σi
.

As a consequence, if we look at our evolution process (37), denoting θkx = (mk
x, σ

k
x),

1

σk+1
x

≤
∑

x→y

Kxy

σk
y

.

If we remember that 1/σk
x stands for the confidence of agent x at time k for their opinion, then we see that along

the evolution process the confidence of an agent tends to be smaller than the one of their neighbor. In particular,
using the maximum principle, we can conclude that at equilibrium the maximal confidence is attained for the
influencers.

Remark 9.7. (Distorsion of the Poincaré metric)
We based the previous analysis on the standard (conformal) Poincaré metric whereas the Fisher metric (38)

natively comes with diagonal coefficients 1 and 2. More generally, one may consider the 1-dimensional family
of metrics associated to a new parameter κ ∈ (0,+∞) :

〈Iκdθ | dθ〉 =
1

σ2
dm2 +

κ

σ2
dσ2.

Bertrand Maury



ESAIM: PROCEEDINGS AND SURVEYS 43

This factor κ does not change anything in the previous mathematical developments, except that geodesics are no
longer circles but ellipses: specifically, the pullback of the metric Iκ by the diffeomorphism (m,σ) 7→ (m,σ/

√
κ)

of H2 is nothing else than κI1. It rather affects the model itself. With the choice κ = 1 that was made, consider
two convinced influencers who disagree (mean opinions m0 < m1, and σ0 = σ1 small compared to m1 −m0),
and a third agent equally influenced by both. In H

2, it corresponds to points almost touching the m axis,
and the opinion of the third one lies in the middle of the half circle meeting perpendicularly the m axis, and
containing the two points. As a consequence, the standard deviation of the influenced agent is about half the
difference between the mean opinion of influencers, which is not unrealistic in terms of modeling. It means in
particular that the influenced agent gives a 68% chance that the value lies between those of influencers, and 32%
chance that it is above the largest one, or below the smallest one. For the Fisher metric (κ = 2), the geodesic is

supported by a half ellipse of excentricity 1/
√
2, so that the standard deviation of the third agent is now m1−m0

divided by 2
√
2. The influenced agent now gives 85% chance that the value lies between those of influencers.

More generally, κ can be used as a parameter to model the behavior of agents. A large κ makes ellipses closer to
(horizontal) straight segments, meaning that the third agent is more and more convinced that the value is close
to the mean between those of influencers. For very large κ’s, we recover an unrealistic behavior similar to the one
of Wasserstein interpolation. More interestingly, small values of κ increase the standard deviation of the third
agent. It can be used to implement the following behavior: if an agent is influenced by two influencers so far
away in the κ-Fisher metric that the coexistence of their contradictory and mutually discrediting opinions does
not make sense (at the limit the support of probability measures have an empty intersection), then this agent
simply disregards influencers, which is implemented by the fact that this standard deviation of the influenced
agent is much larger than m1−m0, which in some way kills the influence power of both influencers. Note that,
by pre-negociating, those influencers may conciliate their means, and become much more influential upon the
third agent by cheating on the opinion which they display.

Remark 9.8. (Parametric character of the approach)
To obtain the Fisher metric, we estimated the costs associated to infinitesimal variations of densities upon

relative entropy (or Kullback-Leibler divergence, see (35)). We then restricted ourselves to Gaussian densities,
which led us to the (distorted) Poincaré half-plane H

2. One may wonder whether it would be possible and
relevant to extend this approach to more general classes of densities, up to possibly non-parametric families. If
one aims at keeping relevant interpolation properties, the answer is negative. Indeed, beyond the difficulty to
properly define and compute geodesics in a general setting (see for instance [6]), it should be noted that the
rigidity of the Gaussian family plays an essential role in the overall approach. In a non-parametric context,
the relative entropy is fully disconnected from the underlying geometry, i.e. the geometry of the space in which
the opinion u lies. This fact is made clear by the following consideration: one may apply this approach to
discrete probabilities defined on a discretization of the space Ω (to which u belongs). The density would then
be described by a vector of probabilities p1, . . . , pm ≥ 0, with

∑
pi = 1. Formula (35) defines a Riemannian

metric on the standard simplex (see e.g. [10]), but it can be checked that this metric is invariant by any
permutation of indices. In particular, if one interpolates according to this metric between δ1 = (1, 0, . . . , 0) and
δm = (0, . . . , 0, 1), one straightforwardly obtains that the whole geodesic does not charge intermediate indices,
2, . . . , m − 1: the approach does not interpolate in the opinion state in a manner which makes sense from
the modeling standpoint, it rather performs some sort of teleportation, like the linear interpolation would do.
Forcing densities to a have a given unimodal shape (like Gaussian) is essential to force the geodesic to go through
intermediate values of opinion between endpoints.

10. Bibliographical notes

Before presenting some bibliographical insights about opinion propagation, we would like to emphasize, as
recalled in the introduction, that our goal was rather to connect this topic to other well studied mathematical
objects. A long list of reference would be required for each of the mathematical objects mentioned in these notes
if we were aiming exhaustivity. However, as it is not our main purpose, and as we hope that our presentation
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is self-contained enough, we shall be very brief. Most of the material in the first sections is usually covered in
undergraduate years in link with linear algebra. For the study of Markov chains evoked in Section 2 and 5, we
refer for instance to the first four chapters of [56], and [18] for a more thorough presentation. As for the adjoint
method which we presented in some details in Section 3, we refer the reader to [51] for a detailed presentation of
this strategy to compute the gradient of various functionals. Concerning the discretization of PDE in Section 6,
we invite the reader to take a look at, for instance [41]. Sections 7, 8 and the model of “fuzzy” opinion in Section
9 are original developpements that we investigated during the writing of these notes. Nevertheless, for the topic
of optimal transport mentioned in the beginning of Section 9, one can find an introduction at a graduate level
in [57].

Opinion propagation, understood in a wide sense, is a very large topic: although we have examined it with
a mathematical point of view, questions of epistemology (how do people form opinions and beliefs ?) and
sociology (how do people change their belief when interacting with others?) are fully relevant to such a study.
In this section, we will stick to the mathematical literature on the topic, trying to explain the different models
that have already been proposed.

We start by mentioning two recent articles by Proskurnikov and Tempo [53,54] which are not only a rather
exhaustive survey of the different models of opinion propagation proposed in the last decades, but are also
written in a accessible way.

A first appearance of the linear evolution model (2) can be found in the work of French [30]. The main goal of
this article is the justification of the model, as well as the exhibition of sufficient conditions for the distribution
of opinions to evolve toward a consensus. The same model is considered in the paper by DeGroot [24], with the
help of the language of Markov chains to study the convergence to a consensus. Moreover, DeGroot describes
the opinion not by a single variable, but by a distribution of probability called opinion pool evolving according
to (33). We also refer to [64] for a modeling approach which accounts for the fuzzy character of both opinion
and its way to propagate.

We emphasize, as mentioned in [65], that this linear model differs from a previous approach developed in the
1940s and 1950s, where one considers that the information flows directly from the media to opinion leaders and
then to the public: the idea of the linear model is to take in account the fact that information flows in every
direction, and that direct influence in itself is not enough to understand the dynamic of opinion formation.

Several improvements have been made to the original linear model. For instance, Friedkin and Johnsen [32]
considered that people keep in mind a tiny fraction of their initial opinion. Note that this feature can be
straightforwardly incorporated to the linear model introduced in Section 1, by adding one “personal influencer”
per agent, and by considering that this personal influencer keeps over the evolution process the initial opinion,
and thereby continues to attract their target toward this initial opinion. This is to be put in contrast with
the persuasion bias [26]: in the model proposed by French and DeGroot (and investigated in these notes),
agents have no memory in the sense that, at each iteration, they behave like they are receiving information
from their neighbors for the first time. As pointed out by [26], this effect pushes toward consensus and also
leads multi-dimensional opinions to polarize along a uni-dimensional axis. People have complexified the linear
model by making the influence coefficients K depend on both time and the value of the opinions. An example
is given by Hegselmann and Krause [35] where they introduce the bounded confidence model: an agent do not
listen to their neighbors if their neighbor’s opinion is too far away (specifically: above a given threshold) from
theirs. This effect (which can be incorporated in the non-linear model of Section 7) leads to a fragmentation
of the distribution of opinions at equilibrium. The Hegselmann and Krause article has started a large line of
research leading to many variations from the original model, see for instance the survey by Lorenz [42].

Some models have proposed to relax the non-negativity assumption of the coefficients (Kxy)xy quantifying
the inter-individual influences: this leads to antagonistic interactions, where an agent might want their opinion
to differ from the one of their neighbor. The maximum principle is no longer valid hence almost all of the
analysis of the present lecture notes does not apply. Nevertheless as understood in [3], depending on the signs
of the inter-individual influences, the distribution of opinions can converge to a “agreed upon dissensus”: that
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is, a stable situation where only two opposite opinions exist. Such kind of result has been extended to very
general non-linear interactions [4] and to the case where the graph structure changes with time [55].

We mention a recent line of research, where one assumes that there is a large number of agents, and looks
only at the statistical distribution of opinions of the agents. If the agents have an opinion about a parameter
u ∈ Ω, the unknown is a distribution f(t, u) denote the density of agents having the opinion u at time t. The
evolution of this distribution of opinions is written with PDEs similar to the Boltzmann equation, in the spirit
of kinetic theory [15, 61].

In these notes, we have considered that the network (V,K), describing the interpersonal influences, is exoge-
nous: it is a data of the problem and it does not evolve. Several questions arise, as: what do real social networks
look like? What are the typical values for the ingoing and outgoing degrees, the diameters? Could one generate
random networks that look like real ones? For all of these questions, we refer to the survey by Newman [47]
and references therein. A striking characteristic of real social networks is the “small world effect”, namely that
any two vertices are connected by a path of short length (no more than 5 or 6), independently from the size of
the network. Even if the network is known, but potentially very large, retrieving its statistical features or its
influencers could be a challenge [12, 37, 40].

Related to the end of the last paragraph is the confrontation with experimental data. Experiments in a
controlled environment, with a small number of subjects, has been performed for instance by Friedkin and
Johnsen [31]. The emergence of (digital) social network led to the possibility of studying propagation of opinion
on large datasets, see for instance the recent article [34] which analyze how investors react on twitter after
announcements of companies’ earnings.

Eventually, we mention that there are other ways to model people’s belief than with just a single value.
Bayesian theory aims at describing people’s belief and how they evolve given new evidences. Applications of
this theory to opinion propagation can be found in [1]. At a broader scale, other than just opinion or beliefs, some
other interactions could take place on a network: epidemic propagation [49], game theory [9] or propagation of
defaults in financial networks [8]. We refer the reader to the book of Easley and Kleinberg [29] for an exhaustive
account of social phenomena on networks.

Appendix

A. Propagation on graphs of the mapping type

We consider here the situation where the influence graph (V,E) identifies to a mapping Φ : V → V , i.e. for
any x, one has Kxy = 1 for a single y = Φ(x). In other words

Kxy = δΦ(x),y,

where δ is the Kronecker delta. In this situation, the discrete evolution problem writes

uk+1
x = uk

Φ(x) ∀x ∈ V ,

so that
uk = uk−1 ◦ Φ = uk−2 ◦ Φ ◦ Φ = · · · = u0 ◦ Φk,

which is the pullback of u0 by Φk = Φ ◦ · · · ◦ Φ.

One-to-one and onto graph

We consider here the bijective case : for any y, Kxy = 1 for a single x, which expresses that Φ is one-to-one
and onto.

Proposition A.1. In the case when (Kxy) encodes a bijection (one-to-one correspondence), the sequence (uk)
obtained from (2) is periodic for any initial state u0.
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Proof. This is a direct consequence of the fact that any permutation can be decomposed as the product of cycles
with disjoint supports. Indeed, consider, for any x ∈ V , the sequence (Φk(x)), with

Φk(x) = Φ ◦ · · · ◦ Φ
︸ ︷︷ ︸

k times

(x).

Since V is finite, there is a L ≥ 1 such that (ΦL(x)) is equal to (Φj(x)), for some j < L. Let us consider the
smallest of those L′s. If the associated j is not 0, then Φ(ΦL−1(x)) = Φ(Φj−1(x)), which implies (from the
one-to-one character of Φ) that ΦL−1(x)) = Φj−1(x). It contradicts the minimal character of L. Therefore
j = 0, and the sequence (Φk(x)) is L-periodic. For any x′ in the orbit of x, i.e. equal to one of the (Φk(x))’s, the
sequence is also L-periodic, and the restriction of Φ to the orbit of x is a cycle. This orbit and its complementary
set are stable by Φ, and the same approach can be applied to the complementary set. Since the set is finite,
it leads to decomposing the set V onto disjoint stable subsets, in which Φ is a cycle. The solution to (2) is
therefore periodic, with a period at most equal to the least common multiple of the cycles’ orders. �

The l.c.m. (Least Common Multiple) of the cycles’ orders is the order of Φ in the symmetric group, i.e. the
smallest integer m such that Φm = Id. The actual period of the solution to (2) may be smaller that m, e.g. by
considering a uniform initial state u0. In the generic case where the values of u0 are pair-wise distinct (at least
within each orbit), the period is equal to m.

Remark A.2. (Landau Function)
A natural question arises : for a given cardinal N of V , what is the maximal period for the solution to Model (2) ?
Let us first notice that this period obviously depends on the initial state. To fix the ideas, we shall consider
that all opinions are initially pairwise distinct. The period issue is related to the so-called Landau function
N 7−→ g(N), which is the maximal order of an element of the symmetric group SN . This function g(·) is
obviously non-decreasing, with g(1) = 1, g(2) = 2, g(3) = 3, g(4) = 4, g(5) = 6, . . . . More generally, for any
M ∈ N, with the following factorization into primes

M = pα1
1 pα2

2 . . . pαk

k ,

let us introduce by ℓ(M) = pα1
1 + pα2

2 + · · ·+ pαk

k . It was proved in 1953 (see [38]) that

g(N) = max
ℓ(M)≤N

M,

which implies in particular ℓ(g(N)) ≤ N . We refer to [25] for an historical account of the advances made on
this Landau Function, together with the description of an efficient algorithm to compute its value for large N ’s.

Graph of the mapping type

Let us now assume that the index of each vertex is equal to 1, i.e. for any x, Kxy = 1 for some y ∈ V . Like
in the bijective situation, it is fruitful to consider, for any x ∈ V , the sequence (Φk(x)). As previously, since V
is finite, there is a L ≥ 1 such that (ΦL(x)) is equal to (Φj(x)), for some j ≤ L. If j = 0 like in the bijective
case, one recovers a j-cycle. If j = L, then necessarily the corresponding y = ΦL(x) ∈ Γ, and the orbit is a
straight path to Γ. If 0 < j < L, then the path connects x to a cycle of length L − j + 1. Any solution to (2)
is then periodic after some time, with a period at most equal to the l.c.m. of the periods L − j + 1 exhibited
previously. Figure 11 presents a graph with two connected components, with two different types of attractors :
a cycle (left) and a single vertex (right). In this situation, the period is 6, and number of step after which it is
periodic is 4. Note that all the initial opinions lying on the linear parts of the graph have been washed out in
the evolution process.
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Figure 11. Lollypop graph, only one influencer (circled node).

B. Effective computations of barycenters for the Fisher metric

In this section, we would like to explain how one can in practice compute barycenters in the Poincaré half
plane9. This appendix will be less detailed than the rest of these notes: even though we have tried to be as
clear as possible, the good framework to understand what we are doing is statistics on Riemannian manifolds,
which is out of the scope of the present work. For a good introduction to the topic, we refer to [50].

The problem we are interested in is the following. Assume we have Gaussian densities ρ1, ρ2, . . . , ρn over
the real lines, with means m1,m2, . . . ,mn and standard deviations σ1, σ2, . . . , σn. A couple θ = (m,σ) will be
though as a point in the Poincaré half plane

H
2 = R× (0,+∞).

This space H2 is endowed with the distance dF which corresponds to Fisher distances between Gaussian dis-
tributions (up to a rescaling of the σ-axis) as described above in Section 9. Assuming that we have positive
weights K1,K2, . . . ,Kn, and points θ1, θ2, . . . , θn we want to find θ ∈ H2 which minimizes

E(θ) =

n∑

i=1

Ki

2
dF (θ, θi)

2, (42)

as such an optimal θ is (by definition) the barycenter of the θi with weights Ki. As the space H2 is finite-
dimensional (of dimension 2), a gradient descent algorithm is appropriate. However, to get faster results and
guarantees of convergence, it is more relevant to a do a gradient descent in the geometry of H2 induced by dF ,
and not in the naive Euclidean geometry.

We recall here some notions of Riemannian geometry as well as some explicit formulas in the Poincaré half
plane. First, even though we will not make a great use of it, we recall that the metric tensor of H2 at a point
θ = (m,σ) is

〈Iθ(dm, dσ) | (dm, dσ)〉 = (dm)2 + (dσ)2

σ2
.

Moreover, as explained above, dF is the Riemannian distance associated to (H2, F ). It can be expressed as

dF (θ0, θ1) = acosh

(

1 +
(m0 −m1)

2 + (σ0 − σ1)
2

σ0σ1

)

.

Definition B.1. Let I an interval of R and c > 0. A curve t ∈ I 7→ θ(t) = (m(t), σ(t)) ∈ H2 is called a geodesic
traveled at speed c if and only if, for any s < t elements of I,

dF (θ(s), θ(t)) = c|t− s|.
9The final implementation is available at https://www.esaim-proc.org/10.1051/proc/201967016/olm.

https://www.esaim-proc.org/10.1051/proc/201967016/olm.
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Not only does it mean that the curve is traveled at constant speed, but it also says that in fact the curve is
the fastest way to go from θ(s) to θ(t) if s < t. To make the link with the metric tensor, we know that for a
geodesic θ traveled at speed c, the latter can be retrieved by

c2 =
〈

Iθ(t)θ̇(t) | θ̇(t)
〉

. (43)

where θ̇(t) ∈ R2 denotes the usual time-derivative of θ at time t. In the space H2, the geodesics are fully
classified. We will not prove this result, there are many elegant ways to deduce it and we refer for instance
to [21].

Proposition B.2. For any A, θ0, c ∈ R and B > 0, the curve

t 7→
(
A+B tanh(c(t− t0))

B cosh−1(c(t− t0))

)

(44)

defined on R is a geodesic traveled at constant speed |c|. Moreover,

t 7→
(

A

ec(t−t0)

)

(45)

is also a geodesic defined on R traveled at constant speed |c|.
Furthermore, any geodesic traveled at constant speed coincides with the ones defined in (44) or (45) for

suitable A,B, c and t0.

We emphasize that cosh−1 : R→ (0, 1] denotes 1/ cosh and not the reciprocal map of cosh.

Remark B.3. Recalling the identity cosh2− sinh2 = 1, one can check that, geometrically, the geodesics de-
scribed by (44) are circles centered at (A, 0) and of radius B. On the other hand, the ones described by (45)
are half-lines issued from (A, 0) and aligned with the σ-axis. Some geodesics are depicted in Figure 9. The
parameter t0 simply amounts for temporal translation. Eventually, as the geodesics can be traveled in two
different directions, we allow c to take negative values, and the speed of the geodesic is given by |c|.

With these geometric considerations, we hope that the reader is convinced that the following result indeed
holds.

Proposition B.4. If θ0 and θ1 are two points in H2, then there exists a unique geodesic t ∈ [0, 1] 7→ θ(t)
traveled at constant speed such that θ(0) = θ0 and θ(1) = θ1, and this geodesic is traveled at speed dF (θ0, θ1).

Remark B.5. Actually, it is rather easy to get the expression of such a geodesic. If m0 = m1, we know that it
must lie on the line {m = m0}, i.e. we take A = m0 in (45). Then we conclude that we must take c = ln(σ1/σ0)
and t0 = − ln(σ0)/c.

On the other hand, if m0 6= m1, we know that we must take a geodesic of the form (44). To compute A, we
just know that (A, 0) must be equidistant for the Euclidean distance from (m0, σ0) and (m1, σ1). It leads to the
expression

A =
m0 +m1

2
+

σ2
1 − σ2

0

2(m1 −m0)
.

Once A is known, we define B as the Euclidean distance between (A, 0) and θ0, i.e. B =
√

(A−m0)2 + σ2
0 . If

we are in the case m0 < m1 (the reverse case is symmetric), we know that c > 0, moreover |c| = dF (θ0, θ1).
Eventually, we can recover t0 by

t0 =
1

c
atanh

(
A−m0

B

)

. (46)
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Definition B.6. Let θ0 and θ1 two points in H2. The logarithm of θ1 with respect to θ0, denoted by logθ0(θ1)
is defined as

(
dm(t)

dt

∣
∣
∣
∣
t=0

,
dσ(t)

dt

∣
∣
∣
∣
t=0

)

∈ R
2,

where t ∈ [0, 1] 7→ θ(t) = (m(t), σ(t)) is the unique geodesic traveled at constant-speed between θ0 and θ1.

The temporal time-derivative taken is the usual one, where H2 is endowed with its Euclidean structure. Hence,
logθ0(θ1) is nothing else than a vector in R2, in fact thought as an element of the tangent space of H2 at θ0.

Remark B.7. As pointed by Remark B.5, the computation of the constant-speed geodesics between two given
points of H2 can be done in closed form, thus so does logθ0(θ1).

In short, logθ0(θ1) is just the initial speed of the geodesic joining the two points θ0 and θ1. Conversely, if

one is given a point θ0 ∈ H2 and a vector (ṁ, σ̇) ∈ R2, there exists a unique constant-speed geodesic defined
on R whose position at time t = 0 is θ0 and whose speed at time t = 0 is (ṁ, σ̇). It tells us that the map
θ1 7→ logθ0(θ1) is in fact one to one.

Definition B.8. Let θ0 ∈ H2 be fixed. We define the exponential map from θ0 as

expθ0 : R2 → H
2

as the inverse of logθ0(·) : H2 → R
2.

Remark B.9. Similarly to the logarithm map, the exponential map can be computed in closed form. Indeed,
let us assume that we have a point θ0 = (m0, σ0) and a vector (ṁ, σ̇). We want to compute expθ0((ṁ, σ̇)). To
that end, we need to identify the constant-speed geodesic passing at (m0, σ0) with velocity (ṁ, σ̇). Given (43),
we know that |c| the speed of the curve will be

|c| =
√

〈Iθ0(ṁ, σ̇) | (ṁ, σ̇)〉 =
√
ṁ2 + σ̇2

σ0
.

Now, if ṁ = 0, the geodesic is a vertical line, i.e. we have to take A = m0. Assuming that σ̇ > 0, which
means c > 0, we just have to take t0 = − ln(σ0)/c and evaluate Formula (45) at t = 1.

On the other hand, if ṁ 6= 0, we have to figure on which circle the geodesic is located. The center of this
circle lies on the axis σ = 0, while it passes through θ0 and its radius is orthogonal to (ṁ, σ̇). It is not difficult
to conclude that the center is (A, 0) with

A = m0 +
σ0σ̇

ṁ
.

Once we have A, we have to take B as the Euclidean distance between (A, 0) and θ0, i.e. B =
√

(A−m0)2 + σ2
0 .

Then, assuming that ṁ > 0 (the reverse situation is symmetric), we know that c > 0 and we can use (46) to
compute t0. Then we use (44) and evaluate it at time t = 1.

The exponential and logarithm maps could be defined in fact in any Riemannian manifold (though they might
not be globally defined as it is the case here), and are the building block to do statistics in this framework.

As a first result, as H2 is in fact a Hadamard manifold, we can apply [50, Corollary 2] to get the following.

Proposition B.10. Let θ1, θ2, . . . , θn be points in H2 and K1,K2, . . .Kn be positive weights. Then there exists
a unique θ ∈ H2 barycenter of the θi’s with weights Ki’s (i.e. a global minimizer of the functional E defined in
(42)), and it is characterized by

n∑

i=1

Ki logθ(θi) = 0. (47)
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Notice that the optimality condition is in fact an equality of vectors in R2 (thought as the tangent space to H2

at θ). Actually, the left hand side of (47) is nothing else (up to a minus sign) than the gradient, with respect
to the Fisher scalar product Iθ of the functional E at the point θ.

Moreover, we deduce a gradient descent to compute an approximation of the barycenter. For simplicity, we
assume that the weights are normalized in such a way that

∑
Ki = 1. The algorithm reads

(1) Take θ0 an initial guess for the barycenter (e.g. one of the θi, i = 1, 2, . . . , n).

(2) If θk is known, compute ∇FE(θk) = −
n∑

i=1

Ki logθk(θi) ∈ R
2.

(3) If ∇FE(θk) is smaller than a prescribed tolerance, exit the algorithm and take θk as the barycenter.
(4) Else, compute θk+1 ∈ H2 via

θk+1 = expθk(−τk∇FE(θk)) (48)

where τk > 0 is a time-step and go back to point (2).

The crucial difference, with a classical gradient descent algorithm, is that in the update step (48) we use the
exponential map: with this choice we are sure to stay in the manifold H2, and as the gradient was computed
for the Fisher geometry it makes sense to move along geodesics in the Fisher distance. Actually, in the Fisher
geometry, the Hessian of E is equal to the identity matrix, hence the gradient descent can in fact be interpreted
as Newton’s algorithm.

The time-step can be chosen either constant, or using a backtracking line search as for the usual gradient
descent. With some appropriate choices, convergence to the uniqe barycenter can be guaranteed, see for instance
[13].

Notice, as explained in Remarks B.7 and B.9, that this algorithm can be implemented in practice on H2 as
there are explicit formulas for the logarithm and exponential maps.
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