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ABSTRACT
The NASA’s Kepler mission discovered ∼700 planets in multiplanet systems containing three
or more transiting bodies, many of which are super-Earths and mini-Neptunes in compact
configurations. Using N-body simulations, we examine the in situ, final stage assembly of
multiplanet systems via the collisional accretion of protoplanets. Our initial conditions are
constructed using a subset of the Kepler five-planet systems as templates. Two different
prescriptions for treating planetary collisions are adopted. The simulations address numerous
questions: Do the results depend on the accretion prescription?; do the resulting systems
resemble the Kepler systems, and do they reproduce the observed distribution of planetary
multiplicities when synthetically observed?; do collisions lead to significant modification
of protoplanet compositions, or to stripping of gaseous envelopes?; do the eccentricity
distributions agree with those inferred for the Kepler planets? We find that the accretion
prescription is unimportant in determining the outcomes. The final planetary systems look
broadly similar to the Kepler templates adopted, but the observed distributions of planetary
multiplicities or eccentricities are not reproduced, because scattering does not excite the
systems sufficiently. In addition, we find that ∼1 per cent of our final systems contain a co-
orbital planet pair in horseshoe or tadpole orbits. Post-processing the collision outcomes
suggests that they would not significantly change the ice fractions of initially ice-rich
protoplanets, but significant stripping of gaseous envelopes appears likely. Hence, it may be
difficult to reconcile the observation that many low-mass Kepler planets have H/He envelopes
with an in situ formation scenario that involves giant impacts after dispersal of the gas disc.

Key words: planets and satellites: composition – planets and satellites: dynamical evolution
and stability – planets and satellites: formation.

1 IN T RO D U C T I O N

The Kepler mission discovered 4723 exoplanet candidates, of which
2302 have been confirmed as bona fide transiting planets (Borucki
et al. 2010, 2011; Batalha et al. 2013; Burke et al. 2014; Mullally
et al. 2015; Rowe et al. 2015; Coughlin et al. 2016; Thompson
et al. 2018). More than 70 per cent of Kepler planets have radii
1 R⊕ ≤ Rp ≤ 4 R⊕, such that super-Earths and mini-Neptunes make
up a large fraction of the known exoplanet population.1 A significant
number of these planets are found in compact multiplanet systems,

� E-mail: s.t.s.poon@qmul.ac.uk
1All Kepler planetary data used in this paper are from NASA Exoplanet
Archive unless stated otherwise.

such as the six-planet system Kepler-11 (Lissauer et al. 2011b)
and the five-planet system Kepler-84 (Rowe et al. 2014). The
highest multiplicity system detected by Kepler where all planets
are confirmed is Kepler-90, with eight planets transiting its host
star (Shallue & Vanderburg 2018). Analyses of the Kepler data to
determine occurrence rates of planets show that systems of Earths
and super-Earths with orbital periods <100 d are common around
solar-type stars (e.g. Fressin et al. 2013; Petigura, Howard & Marcy
2013). A recent analysis suggests that the mean multiplicity of
super-Earth systems with periods <100 d is ∼3, approximately 1/3
of Sun-like stars host compact planetary systems, and the mean
number of planets per star is ∼1 (Zhu et al. 2018).

The relative numbers of one- to eight-planet systems discovered
via transit detections are dependent on both the intrinsic multiplici-
ties of the systems, and the mutual orbital inclinations of the planets

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/491/4/5595/5645248 by C
N

R
S - ISTO

 user on 22 M
ay 2023

mailto:s.t.s.poon@qmul.ac.uk


5596 S. T. S. Poon et al.

that comprise the systems. In this work, we examine whether or not
a simple model of the in situ, final stage assembly of planetary
systems, involving dynamical instabilities and accretion through
giant impacts among a large population of protoplanets after the
gaseous protoplanetary disc has dispersed, is consistent with the
Kepler observations.

Previous N-body simulations have considered the formation
of compact systems of planets from an earlier stage than we
consider here, and include the influence of the protoplanetary
disc and subsequent disc–planet interactions (e.g. Terquem &
Papaloizou 2007; Hellary & Nelson 2012; Coleman & Nelson
2014; Cossou et al. 2014; Coleman & Nelson 2016). One feature
of these simulations is that chains of short-period planets in mean
motion resonances are a common outcome, contrary to what is
observed in the Kepler planet population. More recent work,
however, has indicated that these resonant chains can become
dynamically unstable once the gas disc has dispersed, such that
the final stages of planetary assembly involve mutual scattering
and collisions between planets (Matsumoto, Nagasawa & Ida 2012;
Izidoro et al. 2017, 2019; Carrera, Ford & Izidoro 2019). In addition
to breaking the resonant chains, the gravitational scattering also
raises the mutual inclinations and eccentricities, and allows under
some circumstances for the simulations to produce planetary system
multiplicities that are reported to be in agreement with the Kepler
data.

In contrast to the migration-driven formation scenario described
above, there have also been N-body studies of in situ formation
in a gas-free environment (e.g. Hansen & Murray 2012; Mori-
arty & Ballard 2016; Matsumoto & Kokubo 2017). Here, the
initial conditions consist of numerous protoplanets arranged in
an annulus that undergo mutual scatterings and collisions on the
way to assembling the final systems. While these calculations are
in some ways similar to the final stages of the migration-driven
scenarios when the breakup of the resonant chains occurs, they
differ in some important respects. For example, the planets do
not start in resonance, and the number of bodies involved in the
collisional evolution is significantly larger. Hence, the number of
collisions experienced by a typical planet is also larger during the
evolution.

Our approach in this paper is similar to that used in the afore-
mentioned in situ models, except we use a subset of the Kepler five-
planet systems as templates when constructing the initial conditions
of the N-body simulations. We reconstruct the surface density
distributions of the chosen planetary systems, and use this to define
initial conditions consisting of numerous orbiting protoplanets. The
approach is therefore similar to the construction of a minimum-mass
exoplanet nebula model proposed by Chiang & Laughlin (2013).
The protoplanet systems are then evolved for 107 yr in a gas-free
environment. For each of the planetary systems we consider, we
perform two sets of simulations. One uses a traditional hit-and-stick
accretion prescription when collisions occur, and the other uses
a more complex accretion prescription based on hydrodynamical
simulations of colliding bodies (Leinhardt & Stewart 2012). Hence,
we are able to examine the influence of the accretion prescription
on the outcomes of the simulations, similar to the recent study by
Mustill, Davies & Johansen (2018).

Adopting a more complex collision model also allows us to track
the impact energy during collisions, and we use this information
to examine possible composition changes that the planets could
potentially experience through the removal of volatile components.
Using the relations between the collision energy and the final water
content of the largest remnant after differentiated bodies composed

of rock and water have collided (Stewart & Leinhardt 2009; Marcus
et al. 2010), we determine how much water could be removed
from the planets during their collisional evolution. Although some
individual collisions would likely lead to significant compositional
changes, taken as a whole our results indicate that the compositions
of water-rich super-Earths would not change significantly, if their
final stages of evolution were similar to those occurring in the
simulations. A similar analysis was also used to examine whether
or not the impact energies during collisions could potentially
remove putative H/He envelopes from the planets, by the conversion
of impact energy into heat energy in the cores (Biersteker &
Schlichting 2019), and here we find that very significant erosion
of gaseous envelopes should be expected.

The rest of this paper is structured as follows. In Section 2,
we describe the simulation methods and the set-up of the initial
conditions. In Section 3, we present the main outcomes of our
simulations, and in Section 4 we examine the formation pathways
of the co-orbital planets that arise in the simulations. In Section 5,
we post-process the simulation data and examine the changes to
compositions that might arise during collisions, and in Section 6
we examine the stripping of gaseous envelopes that might arise. In
Section 7, we discuss the results from synthetic observation of the
final simulated systems, and examine in particular the distribution
of system multiplicities and eccentricities that arises. Finally, we
discuss our results and draw conclusions in Section 8.

2 N- B O DY SI M U L AT I O N M E T H O D S

We use the N-body codes mercury (Chambers 1999) and symba
(Duncan, Levison & Lee 1998) to undertake the simulations
presented in this paper. Both the codes use the Mixed Variable
Symplectic (MVS) integration scheme (Wisdom & Holman 1991),
but whereas mercury handles close encounters by transitioning
to a Bulirsch–Stoer method (Press et al. 1992), symba uses
the regularized MVS scheme (Levison & Duncan 1994). More
importantly, for the work presented here, the versions of the two
codes we employ handle collisions differently. mercury uses a
simple hit-and-stick algorithm that conserves the total mass and
linear momentum when two bodies collide and accrete into a
single object, whereas our version of symba adopts the imperfect
accretion algorithm from Leinhardt & Stewart (2012), which we
describe below.

2.1 Imperfect collision model

For a detailed description of the Leinhardt & Stewart (2012)
collision model, we refer the reader to that paper, and here we
simply summarize the post-collision outcomes that are generated
by it, along with a few salient details about the implementation.
We note that the collision model was implemented in symba by the
authors.2 We refer to the more massive body involved in the collision
as the target, and the less massive object as the projectile. The range
of outcomes includes the following: a perfect merger where a single
body is formed with the total mass and momentum of the original
two bodies; a single massive body remains whose (largest remnant)
mass is denoted as MLR, along with collisional debris in the form
of low-mass ‘superplanetesimals’ (gravitating particles that are not
mutually interacting); two massive bodies remain with masses MLR

2We warmly acknowledge the assistance of Zoe Leinhardt in this imple-
mentation during a visit to the Observatoire de la Côte d’Azur.
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and MSLR (mass of the second largest remnant), along with collision
debris in the form of low-mass ‘superparticles’; no massive bodies
remain and all the mass is in the form of collision debris represented
by low-mass ‘superplanetesimals’. The following notation is used in
the description below: Vimp is the impact velocity; Vesc is the escape
velocity from the colliding bodies (or, more accurately, from the
combined target mass and interacting mass of the projectile); QR is
the impact energy; Q∗

RD is the catastrophic disruption energy, which
by definition corresponds to the impact energy when the mass of
the largest remnant contains half of the total mass of the colliding
bodies; bcrit is the critical impact parameter that determines whether
or not a collision is grazing (b ≥ bcrit) or non-grazing (b < bcrit).
The collision algorithm consists of a decision tree with the following
possible outcomes:

(i) When Vimp < Vesc, we have a perfect merger.
(ii) When Vimp exceeds the threshold for supercatastrophic dis-

ruption, both colliding bodies are destroyed and only collisional
debris remains.

(iii) When Vimp exceeds the threshold for catastrophic disruption
or erosion, only one massive body remains and the rest of the mass is
in the form of collisional debris. Here, MLR, the mass of the largest
post-collision remnant, depends on QR and Q∗

RD.
(iv) If Vimp is smaller than the threshold for erosion and b <

bcrit, then we have partial accretion where the target body gains
mass from the projectile, which is itself completely disrupted into
a number of low-mass ‘superplanetesimals’. MLR again depends on
QR and Q∗

RD.
(v) For b ≥ bcrit, in descending order of the impact velocities, we

have the following outcomes that all preserve the mass of the target
object and modify the mass of the projectile: hit-and-spray, where
the projectile is completely disrupted into debris particles; hit-and-
run, where the projectile mass is reduced and the remaining mass
goes into debris particles; bouncing collision, where the projectile
retains all of its mass and the collision is treated as an inelastic
bounce; graze-and-merge collision, where a single body forms
containing all the mass of the colliding objects.

The total mass before and after a collision, MTotal, is conserved,
which means that the total mass of the post-collision bodies obeys
the relation MT, d = MTotal − (MLR + MSLR), where MT, d is the total
mass in debris after the collision. The number of debris particles,
Nd, is given by

Nd =
⎧⎨⎩max

(
MT,d

10.0MCeres
, min

(
38,

MT,d

0.1MCeres

))
, if MT,d > 0

0, otherwise

(1)

where MCeres is the mass of Ceres. If the values of MT, d/10.0MCeres

and MT, d/0.1MCeres are not even integers, they are rounded-up to
the nearest even integers. With the known value of MT, d and Nd, the
mass is evenly distributed to each debris particle.

If debris particles are formed after a collision, they are evenly
distributed in a circle on the plane of impact at a distance of one
Hill radius (RHill) from the collision centre of mass according to

rd = rcom + RHill r̂d, (2)

where rd is the initial position vector of the debris particles, rcom

is the position vector of the collision centre of mass, and r̂d is the
position unit vector for the evenly distributed debris with respect to
the collision centre of mass. The velocities of the debris particles

are simply assumed to be 5 per cent larger than Vesc:

Vd = Vcom + 1.05 × Vesc r̂d, (3)

where Vd and Vcom are the initial velocity vector for the
debris and the collision centre of mass velocity vector,
respectively.

The accumulated effect of high-energy collisions can lead to
the creation of collisional debris in the form of thousands of
‘superplanetesimals’. These particles normally get re-accreted by
the protoplanets during the simulations, but if, for example, a
supercatastrophic collision occurs at the inner edge of our system,
then a ring of planetesimals can form, which have exceedingly
long dynamical lifetimes. This then causes the simulation run
times to increase appreciably. To ameliorate this situation, we have
introduced a scheme for removing such a ring of particles when it
forms. This is motivated by the fact that the collision time in the
ring is normally very short, and collisions between the planetesimals
would be highly destructive, such that they would be ground down
to dust, which would then be removed by radiation pressure and/or
Poynting–Robertson drag. The scheme calculates the collision time
and reduces the masses of the planetesimals on that time-scale,
until the mass in the ring is negligible and the particles can be
removed from the simulation. A more detailed description is given
in Appendix A.

2.2 Kepler multiplanet system templates

In this study, we have selected a number of Kepler five-planet
multiplanet systems to provide templates for the initial conditions
of the simulations, using the following criteria. We are interested
in the compact systems, so we have chosen systems in which the
known outermost planet has semimajor axis ≤0.5 au. We have
selected those Kepler systems where all five of the known planets are
transiting. For example, the Kepler-122 system is not included due
to one of its planets, Kepler-122f, being discovered by transit timing
variations (TTVs; Hadden & Lithwick 2014). When we began this
project, Kepler-80 was listed as a five-planet system (MacDonald
et al. 2016), but more recently it has been confirmed as a six-planet
system using deep learning by Shallue & Vanderburg (2018). In
spite of this recent announcement, we include this system using the
five planets known before 2018. Kepler-296 is a binary system with
two stars, Kepler-296A and -296B, that have a projected separation
of ∼70 au (Barclay et al. 2015). All the five planets are orbiting
the same star (Kepler-296A). Given that the outermost planet,
Kepler-296Af, orbits at ∼0.255 au, which is only ∼ 0.36 per cent
of the binary stars separation, the binary should have little in-
fluence on the dynamic stability and evolution of the planetary
system (Wiegert & Holman 1997), and hence we include this
system.

As described below, we use the Kepler systems to construct
individual mass surface density profiles, which are then used to
produce initial conditions for the simulations consisting of 20
protoplanets. We impose selection criteria on these initial conditions
that include a requirement that the inter-protoplanet separation is
not too small or too large (i.e. 5 ≤ K ≤ 30), where K is the
inter-protoplanet separation measured in units of the mutual Hill
radius. This avoids the evolution being dominated by collisions
that occur at very early times before dynamical relaxation of the
systems has had an opportunity to arise, or the converse where no
collisions happen at all. Finally, we require the maximum value of
the initial protoplanet mass to be Mp < 6 M⊕. After applying these
criteria, eight systems were selected to be the templates. As listed
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Table 1. K-values of the selected Kepler five-planet systems. K1 to K4

denote the K-value from the 1st to 4th pair of adjacent planets, respectively,
where the 1st pair is the innermost pair and the 4th pair is the outermost
pair (penultimate and outermost planets). K̄ denotes the arithmetic mean of
K for the system. The underlined values are the minimum K values in the
system, Kmin. The minimum Kmin in the table is 7.2, which is greater than
the Kmin = 7.1 required to give 100 per cent stable rates in a five-planet
system for up to 106 yr from Wu et al. (2019).

System K1 K2 K3 K4 K̄

Kepler-55 23.9 25.6 26.7 10.3 21.6
Kepler-80 41.2 14.5 11.4 7.2 18.6
Kepler-84 24.6 11.6 21.0 13.9 17.8
Kepler-102 22.1 19.4 14.8 18.0 18.6
Kepler-154 34.5 17.4 10.9 16.4 19.8
Kepler-169 29.2 12.4 16.8 45.3 26.0
Kepler-292 15.1 20.0 14.4 14.9 16.1
Kepler-296 17.2 16.2 14.8 18.0 16.5

in Table 1, these are Kepler-55, -80, -84, -102, -154, -169, -292,
and -296.

2.3 Surface density profiles from Kepler systems

In order to construct surface density profiles from the chosen Kepler
systems, we need to know the semimajor axes and masses of the
planets, which are not provided directly by the observations. The
semimajor axis is obtained trivially from Kepler’s 3rd law:

a = 3

√
GM�

4π2
P 2, (4)

where P is the measured planetary period and M� is the mass of
the host star. Numerous suggested relations between the observed
planet radius, Rp, and the planet mass, Mp, have appeared in the
literature. In this study, we adopt the relation suggested by Lissauer
et al. (2011a), based on fitting the Earth and Saturn:

Mp =
(

Rp

R⊕

)2.06

M⊕. (5)

We also considered the relation suggested by Wolfgang, Rogers &
Ford (2016) (which is the best-fitting relation for the sample of
radial velocity (RV) measured transiting sub-Neptunes with 1.5 <

Rp < 4 R⊕). As discussed later in Section 3.1, however, we find
that obtaining Mp from Rp using this relation results in some of the
selected Kepler systems being themselves dynamically unstable on
relatively short time-scales, hence we did not adopt this mass–radius
relation in this study.

Once we have Mp and Rp, the internal density, ρp, is given by

ρp = 3Mp

4πRp
3 . (6)

In order to simplify the collision model for a given simulation,
we adjusted the ρp values within each individual system to be the
same for different planets, obviating us from having to deal with
collision outcomes involving planets with significantly different
densities. We did this by constructing a mass-weighted average of
the planetary densities as follows:〈
ρp

〉 =
∑

Mpρp∑
Mp

. (7)

To find the surface density profile for the original Kepler system,
we first define an annulus surrounding each planet. Fig. 1 shows

Figure 1. Diagram illustrating method for calculating �fit, the surface
density of each of the Kepler templates we have adopted, as described
in the text.

an example planetary system and the annuli associated with each
planet, where each annulus is defined by its inner and outer radii.
For a general planet i, these are denoted as Ri and Ri + 1. Here, Ri is
taken to be the mid-point between the semimajor axis of the planet,
ai, and its inner adjacent planet, ai − 1:

Ri,i �=1 = ai + ai−1

2
. (8)

The innermost boundary is located at

R1 = a1 −
(

a2 − a1

2

)
, (9)

and when the planetary system has n planets, the outermost
boundary, Rn + 1, is at

Rn+1 = an +
(

an − an−1

2

)
. (10)

The area of the i-th annulus, Ai, is

Ai = π
(
R2

i+1 − R2
i

)
, (11)

and the surface density of the annulus can be calculated using Mp, i

(the mass of the planet contained in the annulus obtained from
equation 5) and Ai from equation (11):

�i = Mp,i

Ai

. (12)

This gives the surface density at discrete radial locations around
each star, and to obtain the surface density as a continuous function
we simply fit the five �i values with a smooth function. A fourth-
order polynomial can always be found that passes through five real
data points, but this approach has not been used here because it often
gives negative values of � at some locations. Instead, we have fitted
the �i using four different model functions, namely

�fit(a) =

⎧⎪⎪⎨⎪⎪⎩
c1a

c2 + c3 (13a)
c1a

3 + c2a
2 + c3a + c4 (13b)

c1 exp(c2a) + c3 (13c)
c1 + c2 cos(c4a) + c2 sin(c4a), (13d)

where �fit(a) is the fitted surface density profile as a function of
semimajor axis a; equation (13a) is the power fitting model; (13b)
is the polynomial fitting model; (13c) is the exponential fitting
model; (13d) is the Fourier series fitting model. The ci’s are the
fitting coefficients. The selection criteria for which model to choose
are: (1) the model that provides the best least-squares fit among all
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Compact planetary system formation 5599

models; (2) no negative values between �fit(a = R1) and �fit(a =
Rn). Appendix B provides additional details about the coefficients
used to obtain �fit in this study.

2.4 Constructing initial conditions for the simulations

The motivation behind this study is to determine whether or not
dynamical instabilities and giant impacts among a large popula-
tion of protoplanets can lead to final planetary systems that are
similar to the compact Kepler multiplanet systems. The initial
conditions of the N-body simulations consist of 20 protoplanets
that are constructed from the �fit obtained for each of the Kepler
systems.

First, we assume that the semimajor axes of the new protoplanets
are distributed following a power law, which is achieved by defining
20 new annuli with appropriate boundaries. The radius of the
innermost boundary R1 and outermost boundary Rn + 1 always
remains at the same position as the original Kepler system. The
radius of the i-th boundary in between R1 and Rn + 1 can be calculated
by

Ri+1 = f × Ri, (14)

where f is a constant distance ratio and is given by

f = n

√
Rn+1

R1
. (15)

Once Ri are obtained from equation (14), the semimajor axis of the
i-th protoplanet, ai, is set at the mid-point between Ri and Ri + 1. The
mass, Mp, i, of the protoplanet in position ai is calculated according
to

Mp,i = 2πRi (Ri+1 − Ri) �fit(ai). (16)

Using this process to find the Mp, i values may result in a system
with a total mass that differs from the original Kepler system, in
which case the mass of each protoplanet is scaled appropriately.
Fig. 2 shows the masses of the initial 20 protoplanets with respect
to their semimajor axis for each system template. We also assumed
that the density of the protoplanets is ρp = 〈ρ p〉 throughout the
whole system. With the new value of ρ p and Mp, the planetary radii,
Rp, adopted in the simulations can be obtained from equation (6).

The initial eccentricities, e, inclinations, I, arguments of pericen-
tre, ω, longitudes of ascending node, �, and mean anomalies, M,
also need to be defined when setting the initial conditions of the
simulations. The values of e and I are uniformly distributed within
a range 0 ≤ e ≤ emax and 0 ≤ I ≤ Imax, where emax and Imax are
defined below. The values of ω, �, and M are distributed uniformly
in the range 0 ≤ (ω, �, M) ≤ 2π .

Two sets of emax and Imax values are used here to investigate the
effect of the initial eccentricities and inclinations. The first (higher
initial value) set has emax = 0.02 and Imax = 0.01 rad, while the
second (lower initial value) set has emax = 0.002 and Imax = 0.001
rad. In each emax–Imax set, 10 simulations were run, with different
random number seeds being used to generate the values of ω, �,
and M. Hereafter, the ‘higher set’ refers to the runs with (emax, Imax)
= (0.02, 0.01), and the ‘lower set’ refers to the runs with (emax,
Imax) = (0.002, 0.001). Each higher and lower set was run using
both perfect and imperfect collision models using theMERCURY and
SyMBAN-body codes, respectively. Hence, there are 40 simulations
for each Kepler system template.

The central bodies of each system have their masses and radii
taken from the Kepler data. Each simulation runs for 107 yr. The

Figure 2. Mp versus a for all eight Kepler templates. Initial masses of the 20
protoplanets are marked in blue dots, and the original Kepler planet masses
are marked in black circles.

time-steps used in the simulations are set to be 1/20th of the shortest
orbital period (Duncan et al. 1998).

As discussed above in Section 2.2, one of the criteria used to
constrain our initial conditions is that the mutual separation between
neighbouring protoplanets must satisfy 5 ≤ K ≤ 30, where K is the
inter-protoplanet separation measured in units of the mutual Hill
radius. The mutual Hill radius for a pair of adjacent planets is
defined by

RH,i = ai + ai+1

2

(
Mp,i + Mp,i+1

3M�

)1/3

. (17)

The dimensionless number K can then be expressed as

Ki = ai+1 − ai

RHi

, (18)

where Ki is the K-value for the i-th pair of adjacent planets in the
system.

For a Kepler planetary system, applying the value of a obtained
from equation (4), Mp from equation (5), and M� from the Kepler
data, K can be directly calculated by equation (18). For the selected
Kepler planetary systems in this study (see Section 2.2), the Ki

values for each planet pair and mean K value of each system, K̄ ,
are listed in Table 1. The overall mean K value across all selected
systems has the value 〈K̄〉 ≈ 19.4. This value is about the same as
the typical average K value for Kepler multiplanetary systems (see
Section 1).

Finally, we comment that the initial conditions of the simulations
presented in this paper represent the state of the system after
substantial evolution has already taken place, and once the gaseous
protoplanetary disc has been dispersed. For discussion of possible
scenarios leading to these initial conditions, involving the accretion
of planetesimals, boulders, and/or pebbles onto planetary embryos
embedded within the gas disc, we refer the reader to the following
papers that present the results of N-body simulations of these earlier
epochs of planet formation (Coleman & Nelson 2014, 2016; Izidoro
et al. 2019; Lambrechts et al. 2019).
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3 R ESULTS

3.1 Stability of the original Kepler multiplanet systems

Before embarking on a study of the formation of the Kepler
systems considered in this paper, we begin by considering the
dynamical stability of the observed systems themselves. This
acts as a consistency check on the mass–radius relation used to
construct the initial conditions for the formation simulations, given
by equation (5) (Lissauer et al. 2011a). Since the first multiplanet
systems discovered by Kepler were confirmed, a number of mass–
radius relations have been suggested. For example, Wu & Lithwick
(2013) suggested Mp = 3 M⊕(Rp/R⊕), Weiss & Marcy (2014)
suggested Mp = 2.69 M⊕(Rp/R⊕)0.93, and Wolfgang et al. (2016)
suggested Mp = 2.7 M⊕(Rp/R⊕)1.3. Clearly, given that the masses
obtained from each of these relations vary for specific values of the
planetary radii, stability of the confirmed system is not guaranteed to
hold under all these relations. Checking the stability hence provides
some constraint on the mass–radius relation that applies.

We carried out a stability check for all Kepler five-planet systems,
including those that do not obey the selection criteria mentioned in
Section 2.2, comparing the relation suggested by Wolfgang et al.
(2016) and that provided by Lissauer et al. (2011a). We performed
N-body simulations using Mercury, and adopted initial conditions
that assumed that the system planets are initially on circular and
coplanar orbits (e = 0 and I = 0 for all planets). The initial values
of the mean anomalies of the planets were assigned randomly, and
10 different realizations were run for each system. We found that the
relation from Lissauer et al. (2011a) provides stable systems for all
five-planet systems over a 10 Myr run time, while the mass–radius
relation provided by Wolfgang et al. (2016) fails to produce stable
systems for some Kepler systems over the same time-scale [e.g. the
systems Kepler-32 and -33, which were validated by Lissauer et al.
(2011a)]. For this reason, the relation provided by Lissauer et al.
(2011a) is the one we used to construct the initial conditions for the
20-protoplanet simulations described in the following sections.

3.2 Results of the formation simulations

To recap, two sets of N-body simulations were performed for each
Kepler template, one assuming perfect accretion using a simple
hit-and-stick model, and the other adopting the imperfect accretion
algorithm of Leinhardt & Stewart (2012). For each Kepler template,
we considered two initial distributions of the eccentricities and
inclinations, a ‘high set’ and a ‘low set’, and for each of these
we computed 10 different realizations of the initial conditions
by varying the random number seeds used to create the initial
conditions. Hence, we ran 40 N-body simulations for 10 Myr for
each Kepler template.

We begin our discussion of the results by first considering how the
simulation outcomes considered as a whole vary when considering
the perfect and imperfect accretion prescriptions. We then look at
the simulations in more detail by considering how the outcomes vary
between the different Kepler templates, focusing on the resulting
planet masses, orbital elements, period ratios, K-values, and system
architectures that emerge from the simulations.

3.2.1 Comparison between perfect and imperfect accretion across
all runs

The distributions of the semimajor axes, eccentricities, inclinations,
and masses are shown in the histograms and cumulative distribution

functions (CDFs) in Fig. 3. Later in the paper, we discuss the
mutual separations between pairs of planets, and the K-values are
shown in Fig. 11. By-eye inspection suggests that the distributions
are in good agreement when comparing the perfect and imperfect
accretion models, and applying the Kolmogorov–Smirnov test (K–
S test) yields p-values of 0.148 for the semimajor axis distributions,
0.100 for the eccentricities, 0.079 for the inclinations, and 0.234
for the masses. Hence, the null hypothesis that the data plotted in
Fig. 3 for the perfect and imperfect collision simulations are drawn
from the same underlying distribution cannot be rejected with a
> 95 per cent confidence level.

Agreement between the perfect and imperfect accretion runs can
also be seen when looking at individual system templates. For
example, Fig. 4 shows the CDFs for the same parameters shown
in Fig. 3, but only for the Kepler55 system template, and again it
can be seen that the distributions are very similar. Here the K–S test
yields p-values of 0.995 for the semimajor axis distributions, 0.832
for the eccentricities, 0.166 for the inclinations, and 0.734 for the
masses.

In summary, based on the global properties of the final planetary
systems that are formed, we can conclude that the differences
produced by the perfect and imperfect accretion prescriptions are
small, and do not have a statistically significant influence on the
outcomes of the simulations.

3.2.2 Instabilities and multiplicities

All simulations resulted in dynamical instabilities that led to mutual
scattering and giant impacts. Fig. 5 shows the distributions of
the multiplicities of all final planetary systems. The maximum
number of planets remaining after 10 Myr was 12 and the minimum
was 3. No single or double planet systems were formed. Having
four or five planets remain in the system is the most common
outcome. Our multiplicity distribution appears to agree with the
distribution obtained by Hansen & Murray (2013), where they also
obtain a minimum multiplicity of 3, and a peak in the multiplicity
distribution at four or five planets. The mean value of the number
of planets obtained in the imperfect collision simulation is 〈NI〉 =
5.21, and for perfect collisions it is 〈NP〉 = 5.06. For the higher
initial value set 〈NH〉 = 5.05, and for the lower initial value set
〈NL〉 = 5.22. It is noteworthy how close these values are to 5,
given that our template systems all contain five planets, indicating
that the initial conditions constructed from the templates are able
to reproduce the desired multiplicity on average. In a recent
analysis of the Kepler data, Zhu et al. (2018) concluded that the
mean number of super-Earths in compact systems around solar-
type stars is approximately 3, with the fraction of stars hosting
planetary systems being approximately 0.3. This suggests that
the five-planet systems we have chosen for this study may not
be representative of the Kepler planets as a whole, even if we
allow for the fact that the Kepler systems contain unseen planets
by virtue of them being on orbits that are inclined to the line of
sight.

The K–S test applied to the CDFs derived from the data in Fig. 5
gives a p-value of 0.997 for the perfect and imperfect collision
models, and 0.999 for the runs with the higher and lower initial
eccentricity/inclination values. The small difference between 〈NI〉
and 〈NP〉, together with the large p-value, shows that our runs are in
accord with the conclusions reached by Mustill et al. (2018), namely
that assuming either perfect or imperfect collisions has little impact
on the final multiplicities. The similar values for NH and NL show
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Compact planetary system formation 5601

Figure 3. The normalized distributions (top panel) and the cumulative distribution functions (CDFs, bottom panel) of the semimajor axes, eccentricities,
inclinations, and planet masses of the planets obtained in all simulations. Perfect collision simulations are shown in blue, and imperfect collision simulations
are shown in yellow.

Figure 4. Cumulative distributions, from all simulations of the Kepler55 template, of the same four parameters listed in Fig. 3. They are (in order from left
to right) a, e, I, and Mp. The blue and yellow lines are for the perfect collision and imperfect collision simulations, respectively.

Figure 5. Multiplicity distributions from all simulations. The left-hand
panel compares the distributions obtained in the perfect and imperfect
collision simulations. The right-hand panel compares the distributions
obtained in the high and low initial eccentricity/inclination simulations (see
Section 2.4 for the definitions of these simulation sets).

that the initial value of e and I also has a limited impact on the final
multiplicities, at least for the range of values adopted here.

Fig. 6 shows the CDF for the occurrence times of all giant impact
events detected during the imperfect collision simulations. More
than 90 per cent of the giant impacts happened before 1 Myr (the
white area in the figure), and 50 per cent of the impacts occurred
within 104 yr. Given that the planetary systems are centred around a
∼ 0.1 au, this latter figure corresponds to ∼3 × 105 dynamical times,
indicating that the initial conditions do not result in excessively
short accretion times. Instead, the systems have time to undergo
substantial dynamical relaxation during the epoch of accretion.
Furthermore, the fact that only 10 per cent of the collisions occur
after 1 Myr indicates that our run times of 10 Myr are long enough
to have formed long-term stable systems in most cases. However,
the fact that some collisions are occurring at late times also indicates
that some of our final planetary systems would have evolved
further if the integrations had been extended. Finally, we note
that with 90 per cent of the collisions occurring in the simulations
within 1 Myr, this implies that if the protoplanets we consider
in the initial conditions were formed within the lifetime of the
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5602 S. T. S. Poon et al.

Figure 6. Cumulative distribution of all the giant impact events with respect
to time during the imperfect collision simulations. The grey area denotes
the latest 10 per cent of the collisions.

gaseous protoplanetary discs, then substantial collisional evolution
would have likely occurred while the gas was still present as disc
lifetimes are typically 3 Myr (Haisch, Lada & Lada 2001). Ogihara,
Morbidelli & Guillot (2015) have shown that under such conditions
the effects of migration cannot be ignored and strongly influence
the architectures of the resulting systems.

3.2.3 Eccentricities, inclinations, and masses

Table 2 lists the mean values of e, I, and the K-values for each
subset of runs associated with each of the Kepler templates. Hence,
the averaging has been performed over the final outcomes of the 10
simulations associated with perfect/imperfect accretion and high
and low initial eccentricities/inclinations. While there is some vari-
ation of the mean eccentricities and inclinations when comparing
the different initial eccentricities/inclinations and the accretion
prescription (particularly for Kepler80), the largest variation
is observed when comparing the different Kepler templates. For
example, the Kepler55 runs all give 〈e〉 ∼ 0.06, whereas the
Kepler296 runs give higher values distributed around 〈e〉 ∼ 0.09.

The top and middle panels of Fig. 7 show the values of e and
I with respect to semimajor axis a from four of the simulation
templates performed with the imperfect collision model (see Fig. C1
in Appendix C for the results of the other four templates that adopt
imperfect collisions, and Figs C3 and C5 for all eight templates
that use the perfect collision model). The plots show that the final
distributions arising from the higher set (blue triangles) and the
lower set (yellow diamonds) are very similar. This is not surprising
as the initial eccentricities and inclinations in all of these runs
are considerably smaller than the mean values at the ends of the
simulations. Hence, the final values are determined by planet–
planet scattering and collisional damping, and little memory is
retained of the original eccentricity and inclination values. This
would not be the case if the initial eccentricities and inclinations
had been comparable to or larger than the values obtained from
dynamical relaxation (Matsumoto & Kokubo 2017). It is common
to see that e and I have relatively high values near the inner and outer
edges of the systems, perhaps best illustrated by the Kepler102
and Kepler169 templates. This feature was already noted by
Hansen & Murray (2013) in their study of in situ formation of super-

Earths, and arises because bodies at the edge of the initial annulus of
protoplanets are scattered outwards and do not experience collisions
that tend to damp the eccentricities and inclinations.

The bottom panels of Fig. 7 show the final planet masses versus
their semimajor axes. A striking feature of these plots is how the
simulated systems (denoted by blue triangles for higher set runs, and
yellow diamonds for lower set runs) generally match the observed
Kepler systems (denoted by black circles joined by solid lines).
Hence, based on this comparison alone, it is reasonable to conclude
that the initial conditions and formation histories that we simulate
here might be reasonable approximations to those that applied to
the actual Kepler systems we have used as templates. The exception
is Kepler169, where the outer regions of these simulations failed
to generate significant collisional growth because the initial masses
of the protoplanets there, generated by the method mentioned in
Section 2.4, were too small (giving initial K-values >15), leading
to instability times longer than the 10 Myr simulation run times.

In view of this, we extended the run times of the Kepler169
template simulations to 100 Myr, using the perfect accretion routine
(see Fig. C7 in Appendix C for the comparison). As expected,
the outer regions of the systems experienced increased growth and
provided better agreement with the original Kepler masses. This
suggests that a better strategy for future work would be to run
simulations for a set number of orbits measured at the outer edges
of the systems, instead of a fixed number of years as was done in
this work.

Although the final planet masses in the simulations match their
Kepler templates on average, it is worth noting that when we
consider the CDF of planet masses later in this paper, and compare
it with that obtained from the original Kepler template systems (see
Fig. 21), the agreement is not good because the simulations produce
a range of planetary systems, some of which have higher multiplicity
than 5 and hence contain planets with relatively low masses.

As with the eccentricities and inclination distributions discussed
above, there are no systematic differences in the final plane-
tary masses when comparing the high and low initial eccentric-
ity/inclination subsets of runs.

The high values of e and I at the edges of the system due to planets
being scattered but experiencing fewer collisions there, discussed
above and noted by Hansen & Murray (2013), can also be seen in
Fig. 8, which shows the final planets from all runs in the a–e plane
(top panel), a–I plane (middle panel), and a–Mp plane (bottom
panel). We also see from the lower panel that higher mass planets
occupy the centre of the a–Mp plane, where collisional growth
occurs more frequently, with lower mass planets being present at
the edges of the annuli where collisions occur less frequently. Fig. 9
shows that e and I are strongly correlated, as expected for systems
that have undergone dynamical relaxation.

3.2.4 Period ratios and K-values

Fig. 10 shows that the perfect and imperfect accretion simula-
tions provide similar cumulative distributions of the period ratios
between neighbouring planet pairs. We can compare these with
the distribution of period ratios for the actual Kepler multiplanet
systems. In Section 7.2 below, we also compare the period ratios
obtained from the simulations when they are synthetically observed
with the Kepler data, but here we focus on the intrinsic period
ratios. For period ratios smaller than 4:3, we see that the Kepler
data show an excess compared to the simulations. A K–S test
performed on a subset of period ratios between 5:4 and 4:3 gives
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Compact planetary system formation 5603

Table 2. Mean values of e, I, and K-values from the different simulation subsets from all eight Kepler templates. The numbers in parentheses are the standard
deviations about the respective means.

System Kepler Imperfect Imperfect Perfect Perfect All All All All All
Elements System <Higher> <Lower> <Higher> <Lower> <Higher> <Lower> Imperfect Perfect Sets

〈e〉 55 6.32(5.71) 6.27(5.50) 6.03(4.46) 6.34(5.97) 6.18 6.31 6.30 6.19 6.24
(× 10−2) 80 3.21(4.47) 5.09(5.50) 1.85(2.25) 1.88(1.90) 2.53 3.49 4.15 1.87 3.01
– 84 7.02(4.86) 5.20(4.56) 6.32(6.14) 5.91(4.39) 6.67 5.56 6.11 6.12 6.11
– 102 5.55(6.64) 3.74(2.81) 5.64(4.46) 6.27(7.30) 5.60 5.01 4.65 5.96 5.30
– 154 8.46(6.65) 5.25(5.68) 7.23(7.02) 7.12(7.17) 7.85 6.19 6.86 7.18 7.02
– 169 4.42(2.72) 5.49(6.22) 4.68(4.06) 4.70(6.92) 4.55 5.10 4.96 4.69 4.82
– 292 5.43(3.08) 5.04(4.00) 6.65(5.20) 5.72(3.60) 6.04 5.38 5.24 6.19 5.71
– 296 10.28(9.86) 11.40(11.05) 7.60 (5.72) 9.90(6.64) 8.94 10.65 10.84 8.75 9.80

〈I〉 55 4.34(4.85) 3.74(2.90) 4.31(3.55) 3.47(2.61) 4.33 3.61 4.04 3.89 3.97
(× 10−2) 80 1.18(1.20) 1.67(2.45) 2.72(3.89) 1.41(1.96) 1.95 1.54 1.43 2.06 1.74
[rad] 84 3.38(2.86) 3.63(3.51) 3.18(3.61) 3.97(4.39) 3.28 3.80 3.51 3.58 3.54
– 102 2.52(3.03) 2.38(2.45) 3.65(4.30) 3.93(3.64) 3.08 3.15 2.45 3.79 3.12
– 154 5.00(5.68) 5.62(3.82) 4.94(6.94) 5.38(6.33) 4.97 5.50 5.31 5.16 5.23
– 169 2.38(1.92) 3.48(3.41) 3.42(2.32) 3.00(2.30) 2.90 3.24 2.93 3.21 3.07
– 292 4.19(2.95) 2.94(2.66) 2.33(1.87) 2.87(2.42) 3.26 2.90 3.56 2.60 3.08
– 296 5.90(3.56) 7.89(7.91) 5.32(2.76) 5.90(4.67) 5.61 6.90 6.89 5.61 6.25

〈K〉 55 21.1(6.43) 21.2(6.91) 22.6(6.25) 20.9(7.17) 21.8 21.1 21.2 21.7 21.4
– 80 21.5(11.37) 22.8(11.09) 20.6(10.40) 19.0(10.40) 21.0 20.9 22.2 19.8 21.0
– 84 21.2(4.80) 19.2(5.42) 20.8(4.79) 19.8(4.81) 21.0 19.5 20.2 20.3 20.3
– 102 21.4(6.54) 19.1(6.01) 20.6(5.97) 21.9(4.59) 21.0 20.4 20.3 21.1 20.7
– 154 20.7(6.82) 19.0(6.46) 20.4(7.43) 18.7(8.16) 20.6 18.9 19.9 19.6 19.7
– 169 21.1(6.23) 22.5(7.61) 22.2(6.74) 21.9(9.70) 21.6 22.2 21.8 22.0 21.9
– 292 19.5(3.87) 18.5(4.23) 18.7(4.40) 17.3(5.28) 19.1 17.9 19.0 18.0 18.5
– 296 24.3(7.47) 22.9(9.15) 22.4(5.69) 21.4(4.37) 23.4 22.2 23.6 21.9 22.8

p-values of 1.69 × 10−4 and 0.029 when comparing the Kepler data
with the perfect and imperfect collision simulations, respectively,
demonstrating that the distributions are different. Hence, some
process occurred during the formation of at least some Kepler
systems that allowed the survival of more compact architectures,
which are none the less non-resonant. Dynamical relaxation and
collisional evolution in the absence of any dissipative process clearly
result in such closely separated planet pairs being destabilized,
suggesting that those Kepler systems with particularly compact
configurations formed in a dissipative environment and did not
undergo dynamical instability in spite of the close proximities of
the planets. One such system not considered here that displays this
property is Kepler-11 (Mahajan & Wu 2014).

The full Kepler data set, without any limits in period ratio being
applied, clearly contains too many planet pairs with large period
ratios compared to the simulation intrinsic outcomes, and a K–S
test comparing the data and simulations results in p-values <0.05.
Again, such system architectures do not naturally arise from a
formation scenario in which even a wide annulus of protoplanets
undergoes dynamical instability and collisional growth, since this
mode of evolution results in neighbouring planets being separated
by ∼20 mutual Hill radii (see the discussion below). Instead,
additional processes would need to be invoked, which either cause
the initial distribution of protoplanets to have a more complex
structure involving concentrations around particular orbital radii,
or which involve orbital migration because formation occurred
in the presence of either a gas or planetesimal disc. Considering
planet pairs in the Kepler data with a maximum period ratio of
3:1 results in much better agreement between the observational
data and simulations, with p-values of 0.078 and 0.120 for perfect
and imperfect collisions, respectively. However, we also note here

that the synthetically observed systems, described in Section 7.2,
provide a distribution of period ratios that is quite different to that
obtained from the simulations directly, due to the fact that mutual
inclinations between the planets lead to some planets not being
detected during the observations. This has the effect of increasing
the numbers of systems with large period ratios.

One feature within the Kepler multiplanet systems that the
simulations do not reproduce particularly well is the known peaks
in occurrence rates of planet pairs just outside of the 3:2 and 2:1
resonances (seen in particular as a flattening and then rise in the CDF
at around period ratio 2:1 in Fig. 10). The cumulative distribution
for the simulation data shows a very modest inflection around the
2:1 resonance, but it is not as pronounced as in the Kepler data,
and is not statistically significant. It is noteworthy that Petrovich,
Malhotra & Tremaine (2013) were able to reproduce the resonance
features using three-body integrations that resulted in final systems
of two planets for planet masses 20 ≤ Mp ≤ 100 M⊕. The end
states of our simulations always have more than two planets, and
the final planet masses are typically <10 M⊕. These properties
likely serve to reduce the prominence of features in the period
ratio distribution near first-order mean motion resonances, and leave
open the question of what dynamical processes have given rise to
the near-resonance features in the period ratio distributions of the
Kepler planets.

The distributions of the K-values from all our simulations can be
seen in Fig. 11. Both collision models result in similar distributions,
with a p-value of 0.54, with 50 per cent of systems having 10 ≤ K ≤
20, and the maximum value of K being ∼50. Although not obvious
in the plot, the number of planets with K < 10 decreases to zero and
then rises again close to K = 0, with these latter planets surviving
because they are protected by a 1:1 resonance. Wu et al. (2019) have
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5604 S. T. S. Poon et al.

Figure 7. All imperfect collision simulation results from (from left to right)Kepler80,102,169, and292 templates. The scatter plots show the eccentricities
(top panel), inclinations (middle panel), and planet masses (bottom panel) with respect to their semimajor axis. The orange-diamond data are from the higher
initial eccentricity set, and the blue-triangle data are from the lower initial eccentricity set. The horizontal lines in each subplot show the mean values of the
data in their respective colour (also plotted as solid lines for the higher initial eccentricity set and dashed lines for the lower initial eccentricity set). The black
circles in the bottom panel denote the masses and semimajor axes of the observed Kepler planets. The black dashed lines indicate the detection limit applied
when undertaking the synthetic transit observations described in Section 7.1.

presented similar simulation results on this feature in the K-value
distribution and its relation to the 1:1 resonance (period ratio <

1.05), and we discuss these co-orbital systems further in the next
section. Fig. 12 shows the value of K for each planet pair using
the same four Kepler templates shown in Fig. 7 (see Fig. C2 in
Appendix C for the results of the other four templates that adopt
imperfect collisions, and Figs C4 and C6 for all eight templates
that use the perfect collision model). The distributions of the K-
values are similar, independent of whether we consider the high-
or low-eccentricity/inclination set. And they also show similar K-
values compared to the original Kepler systems (shown by the black
circles joined by lines), based on the adopted mass–radius relation,
although again theKepler169 system is an exception (see Fig. C8
in Appendix C for a comparison to systems that were evolved for
100 Myr instead of 10 Myr).

4 C O - O R B I TA L P L A N E T PA I R S

In Section 3.2.4, we stated that a small number of planets have
very small K-values, and these are shown in the Fig. 11. Further
investigation has shown that these planets have been captured into

1:1 co-orbital resonances, and these co-orbital planets make up
about 1 per cent (4 out of 320 simulations) of the total number of
planet pairs.

4.1 Stability

In spite of the very small K-values, the 1:1 resonance protects
co-orbital planet pairs from instability. In general, both stable
tadpole orbits, which involve libration around the L4/L5 points,
and horseshoe orbits are permitted (Dermott & Murray 1981a, b),
and we see examples of both of these orbit types in the simulations.
As the simulation run times are 10 Myr, and the co-orbital pairs
are found to form early in some simulations, we find tadpole and
horseshoe orbits that are stable for 9.5 × 106 yr. This is in spite
of the co-orbital pairs being in systems of high multiplicity, where
the resonance configuration is subject to external perturbations.
Previous studies have shown that co-orbital planet pairs can be
stable for up to 109 yr (Tabachnik & Evans 2000). Fig. 13 shows an
example of the semimajor axis versus time during the last 10 yr of
one simulation (the left-hand panel) and the corresponding orbital
trajectory of the 1:1 resonance planet pair from the same model in a
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Compact planetary system formation 5605

Figure 8. Scatter plots comparing e, I, and Mp as a function of a arising from
perfect (blue points) and imperfect (yellow points) collision simulations.

frame that co-rotates with one of the planets (the right-hand panel).
From the semimajor axis plot, we can see the two planets undergo a
periodic exchange of radial location, and the co-rotating plot shows
that the orbit is a tadpole orbit.

In other simulations that produce 1:1 resonant planet pairs, we see
similar characteristics in the semimajor axis evolution. Although it is
generally expected that horseshoe orbits are not as stable as tadpole
orbits (Dermott & Murray 1981b), the planet pairs in horseshoe
orbits produced in the simulations are found to be stable over the
runs times we consider. The maximum value of the period ratio
among all the co-orbital pairs is ∼1.05:1, in agreement with the
simulations by Wu et al. (2019), which show that period ratios in
the range 1.05–1.1 are unstable (independent of whether or not the
system has two planets or a higher multiplicity).

Figure 9. Scatter plot showing correlation between e and I from all runs.
Perfect collision results are shown by blue points, and imperfect collision
results are shown by yellow points.

Figure 10. CDFs of the period ratios of all adjacent planet pairs. The blue
and yellow lines correspond to the perfect and imperfect collision models,
respectively. The black dotted line includes all the original Kepler planet
pairs. The solid black line shows the original Kepler planet pairs with a
cut-off for a period ratio >3.

4.2 Formation

All the co-orbital planet pairs form fairly early in our simulations
(within a few thousand years). Fig. 14 demonstrates the formation of
a co-orbital pair by a two-body collision event in the perfect collision
model. The top panel shows the evolution of the semimajor axis
during the first 2000 yr of the simulation. We can see the collision
happened around 1200 yr (black dashed line). The three bodies
involved in the encounter are marked by blue, green, and purple
lines (labelled as planet-b, planet-g, and planet-p, respectively, from
now on). In this encounter, planet-g and planet-p are the surviving
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5606 S. T. S. Poon et al.

Figure 11. The normalized distributions (top panel) and the cumulative
distributions (bottom panel) of the K-value of the planet pairs obtained in
all our simulations. Perfect collision simulations are shown in blue, and
imperfect collision simulations are shown in yellow.

planets and they form a co-orbital tadpole orbit. The second panel
of the figure shows the change of mass of the bodies during the
evolution. We can see that planet-b collided with planet-p during
the encounter, and the resulting body ended up with the appropriate
energy and angular momentum so that it could settle into a co-orbital
configuration with planet-g. The figure also shows the eccentricity
and inclination evolution in the bottom two panels. The eccentricity
evolution shows the angular momentum and energy exchange (Funk
et al. 2011; Funk, Dvorak & Schwarz 2013) between planet-g and
planet-p. The fluctuations of these two orbital elements are seen to
be reduced after the encounter compared to before it, because of the
collision and formation of the co-orbital pair. The two co-orbital
planets are mutually inclined by approximately 2◦, and hence it
cannot be guaranteed that both the planets would be detected in a
photometric survey searching for transiting planets.

It is clear that formation of a co-orbital planet pair, involving
two planets that were initially well separated in orbital radius,
requires energy and angular momentum loss from one of the
planets. Within our simulations, there are three possible ways to
achieve this energy loss: (1) an inelastic collision between two
bodies resulting in the composite body having the appropriate
energy and angular momentum to form a co-orbital pair with a
third planet; (2) interaction with collision debris (in the form of
multiple planetesimals) formed from an earlier collision, leading
to the requisite change in energy and angular momentum by the
members of the co-orbital pair; (3) a three-body encounter in
which energy and angular momentum from at least one planet in
the co-orbital pair are given to a third body. The case illustrated

in Fig. 14 corresponds to the first of these formation scenarios.
Neither the interaction with debris nor the three-body encounter
formation mechanisms were observed in the simulations, although
simulations using the perfect and imperfect accretion routines
both resulted in the formation of co-orbital pairs. All systems
that formed co-orbital pairs did so early in the simulations, when
the space density of planets and the probability of capture due
to kinetic energy loss of the colliding planets were at their
highest.

4.3 Resonance-induced TTV

The co-orbital planet pair (planet-p and planet-g) shown in Fig. 14
survived to the end of the 10 Myr evolution. The final mutual
inclination of this planet pair is ∼2o, which makes it unlikely that
both the planets would be detected directly during a transit survey.
On the other hand, this type of 1:1 resonance pair would induce
TTVs on each other, which might provide a signal indicating the
presence of the other non-transiting co-orbital planet.

Fig. 15 demonstrates the TTV signal expected for planet-g during
a 10 yr period after the end of the simulation. Here, we have
calculated the mean orbital period of planet-g over this 10 yr period
(Pg ≈ 9.9872 d), and have then computed the Observed−Calculated
(O − C) times for the transits of planet-g. The amplitude of the TTV
signal reaches ±0.9639 d, and the maximum difference between
adjacent periods is ∼15 min. If it was possible to pick up the
transit signal of planet-g and confirm it as a planet within a transit
survey, then the TTV signal would provide strong evidence of the
presence of the other planet (e.g. planet-p in this case). However,
we note that such a strong TTV signal might also provide a
barrier to detecting co-orbital planets in the automated pipelines
of transit surveys that adopted schemes such as box-least squares
with fixed orbital periods, particularly for systems with low signal to
noise.

All four of the co-orbital planet pairs formed in our simulations
are mutually inclined and lead to a similar situation to that discussed
above. So far, no confirmed co-orbital planets have been found.
We note that simulations involving dynamical relaxation within a
protoplanetary disc also suggest that 1:1 co-orbital planets are a
natural outcome (Cresswell & Nelson 2006, 2008), but in that case
the co-orbital pairs are expected to be coplanar and hence would
both be detected directly in transit surveys. The strong TTV signal
we demonstrated here might provide an explanation of why co-
orbital pairs have not been found, and also provide a means of
detecting non-coplanar co-orbital systems.

5 C OLLI SI ON-I NDUCED C OMPOSI TI ON
C H A N G E S

Recent analyses of the distribution of planetary radii for planets
discovered by Kepler indicate the presence of a valley in the
distribution for radii 1.6 � Rp � 2 R⊕ (Fulton et al. 2017;
Fulton & Petigura 2018; Van Eylen et al. 2018). The location
of this valley has been widely interpreted as providing evidence
that complete photoevaporation of hydrogen–helium envelopes
from core-dominated super-Earths has unveiled a population of
bodies whose densities are consistent with them having Earth-like
compositions (Owen & Wu 2017; Jin & Mordasini 2018). The lack
of clear evidence for the solid cores having densities consistent with
having significant ice fractions suggests that the observed cores
did not migrate to their current locations after formation beyond
the ice line. An alternative possibility that we explore here is that
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Compact planetary system formation 5607

Figure 12. All K-values for neighbouring planet pairs from imperfect collision simulations of (from left to right) Kepler80, 102, 169, and 292 templates.
The orange diamonds are from the higher initial eccentricity set and the blue triangles are from the lower initial eccentricity set. The horizontal lines in each
subplot are the mean values of the data in their respective colour (also plotted as solid lines for the higher initial eccentricity set and dashed lines for the lower
initial eccentricity set). The black circles denote the K-values of the original planets pairs, as listed in Table 1.

Figure 13. The left-hand panel shows the semimajor axis evolution of the
co-orbital planet pair. The right-hand panel shows the orbit trajectory of the
same planet pair in a frame that corotates with the planet denoted by the
green open circle.

high-energy collisions during giant impacts may have changed the
compositions of previously water-rich cores by stripping off the
volatile outer layers.

For head-on collisions, the specific collision energy, QR, can be
calculated according to

QR = 1

2

μV 2
imp

MTotal
, (19)

where the reduced mass μ = (M1M2)/(M1 + M2) (with M1 and M2

being the masses of the target and projectile, respectively), MTotal is
the total mass of the two colliding bodies, and Vimp is the relative
impact velocity. Stewart & Leinhardt (2009) give a catastrophic
disruption threshold energy, Q∗

RD, which depends on the sizes of
the colliding objects and Vimp. Q∗

RD is defined as the energy needed
to leave the largest remnant with less than 50 per cent of MTotal and
is given by the relation

Q∗
RD = 1

104
R1.2

C1V
0.8

imp, (20)

where RC1 is the radius of a spherical body containing all of the
colliding mass with a density ρ1 = 1 g cm−3, given by

RC1 = 3

√
3MTotal

4πρ1
. (21)

With the masses of the two colliding bodies known, and the impact
velocities measured from the N-body simulations, we can obtain

Figure 14. An example of the formation of a co-orbital planet pair by
an inelastic collision. Shown are the evolution of the semimajor axes
(top panel), planet masses, (second panel) eccentricities (third panel), and
inclinations (fourth panel). The time interval shown is the first 2000 yr of
the simulation, and the collision occurred after ∼1200 yr (dashed line).
The representing three bodies involved in the encounter are marked in blue,
green, and purple, where we name them planet-b, planet-g, and planet-p,
respectively.

QR and Q∗
RD directly. Marcus et al. (2010) considered collisions

involving differentiated bodies, with half of the mass of the colliding
planets being water–ice and the other half being rock, and found
that the mass fraction of the core of the largest remnant, Mcore/Mlr,
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5608 S. T. S. Poon et al.

Figure 15. An example synthetic TTV signal for the 1:1 co-orbital planet
pair discussed in the text. It shows the difference between the observed and
calculated (predicted) times of planet-g’s transit events for 10 yr after the
end of the formation simulation. A total of 366 transit events are observed
within this 10 yr period.

Figure 16. Information concerning collisions occurring across all imperfect
accretion simulations. The top left panel shows the distribution of impact
angles. The top right panel shows the cumulative distribution of the impact
energies, calculated using equation (25). The bottom left panel shows the
cumulative distribution of the impact velocities in units of the escape
velocity, and the bottom right panel shows the cumulative distribution of
the ratio of Mcore/Mlr, calculated using equation (27). The grey area in each
plot denotes the region where the cumulative number is within 10 per cent
of the maximum.

can be fitted by the expression

Mcore

Mlr
= 0.5 + 0.25

(
QR

Q∗
RD

)1.2

. (22)

This power law of QR/Q∗
RD is the best fit from their smoothed

particle hydrodynamics simulations.
The upper left panel of Fig. 16 shows the distribution of the

recorded impact angles, θ , in all the giant impact events from
our imperfect accretion routine. It is clear that the majority of
the collisions are not head-on. For a more realistic analysis for
the composition changes, we also consider the effect of off-centre
collisions. Leinhardt & Stewart (2012) provide a correction to QR

and Q∗
RD that allows them to be applied to off-centre collisions by

considering the fraction of the projectile mass that directly intersects
the target during a collision. The mass fraction of M2 involved in
the collision is defined as α (i.e. α = M2,involved/M2). After defining

α, the interacting reduced mass, μα , can be calculated by

μα = αM1M2

αM2 + M1
, (23)

where α can be calculated directly from the information recorded
during the simulations by

α = 3R2 [RTotal − RTotal sin θ ]2 − [RTotal − RTotal sin θ ]3

4R3
2

, (24)

where RTotal = R1 + R2, and α = 1 when R1 − R2 > RTotalsin θ . The
specific impact energy with off-centre collision correction, Q

′
R, can

then be calculated according to

Q
′
R = μ

μα

QR. (25)

And similarly, the catastrophic disruption threshold energy with
off-centre collision correction, Q

′∗
RD, can be calculated by

Q
′∗
RD =

(
μ

μα

)2− 3μ̄
2

Q∗
RD, (26)

where μ̄ is the velocity exponent in the coupling parameter (Hol-
sapple & Schmidt 1987; Housen & Holsapple 1990). Leinhardt &
Stewart (2012), and its follow-up study by Stewart & Leinhardt
(2012), suggested that the range of values of μ̄ is between 0.33 to
0.37. The middle value (μ̄ = 0.35) is adopted in equation (26) for
our calculations. With the new value of Q

′
R and Q

′∗
RD calculated by

equations (25) and (26), respectively, the mass ratio between the
core and the largest remnant from equation (22) is modified to

Mcore

Mlr
= 0.5 + 0.25

(
Q

′
R

Q
′∗
RD

)1.2

. (27)

Our imperfect accretion simulations record all of the data needed
to calculate Mcore/Mlr, and hence determine whether or not the
giant impacts occurring in the simulations would have been likely
to lead to significant compositional changes if our protoplanets
were differentiated bodies consisting of ∼ 50 per cent rock and
∼ 50 per cent water–ice, as considered by Marcus et al. (2010).
The results of our analysis are shown in Fig. 16. In the upper left
panel, the histogram shows the impact angles, which are peaked at
the value around 45◦, as expected (Shoemaker 1962). The lower
left panel records the cumulative distribution of Vimp in terms of the
mutual surface escape velocity, Vesc, of all collisions experienced
across all of the imperfect accretion simulations. The upper right
panel shows the cumulative value of Q

′
R, and the lower right

panel shows the resulting estimates of Mcore/Mlr arising from each
collision, calculated from equations (25) and (27). The data suggest
that only 10 per cent of the giant impacts in our simulations would
lead to a greater than 10 per cent mass-loss from the protoplanet,
where this mass-loss would correspond to partial stripping of the
putative water-rich mantle. It is very uncommon to have a collision
that can cause the protoplanet to have a mass-loss of up to 45 per cent
(i.e. 90 per cent of the water/ice content), so we conclude that while
moderate compositional changes would be likely to have occurred if
the Kepler multiplanet systems underwent a final stage of assembly
involving giant impacts, the changes would have been insufficient
to explain the location of the valley in the distribution of planetary
radii discussed above.

6 C OLLI SI ON-I NDUCED ATMOSPHERI C LO S S

Observations and structure models of exoplanets suggest that
many of the low- and intermediate-mass planets observed by
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Compact planetary system formation 5609

Kepler have hydrogen–helium (H/He) envelopes (e.g. Lopez &
Fortney 2014). These H/He envelopes must have been accreted
while the planets were embedded in the gaseous protoplanetary
disc (e.g. Bodenheimer & Lissauer 2014; Coleman, Papaloizou &
Nelson 2017). If dynamical instabilities and giant impacts after
the dispersal of the gas disc have played an important role in the
final assembly of the super-Earths and mini-Neptunes observed by
Kepler, then the envelopes we observe today must have survived
the giant impacts. Previous studies have investigated the conditions
under which giant impacts can lead to ejection of an envelope,
both by the shock that is driven through the envelope during
the impact (Genda & Abe 2003; Inamdar & Schlichting 2016;
Yalinewich & Schlichting 2019), and because of the intense heating
of the core and envelope that occurs when the impact energy is
converted to thermal energy during the collision (Biersteker &
Schlichting 2019).

Following the discussion in Biersteker & Schlichting (2019), we
make the simplifying assumption that the kinetic energy associated
with an inelastic collision between two bodies is converted effi-
ciently into thermal energy in the planetary core, and good thermal
coupling between the core and envelope ensures that the base of
the envelope achieves the same temperature as the core. If this
temperature is such that the Bondi radius of the envelope is smaller
than the core radius, then we assume that the atmosphere is lost, or
is at least severely eroded.

The impact energy, Eimp = 1/2μV 2
imp, associated with each

collision between two protoplanets is reported by our symba
simulations. Hence, in a post-processing step, we can determine the
distribution of impact energies from our simulations and determine
whether or not these are likely to be sufficient to erode any putative
envelopes that the planets might possess. The increase of the
temperature, 
T, due to the impact event can be estimated by
equating the impact energy to the change in thermal energy in
the core that is present after the impact (which has a mass Mlr):

Eimp = ηcvMlr
T , (28)

giving


T = η
1

2

μ

Mlr

V 2
imp

cv
. (29)

Here, cv is the specific heat capacity of the core, and η is an energy
conversion efficiency factor. The impact should lead to an increase
of the final temperature of the core after the impact, Tc, final = Tc, initial

+ 
T, and here we take a conservative approach and assume that
the initial core temperature is negligible compared to the final value
(i.e. Tc, initial � 0). Assuming that the base of the envelope has the
same temperature as the core, the associated Bondi radius becomes

RB = 2GMlr

c2
s

= 2GMlrμm

γ kBTc,final
, (30)

where cs is the sound speed, μm is the mean molecular weight, γ is
the adiabatic index, and kB is the Boltzmann constant. We assume
that the atmosphere is likely lost due to an impact if RB ≤ Rcore.

When calculating the value of 
T and RB, we assume that
the envelopes are a mixture of molecular hydrogen and atomic
helium with μm = 2.3u and γ = 7/5. Previous studies have taken
values of the specific heat capacity of the cores of super-Earths
and mini-Neptunes in the interval cv = 500–1000 J kg−1 K−1 (Alfè,
Price & Gillan 2001; Valencia et al. 2010; Nettelmann et al. 2011;
Lopez, Fortney & Miller 2012). In this study, we adopt the middle
value within this range, cv = 750 J kg−1 K−1, as in Biersteker &
Schlichting (2019).

Figure 17. Cumulative distributions of (left-hand panel) 
T; (right-hand
panel) (RB − Rp)/Rp calculated by all the giant impact events in our imperfect
collision model simulations. Where (RB − Rp)/Rp ≤ 0 implies that the Bondi
radius is equal to or smaller than the radius of the planet, i.e. complete H/He
envelope loss (the grey area). The blue line denotes the value calculated
with an energy conversion efficiency of 100 per cent (η = 1), and the red
line denotes the value calculated with the energy conversion efficiency of
50 per cent (η = 0.5).

The left-hand panel in Fig. 17 shows the cumulative distribution
of the post-impact changes in core temperature, 
T, and the
right-hand panel shows the distribution of the quantity (RB −
Rcore)/Rcore, such that a negative value implies substantial erosion of
the envelope. From the figure, we can see that more than 60 per cent
of the collisions in our simulations could lead to envelope loss.
These values were obtained by adopting η = 1 in equation (29),
corresponding to 100 per cent efficiency in converting impact kinetic
energy into heat. Given that not all collisions are head-on, this is
clearly an overestimate, as some of the energy can be converted into
rotational energy or be taken away by post-impact debris (Agnor &
Asphaug 2004).

Carter, Lock & Stewart (2018) investigated the Moon-forming
impact and showed that around half of the impact kinetic energy is
converted to internal energy, such that a more realistic figure would
be 0.4 < η < 0.6. It is worth noting that in practice, however, in a
five-planet system that was initially composed of 20 protoplanets,
each remaining planet after the final assembly stage would have
experienced three collisions on average, suggesting that significant
atmospheric erosion should occur in super-Earth systems whose
final assembly involves giant impacts.

Clearly, a more sophisticated approach is required to give a better
quantitative estimate of the population of planets that are left with
significant H/He envelopes after such a period of evolution. Such a
calculation would provide one means of determining whether or not
the observed population of super-Earths did indeed form via giant
impacts. Even if the impacts themselves are unable to completely
erode the envelopes, the remnant envelopes will be left in a bloated
state and would therefore be more susceptible to photoevaporation
by high-energy radiation from the central star, as considered in the
models of Owen & Wu (2017) and Jin & Mordasini (2018), for
example. Hence, in the future, it will be important to consider the
evolution of envelopes during and after the giant impact phase to
determine whether the resulting population of planets agrees with
the observations.

7 SYNTHETI C OBSERVATI ON O F THE FINA L
PLANETA RY SYSTEMS

The ability of any photometric observation of a planetary system
to detect transits of all system members depends on the mutual
inclinations of the planets. In addition, for any given planet with
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semimajor axis a, orbiting around a star with radius R∗, the
probability of detecting a transit from a random viewing position
scales as R∗/a, such that more distant planets around smaller stars are
more difficult to detect. Based on these considerations, a meaningful
comparison between the outcomes of planetary formation simula-
tions and transit surveys, such as the one carried out by Kepler,
must involve synthetic observation of the simulated planetary
systems.

Broadly speaking, the masses, orbital period ratios, and planetary
separations (as measured by the K-values) resulting from the N-body
simulations show reasonable agreement with the inferred properties
of the Kepler systems we have used as templates when setting up
the initial conditions of the simulations. Here, we are interested in
whether or not the distributions of the multiplicities of the simulated
planetary systems, and the period ratios between neighbouring plan-
ets, when synthetically observed, agree with an appropriate subset
of the Kepler systems. If such an agreement was obtained, then it
would support the hypothesis that the observed Kepler systems are
all intrinsically high-multiplicity systems with mutual inclinations
similar to those that arise in the N-body simulations, which in
turn would imply that the final assembly of the Kepler systems
likely arose from a population of protoplanets that underwent
dynamical instabilities and giant impacts, as considered in our N-
body simulations. In addition, recent analyses have indicated that
planets that are members of multiple systems have a statistically
significant different eccentricity distribution compared to planets
that are observed to be single (e.g. Xie et al. 2016; Mills et al. 2019).
We test whether this difference is matched by our simulations when
synthetically observed.

7.1 Observed multiplicities

Following the approach of Johansen et al. (2012), we consider
that the relative numbers of one-planet, two-planet, three-planet,
up to seven-planet systems that are detected when the simulation
outcomes are synthetically observed from 100 000 randomly chosen
viewing locations, isotropically distributed with respect to each host
star. Using the observed numbers of one-planet, two-planet, three-
planet, etc. systems, we then define a Transit Multiplicity Ratio
(abbreviated to TMR hereafter) as follows:

TMR(i, j ) = Number of i-planet systems

Number of j -planet systems
, (31)

where i and j represent the numbers of planets detected during each
of the synthetic observations.

For a comparison with the TMR values obtained from the N-
body simulations, we take a subset of the Kepler Planet Candidates
with the following cuts applied to the orbital periods, P, and
planetary radii, Rp, so that the Kepler sample roughly matches
the simulation outcomes: 3 d ≤ P ≤ 100 d and 1 R⊕ ≤ Rp ≤
4 R⊕. In addition, to crudely account for the fact that the detection
efficiency of Kepler decreases for small planets with longer orbital
periods, we also required the planet to have a radius greater than
the value given by Rmin = 0.60(P/1 d)0.111 R⊕ when undertaking
the synthetic observations. Incorporating this limit on the planet
radius excluded around 20 per cent of our final planets, but made
essentially no difference to the TMRs obtained from the synthetic
transit observations.

The TMR values obtained are shown in Fig. 18, where the
coloured histograms show the values obtained from each of the
different sets of N-body simulations, the blue horizontal bars show

the mean values averaged over the different simulation sets, and the
black horizontal bars show the TMRs from the Kepler data. The
left-hand panel shows TMRs for two-planet:one-planet systems,
three-planet:two-planet systems, four-planet:three-planet systems,
etc., and the right-hand panel shows TMRs for n-planet systems
relative to two-planet systems, where n is an integer running
between 3 and 7. The results are very clear: The simulations
consistently overproduce high-multiplicity systems relative to low-
multiplicity systems by a factor of between 1.5 and 2 compared
to the Kepler systems. One reason for this is that the planet–
planet scattering, leading to increases in the mutual inclinations of
planetary orbits during the N-body simulations, does not increase
the mutual inclinations sufficiently for agreement to be reached.
The N-body simulation outcomes have mutual inclinations that are
too low, with the RMS value obtained from the inclinations plotted
in Fig. 8 being 〈I〉 = 2.05◦.

In their earlier studies of multiplicity ratios, Johansen et al. (2012)
and Tremaine & Dong (2012) suggest that mean mutual inclinations
of 〈 I〉 � 5◦ would be sufficient to provide agreement between their
models and the Kepler data when comparing the relative numbers
of three-planet and two-planet systems. This indicates that a factor
of 2 increase in inclinations in our model systems would likely
lead to much better agreement with the Kepler systems, given
the factor of ∼2 discrepancy shown between the TMRs shown
in Fig. 18. Even more recently, Izidoro et al. (2019) and Carrera
et al. (2019) have presented N-body simulations that provide much
better agreement with the Kepler TMRs than our results do. In the
case of the Izidoro et al. (2019) study, this improved agreement
arises in part because they simulate the formation of more massive
planetary systems than we do, leading to more effective gravitational
scattering, but in addition their simulations result in a number
of systems with lower intrinsic multiplicities compared to our
simulations.

7.2 Period ratios

The CDF of the period ratios between neighbouring planets obtained
from the synthetic observation of the simulation outcomes is shown
in Fig. 19, along with that for the full set of Kepler planets that make
up our comparison sample, and a subset of that sample for which the
maximum period ratio is 3:1. This figure should be compared with
Fig. 10, which shows the CDF of the intrinsic period ratios obtained
from the simulations before being synthetically observed. This
comparison demonstrates the importance of undertaking synthetic
observations to mimic transit surveys, as the two distributions of
period ratios are quite different from one another. We see from
Fig. 19 that we obtain a significant increase in the frequency of
period ratios >2 when undertaking the synthetic observations,
as planet pairs on mutually inclined orbits are not observed to
simultaneously transit. However, it is also clear that the Kepler
data still show a significant excess of large period ratios compared
to the simulations, and in general the Kepler systems are more
separated than the simulated systems. We also note that we recover
the fact that the Kepler systems also show a significant excess of
small period ratios compared to the simulations, discussed already
in Section 3.2.4.

One curious feature of the CDF shown in Fig. 19 is the flattening
observed close to the location of the 2:1 resonance, which is
reminiscent of the similar feature seen in the Kepler data due to there
being a small deficit of planets at the 2:1 resonance location. This
is not observed so strongly in the CDF of the intrinsic period ratios
shown in Fig. 10, so we have examined the possibility that it arises
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Compact planetary system formation 5611

Figure 18. Synthetic TMR from all four sets of our simulations. The yellow and blue bars denote the high and low initial eccentricity value simulations with
imperfect accretion, respectively; the green and red bars denote the high and low initial eccentricity simulations with perfect accretion, respectively. The black
horizontal lines show the observed Kepler TMRs (as of 17/10/2018) and the blue horizontal lines show the mean values of the simulated TMRs.

Figure 19. CDFs of the period ratios obtained from the synthetic obser-
vations of the simulations, and for a comparison the CDFs of period ratios
obtained from our comparison sample of the Kepler data.

here because mutual inclinations of planet pairs are increased near
to this resonance. Plotting mutual inclinations against period ratios,
however, showed no significant feature close to the 2:1 resonance,
so for now this feature remains unexplained.

7.3 Eccentricity distributions

The CDFs of the eccentricities of the synthetically observed planets
are shown in Fig. 20, where the solid lines represent either systems
observed to be singles or those observed to be multiples. The dashed
lines show the CDFs for eccentricities drawn from a Rayleigh
distribution with eccentricity parameters σ e = 0.035 and 0.167,
which are the distributions and values for the observed Kepler
multiple and single systems from Mills et al. (2019). While it is
clear that the simulations produce single planets with systematically
larger eccentricities than the planets in multiplanet systems because
the singles are from systems that have undergone stronger scattering
than the multiples, it is also clear that the simulations do not

Figure 20. CDFs of the eccentricities obtained from the synthetic obser-
vations of the simulations, and for a comparison the CDFs of eccentricities
drawn from Rayleigh distributions with eccentricity parameters σ e = 0.035
and 0.167.

provide a good match to the observationally inferred distributions
of eccentricities from Mills et al. (2019). In particular, the singles
would need to be much more eccentric to match the observationally
inferred distribution, and it is not at all clear that N-body simulations
of the type presented here could fit the appropriate distribution of
eccentricities, while also adopting planetary masses in line with
those thought to make up the Kepler compact systems of super-
Earths (such as shown in Fig. 21). On the other hand, although
the distribution from multiple systems is not particularly well fitted
by the Rayleigh distribution, the range of eccentricities obtained
is in much better agreement compared to those obtained for single
transiting systems. Using a maximum likelihood estimation, and
scanning through different values of σ e, we find that an assumed
Rayleigh distribution with parameter σ e = 0.049 provides the best fit
to the multiple systems arising from the simulations. In future work,
we will examine fitting the observed eccentricity distributions with
the results of N-body simulations that consider different scenarios
to those presented here.

Under conditions of strong scattering, the perturbed radial ve-
locity of a planet relative to a circular Keplerian orbit, vr, should
correspond approximately to the escape velocity from the perturbing
body. Assuming typical planet masses and radii M̄p and R̄p,
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Figure 21. Cumulative distributions of the planet masses obtained from the
simulations and inferred from the Kepler data using the mass–radius relation
described in the text.

respectively, we have vr ∼
√

2GM̄p/R̄p. For small eccentricities,
e ∼ vr/vk, where vk is the Keplerian velocity. From the CDF
of simulated planet masses in Fig. 21, the median planet mass
M̄p ∼ 2.5 M⊕ and the corresponding radius R̄p ∼ 1.56 R⊕. For
planets orbiting at ap ∼ 0.1 au, the eccentricity expected from
strong scattering is e ∼ 0.15. The median eccentricity for single
planets synthetically observed in the simulations is e ∼ 0.07,
and approximately 20 per cent of planets have eccentricities above
the strong scattering value of e ∼ 0.15. Hence, strong scattering
contributes significantly to the eccentricity distribution, but weaker
scattering events and collisional damping result in the majority of
planets having smaller eccentricities. Finally, it is expected that
the mean inclination ī ∼ ē/2 after dynamical relaxation (Kokubo
2005). For ē ∼ 0.07, the expected mean inclination is ī ∼ 2◦, very
similar to the mean value observed in the simulations, as discussed
in Section 3.2.3.

Finally, we comment that for strong scattering it is expected that
the resulting eccentricities will scale as e ∼ √

Mp. The discrepancy
between the median eccentricity of the simulated single planets and
the Rayleigh distribution with σ e = 0.167, shown in Fig. 20, is
about a factor of 3 (∼0.07 versus ∼0.2). Hence, to generate this
shift would require an increase in the masses of the planets by a
factor of ∼9. The CDFs for the planet masses from the simulations,
and those inferred from the Kepler data, are shown in Fig. 21,
and there we observe about a factor of 3 discrepancy between the
simulated planets and the Kepler planets. Hence, it is not clear at
present whether or not strong scattering of planets that appear to be
singles in the Kepler data can account for the inferred eccentricity
distribution of these planets as derived by Mills et al. (2019).

8 D I S C U S S I O N A N D C O N C L U S I O N S

8.1 Recap of simulation set-up

We have presented the results of N-body simulations of in situ
planetary system formation. These examine whether or not the
final assembly of the Kepler compact multiplanet systems, and
perhaps the wider population of Kepler planets, can be explained
by a scenario in which a large number of orbiting protoplanets
experience dynamical instability after the gas disc has dispersed,
and accrete through giant impacts, until long-term stable systems

emerge. Our approach to creating initial conditions was to take
eight of the known Kepler five-planet systems, and to use these
as templates for producing systems of 20 protoplanets, whose
total mass was the same as the original Kepler systems (under
the assumption of a particular mass–radius relation). For each
Kepler template, we considered two different distributions of initial
eccentricities and inclinations, a ‘high set’ for which the maximum
values [emax, Imax] = [0.02, 0.01], and a ‘low set’ for which [emax,
Imax] = [0.002, 0.001]. For each of these sets, we also adopted
two different routines for handling collisional growth: a traditional,
perfect accretion model that assumes hit-and-stick collisions; an
imperfect accretion model that allows for a range of collision
outcomes based on the prescriptions of Leinhardt & Stewart (2012).
One of our main results is that the simulation outcomes had almost
no detectable dependence on the collision model adopted, and this
is because the systems we explored did not dynamically excite
themselves sufficiently for collisions to be highly disruptive. This
is in agreement with the recent study by Mustill et al. (2018).
Consideration of more massive planetary systems, however, may
lead to outcomes that depend on the collision model as the enhanced
gravitational scattering may lead to higher collision velocities.

8.2 Recap of main results

All of the N-body simulations resulted in dynamical instability and
collisions between protoplanets. The mean time-scale for collisions
to occur was approximately 3 × 105 orbital periods, measured at
the centre of the annulus containing the protoplanets, indicating
that the systems had time for dynamical relaxation to occur during
the process of collisional growth. 90 per cent of collisions occurred
within 1 Myr, and we ran the simulations for a total of 10 Myr.

The final outcomes of the simulations generally showed good
agreement with the Kepler systems we used as templates, indicating
that the procedure adopted for setting up the simulations gave rise
to plausible initial conditions. In particular, the final distributions of
planet masses, orbital period ratios, separations between neighbour-
ing planets, and intrinsic multiplicities showed good agreement with
the templates on average. Notably, our simulations failed to produce
any one-planet or two-planet systems. This suggests that if single- or
double-planet systems are intrinsically common among the Kepler
systems, as has been suggested (Johansen et al. 2012), then the
formation scenario presented here cannot explain them. If the single
transiting planets are instead members of multiplanet systems whose
mutual inclinations prevent all planets being observed, however,
then final assembly through planet–planet scattering and giant
impacts remains plausible (Carrera et al. 2019; Izidoro et al. 2019).
Similarly, widely spaced pairs of neighbouring planets with large
period ratios are very difficult to explain in a model where the initial
distribution of protoplanets is smooth and continuous. For these
latter systems, it would appear necessary for the initial distributions
of planetary building blocks to contain localized concentrations of
protoplanets in order to produce the large period ratios seen in the
Kepler data. Alternatively, some other process, such as migration,
which can cause planets to move relative to one another, would need
to be included in the models to explain the well-separated planet
pairs that have been observed.

We undertook synthetic transit observations of the final planetary
systems formed in the simulations. We counted the relative numbers
of one-planet, two-planet, three-planet, ..., seven-planet systems
detected by the synthetic observations, and compared this with an
appropriate subset of the Kepler data that matched the parameters of
the model planetary systems. We found that the simulated systems
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overproduce, by about a factor of 2, the numbers of high-multiplicity
versus low-multiplicity systems compared to the Kepler systems.
This arises in part because the excitation of mutual inclinations in
our simulations is too small by about a factor of 2, and also because
our planetary systems produce too few low-multiplicity systems.
We have examined the distributions of the masses of the planets
obtained in the simulations, and find that these are smaller than
the typical inferred masses of the planets in the Kepler data set
(considering planets with radii < 4 R⊕). Fig. 21 shows the CDFs
of the planet masses from the simulations and the Kepler planets,
and it shows: (i) the Kepler systems we chose as templates have
moderately smaller masses than the Kepler data set as a whole
we are comparing against; (ii) the simulations produce too many
low-mass planets compared to both the templates and the Kepler
systems as a whole, because systems with higher multiplicity than
5 are formed. It is likely that by choosing more massive discs
of protoplanets as initial conditions, the resulting planet masses,
and the enhanced scattering they would experience, would lead
to final systems more in agreement with the Kepler data, both in
terms of inferred planet masses and in terms of the distribution of
multiplicities, because of the larger mutual inclinations that would
have been excited. This may also result in eccentricity distributions
that are in better agreement with the observations than we obtained
in the simulations presented here. Alternatively, if final period of
dynamical instability in multiplanet systems is initiated when the
planets are essentially fully formed, rather than when the system
consists of numerous low-mass protoplanets, then it may be possible
to achieve higher eccentricities and mutual inclinations because the
scattering may be stronger and collisions may occur less frequently.

8.3 Recent relevant planet formation studies

In their recent study, Izidoro et al. (2019) were able to construct a
population of planetary systems, which when synthetically observed
provided good agreement with the Kepler multiplicity distribution.
This was achieved by combining simulations that resulted in
resonant chains of planets that became dynamically unstable with
simulations in which the resonant chains remained stable. It is note-
worthy that only 5 per cent of the included planetary systems were
intrinsically one-planet systems, with most of the rest being multiple
systems in which the mutual inclinations typically exceeded 4◦. In
an earlier study, Moriarty & Ballard (2016) undertook a study of the
multiplicity distributions arising from N-body simulations of planet
formation, adopting a range of surface density profiles and masses
in their initial discs of protoplanets and planetesimals. As with
our simulations, theirs also formed planetary systems with intrinsic
multiplicities Np ≥ 3, and by suitably combining their different
simulation results they were able to produce a population of planets
that agreed with the Kepler distribution of multiplicities when their
simulated systems were synthetically observed. Hence, it appears
that combining a range of initial conditions for planet formation
simulations, which ultimately result in dynamical instabilities and
giant impacts, can lead to systems that collectively provide mutual
inclinations and intrinsic multiplicities that agree with observations
when their transits are simulated.

8.4 Intrinsic multiplicities from RV studies

The agreement between these simulations and the observations
raises an important question: Are essentially all planetary systems
intrinsically multiple systems, even when observed to be singles
by transit surveys? And if so, what is the underlying multiplicity

distribution? Transit surveys cannot directly answer this. The
detection of TTVs in apparently single-planet systems discovered
by Kepler, however, shows that a number of these planets have
neighbours close to mean motion resonances (Kane et al. 2019).
In addition, the fact that the eccentricities of single planets appear
to be systematically higher than in multiple planet systems (Mills
et al. 2019) indicates that a number of apparently single planets
have likely been subject to gravitational scattering, and hence
are members of multiplanet systems. Radial velocity surveys can,
in principle, detect nearby companions in compact multiplanet
systems, assuming modest mutual inclinations, although they are
constrained by limits imposed by spectral resolution, instrument
stability, and stellar variability, and numerous compact multiplanet
systems have been discovered by this method (e.g. Mayor et al.
2011). None the less, there are hints in the data that super-Earths
do not always come as members of compact multiple systems.
For example, the recently discovered super-Earth orbiting with a
period of 233 d around Barnard’s star indicates a lack of close
orbiting planets with similar masses in that system (Ribas et al.
2018), and certainly none that became anchored at the inner edge
of the protoplanetary disc during their formation, as often occurs
in N-body simulations of planet formation that involve pebble drift
or planet migration. Similarly, Proxima b, orbiting with a period
of 11 d does not appear to have closely neighbouring planets of
similar masses (Anglada-Escudé et al. 2016). While these are only
individual examples, they indicate that not all planetary systems are
compact multiples. Future high-precision RV surveys targeted at
characterizing the multiplicities of short-period super-Earth systems
will have the power to determine whether or not final assembly of
planetary systems via dynamical instability is the dominant mode of
planet formation, or if instead a substantial population of relatively
isolated planets exists that cannot be explained by the giant impact
formation route.

8.5 Compact non-resonant systems

Furthermore, compact systems of super-Earths, such as Kepler-
11 (Mahajan & Wu 2014), that contain planets on low-eccentricity
orbits, and which are apparently close to instability, are also difficult
to assemble via dynamical instabilities and giant impacts. Kepler-11
appears to have been assembled in a highly dissipative environment,
presumably in a gaseous protoplanetary disc – which is supported
by the low densities of some of the planets (Lissauer et al. 2013),
but none of the planet pairs are in mean motion resonance. Hence,
while dynamically quiet formation in a disc seems necessary, the
lack of resonances indicates that disc-driven migration may not
have played an important role in this system. We note, however, that
recent analyses of single- and multiple-planet migration in inviscid
protoplanetary discs by McNally et al. (2019b) and McNally,
Nelson & Paardekooper (2019a) lead to more complex migration
behaviour of planets than has been found to traditionally occur
in viscous discs. Hence, the formation of resonant chains is not a
foregone conclusion in inviscid discs, and such an environment may
provide a way of forming systems such as Kepler-11. A reasonable
conclusion is that the observational evidence appears to indicate that
a number of different pathways are required for the final assembly
of planetary systems.

8.6 Co-orbital systems

Approximately 1 per cent of our simulations gave rise to pairs of
planets in apparently long-term stable 1:1 co-orbital resonances,
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occupying both tadpole and horseshoe orbits. These normally form
early in the simulations, when the numbers of protoplanets are
high and the planetary systems are undergoing strong planet–planet
interactions. The co-orbital pairs arise as a result of three-body
encounters removing the requisite energy and angular momentum
from a pair of planets such that the co-orbital configuration can
form. These co-orbital planet pairs occur with equal frequency in
the perfect and imperfect collision model simulations, indicating
that the treatment of collisions has no effect on their formation.
In spite of intensive searches through the Kepler data, no co-
orbital planet systems have been found. We note, however, that
there are just over 100 Kepler systems with known multiplicity ≥3
that fall within the parameter ranges covered by our simulations,
so a 1 per cent occurrence rate, which would agree with the
simulations results, leads to an expectation that just one co-orbital
system would have been found. Hence, the current data set is too
small to determine if the observed planets indeed formed from a
large number of protoplanets undergoing dynamical relaxation and
collisions, leading to co-orbital pairs forming with an efficiency
of ∼ 1 per cent per system. Future missions, such as PLATO, will
monitor many more stars than Kepler (Rauer et al. 2014), and hence
will place more stringent constraints on the formation histories of
compact multiplanet systems.

8.7 Composition changes and envelope loss

Recent observations have indicated the presence of a valley in
the distribution of planet radii for short-period Kepler planets
(Fulton et al. 2017; Fulton & Petigura 2018; Van Eylen et al.
2018), and models of envelope photoevaporation suggest that the
position of the valley is most easily explained if the cores of
super-Earths that are subject to photoevaporation are rocky rather
than volatile rich (Owen & Wu 2017; Jin & Mordasini 2018). In
this context, we examined whether or not high-energy collisions
during our simulations could significantly modify the compositions
of the final planets relative to the initial protoplanets. In post-
processing, we used the scaling relations between collision energies
and compositional changes presented by Marcus et al. (2010),
and examined whether or not high-energy collisions occurred
frequently enough that they could remove a large fraction of water-
rich mantles of colliding, differentiated protoplanets whose initial
compositions were 50 per cent rock and 50 per cent water–ice.
The results of this analysis suggest that collisional stripping of
water-rich mantles cannot explain the fact that the apparently naked
cores observed by Kepler have an Earth-like composition, instead
of a mixture of rock and water–ice. It seems unlikely, therefore,
that these now naked cores formed exterior to the ice line and
migrated to their current locations. Using a similar analysis, we also
examined whether or not the impact energies of collisions between
protoplanets could be sufficient to remove any H/He envelopes they
might possess. Our simple analysis suggests that ∼ 30 per cent
of collisions occurring in the simulations could remove gaseous
envelopes, such that planets experiencing multiple collisions would
have a high probability of losing their envelopes completely. Further
modelling of this process could place significant constraints on
the collisional history of the observed population of super-Earths
and mini-Neptunes. Compared to the scenario examined here in
which a large number of protoplanets undergo collisional accretion
during the final assembly of exoplanet systems, the exoplanet data
likely point to an origin in which systems of fewer, essentially
fully formed planets undergo dynamical relaxation after dispersal
of the gas disc in order to produce the observed orbital architectures,

while undergoing fewer collisions in order to maintain the gaseous
envelopes possessed by a large number of the observed exoplanets.

In future work, we will present simulations with a significantly
broader range of initial conditions, to assess the conditions under
which dynamical instabilities in multiplanet systems may have
contributed to the final stage assembly of the observed short-period
super-Earths and mini-Neptunes.
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APPENDI X A : PLANETESI MAL R I NG
FRAG MENTATI ON

For the imperfect collision simulations, which adopted the collision
model from Leinhardt & Stewart (2012), approximately 10 per cent
of our simulations experienced at least one supercatastrophic
collision, leading to the formation of a ring composed of collision
debris in the form of planetesimals. This ring was often confined to
the inner most regions close to the star, where collision velocities can
reach their highest values, and this led to large numbers of particles
needing to be integrated using small time-step sizes. In order to
overcome this problem, we developed a scheme for reducing the

Figure A1. An example of an inner ring from one of our simulations, where
the small black dots are the position of the inner ring objects. The blue circles
denote the planets with their size proportional to their mass. The centre red
pentagram is the position of the host star. Viewed from the top of the system,
all bodies are orbiting the host star in an anticlockwise direction. Parameter
information about this inner ring is listed in Fig. A2 and Table A1.

Figure A2. Counting distribution of all inner ring object parameters.
Where it shows the distribution of the (top left) semimajor axis, (top right)
distance, r, from the host star, (bottom left) eccentricities, and (bottom right)
inclinations.
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Table A1. Fragmentation ring parameters for Kepler55 low 06, dis-
played in Fig. A1.

N ain (au) aout (au) 〈a〉 (au) 〈e〉 〈I〉 (rad)

2177 0.0241 0.0283 0.0260 0.2213 0.1272

Figure A3. Time since collision versus the fraction of debris particles
remaining since the collision for eight collision events selected from the
simulations.

masses of the ring particles on a time-scale corresponding to their
collision time-scales. Then, once the mass of the ring reaches
negligible values, the ring particles could be removed from the
simulations, since the planetesimals would then be ground down
to dust, which would be removed in reality by the Poynting–
Robertson effect for grain sizes between 1 mm to 1 μm (Poynting
1903; Robertson 1937; Guess 1962) or radiation pressure for
grains smaller than 1 μm (Burns, Lamy & Soter 1979). When
there is a fragmentation ring detected between the innermost big
body and the host star, we apply the following step during the
simulation.

The total number of bodies in the ring, N, the mean semimajor
axis, 〈a〉, eccentricity, 〈e〉, inclination, 〈I〉, and semimajor axis of
the innermost and outermost bodies in the ring (aout and ain) can
be found from the simulations. These can be used to calculate the
collision time in the ring, τ coll, according to

τcoll = 1

nσ 〈v〉 , (A1)

where n is the number density given by

n ≈ N

2π
(
a2

out − a2
in

) 〈a〉〈I 〉 . (A2)

The velocity dispersion 〈v〉 is given by

〈v〉 ≈ 〈vk〉
√〈

e2
〉 + 〈

I 2
〉
, (A3)

where 〈vk〉 is the mean Keplerian velocity of the objects in the ring.
The collision cross-section is simply

σ = πR2
p . (A4)

Having obtained the collision time, we then decrease the mass of
the ring particles according to

mp(t) = mp(t0)e−(t−t0)/τcoll), (A5)

where t0 is the time of ring formation, and after 15 e-folding times
we remove the ring particles, since their masses are then negligible.

Fig. A1 shows the ring formed in one of our simulations.
Fig. A2 shows the parameters of the ring shown in Fig. A1,
and Table A1 lists the ring parameters. We can see 2177 bodies
with masses ∼0.0015 M⊕ concentrated between 0.01 and 0.05
au. Applying the parameters of the ring listed in Table A1 to
equations (A1), we get τ coll = 2.12 yr, leading to rapid removal of the
ring.

We note that Mustill et al. (2018) also include an imperfect
accretion model in their simulations, and immediately remove all
small debris particles after they are formed because of the small
time-scale for collisions and collisional grinding versus the re-
accretion time-scale of the debris on to nearby protoplanets. We
have examined the re-accretion time-scale for debris particles in our
simulations, and find that after a debris cloud is generated the time-
scale for half of the debris particles generated to be re-accreted is
between ∼2 and ∼100 yr, as shown in Fig. A3. This is considerably
shorter than the re-accretion time-scale of 30 000 yr estimated by
Mustill et al. (2018), but perhaps comparable to or longer than
the typical grinding time-scales for debris clouds generated during
collisions. This suggests that a realistic model for the evolution
of post-collision debris should allow a fraction of it to re-accrete
while the other fraction is ground down and removed by radiation
pressure. Incorporating such a model, however, goes beyond the
scope of this paper.

APPENDI X B: SURFACE DENSI TY FI TTING
M O D E L

Table B1 shows all the coefficients adopted to fit the surface density,
�fit, together with the type of fitting model chosen from the models
described in Section 2.3. The choice of fitting model was made by
selecting the one that gave the best least-squares fit.

Table B1. Surface density fitting model for the eight Kepler templates. For model details, see equation (13).

System template Fitting model c1 c2 c3 c4

Kepler55 Power law 1.047 × 10−1 −2.488 73.80 /
Kepler80 Polynomial −1.687 × 107 2.597 × 106 −1.097 × 105 1.917 × 103

Kepler84 Polynomial 2.062 × 105 −9.379 × 104 1.142 × 104 −1.507 × 102

Kepler102 Fourier series 1.042 × 102 57.58 37.81 60.55
Kepler154 Polynomial 6.073 × 104 −3.512 × 104 5.303 × 103 −25.78
Kepler169 Exponential 5.233 × 102 −17.72 0 /
Kepler292 Power law 29.21 9.643 × 10−1 0 /
Kepler296 Power law 9.924 × 10−1 −2.082 0 /
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APPEN D IX C : SIMULATION O UTPUTS FO R
INDIV IDUAL TEMPLATES

This section provides the simulation outcomes from all sys-
tem templates that were not shown in the main body of the

paper: Kepler55, 84, 154, and 296 (imperfect collision
simulations) and all eight templates for the perfect collision
simulations.

Figure C1. Same plot as Fig. 7 but for the imperfect Kepler-55, 84, 154, and 296 templates.

Figure C2. Same plot as Fig. 12 but for the imperfect Kepler55, 84, 154, and 296 templates.
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Figure C3. Same plot as Fig. 7 but for the perfect Kepler80, 102, 169, and 292 templates.

Figure C4. Same plot as Fig. 12 but for the perfect Kepler80, 102, 169, and 292 templates.
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Figure C5. Same plot as Fig. 7 but for the perfect Kepler55, 84, 154, and 296 templates.

Figure C6. Same plot as Fig. 12 but for the perfect Kepler55, 84, 154, and 296 templates.
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Figure C7. Similar to Fig. 7 but for the comparison of template Ke-
pler169 (perfect routine) after running 10 and 100 Myr.

Figure C8. Similar to Fig. 11 but for the comparison of template Ke-
pler169 (perfect routine) after running 10 and 100 Myr.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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