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ABSTRACT: A general protocol for functionalization of glycosyl thiols has been reported. This protocol is based on a 
single-electron Ni/photoredox dual-catalyzed cross-coupling between 1-thiosugars and a broad range of arylbromides and 
iodides as well as alkenyl and alkynyl halides. This base-free method gives access to a series of functionalized 
thioglycosides in moderate to excellent yields with a perfect control of the anomeric configuration. Moreover, it has been 
shown that this methodology may be transposed successfully to the continuous-flow photoredox chemistry. 

 

1-Thioglycosides are of great interest in pharmaceutical 
science.[1] These derivatives are considered as mimetics of 
biologically relevant O-glycosides as they are known to be 
resistant towards enzymatic hydrolysis.[2] Some biologically 
active 1-thioglycosides are represented in Figure 1, includ-
ing hSGLT1 inhibitor, ligand of lectine A, cytotoxic Hsp90 
inhibitor, galactosidase and glycosidase inhibitors, as well 
as antimicrobial agent. In addition, thioglycosides are 
considered as a versatile intermediates in organic synthe-
sis.[3] 

Despite their potential interest in medicinal chemistry, 
only few methods report their synthesis. Usually, they are 
prepared by reaction of thiophenol with a per‐O-acetylated 
glycosyl donors in the presence of a Lewis acid.[4] They also 
could be prepared by substituting the halogen atom at the 
anomeric position of the sugar by a thiolate anion.[5] These 
approaches however suffer from the harsh reaction condi-
tions, and are limited in substrate scope with thiophenols. 
Various Pd-,[6] Ni-,[7] or Cu-catalyzed[8] S-arylations of 
glycosyl thiols with aryl iodides were developed inde-
pendently by Sticha, Xue, and our group (figure 2 Ia-b).[9] 

However, demanding reaction conditions such as high 
catalyst loadings (30 mol% in the case of Ni-catalysis), 
specialized phosphine ligands for the Pd- catalysis, elevat-
ed reaction temperatures(80-120 °C cases of Pd- or Cu- 

 

Figure 1. Example of Biologically Active Thioglycosides 
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catalysis), and long reaction times often limit the practi-
cability or the scope of substrates. Moreover, in all these 
cases the coupling is effective with only aryl iodides, how-

ever the cross-coupling with aryl bromides is rather unex-
plored.

 

 

 

Figure 2. (Ia and b) traditional metal catalyzed cross-coupling methods for the synthesis of thioglycosides (Ic) Dual nickel 

photocatalyzed approach, (II) proposed mechanism 
 

Owing to the high importance of thioglycosides, there is a 
strong impetus to develop mild and general reactions for 
their efficient synthesis. 

Dual nickel photocatalysis has emerged as a powerful 
strategy and a remarkably efficient tool for organic cross-
coupling reactions in recent years.[10] Although this ap-
proach was used successfully for the C–C bond construc-
tion, the formation of C–heteroatom bond through Ni-
photoredox processes are less explored. Moreover, meth-
ods which use photoredox-dual catalysis to form thiyl 
radical and promote it’s cross-coupling with aryl halides to 
form C−S bonds are rare. Johannes and co-workers devel-
oped an Ir/Ni dual-photoredox mediated cross-coupling 
reaction of thiols with aryl iodides.[11] Very recently, 
Molander et al. reported the first Ni/photoredox cross-
coupling reaction for the S-arylation of cysteine-containing 
unprotected peptides.[12] The authors showed elegantly 
that the mildness of this approach allows late-stage func-
tionalization of complex biomolecules. However, the S-

arylation of the anomeric bond of thiosugars under Ni-
photoredox dual catalysis has never been examined, prob-
ably due to the inherent complexity of carbohydrates. 

In continuation of our study on the reactivity of 
thiosugars under transition metal catalysis, we became 
interested in whether the S-(hetero)arylation of 1-
thiosugars could be realized by the single-electron dual 
Ni/photocatalysis (Figure 2 Ic). We considered that 1-
thiosugars may be suitable substrates for such a strategy, 
keeping in mind that a practicable synthetic method 
should work not only with aryl iodides but also with aryl 
bromides as well as alkenyl- and alkynyl-bromides. We 
could assume that catalytic cycle may be initiated by 
photon absorption, generating excited state Ru 
photocatalyst, followed by oxidation of the HAT reagent 
via single electron transfer (SET) (figure 2, II). In this 
context, ammonium bis(catechol)alkylsilicates were re-
cently found to be effective hydrogen atom transfer (HAT) 
reagents for Csp2

–S coupling under the Ni/photoredox 
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processes.[13] Rapid H-atom abstraction from the glycosyl 
sulfhydryl group generates a glycosyl thiyl radical. This 
later adds to Ni(II) which arises from Ni(0) oxidative 
addition with the aglycon halide. In a possible alternative 
of the catalytic cycle, Molander, Kozlowski and co-workers 
reported that the thiyl radical metalation may precede the 
oxidative addition step.[14] Reductive elimination from 
Ni(III) affords the desired thioglycoside, and the dual 
catalytic cycles are closed by a final SET. 

In the first set of experiments, we examined the coupling 
of tetra-O-acetylated 1-thio-β-D-glucopyranose 1a with 1-
bromobenzonitrile 2a as a model study under various 
reaction conditions. Representative results from this study 
are summarized in Table 1. The reaction of 1a (1 equiv) with 
2a (1 equiv) was first investigated under the Molander’s 
conditions using 5 mol% of [Ni(dtbbpy)(H2O)4]Cl2, 2 mol% 
of a commercially available [Ru(bpy)3(PF6)2] photocatalyst 
in the presence of ammonium bis(catechol)alkyl silicate 
(1.3 equiv) as a HAT reagent under blue light emitting 
diode (LED) irradiation (Table 1, entry 1). Pleasingly, this 
protocol afforded the desired thioglycoside 3a in a moder-
ate 59% yield as a single β-anomer (J1, 2 = 9 Hz). Increasing 
the amount of the bromide partner 2a from 1 equiv to 1.3 
equiv furnished 3a in a good 79% yield (entry 2). Moreover, 
the yield was increased up to 85% yield when 1.5 equiv of 
2a were used (entry 3). The optimization of the reaction 
conditions was continued with respect to solvent, however, 
no significant improvement of the yield of 3a was observed 
with DMA, DMSO, MeCN and THF (entries 5-8). Finally, 
performing the coupling reaction with the 
iodobenzonitrile instead the bromide led to 3a in 90% 
yield (entry 9). Extensive examinations of the other reac-
tion parameters revealed that the use of molecular sieves 
plays an important role in this reaction. The yield of 3a was 
improved up to 95% with complete retention of the ano-
meric configuration when the reaction was conducted in 
the presence of molecular sieves (entry 10). A control 
experiments showed that all parameters (Ni-catalyst, Ru-
photocatalyst, HAT reagent and light) were essential for 
the reaction to proceed. Without one of them, the reaction 
don’t occur. 

Table 1 Optimization of the Coupling Reaction of 1a with 2aa  

 

entry X equiv of 2a solvant 3a (%)b 

1 Br 1 DMF 59 
2 Br 1.3 DMF 79 
3 Br 1.5 DMF 85c 
4 Br 2 DMF 81 
5 Br 2 DMA 32 
6 Br 2 DMSO 54 
7 Br 2 MeCN 40 
8 Br 2 THF 19 
9 I 1.5 DMF 90 
10 I 1.5 DMF 95d 

a
A sealable tube was charged with thiosugar 1a (1 equiv, 0.2 mmol), 

1-bromo-4-benzonitrile 2a (xx equiv), [Ni(dtbbpy)(H2O)4]Cl2 precata-

lyst (5 mol %), [Ru(bpy)3](PF6)2 (2 mol%), HAT reagent (diisopro-

pylammonium bis(catechol)isobutylsilicate) (1.3 equiv) in dry and 

degassed DMF (1.0 mL). 
b
 Yield of isolated product. 

c 
70% of 3a when 

3 mol% of Ni-catalyst were used. 
d
 150 mg of molecular sieves were 

added.  

With these encouraging results, we investigated next, the 
scope for this dual Ni/photocatalysis process by systemati-
cally varying the nature of the electrophile partner 2 and 
the thiosugar substrates 1a-e (Scheme 1). All the coupling 
proceeded cleanly and selectively in good yields. As 
showed in Scheme 1, various electron-deficient and elec-
tron-rich aryl iodides having para- and meta-substitution 
effectively underwent reaction with tetra-O-acetylated 1-
thio-β-D-glucopyranose 1a in yields up to 96% (products 
3a-o). 

 
Scheme 1 Scope of Coupling of Thioglucose 1a with Ha-

lo(hetero)arenes, Alkenyl Halides and Alkynyl Bromides 2 



 

 

4 

 
Reaction conditions: A sealable tube was charged with thiosugar 

1a (1 equiv, 0.2 mmol), aryl, alkenyl, or alkynyl halides 2 (1.5 
equiv), [Ni(dtbbpy)(H2O)4]Cl2 precatalyst (5 mol %), 
[Ru(bpy)3](PF6)2 (2 mol%), HAT reagent (diisopropylammonium 
bis(catechol)isobutylsilicate) (1.3 equiv) in dry and degassed DMF 
(1.0 mL). a Yield of isolated product. b Comparison with results 
obtained by Pd-catalysis reported in Ref. [7a, 7b and 7c]. 

Various reactive functional groups were tolerated, such as 
nitrile (3a), ester (3g), halogens (3b-d, 3h), isopropyl (3n) 
and aminoacid (3o). In addition, the presence of an ortho 
substitution at the aromatic ring of the coupling partner 
don’t affect the coupling process as compounds 3d, 3l and 

3m having an ortho substituent groups were obtained in 
88%, 73% and 85% yields, respectively. 

Aside from aryl iodides, aryl bromides can also serve as 
coupling partners under Ni-photocatalysis. For example, 
cross-coupling of aryl bromides bearing various functions 
(–CN, –Cl, –F and –OMe) have been successfully achieved 
under room temperature to afford the corresponding 
thioglycosides (3a-b, 3h, 3i, 3k,l) in moderate to good 
yields with no changes to the standard reaction conditions. 
However, we can note that aryl bromides are less reactive 
than their iodide congeners in this cross-coupling proto-
col. Interestingly, couplings with heteroaryl halides de-
rived from quinolinone, pyridine, and indole have also 
been successful, furnishing 3p-r in excellent yields (87% to 
95%). In addition, para-iodophenylalanine (NHBoc) can be 
employed as a coupling partner (compound 3o).  

One can be note that across a number of substrates, cou-
pling products were afforded in comparable yields to those 
obtained under palladium-catalyzed (thermal) conditions.  

In the aim to further pushing the limit of this Ni-
photocatalysis protocol, we examined the coupling of 1a 
with halogenated alkenes and alkynes. Delightfully, when 
E-β-styryl bromide was employed, the coupling with 1a 
afforded stereoselectively the desired alkenyl thioglycoside 
derivative 3t in 87% yield. In addition, reaction of 4-
(bromoethynyl)thiophene with 1a furnished the desired 
alkynyl-thioether 3u in a 58% yield. Interestingly, when 
(E)-1,2-diiodoethene was used, the coupling reaction with 
1a furnished selectively the monocoupling product 3s in a 
moderate 30% yield, while the formation of di-coupling 
product has never been observed. Finally, this methodolo-
gy was applied with success to the synthesis of the com-
pound 3v (85% yield), an hSGLT1 inhibitor used for the 
control of hyperglycemia in patients with diabetes.  

 
Scheme 2 Scope of Thiosugars 1b-e Coupling With Iodoarenes 

 

Reaction conditions: A sealable tube was charged with thiosugar 
1b-e (1 equiv, 0.2 mmol), aryl halides 2 (1.5 equiv), 
[Ni(dtbbpy)(H2O)4]Cl2 precatalyst (5 mol %), [Ru(bpy)3](PF6)2 (2 
mol%), HAT reagent (diisopropylammonium 
bis(catechol)isobutylsilicate) (1.3 equiv) in dry and degassed 

DMF (1.0 mL). a Yield of isolated product. 

In a next step, we examined the scope of this method with 
respect to the glycosyl thiols. As depicted in Scheme 2, this 



 

 

5 

coupling reaction tolerates different glycosylthiols 1b-e: O-
benzoylated 1-thio-β-D-glucopyranose 1b O-acetylated 1- 
thio-β-D-galactopyranose 1c and O-acetylated 1-thio-β-D-
fucopyranose 1d all coupled with the 4-iodobenzonitrile 2a 
to give thioglycosides 4a-c in good yields. In addition, this 
coupling could be applied to the complex disaccharide 1-
thio-β-D-cellobiose 1e which was efficiently reacted with 
2a to give 4d in 64% yield. 

Recently, continuous flow synthetic methodologies com-
bined to photochemistry have become an emerging field.[15] 
This combination could allow the development of fully 
automated process with an increased efficiency and, in 
many cases, improved sustainability. The great peculiarity 
of a flow photoredox system is a very efficient irradiation 
that allows to speed the reaction rate up so that productiv-
ity is generally greatly improved with respect to the batch 
system. Indeed, reaction scale up is usually easy to perform 
with high yields. In order to accelerate our coupling pro-
cess, we attempted to transporte the continuous-flow 
techniques to our reaction. We were pleased to see that 
the thioarylation of 1a with 2a in a large-scale version (0.8 
mmol scale, 4 fold), could be carried out under the same 
conditions at a residence time of 20 min at 25 °C. Remark-
ably, the reaction runs smoothly with complete conversion 
and the desired product was isolated in 79% yield (Scheme 
3). 

 
Scheme 3 Continuous flow Coupling of Thioglucose 1a with 2a 

 

 

In summary, we have shown that 1-thiosugars are compe-
tent nucleophile partners in the Ni/photoredox-dual-
catalyzed cross-coupling reactions, and developed a gen-
eral method for the synthesis of thioglycosides in batch or 
in flow. The method tolerates a wide range of functional 
groups such as aryl, heteroaryl, alkenyl and alkynyl bro-
mides and iodides. In addition, a variety of glycosyl thiols 
could be used. This method opens news opportunities for 
using thiosugars in synthetic methodology. 
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