N

N

GhostBusters: Mitigating Spectre Attacks on a
DBT-Based Processor
Simon Rokicki

» To cite this version:

Simon Rokicki. GhostBusters: Mitigating Spectre Attacks on a DBT-Based Processor. DATE 2020
- 23rd IEEE/ACM Design, Automation and Test in Europe, Mar 2020, Grenoble, France. pp.1-6.
hal-02396631

HAL Id: hal-02396631
https://hal.science/hal-02396631
Submitted on 6 Dec 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02396631
https://hal.archives-ouvertes.fr

GhostBusters: Mitigating Spectre Attacks
on a DBT-Based Processor

Simon Rokicki
Univ Rennes, INRIA, CNRS, IRISA

Abstract—Unveiled early 2018, the Spectre vulnerability af-
fects most of the modern high-performance processors. Spectre
variants exploit the speculative execution mechanisms and a
cache side-channel attack to leak secret data. As of today, the
main countermeasures consist of turning off the speculation,
which drastically reduces the processor performance. In this
work, we focus on a different kind of micro-architecture: the
DBT based processors, such as Transmeta Crusoe [1], NVidia
Denver [2], or Hybrid-DBT [3]. Instead of using complex out-
of-order (Oo0O) mechanisms, those cores combines a software
Dynamic Binary Translation mechanism (DBT) and a parallel
in-order architecture, typically a VLIW core. The DBT is in
charge of translating and optimizing the binaries before their
execution. Studies show that DBT based processors can reach the
performance level of O0O cores for regular enough applications.
In this paper, we demonstrate that, even if those processors do not
use 000 execution, they are still vulnerable to Spectre variants,
because of the DBT optimizations. However, we also demonstrate
that those systems can easily be patched, as the DBT is done
in software and has fine-grained control over the optimization
process.

I. INTRODUCTION

The growing importance of data and the increasing reliance
on computer systems have made cybersecurity a primary
concern and a very active domain of research. Usually, security
vulnerabilities occur at a software level (e.g., the classical
buffer overflow). Recently, a new kind of vulnerability caused
by the hardware has been unveiled. The Spectre vulnerability
exploits speculative execution and cache side-channel attacks
to access private data on a remote system [4]. After the first
unveiling in the early 2018s, several variants of Spectre have
been added in the set of speculation based attacks [5]-[7].

As out-of-order and speculative execution is a crucial fea-
ture for high-performance computing, almost every high-end
processor is sensible to this vulnerability, and dealing with
these vulnerabilities is a challenge for micro-architecture re-
searchers. Indeed, current countermeasures prevent any specu-
lation on sensible Spectre patterns, at the expense of processor
performance.

The above mentioned out-of-order (OoO) and speculative
execution introduce significant overhead in the energy con-
sumption of the system. For embedded systems, where energy
efficiency is a concern, other kinds of micro-architectures
are used. For example, micro-architectures based on Dynamic
Binary Translation (DBT) offer high-performance computing
on data-intensive applications, while consuming less energy
than OoO processors. The idea of DBT based processors
is to dynamically translate the (sequential) binaries of the

executed application into explicitly parallel binaries, which are
executed by an in-order processor. There are several examples
of such micro-architectures: Transmeta Crusoe and Efficeon
processors [1], NVidia Denver [2] and the academic tool
Hybrid-DBT [3].

In this paper, we demonstrate that, even if such micro-
architectures are based on in-order architectures, they are
sensible to Spectre vulnerability. Indeed, the speculation is
done by the DBT engine, which re-orders instructions to
increase performance. We have built several proof-of-concept
attacks for two variants of Spectre and validated them on
NVidia Denver processor and Hybrid-DBT. We have also built
a countermeasure for Spectre, which has been implemented on
Hybrid-DBT.

More precisely, the contributions of this work are i) a proof-
of-concept of Spectre attacks on DBT based processors and ii)
the presentation of a simple countermeasure, which is made
because such micro-architectures offer precise control over the
speculation process. This countermeasure is an update on the
DBT software and causes no real slowdown in the benchmark
applications studied.

The rest of this paper is organized as follow: in Section II,
we provide all the necessary background on speculation tech-
niques, Spectre, and on the principle of DBT based processors.
Section III presents the two variants of Spectre which have
been tested on DBT based processors, and Section IV presents
the countermeasures applied in Hybrid-DBT. Finally, Section
V presents the experimental study conducted, and Section VI
present the related work.

II. BACKGROUND

In this section, we provide all the necessary background on
speculative Out-of-Order execution and the Spectre vulnera-
bility. We also quickly introduce DBT based processors.

A. Speculative execution and Spectre vulnerability

Most modern high-performance processors use speculative
execution to increase the number of instructions executed in
parallel. The principle is to run some instruction on unused
execution units without knowing for sure if it has to be
executed (e.g., branch prediction), if its operands are valid
(e.g., value prediction) or if another instruction should have
been executed before (e.g., memory dependency specula-
tion). Speculative execution is based on complex hardware
mechanisms, which ensure that a misspeculated instruction
never affects the architectural state of the processor. Because

char buffer[size];
char arrayVal[256%x128];

if (index < size) {
char a = buffer[index];
char b = arrayVall[a * 128];

//Extracting the value from the cache
inspectCache () ;

Fig. 1. Example code of Spectre v1

of the page limitation, we do not provide more details on
the complex mechanics involved in speculative out-of-order
micro-architecture.

The Spectre vulnerability unveiled early 2018 takes advan-
tage of these speculation mechanisms. The basic idea is that,
even if a misspeculated instruction does not modify the state
of the architecture, it may affect the micro-architecture. This
change in the micro-architecture can then be moved toward
the architecture using side-channel attacks. In the example
of Spectre, the leakage comes from the cache: the attacker
modifies the cache state function of the secret value (i.e.,
access a memory location whose address depends on the secret
value) and uses performance counters to detect which memory
location is in the cache.

Let us consider the code on Figure 1. Extracting a secret
value using the Spectre vulnerability requires three steps:

1) The attacker trains the branch predictor to enter inside
the if condition: he/she executes the code using indexes
that are within the array boundaries.

2) The attacker flushes the data cache and generates an in-
dex which points to the secret value (i.e., the index value
is the difference between the address of the secret value
and the address of the buffer). During the execution,
the branch predictor predicts that the execution enters
the if condition and, consequently, the processor starts
executing these instructions. It reads the secret value,
computes an index depending on this secret and uses it
to access a given memory location in arrayVval.

3) The processor commits the branch instruction, realizes
that these instructions should not be executed and drop
their results. However, the cache has been affected by
the speculative execution.

4) The attacker inspects the cache by measuring the time
required to read a value of arrayVal. For one of these
values, the access time is much shorter, which means
that the value was already in the cache: the attacker
knows the secret value.

As the memory access performed to read the secret is done
speculatively, any exception raised when the value is accessed
are dropped when the instruction is dropped (e.g., exceptions
indicating that the process has no read permission at this
memory location). The example in Figure 1 exploits the branch
prediction mechanism, but there exist variants based on various
speculation mechanisms.

B. DBT based processors

Superscalar OoO processors use sophisticated hardware
to dynamically re-schedule instructions and to speculate on
branches or dependencies. If these mechanisms enable high-
performance on a broad range of applications, it also con-
sumes much energy. For embedded systems where energy
efficiency is a primary concern, it is possible to use DBT
based processors, which offer performance comparable with
000 processors but at a lower energy expense.

The idea behind DBT based processors is to use a simple in-
order superscalar processor combined with a Dynamic Binary
Translation engine. During the execution, the DBT layer
generates binaries optimized for the in-order architecture: it
builds execution traces, super-blocks or hyper-blocks and uses
these structures to re-schedule the instructions. The objective
is to improve the binaries with knowledge of the in-order
processor used.

There are several examples of such processors: Transmeta
Crusoe and Efficeon processors execute x86 on a VLIW
architecture [1], NVidia Denver and Carmel processors execute
Arm-v8 binaries in a superscalar in-order core [2]. Finally,
Hybrid-DBT is an open-source, DBT based processor which
executes RISC-V binaries on a VLIW architecture [3]. For
all those processors, a software thread analyzes, translates and
optimizes the binaries to increase the performance on the in-
order architecture.

Some studies have shown that, with perfect static schedules,
it is possible to reach 90% of the performance level of an Out-
of-Order processor using the same number of computing units
[8]. Moreover, as the DBT based processor do not use complex
hardware mechanisms to re-order instructions and speculate,
they can offer more execution units. As an example, the last
Carmel core from NVidia is a 10-wide superscalar processor.

In the next section, we present how DBT based processors
are subject to the Spectre vulnerability because of speculation
made by the DBT engine. However, we also demonstrate that,
as the DBT is done in software, it can be patched to be resilient
to the vulnerability.

III. SPECTRE ON DBT BASED PROCESSOR

The first contribution presented in this paper is to demon-
strate that DBT based processors are vulnerable to some
variants of the Spectre vulnerability, even if the underlying
hardware executes instructions in their sequential order. In-
deed, when the binaries are translated and optimized, the DBT
engine introduces speculative instructions.

In this section, we present two variants of Spectre that
works on both NVidia Denver processor and Hybrid-DBT.
As the speculation process is slightly different in DBT based
processors, the attacker code has been modified to exploit these
mechanisms.

A. Speculation during trace-based scheduling

Among the optimizations applied by the DBT engine, the
most important one is block construction. The execution is
profiled, and the outcome of frequently executed branches
is collected. Then, the DBT engine merges basic blocks and

duplicates instructions to create super-block, hyper-block, or
execution traces. Inside those blocks, the DBT engine performs
instruction scheduling and register allocation. If an execution
unit is available, it may move some instructions before a
conditional branch, allocating a hidden register for storing
the result (i.e., a register not defined in the ISA). During
the execution, if the conditional branch has been predicted
correctly, the execution is slightly faster, as some instructions
are already executed. If the conditional branch has been
miss-predicted, the result of the instruction is ignored, and
the execution continues. As for out-of-order processors, it is
possible to use cache side-channel attacks to leak the result of
the speculative instruction.

On the example given in Figure 1, the attacker can execute
the binary many times using an index strictly lower than the
array size. There, the DBT engine observes that the conditional
branch is almost always not taken. Consequently, it decides to
merge the block located before the if and the then block.
This newly created block contains both the comparison, the
conditional branch and the two memory accesses used for
the Spectre attack. During instruction scheduling, those two
memory accesses may be scheduled before the conditional
branch, enabling the Spectre attack. This variant of Spectre
corresponds to Spectre vl.

B. Speculation with the Memory Conflict Buffer

Another challenging point in DBT based processor is to
handle memory disambiguation. At the binary level, the DBT
engine has no access to memory addresses (only register plus
offset) and it is challenging and time-consuming to prove that
two memory operations are independent. However, DBT en-
gines can use memory dependency speculation to circumvent
this problem: at schedule time, it speculates that there are no
dependencies between two memory operations, and schedules
accordingly. Those speculative memory operations are clearly
identified in the binaries (i.e., using a distinct opcode in the
VLIW ISA). At execution time, dedicated hardware is used
to store and compare the addresses of speculative memory
operations. If the two addresses are different, the speculation
was correct, and the execution continues. If the two addresses
are the same, the memory accesses were dependent, and the
execution is currently in an illegal state. In this situation,
there are two possibilities: either the DBT engine has already
generated recovery code for this situation, and it can be
executed, or the execution is interrupted until such code is
generated.

This speculation mechanism, which is close to Load/Store
Queues in OoO processors, has been first introduced by
Gallagher et al. and mainly focused on static compilation [9],
[10]. This speculation technique is used in Transmeta Crusoe
and Efficeon processors [1], in NVidia Denver [2] and in
Hybrid-DBT [11].

Here again, it is possible to speculatively read a value in
memory and to extract it using a cache side-channel attack.
Let us consider the example code in Figure 2, and more
specifically, the situation where ¢ = j = 0. If all instructions
are executed in their sequential order, the addrBuf ultimately

int addrBuf[8];
char buffer[size];
char arrayVal[256%x128];

addrBuf [i] &secret - &buffer;
addrBuf[j] = ... ; //long computation

int a =
char b =
char c =

addrBuf [0];
buffer(al;
buffer[b*128];

//Extracting the value from the cache
inspectCache () ;

Fig. 2. Example code of a variant of Spectre exploiting memory dependency
speculation.

contains a valid index in its first location, which is then stored
in variable a. This value a is then used to access the array
buffer.

On a DBT based processor using memory dependency
speculation, the order of memory operations may be changed.
Indeed, as the second write on addrBuf requires long compu-
tations, all the subsequent load operations may be scheduled
before it. Consequently, at run-time, the processor loads an
incorrect index in a, uses it to read the secret value, which is
then stored in b. This value is then used to compute an address,
which is necessary to leak the value using cache side-channel
attacks.

After those operations, the store instruction on array
addrBuf is executed, and the dedicated hardware which
compares addresses realizes that the memory location has been
accessed before it was written (i.e., realizes that the value of a
was incorrect). Consequently, it rolls back and re-execute the
instruction correctly, but the value has already been leaked
using the cache.

A similar attack can be performed using the Load/Store
Queue of an OoO processor. Spectre variant 4 exploits this
kind of mechanisms.

IV. MITIGATION OF SPECTRE VULNERABILITY

As presented in the previous section, DBT based processors
are also vulnerable to Spectre variants. However, they provide
additional control in the speculative execution. Indeed, the op-
timization process is performed in software and can be patched
to insert countermeasures in the instruction scheduling.

In the following, we present the modification done in
the DBT engine to i) dynamically detect a possible Spectre
vulnerability in the optimized binaries and ii) generate Spectre-
safe binaries without sacrificing performance. Those modifica-
tions have been implemented in the open-source Hybrid-DBT
simulator.

A. Detecting Spectre patterns

The first objective is to detect the Spectre pattern in binaries.
After Spectre unveiling, several attempts have been made to
detect this pattern in compilers and to insert fence instructions

addrBuffer

&secret addrBuffer

&secret

addrBuffer &secret

— Data dependency
Data dependency
’ (poisoned)
Additional
dependency

Fig. 3. Data-flow graph of a Spectre v4 attack code. Part (A) of the figure represents the original data-flow graph with the dependencies between memory
operations. Part (B) of the figure corresponds to the most aggressive version, where the DBT engine speculate on all memory operations and schedules
consequently. Part (C) represents the graph used in our approach: output of speculative loads have been poisoned and the memory operations using a poisoned

address are constrained.

to secure the binaries [12]. However, as OoO processors
automatically speculate over all branches, the pattern can be
hidden behind complex control-flow operations. Consequently,
such a tool has to analyze the whole application.

In our approach, the problem is much simpler: before per-
forming instruction scheduling, the DBT engine has access to
an Intermediate Representation containing all the instructions
to schedule. No speculation can be done outside the scope of
a single IR block. Temporary values are dropped at the end
of the IR block and cannot be accessed from somewhere else.
Consequently, we only have to search for the Spectre pattern
inside a single IR block.

For detecting the Spectre pattern, we use a poisoning
mechanism: all the values manipulated on the data-flow graph
may be poisoned by a speculative instruction. The goal of the
analysis is to detect the load pattern of the cache side-channel
attack, which is a speculative load instruction using a poisoned
value as an address.

The analysis consists of going through all instructions of an
IR block applying the following rules:

o A speculative instruction generates a poisoned value.
Speculative instructions can be either load instruction
moved before! a conditional branch or load instruction
moved before a memory write;

o If an instruction uses a poisoned value as an operand, it
generates a poisoned value;

o If a speculative memory instruction uses a poisoned value
as an address, then it may leak a value through a side-
channel attack. Consequently, we mark the instruction to
ensure that it cannot be scheduled speculatively.

Figure 3 illustrates this analysis. Part (A) of the figure is
the data-flow graph with no speculation: we can note the
dependencies between the store instruction and the different
load instructions. Part (B) of the figure is the same data-flow

TAs we work in a data-flow graph, the concept of place of an instruction
has no meaning. When we say moved before, we means that the dependency
between the conditional branch and this load instruction has been removed to
possibly generate a more efficient schedule.

graph with the memory speculation enabled: the DBT engine
has removed those dependencies to generate a denser schedule.
This version may lead to a Spectre vulnerability. Part (C)
shows the result of the poisoning analysis: the blue, doubled
line arrows correspond to poisoned values.

B. Constraining the schedule

When the Spectre pattern has been identified, we constrain
the schedule so that no data could leak through it. The idea
here is to stop the speculation. On Intel processors, this can be
achieved using Fence instructions, which stalls the instruction
fetch until all speculative instruction are committed. When
using a DBT based processor, we have fine-grained control
over the instruction scheduling. In Hybrid-DBT, a data-flow
graph encoded in the IR can use some control dependencies
to constrain the schedule. If there is such dependency between
instruction A and B, the instruction scheduler ensures that
instruction B is scheduled after instruction A. When a Spectre
pattern is detected using poisoning, the DBT engine inserts a
control dependency between this instruction and the one which
causes the speculation, preventing the leakage.

In part (C) of Figure 3, we can see that a control depen-
dency (with a red dashed line) has been added between the
store instruction and the first speculative load which uses a
speculative value as an address.

The use of this fine-grained control reduces the cost of the
countermeasure, as it only constrains the risky instructions and
those depending on it. If there are other instructions in the IR
block, they can be scheduled speculatively.

V. RESULTS

In this section, we present the experimental study per-
formed. There are two objectives in this study: first, we
demonstrate that the Spectre variants described in section
Il are effectively working on the architecture tested and
that the countermeasure described in section IV effectively
mitigates them; then we measure the slowdown caused by our
countermeasures on a set of benchmark applications.

Slowdown vs. unsafe execution
150%

140%
130%
120%
110%
100%

90%

Our approach No speculation

. e Qo N < QX
S @ FESTSESS
WV C N O & (2
2 O 2 & 2 N &
» X &L QY
Q © & 0N
N %

Q O K& & & A Q > >
I S P ORI O\ et
& E & &N T & e

Y (\\) kS < <

N KR R

Fig. 4. Slowdown caused by the different countermeasure tested, compared with unsafe execution. First value corresponds to the slowdown in our situation.
Second value is the slowdown when speculation is turned off. Lower values are better.

A. Proof of concept and countermeasure

The two variants of Spectre described in section III were
implemented both in Armv8 and in RISC-V (using the rv64im
ISA). The Arm version is tested on the NVidia Jetson TX2
developer board, which features two Denver cores and two
standard OoO cores. The RISC-V version is tested on Hybrid-
DBT simulator [3]. For the two versions of each variant, we
demonstrate that we can read the value of a memory location
which should not be readable.

For flushing the cache, the Arm version uses a dedicated
instruction whereas the RISC-V version has to perform an
explicit line by line flush, which slows down the attack. To
perform the cache side-channel attack, we need to measure
the memory accesses time and determine whether it is a hit or
a miss. In the Arm version, it is done using the Performance
Monitor Unit defined in Arm-v8, which is accessible from
the user-space of Linux. In the RISC-V version, we read
the state register, which counts the number of cycles. It is
also interesting to note that performing the cache side-channel
attack is more straightforward on DBT based processor than on
000 cores. Indeed, DBT based use in-order execution, where
the timing is more stable than for OoO cores, which simplifies
the distinction between hits and misses.

We have also implemented the proposed countermeasure in
Hybrid-DBT and ensured that the same binaries are no longer
subject to the Spectre vulnerability.

This study demonstrated that both NVidia Denver and
Hybrid-DBT are vulnerable to the two Spectre variants de-
scribed in III. We also demonstrated that, with a simple
software update on Hybrid-DBT software, the system is no
longer vulnerable to these two variants.

B. Measuring the loss of performance

The second experiment consists in measuring the slowdown
caused by the countermeasure. The objective of this experi-
ment is to demonstrate that, while making the core resilient
to Spectre variants, our countermeasure does not affect the
performance of applications which are usually executed on a
DBT processor. As explained in the related work [3], DBT
processors are more efficient on data-intensive applications.
Consequently, we based our experiments on this kind of
application: we have executed a set of application from Poly-
bench using different parameters for the countermeasures. For

each execution, we collect the execution time and measure
the performance degradation caused by the countermeasure.
Besides, we have executed the two proof-of-concept attacks
presented earlier: application Spectre vl is the variant
based on the trace construction, application Spectre v4 is
the one based on memory dependency speculation.

Results of this experiment are represented in Figure 4.
The baseline is the unsafe execution (i.e., without any
countermeasure). The data labeled our approach is an
implementation of the countermeasure described in section I'V.
The one labeled No Speculation is a safe execution where
the two kinds of speculation are turned off in the optimization
design (i.e., a naive way to protect against Spectre variants).

We can see that on most of the application studied the coun-
termeasure does not cause any slowdown. On the contrary, the
simple countermeasure, where the speculation is turned off
in the DBT engine, has a significant impact on performance,
increasing the execution time by 16% on average. There are
two possible explanations for the absence of performance
degradation with our approach: either it is caused by the
detection of the Spectre patterns which eliminates most of
the speculation done, either it is caused by the fine-grained
mitigation performed on the binaries. To answer this ques-
tion, we did a third experiment where we added a fence
whenever the Spectre pattern is detected. Here again, the
countermeasure does not impact the execution time, which
means that the Spectre pattern is not commonly seen on
the binaries. Finally, we have manually modified the matrix
multiplication benchmark to insert the Spectre pattern and
measure the impact of the countermeasure. We have modified
the way 2D arrays are represented, selecting the one based on
arrays of pointers. Consequently, there are much more double
indirection accesses, which increase the occurrence rate of
Spectre patterns. On this modified application, our fine-grained
countermeasure increases the execution time by 4% while the
one based on a fence increases the execution time by 15%.
This highlight that, when the Spectre pattern is identified, fine-
grained mitigation has a smaller impact on performance.

VI. RELATED WORK

Security has long been a software issue. However, since
the early 2018s and the unveiling of Spectre and Meltdown
attacks, the community realized that hardware could add

security vulnerabilities [4]. After the initial Spectre unveil-
ing, which is centered around branch prediction and branch
target predictions, other variants have been discovered and
added to the set of speculation based attacks. Some exploit
the load/store queue, and others exploit the state registers
of the floating-point unit. More recently, the Spoiler attack
exploits the Memory Order Buffer to leak information about
physical address mapping [5]. In this work, we have only
considered the Spectre variants based on branch prediction and
load/store queue because they have their equivalent in a DBT
based processor. The current version of Hybrid-DBT has no
comparable mechanisms to branch target prediction, but such
a feature could be added in the trace construction mechanism
of an industrial-strength DBT processor.

Right after the Spectre unveiling, several countermeasures
have been proposed [6], [13]. The most straightforward con-
sists of inserting fence instructions to prevent speculation.
However, this instruction only acts as a memory barrier, and
its exact behavior is not clearly defined. There were also
propositions for removing or reducing the precision of timers,
breaking the cache side-channel attacks, but some studies have
shown that precise timers can be built using another thread.
Finally, several JIT tools choose to generate only branch-less
masking, which protects against out-of-bound accesses using
only arithmetical operations.

Mcilroy et al. [13] introduced a more precise definition of
Spectre vulnerabilities, with the definition of the architectural
state and the micro-architectural state. The first corresponds
to registers defined in the ISA, and the latter represents
implementation-dependant registers. Typically, the register file
is included in the architectural state while the state of the
data cache is in the micro-architectural state. Mcilroy et al.
also listed operations for reading and modifying the micro-
architectural state, like cache side-channel attacks.

Fadiheh et al. [7] proposed a model to verify whether an ar-
chitecture is vulnerable to Spectre or not. Their models, which
depends on the hardware implementation, detect whether a
change in the micro-architectural state can be moved to the
architectural state. The analysis is expensive and has only
been applied on a simple pipelined processor, highlighting a
new variant of Spectre, which exploits pipelined data caches.
Spectector from Guarnieri et al. uses symbolic execution to
detect whether an application is vulnerable to Spectre [14].

Finally, OO7 [12] uses a tainting analysis to detect whether
a dangerous value (i.e., a value which can be controlled by an
attacker) can be used as an address for a speculative load.
If such a pattern is detected, a FENCE instruction can be
inserted to make the binaries safe. Their tainting analysis is
similar to the proposed approach. However, the particular case
of DBT processors simplifies the problem as we know exactly
the scope of the speculation. Indeed, the DBT engine only
speculates inside the block boundaries. Consequently, we only
have to analyze these instructions, while OO7 has to analyze
the whole binaries as Spectre can be exploited even through
function calls.

VII. CONCLUSION

Even if DBT based processors are vulnerable to Spectre
variants because of the dynamic optimization layer, we have
demonstrated that they can be patched to remove the vulnera-
bility. Our experimental study shows that our countermeasure
does not affect the performance of the system. Future work
will be focused on investigating other sources of speculation
in the DBT engine to ensure that any variant of Spectre
can be mitigated using this kind of mechanisms. Beyond the
speculative execution, we also have to make sure that the
optimization decision made in the DBT engine does not leak
information on secret data.

ACKNOWLEDGEMENTS

The author would like to thank Thibaud Balem, Thais
Baudon, Marco Freire, and Dylan Marinho for their contri-
bution to the project.

REFERENCES

[1] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler,
A. Klaiber, and J. Mattson, “The Transmeta Code Morphing™ Software:
Using Speculation, Recovery, and Adaptive Retranslation to Address
Real-Life Challenges,” in Proceedings of the International Symposium
on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization. 1EEE Computer Society, 2003, pp. 15-24.

[2] D.Boggs, G. Brown, N. Tuck, and K. S. Venkatraman, “Denver: Nvidia’s
First 64-bit ARM Processor,” in IEEE Micro, vol. 35, Mar. 2015.

[3] S.Rokicki, E. Rohou, and S. Derrien, “Hybrid-DBT: Hardware/Software
Dynamic Binary Translation Targeting VLIW,” in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2018.

[4] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre Attacks:
Exploiting Speculative Execution,” arXiv:1801.01203 [cs], Jan. 2018.

[51 S.Islam, A. Moghimi, I. Bruhns, M. Krebbel, B. Gulmezoglu, T. Eisen-
barth, and B. Sunar, “SPOILER: Speculative Load Hazards Boost
Rowhammer and Cache Attacks,” arXiv:1903.00446 [cs], Mar. 2019.

[6] V. Kiriansky and C. Waldspurger, “Speculative Buffer Overflows: At-
tacks and Defenses,” arXiv:1807.03757 [cs], Jul. 2018.

[71 M. R. Fadiheh, D. Stoffel, C. Barrett, S. Mitra, and W. Kunz, “Processor
Hardware Security Vulnerabilities and their Detection by Unique Pro-
gram Execution Checking,” in 2019 Design, Automation Test in Europe
Conference Exhibition (DATE), Mar. 2019, pp. 994-999.

[8] D. S. McFarlin, C. Tucker, and C. Zilles, “Discerning the Dominant
Out-of-order Performance Advantage: Is It Speculation or Dynamism?”
in Proceedings of the Eighteenth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ser.
ASPLOS ’13. New York, NY, USA: ACM, 2013, pp. 241-252.

[9] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W.-

m. W. Hwu, “Dynamic Memory Disambiguation Using the Memory

Conflict Buffer,” in Proceedings of the Sixth International Conference

on Architectural Support for Programming Languages and Operating

Systems, ser. ASPLOS VI. New York, NY, USA: ACM, 1994.

D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M. Crozier,

Ben-Chung Cheng, P. R. Eaton, Q. B. Olaniran, and W.-W. Hwu,

“Integrated predicated and speculative execution in the IMPACT EPIC

architecture,” in Proceedings. 25th Annual International Symposium on

Computer Architecture (Cat. No.98CB36235), Jul. 1998, pp. 227-237.

S. Rokicki, E. Rohou, and S. Derrien, “Aggressive Memory Speculation

in HW/SW Co-Designed Machines,” in DATE 2019 - 22nd IEEE/ACM

Design, Automation and Test in Europe. Florence, Italy: IEEE, 2019.

G. Wang, S. Chattopadhyay, 1. Gotovchits, T. Mitra, and A. Roychoud-

hury, “O07: Low-overhead Defense against Spectre Attacks via Binary

Analysis,” arXiv:1807.05843 [cs], Jul. 2018.

R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and T. Verwaest, “Spectre

is here to stay: An analysis of side-channels and speculative execution,”

arXiv:1902.05178 [cs], Feb. 2019.

M. Guarnieri, B. Kopf, J. F. Morales, J. Reineke, and A. Sanchez,

“SPECTECTOR: Principled Detection of Speculative Information

Flows,” arXiv:1812.08639 [cs], Dec. 2018.

[10]

[11]

[12]

[13]

[14]

