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Summary 

Most animals exhibit mirror-symmetric body plans, yet the molecular constituents from which they 

are formed are often chiral. In planarian flatworms, centrioles are arranged in a bilaterally 

symmetric pattern across the ventral epidermis. Here, we found that this pattern is generated by a 

network of centrioles with prominent left-right asymmetric properties. We identify centriole 

components required for establishing left-right asymmetric connections between centrioles and 

balancing their effects to align centrioles along polarity fields. SMED-ODF2, SMED-VFL1 and 

SMED-VFL3 affect the assembly of centriole appendages that tether cytoskeletal connectors to 

position the centrioles. We further show that the medio-lateral polarization of centrioles relies on 

mechanisms that are partly distinct on the left and right sides of the planarian body. Our findings 

shed light on how bilaterally symmetrical patterns can emerge from chiral cellular organizations. 
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Introduction 

Animals with outwardly mirror symmetric bodies, the so-called bilaterians, constitute the largest 

group of animals on earth. However, many of the molecular components that make up the mirror-

symmetric bilaterians are intrinsically chiral, i.e., exhibit broken reflection symmetry. This raises a 

conceptual conundrum, as Euclidean geometry precludes the construction of a mirror-symmetric 

structure out of chiral components without the simultaneous use of their mirrored partners. One 

prominent example of a chiral cellular constituent is the centriole, the evolutionarily ancient 

nucleating center of the microtubule cytoskeleton (Azimzadeh, 2014). Centrioles consist of nine 

microtubule triplets arranged in a circular arrangement. Their chirality results from the polar 

structure of the triplets and their placement at an angle with respect to their neighboring triplets. In 

many protozoa, this inherent chiral property is amplified by asymmetries between the different 

centriole triplets, which anchor distinct elements of the cytoskeleton and ultimately propagate the 

centriole chirality to chirality over the entire cell (Boyd et al., 2011; Marshall, 2012; Yubuki and 

Leander, 2013). The establishment of left-right asymmetry in vertebrates via the (chiral) clockwise 

rotation of cilia at the surface of the embryonic node – together with anterior-posterior asymmetric 

positioning of the nodal cilia, provides a further example of organismal asymmetry that ultimately 

has its roots in centriole chirality (Chen and Zhong, 2015; Hashimoto et al., 2010; Omori et al., 

2017; Shinohara and Hamada, 2017). In this process, the centriole functions as the “F molecule” 

originally theorized by Brown and Wolpert, which specifies the orientation of the left-right axis by 

aligning along the two other embryonic axes (Brown and Wolpert, 1990). 

 

However, not all centriole-nucleated structures display obvious chirality. For example, the cilia 

of multiciliated cells beat in a whip-like pattern and the polarization of all cilia along the polarity 

axes of the body plan thus allows directional mucus transport or whole animal translocation. In this 

case, centrioles carry two types of appendages that align with the axis of ciliary beat: the basal foot 
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and the ciliary rootlet. These appendages in turn anchor cytoskeletal arrays that connect centrioles 

to each other and to the cellular junctions (Antoniades et al., 2014; Kunimoto et al., 2012; Vladar et 

al., 2012; Werner et al., 2011). Polarity proteins localized at the junctions and at the centrioles 

regulate cytoskeleton architecture to coordinate centriole rotational polarity with the planar polarity 

of the epithelium (Guirao et al., 2010; Park et al., 2008; Vladar et al., 2012). Recent work from our 

laboratories demonstrates the long-range polarization of ciliary rootlets in the planarian ventral 

epidermis along the head-tail axis that is mediated by the evolutionary conserved Wnt/Planar Cell 

Polarity (Wnt/PCP) pathway, superimposed in the head region with a mirror-symmetric polarization 

component towards the body edge mediated by the Fat/Dachsous (Ft/Ds) pathway (Vu et al., 2018). 

Thus, in planarians and multiciliated epithelia in general, centrioles behave as bilaterally 

symmetric objects that align with the cardinal body axes of the bilaterian body plan.  

Here, we demonstrate cryptic chirality underneath the apparent mirror-symmetry of planarian 

centriole alignment, which in wild-type animals is compensated by the opposing effects of the 

centriole components ODF2 and VFL1/VFL3. Our results provide insights into how animals can 

build bilaterally symmetric tissue patterns from chiral cellular constituents.   
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Results 

Centriole components affecting planarian locomotion in a left-right asymmetric manner  

Previous results have established that paralysis, loss or gross miss-alignments of planarian cilia all 

disrupt the smooth gliding motility of the animals and result in a secondary translocation mode via 

cycles of muscular contractions/elongations (previously termed “inchworming”)(Azimzadeh et al., 

2012; Reddien et al., 2005; Rink et al., 2009; Vu et al., 2018; Vu et al., 2015). Interestingly, we 

noticed that the RNAi mediated knock-down of some centriole components resulted in a 

qualitatively different locomotion phenotype (Azimzadeh et al., 2012; Reddien et al., 2005). 

Whereas in wild type animals, the translocation vector (movement direction) was always in 

alignment with the head-tail vector (A/P axis), RNAi animals displayed a striking miss-alignment 

between the two vectors (Figure 1A; Figure S1; Movie S1). Specifically, vfl1- and vfl3(RNAi) 

animals always translocated at an angle of - 29 ± 8 ° and - 27 ± 7 ° (counterclockwise) relative to 

the A/P axis, respectively, which resulted in a drift to the left. In contrast, odf2(RNAi) animals 

translocated at an angle of 28 ± 8 ° (clockwise) and drifted to the right (Figure 1B). RNAi animals 

exhibited a drastic reduction in locomotion speed compared to controls, particularly in vfl1(RNAi) 

animals, but nevertheless retained gliding motility (Figure 1C; Movie S1). In agreement with this, 

cilia were present across the ventral epidermis of RNAi animals like in control planarians (Figure 

1E). High-speed imaging of cilia in live odf2(RNAi) and vfl1(RNAi) animals confirmed that cilia 

were motile and that beating frequency was overall comparable to control values, with only a 

modest decrease in odf2(RNAi) animals (Figure 1D; Movie S2). Cilia nevertheless appeared to beat 

less synchronously in RNAi animals, which likely contributed to the decrease in locomotion speed 

that we observed (Movie S2).  

Thus, depleting the centriole components ODF2 and VFL1/3 induced left-right asymmetric 

locomotion phenotypes of opposite handedness. Furthermore, the persistence of gliding motility 

indicated maintained functionality and long-range alignment of epidermal cilia.  
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Sidewinder phenotypes are caused by defects in centriole rotational polarity  

To determine whether the observed locomotion defects were induced by anomalies in centriole 

positioning, we analyzed centriole rotational polarity in RNAi-treated animals. Using an antibody 

against ROOTLETIN1, a component of the ciliary rootlet (Vu et al., 2018), we measured the angle 

vector between individual rootlets and the A/P axis (Figure 2A, B; Figure S2). Depletion of all three 

genes decreased the homogeneity of rootlet polarity (i.e. increased the circular standard deviation or 

CSD) in all parts of the ventral epidermis, supporting that the entire tissue was affected (Figure 2C). 

Overall, the mean CSD (mean of CSD values determined for each subdivision of the epidermis) 

increased from 19 ° in control to 41 ° in odf2(RNAi), 42 ° in vfl3(RNAi) and up to 58 ° in vfl1(RNAi) 

animals. Decreased rootlet alignment likely contributed to the lower locomotion speed observed in 

RNAi animals, as coordination of ciliary beat orientation is critical for multiciliated cell function 

(Kunimoto et al., 2012; Park et al., 2008). In agreement, higher dispersion of rootlet angles in 

vfl1(RNAi) correlated with a stronger reduction in locomotion speed (Figure 1C). Despite increased 

angle dispersion, we observed highly consistent patterns of orientation in RNAi animals (Figure 2A, 

B, Figure S3). Rootlets were pivoted counterclockwise in vfl1(RNAi) and vfl3(RNAi) and clockwise 

in odf2(RNAi) compared to control flatworms, confirming that centriole polarity is affected. Control 

animals display a bilaterally symmetric rootlet pattern characterized by a gradual increase in rootlet 

angles along the A/P and M/L axes (splay) (Vu et al., 2018) (Figure 2A, B, D). Variation in rootlet 

angles along polarity axes still occurred in sidewinder animals despite the overall rotation of rootlet 

angles, which resulted in strikingly left-right asymmetric rootlet patterns across the ventral 

epidermis (Figure 2A, B, D). To determine whether these complex patterns could explain the lateral 

translocation that characterizes the sidewinder phenotypes, we turned to computational modelling. 

We developed a model based on the assumption that the net flow generated by beating cilia is 

locally aligned with the mean rootlet angle (Figure S4). Simulations recapitulated experimental 

trajectories, supporting that the observed defects in centriole rotational polarity are sufficient to 
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cause the sidewinder phenotypes (Figure 3A). Interestingly, the model predicted that at longer time 

scales, all sidewinder animals would follow a clockwise circular trajectory, which we verified 

experimentally (Figure 3B, C; Movies S3). Together, our data support that the sidewinder 

phenotypes are caused by the rotation of centrioles in the plane of the epidermis, either clockwise or 

counterclockwise. Thus, the sidewinder phenotypes are chirality phenotypes that uncover cryptic 

left/right asymmetries in centriole orientation underneath the bilateral symmetry of the wild type 

pattern. 

 

Planarian ODF2 and VFL1/3 control the assembly of centriole appendages 

To gain further insights into the origin of these asymmetries, we characterized the function of 

planarian ODF2 and VFL1/3 proteins. SMED-ODF2 is the planarian ortholog of mouse 

ODF2/Cenexin, a component of the basal foot (Kunimoto et al., 2012). SMED-VFL1 and SMED-

VFL3 are the orthologs of centriole proteins originally identified in unicellular models (Hoops et 

al., 1984; Silflow et al., 2001). We obtained antibodies against planarian VFL1 and ODF2 proteins, 

and found that both stain centrioles across the ventral epidermis, confirming that they are centriole 

components in planarians (Figure 4A, B; Figure S5). We next analyzed the ultrastructure of 

centrioles in control and RNAi animals. In control samples, most centrioles exhibited a basal foot 

and a rootlet, although in a proportion of centrioles the basal foot (33 ± 7 %) or the rootlet (22 ± 1 

%) were not included in the same electron microscopic section. In odf2(RNAi) animals, centrioles 

were systematically missing a basal foot, confirming data from mouse (Kunimoto et al., 2012), but 

rootlet assembly was unaffected (Figure 4C, D). In vfl1(RNAi) and vfl3(RNAi), the assembly of both 

the basal foot and the rootlet were abnormal. In sections from vfl1(RNAi) animals, 80 ± 3 % 

centrioles had no visible basal foot and 72 ± 6 % no visible rootlet. Assuming that a similar fraction 

of basal feet and rootlets were not included in the same electron microscopic section as in controls, 

this indicated that about half of the centrioles lacked a basal foot and half lacked a rootlet. Similar 

results were obtained with vfl3(RNAi), although the defects were less pronounced (52 ± 8 % of 



Basquin et al. 

 8

centrioles without a basal foot and 48 ± 6 % without a rootlet visible in the same section; ~ 1/3 of 

centrioles of each category considering the overestimation due to sectioning). In addition, centrioles 

with anomalies in the number and/or respective positions of the appendages were observed (Figure 

4C, D), suggesting that VFL1 and VFL3 affect the rotational asymmetry of centrioles. Thus, ODF2, 

VFL1 and VFL3 are centriole components required for appendage formation in the planarian 

epidermis. How is this related to the chirality of the sidewinder phenotypes? Strikingly, structural 

chirality is more conspicuous in planarians in which the basal foot is asymmetric and positioned at 

an angle with respect to the beating axis (Figure 4D), unlike vertebrate basal feet that look more 

symmetric (Kunimoto et al., 2012; Mitchell et al., 2007). In addition, we noticed a strong left-right 

bias in cases where the respective positions of appendages were aberrant, as the basal foot was 

almost always found on the same side of the centriole with respect to the rootlet axis (31/32 of 

vfl3(RNAi) and 10/10 of vfl1(RNAi) centrioles were as in Figure 4D-d,e), suggesting that 

microtubule triplets on the left side possess specific characteristics. Thus, the basal foot and the 

centriole itself are left-right asymmetric, and these asymmetries depend in part on the ODF2 and 

VFL1/3 proteins.  

 

ODF2 and VFL1/3 allow organizing a left-right asymmetric centriole network  

One plausible model is that centriole chirality affects the architecture of cytoskeletal networks 

attached to the centrioles, possibly generating left-right asymmetric forces. To better understand 

how ODF2 and VFL1/3 proteins affect the connections between centrioles, we studied their impact 

on centriole network organization. In planarians, large mucus granules (up to several microns in 

diameter) are secreted directly through the surface of the cells (Basquin et al., 2015; Hayes, 2017). 

Accordingly, we noticed that centrioles were irregularly distributed at the apical surface of control 

planarians, revealing the presence of “holes” in the pattern that likely correspond to mucus secreting 

sites (Figure 5A). Outside of these regions however, centrioles tended to align both laterally and 

along the beating direction, forming rows of up to 10 aligned centrioles (Figure 5A, Figure S6). 
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Within these rows, the distance separating consecutive centrioles along the two axes showed little 

variation (Figure 5B), suggesting the existence of structural constraints in centriole network 

organization. Ultrastructural analyses revealed that rootlets often terminate in the vicinity of a 

posteriorly positioned centriole and are on average 1.52 ± 0.28 µm long (n = 73), close to the mean 

longitudinal distance determined by immunofluorescence (Figure 5B, C). Thus, rootlets appear to 

act as spacers between centriole rows along the beating axis. In addition, we observed microtubules 

attached to a basal foot and running perpendicular or oblique to the beating axis (Figure 5D), 

suggesting that microtubules are involved in the lateral alignment of centrioles. Hence these data 

suggest that cytoskeletal connection between appendages connect neighboring centrioles to achieve 

proper spacing and alignment, as described in other systems (Kunimoto et al., 2012; Werner et al., 

2011).  

We next analyzed the impact of ODF2 and VFL1/3-depletion on centriole organization. In 

odf2(RNAi) animals, alignment of centrioles was still detected both longitudinally and laterally in 

most of the cells, although defects in centriole alignment and polarity were widespread (Figure 5E, 

F). Thus, centrioles are aligned and spaced apart in a manner that is to a large extent independent 

from the basal foot, possibly via actin connectors as in Xenopus (Antoniades et al., 2014), although 

we could not observe actin with sufficient resolution in the planarian epidermis. This network 

induces a clockwise rotation of the centrioles that in control planarians is counteracted by 

cytoskeletal elements acting on the basal foot. In vfl1(RNAi) and vfl3(RNAi) animals, centriole 

alignment was strongly perturbed, indicating a more severe disorganization of the centriole network 

(Figure 5E, F). This is not unexpected as depletion of VFL1/3 impairs rootlet assembly, and rootlets 

seem to play a role in the longitudinal organization of centrioles. vfl1(RNAi) and vfl3(RNAi) animals 

are also partially defective in basal foot assembly, and hence the counter-clockwise rotation of 

rootlets observed in these conditions is unlikely to result solely from forces exerted via ODF2 and 

the basal foot. In agreement with this, the simultaneous depletion of VFL1/3 and ODF2 neither 

randomized, nor disrupted rootlet patterns (Figure S1, S3, S7; Movie S4), supporting the existence 
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of additional attachment points between the cytoskeleton and the centrioles (component X in Figure 

5G; Figure S7).  

Taken together, our results support that ODF2 and VFL1/3 are necessary for organizing the 

centriole network and balancing the left-right asymmetric forces that likely result from an 

asymmetric attachment of the centrioles to the cytoskeletal network (Figure 5G).  

 

M/L polarization of centrioles involves partially distinct mechanisms on the left and right sides of 

the body 

Given the intrinsic chirality of the centriole network, how can planarians achieve the bilaterally 

symmetric rootlet pattern observed in wild type animals? Our recent results demonstrate that the 

wild-type pattern emerges via the integration of Wnt/PCP and Ft/Ds planar cell polarity cues that 

act specifically along the A/P and M/L axes, respectively (Vu et al., 2018). Planar cell polarity 

pathways control the position of cellular structures by interacting with cytoskeletal networks 

(Devenport, 2014). We reasoned that if the Ft/Ds pathway acts via ODF2 or VFL1/3 to generate the 

splay observed in control animals, then the implementation of Ft/Ds cues should be hindered when 

ODF2 or VFL1/3 are missing. To test this, we down-regulated the Wnt/PCP pathway in sidewinder 

animals. In wild type planarians, depleting DVL1/2 induced rootlet reorientation towards the edges 

under the influence of the Ft/Ds pathway (Figure 6A, B; Figure S1, S3; Movie S5) (Vu et al., 2018). 

Although DVL1/2 is involved in additional pathways, in particular the Wnt/β-catenin pathway, this 

phenotype is most likely to result from a decrease in Wnt/PCP signaling (Vu et al., 2018). 

 In VFL1 and VFL3-depleted animals, Wnt/PCP down-regulation induced rootlet reorientation like 

in control animals on the left side and to a lesser extent on the right side, suggesting that centrioles 

could still detect the Ft/Ds polarity field. In odf2(RNAi) animals, dampening Wnt/PCP activity 

induced a markedly asymmetric response: centrioles reoriented on the right side to a similar extent 

than in control planarians but failed to do so on the left side (Figure 6A, B; Figure S3). This 

suggested that on the left side the centriole network no longer aligned in the Ft/Ds polarity field, 
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even when its relative influence was increased by Wnt/PCP inhibition. In contrast, re-polarization 

on the right side of odf2;dvl1/2(RNAi) planarians indicated that Ft/Ds cues were still implemented, 

and hence the possibility that ODF2 is not required for rootlet splay on this side of the body. If this 

were the case, simultaneous depletion of ODF2 and the Ft/Ds pathway should produce a uniform 

rootlet orientation along the M/L axis. However, we found no significant difference between 

odf2(RNAi) and odf2;ds(RNAi) animals in this respect (Figure 6C, D; Figure S1, S3), suggesting 

that the response to Ft/Ds is impaired on both sides of the epidermis when ODF2 is missing. 

Together, these observations suggest that the rootlet pattern observed in odf2(RNAi) animals results 

from a defect in centriole network structure super-imposed with a defect in the response to Ft/Ds 

cues. On the left side, the clockwise rotation of centrioles driven by VFL1/3-dependent connections 

is compensated by the lack of response to Ft/Ds, resulting in rootlet angles that are close to control 

values (Figure 2A-C; Figure S3). On the right side, the defects in network architecture and in the 

response to Ft/Ds both induce a clockwise rotation of centrioles, leading to a strong deviation from 

control values. In addition, the data obtained after a simultaneous inhibition of DVL1/2 and ODF2 

supports that a distinct mechanism can drive centriole repolarization in response to Ft/Ds cues on 

the right side of the epidermis. 

Altogether, our results support that ODF2 is required for the M/L polarization of centrioles in the 

planarian epidermis, most likely via its role in basal foot assembly. Additional components of the 

centriole network contribute specifically on the right side, supporting that the mechanism 

underlying M/L polarization is implemented differentially on each side of the midline (Figure 7).  

 

  



Basquin et al. 

 12 

Discussion 

This work illustrates how a bilaterally symmetric whole-tissue pattern can emerge from a 

prominently asymmetric cellular structure. In the multiciliated epidermis of planarian flatworms, 

centrioles are organized into an asymmetric mirror-imaged medio-lateral pattern, a property that 

likely derives from their intrinsic chirality. This network is polarized to generate a bilaterally 

symmetric pattern via a mechanism that is executed differentially on the left and right halves of the 

epidermis, reflecting the asymmetric nature of the network itself. We show that the centriole 

components ODF2, VFL1 and VFL3 are required for establishing chiral asymmetric connections 

between centrioles and balancing their effects. These proteins act in part by controlling the 

assembly of the basal foot, which in planarians has a structure that mirrors centriole chirality. 

Organizing chiral asymmetric cytoskeletal arrays is likely an ancestral property of centrioles 

(Yubuki and Leander, 2013), and this property is thus conserved in some metazoan species.  

 

Functions of the ODF2 and VFL1/3 proteins and balance-of-force model of centriole orientation 

The centriole network organized in part via ODF2 and VFL1/3 proteins is inherently asymmetric, 

independently of M/L polarity cues. This is best illustrated at the midline and the posterior end, 

where M/L polarity cues have a limited effect, but rootlets are nevertheless deviated from the A/P 

axis in RNAi animals. Network asymmetry likely stems from an asymmetric attachment of 

cytoskeletal elements to centrioles mediated by ODF2 and VFL1/3. Our results show that planarian 

ODF2 and VFL1/3 are required for building centriole appendages, which are known to organize 

cytoskeletal connectors necessary for positioning the centrioles in multiciliated cells (Antoniades et 

al., 2014; Clare et al., 2014; Kunimoto et al., 2012; Werner et al., 2011). ODF2 is necessary to basal 

foot assembly, consistent with results obtained in mouse (Kunimoto et al., 2012) thus establishing 

the evolutionary conservation of this function. The roles of VFL1 and VFL3 appear more complex 

but these proteins also affect the assembly and position of the basal foot, as well as of the ciliary 
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rootlet. These findings are reminiscent of studies in unicellular eukaryotes showing that VFL1/3 

orthologs are required for building different sets of striated fibers and microtubule rootlets specific 

to each species (Adams et al., 1985; Bengueddach et al., 2017; Silflow et al., 2001; Wright et al., 

1983). Hence, the functions of these proteins appear conserved despite important variations in the 

architecture of centriole-associated structures. In unicellular models, orthologs of VFL1 and VFL3 

localize to specific microtubule triplets (Bengueddach et al., 2017; Silflow et al., 2001). In 

planarians, absence of VFL1 or VFL3 lead to basal feet assembling on the wrong triplets, most of 

the time shifting one triplet to the left. This suggests that VFL1/3 proteins might normally help 

restricting basal foot assembly to its proper site between the triplet facing the direction of beating 

and the triplet placed immediately to its left. Moreover, the striking differences between the 

vfl1/3(RNAi) and odf2(RNAi) phenotypes support that VFL1/3 proteins play an additional role 

beyond appendage assembly. When ODF2 was missing, VFL1/3-dependent forces rotated 

centrioles clockwise. In Xenopus, actin cables anchored in the vicinity of the basal foot connect 

centrioles laterally and contribute to centriole spacing (Antoniades et al., 2014). Centriole spacing is 

mostly unaffected in odf2(RNAi) but is perturbed in vfl1/3(RNAi), suggesting that VFL1/3 proteins 

might connect centrioles to the actin network. One possible model is that VFL1/3 anchor actin 

filaments in an asymmetric fashion to one or more triplets localized on the left of the basal foot. 

This would be consistent with the clockwise rotation of centrioles observed when ODF2 is missing. 

In the presence of ODF2, the rotation induced by VFL1/3-dependent connections is compensated, 

possibly by microtubules anchored at the basal foot and running perpendicular to the beating axis 

that we indeed observed. How these microtubules generate a left-right asymmetric net force is 

unclear, but one possibility is that their orientation is biased along the M/L axis. The basal foot in 

planarians has an asymmetric shape, which might affect the polarity of microtubules attached to it. 

Beyond VFL1/3 and ODF2, additional players are also involved, as depletion of all three proteins is 

not sufficient to randomize centriole rotational polarity in this system (Figure 7). In wild type 
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planarians, the forces exerted by the different network components are balanced, thus compensating 

centriole chirality and masking the asymmetry of the network.  

 

Interaction of the centriole network with M/L polarity cues to generate bilateral symmetry 

In addition to its role in organizing the network of centrioles, our analyses support that ODF2 is key 

to implementing the M/L polarity cues generated by the Ft/Ds pathway. Indeed, depletion of Ds 

produced no additive effect in odf2(RNAi) planarians, indicating that Ft/Ds pathway is already 

ineffective when ODF2 is down-regulated. Microtubules anchored at the basal foot might orient 

centrioles towards the body edges (Figure 7), in line with the role played by the Ft/Ds pathway in 

polarizing microtubule networks in other systems (Matis et al., 2014). Further work is required to 

test this model and exclude alternative possibilities, for instance that Ft/Ds acts downstream or in 

parallel to ODF2. Analysis of odf2;dvl1/2(RNAi) animals nevertheless supports that M/L 

polarization can rely on additional network components on the right side of the body, as centriole 

re-polarized towards the right edge under the influence of M/L cues to a similar extent than in 

controls (Figure 7). Hence, the bilaterally symmetric pattern of centrioles observed in the planarian 

epidermis results from interactions between polarity cues and the cytoskeleton that are at least 

partly distinct on each side of the body. Why this did not result in a quantitative difference between 

the odf2(RNAi) and odf2;ds(RNAi) phenotypes is unclear, but one possibility is that the 

repolarization driven by ODF2-independent cytoskeletal arrays was enhanced by DVL1/2 down-

regulation and thus easier to detect in these conditions.  

 

Biological significance of network asymmetry 

Our results support that centriole network asymmetry originates from asymmetries within the 

centrioles. Centrioles are intrinsically chiral structures, and this property is amplified in many 

unicellular eukaryotes by the presence of appendages that decorate specific microtubule triplets. In 

planarians, the basal foot is left/right asymmetric, and the vfl1/3(RNAi) phenotype points at 
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additional asymmetries between microtubule triplets. Whether the polarization mechanism we 

uncovered is essentially required to compensate centriole chirality, or whether it allows generating 

larger-scale chirality remains an open question, however. Whole-cell chirality, which stems from 

inherent properties of the cytoskeleton, is widespread in animals (Kuroda et al., 2009; Wan et al., 

2011; Xu et al., 2005). In some systems, whole-cell chirality has been linked to the establishment of 

left-right asymmetry of the body plan (Kuroda et al., 2009; Taniguchi et al., 2011). Planarians have 

no clear left/right asymmetry in this respect, but structural chirality in the epidermis might 

contribute generating the complex pattern of centrioles, reflecting the ancestral role of centrioles in 

shaping elaborate cell geometries. Future work will tell whether this mechanism evolved with the 

dual-axis control of planar polarity in planarians epidermis or whether it reflects a fundamental 

property of centriole networks. 
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Main figure titles and legends 

Figure 1. Depletion of SMED-ODF2 and SMED-VFL1/3 affect the direction of locomotion in 

an opposite manner. (A) t-projection (2 s apart) of control planarians or animals depleted from 

VFL1/3 and ODF2. Black arrows: expected trajectory based on the initial orientation of the A/P 

axis; White arrows: observed trajectory. Red arrowheads: position of the head. Bar is 1 mm. (B) 

Quantification of the angle between the translocation and head-tail vectors as shown in (A). 3 

independent experiments, 62 ≤ n ≤ 344 for each condition. Error bars represent SD. Asterisks 

indicate a significant difference from the control condition (Kruskal-Wallis test; ∗∗∗p < 0.001). (C) 

Locomotion speed of control and RNAi animals. 3 independent experiments, 41 ≤ n ≤120 for each 

condition. Error bars represent SD. Asterisks indicate a significant difference from the control 

condition (Kruskal-Wallis test; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001). (D) Ciliary beat frequency in 

control and RNAi animals. 11 ≤ n ≤ 26 independent measurements were performed on a total of 2 

(control) or 3 (RNAi) different animals. Error bars represent SD. Asterisks indicate a significant 

difference from the control condition (Kruskal-Wallis test; ∗p < 0.05). (E) Immunofluorescence 

views of the ventral epidermis of control and RNAi planarians. Centrioles were stained with an anti-

SMED-CEP135 antibody (red) and cilia with an anti-acetylated tubulin (green). Bar is 5 µm. See 

also Figure S1 and Movie S1, S2. 

 

Figure 2. Sidewinder locomotion phenotypes are caused by aberrant centriole rotational 

polarity in the ventral epidermis. (A) Graphical representation of rootlet angle variation along the 

M/L axis in the anterior and posterior sides of control and RNAi planarians. Individual curves 

represent a single animal except the red curve that shows the mean. (B) Centriole rotational polarity 

in the ventral epidermis of control or RNAi animals (viewed from above). Arrows show the 

orientation of the mean rootlet angle vector for each of 200 subdivisions of the epidermis. The color 
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code highlights the CW (blue) or CCW (red) rotation of rootlets with respect to the A/P axis. n ≥ 6 

animals per condition. (C) Heatmap of the local circular standard deviation (CSD) values associated 

to the mean rootlet angles represented in (B). The mean of all local CSD values is also indicated. n 

≥ 6 animals per condition. (D) Schematic representation of angle deviations induced by depletion of 

VFL1/3 and ODF2. In each quadrant, arrows show the mean rootlet angle in control (black arrow) 

or RNAi-treated (gray arrow) planarians. Angle deviations are color-coded and the corresponding 

numeric value are indicated.  See also Figure S1, S3. 

 

Figure 3. Rootlet orientation defects in RNAi planarians are sufficient to predict sidewinder 

locomotion. (A) Simulation of trajectories of control and RNAi planarians based on experimentally 

measured rootlet angles (see STAR Methods). The position of the head is in yellow. Red crosses at 

x,y(0,0) indicate the starting point (t = 0) and black arrows show the direction of locomotion. (B) 

Simulation of trajectories over longer time scales using experimental data obtained from vfl1-, vfl3-, 

odf2- or control RNAi animals. The model predicts that depletion of VFL1, VFL3 and ODF2 will 

all result in a CW circular trajectory. For each graph, the anterior pole of the planarian is in yellow, 

the red cross at x,y (0,0) indicates the starting point (t = 0) and the black arrow shows the direction 

of locomotion. (C) Experimental observation of the CW circular trajectories of vfl1-, vfl3- and 

odf2(RNAi) animals over longer time scales (~ 2 minutes). Each image corresponds to a t-projection 

of individual frames taken 5 seconds apart. Animals fortuitously crossing the field of acquisition 

(see Movie S3) were manually erased for improved clarity. Red arrowheads indicate the head of the 

planarian at the beginning of the movie. Bar is 5 mm. See also Figure S4 and Movie S3. 

 

Figure 4. ODF2 and VFL1/3 are required for proper assembly of centrioles appendages. (A) 

Assessment of anti-SMED-ODF2 and anti-SMED-VFL1 antibody specificity by Western blot. 

Anti-SMED-CEP135 and anti-acetylated tubulin were used as loading controls. 50 µg total proteins 
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(10 µg for acetylated-tubulin) from control, odf2(RNAi) and vfl1(RNAi) samples were analyzed. (B) 

Immunofluorescence views of the ventral epidermis showing the respective localization of ODF2 

(top) or VFL1 (bottom) in red and ROOTLETIN1 in green. Insets are magnified x 5. Bars are 5 µm 

(insets: 1 µm). (C) Quantification of centriole ultrastructural defects in the ventral epidermis of 

control or RNAi animals. Percentages of centrioles with a basal foot and a rootlet at the correct 

position (1), no visible basal foot (2), no visible rootlet (3), no visible appendage (4) or appendages 

in abnormal number and/or relative positions (5) are shown. For each condition, 300-500 centrioles 

from 2-3 different animals were analyzed. Bars represent SD between different animals. (E) 

Electron microscopic views of centrioles in epidermal cells in control (a), odf2(RNAi) (b) or 

vfl3(RNAi) (c-e) animals. Bar is 0.2 µm. See also Figure S5. 

 

Figure 5. ODF2 and VFL1/3 organize a left-right asymmetric network of centrioles. (A) 

ROOTLETIN1 staining of the ventral epidermis of a control animal. White line on the right panel: 

cell boundary; red circles: putative mucus secretion sites. Orange and blue lines: longitudinal and 

lateral rows of centrioles, respectively. Bar is 5 µm. (B) Mean distance separating neighboring 

centrioles in lateral and longitudinal rows in control animals (n ≥ 700 measurements from 17 

different animals). Bars represent SD. Asterisks indicate a significant difference between the two 

variables (Mann-Whitney test; ∗∗∗p < 0.001). (C) Electron microscopic view of a control 

multiciliated cell showing a longitudinal row of centrioles. Red arrowheads point at rootlet tips. Bar 

is 0.5 µm. (D) Electron microscopic view of an epidermal centriole. Arrowheads highlight a 

microtubule in the vicinity of two basal feet. Bar is 0.1 µm. (E) ROOTLETIN1 staining of the 

ventral epidermis of RNAi animals. Bar is 5 µm. (F) Percentage of epidermal cells displaying at 

least one rectangular arrangement of minimum four centrioles (n ≥ 500 cells from 5 different 

animals analyzed per condition). Bars represent SD. Asterisks indicate a significant difference from 

the control condition (Kruskal-Wallis test; ∗p < 0.05, ∗∗p < 0.01). (G) Schematic model of the 
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organization of centrioles in planarian multiciliated cells and the forces exerted on individual 

centrioles by elements of the cytoskeletal network via VFL1, VFL3 or ODF2 in control and RNAi-

depleted planarians. The involvement of a component X is supported by results from the 

simultaneous inactivation of VFL1/3 and ODF2. The exact position where cytoskeletal elements 

bind to centrioles via VFL1/3- and X, and the notion that all forces are pulling forces, are 

hypothetical. See also Figure S1, S6, S7 and Movie S4. 

 

Figure 6. M/L polarization of centrioles requires ODF2 and additional network components. 

(A) Centriole rotational polarity in flatworms depleted from DVL1/2 only or in combination with 

depletion of VFL1, VFL3 or ODF2, represented as in Figure 2B (n ≥ 5 animals analyzed per 

condition). (B) Schematic representation of the shift resulting from DVL1/2 depletion in control and 

RNAi animals. Arrows: mean rootlet orientation in each quadrant in the presence of normal (black 

arrows) or decreased (gray arrows) levels of DVL1/2. Angle deviations between control and RNAi-

treated animals are color-coded and the corresponding numeric value are indicated. (C) Centriole 

rotational polarity in ds(RNAi), odf2(RNAi) or odf2;ds(RNAi) planarians as in (A) (n = 4 for 

ds(RNAi), 2 for odf2(RNAi) and 6 for odf2;ds(RNAi)). (D) Schematic representation of angle 

deviations resulting from Ds depletion in ODF2-depleted animals as in (B). See also Figure S1-S3 

and Movie S5. 

 

Figure 7. Proposed model for M/L polarization of centrioles on each side of the ventral 

epidermis. The chiral asymmetric centriole network resulting from the balanced action of ODF2 

and VFL1/3 (represented as in Figure 5G) is polarized by a mechanism that is executed in a 

differential manner on the left and right sides of the body: on the left side, polarization depends on 

ODF2, possibly acting downstream of the Ft/Ds pathway (in green), whereas on the right side it 

involves both ODF2 and other network components. 
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STAR Methods 

 

Lead contact and materials availability              

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Juliette Azimzadeh (juliette.azimzadeh@ijm.fr). All unique reagents 

generated in this study are available from the Lead Contact with a completed Materials Transfer 

Agreement. 

 

Experimental Model and Subject Details 

Asexual Schmidtea mediterannea (strain CIW4) (Sanchez Alvarado et al., 2002) were maintained in 

the dark at 20 oC in plastic containers filled with 1 X Monjuic water (1.6 mM NaCl, 1 mM CaCl2, 1 

mM MgSO4, 0.1 mM MgCl2, 0.1 mM KCl, 1.2 mM NaHCO3, pH 7.2) and fed weekly with calf 

liver homogenate (Basquin et al., 2015). Animals were starved one week prior to experiments. 

 

Methods details 

RNA interference 

ODF2, VFL1, VFL3 cDNAs cloned in pPR-T4P were described in (Azimzadeh et al., 2012), DVL1 

and DVL2 in (Gurley et al., 2008). Caenorhabditis elegans UNC22 cloned in pPR-T4P (Liu et al., 

2013) was used in all control experiments. Production and RNAi feeding was performed as 

described in (Basquin et al., 2015). Briefly, constructs were transformed into competent Escherichia 

coli strain HT115 (Timmons et al., 2001). Bacteria were grown in 2XYT medium, induced with 0.1 

mM IPTG during 2 hours, pelleted and mixed with calf liver (1:0.66:1.34 bacteria: 1 X Montjuic 

water: calf liver homogenate). ~1 cm long animals were fed three times two days apart and 
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amputated pre- and post-pharyngeally the day after the last feeding. Planarians were then fed once a 

week at least twice more before being processed for experiments. For simultaneous inactivation of 2 

or 3 genes, bacteria/liver mixes for control or specific target genes were used at 1:1 or 1:1:1 ratios, 

respectively. 

 

Antibodies 

Rabbit polyclonal antibodies directed against SMED-VFL1 and SMED-ODF2 proteins were 

developed in the laboratory. Fragments corresponding ODF2 a.a. 599-769 (based on SmedGB 

sequence SMU15005577) (Robb et al., 2015) and VFL1 a.a. 575-703 (SMU15036303) were 

amplified by RT-PCR, cloned in pGST-Parallel1 and expressed in Escherichia coli. Bacterial 

pellets were solubilized in TNE buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA) 

containing 5 mM DTT, 20 mg/mL Lysozyme, 0.25 % sodium deoxycholate, 250 U/mL DNAse I, 5 

mM MgCl2 and protease inhibitor cocktail (Roche). The lysates were cleared out by centrifugation 

at 15,000g before incubation with Glutathione Agarose beads (Thermofisher Scientific). The beads 

were washed 5 x with 50 mL TNE buffer containing 0.1 % Triton X-100, and the protein fragments 

were recovered by overnight incubation with 75 µg Tobacco Etch Virus protease in 1.5 mL TNE 

buffer supplemented with 5 mM DTT. The supernatants containing the cleaved protein fragments 

were then dialyzed against PBS before rabbit immunization (Covalab France). Antibodies were 

affinity-purified on the corresponding antigen immobilized on Affi-Gel 10 resin (Bio-Rad 

Laboratories). For this, 1-3 mg soluble antigen diluted in 0.1 M MOPS buffer pH 7.5 containing 0.1 

M NaCl were incubated overnight at 4 °C with 1.5 mL Affi-Gel 10 beads activated following the 

manufacturer’s recommendations. The beads were then incubated with 5 mL rabbit antiserum 

diluted 5 x in PBS, transferred to a Poly-prep chromatography column (Bio-Rad) and washed with 

80 mL PBS at 4 °C. Immunoglobulins were recovered by elution with 0.1 M Glycine pH 2.2 

followed by neutralization with Tris base (100 mM final concentration), dialyzed against PBS 
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buffer containing 50 % glycerol and stored at – 20 °C. The anti-SMED-ROOTLETIN1 was 

described in (Vu et al., 2018) and the anti-SMED-CEP135 antibody in (Azimzadeh et al., 2012). 

 

Whole mount Immunofluorescence 

~ 0.1 - 0.3 cm long animals were euthanized in 1 % HCl during 1 min, fixed overnight at RT in 

methanol then rehydrated in graded series of methanol: 75%, 50%, 25% methanol in Montjuic 

water. Non-specific antibody binding sites were blocked 4 hours in PBS containing 2.5 % BSA and 

0.5 % Tween-20 (PBST), and samples were incubated overnight at 4 °C with primary antibodies at 

the following dilutions: anti-SMED-ROOTLETIN1 (1:500), anti-SMED-VFL1 (1:3000), anti-

SMED-ODF2 (1:300) and anti-SMED-CEP135 antibody (1:500). DyLight488/550 secondary 

antibodies (Thermofisher Scientific) were used at a dilution of 1:300. Samples were washed 4 x 

during 1 hour in PBST and incubated 4 hours at RT with secondary antibodies, Concanavalin A 

coupled to AlexaFluor 647 (1:300; Thermofisher Scientific) to label membranes (Zayas et al., 2010) 

and 5 µg/mL Hoechst 33342 to label nuclei. Samples were washed 4 x during 1 hour in PBST and 

mounted in Vectashield (Vector laboratories). For analysis of the ds;odf2(RNAi), 0.8-1 cm long 

animals were used because the ds(RNAi) phenotype is more penetrant in larger animals. The 

flatworms were anaesthetized in cold 0.2% chloretone in planarian water until completely stretched 

out, positioned on a filter paper on a cold block with their ventral side up and fixed with ice-cold 

methanol for at least 1 hour at - 20 °C. The samples were then bleached in 6% H2O2 in methanol 

overnight under direct light, gradually rehydrated to PBS with 0.1 % Triton X-100 (PBSTw0.1%), 

transferred into reduction solution (1 % NP40, 50 mM DTT and 0.5 % SDS in PBS) for 10 minutes 

at 37 °C, followed by 2 x 10 minute washes with PBSTw0.1%. The samples were then blocked for 

1 hour in 10 % filtered horse serum in PBSTw0.1%, followed by primary antibody incubation in 

blocking solution (anti-SMED-ROOTLETIN-1 1:500, and anti-SMED-CEP135 1:500) overnight at 

4 °C. The samples were washed 6-8 times for 4 hours in PBSTw0.1%, and then incubated in 
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secondary antibody in blocking solution (both secondary antibodies were used at 1:500) for 4 hours 

at room temperature (or overnight at 4 °C). Stained samples were washed 4-6 times for 2 hours in 

PBSTw0.1%, and then mounted in 80 % glycerol (prepared in 10 mM Tris pH 8.5). 

 

qPCR 

Total RNA extracts were obtained using TRI-Reagent (Molecular Research Center) and cDNAs 

were synthetized using SuperScript III reverse transcriptase (Thermofisher Scientific). qPCR was 

performed with GoTaq qPCR Master Mix (Promega) and the primers referenced in Table S1 in a 

LightCycler 480 instrument (Roche). Quantification of relative mRNA levels was performed using  

3 reference genes (smed-chmp2a, smed-emc7, and smed-ura4) following the MIQE guidelines 

(Bustin et al., 2009). 

 

Image acquisition and analysis 

The ventral epidermis of planarians was imaged on an inverted Axio Observer Z.1 microscope 

(Zeiss) equipped with a sCMOS Orca Flash4 LT camera (Hamamatsu) using an air 10x objective 

(Plan Apo, N.A. 0.45) or an oil 63x objective (Plan Apo, N.A. 1.4). For rootlet analysis, optical 

sections were acquired at a 0.24 μm interval using the 63 x objective and tiled images were stitched 

using ZEN software (Zeiss). Signal was enhanced using Subtract Background plugin and z-stacks 

were submitted to maximum intensity projection using ImageJ software (Schneider et al., 2012). To 

obtain rootlet polarity and position, vectors were drawn manually for each rootlet from the 

centriole-attachment side (bright end) to the tip of the comet using ObjectJ Plugin (Vischer et al., 

2015). The contour of planarians was determined on images acquired with the 10 x objective and 

the midline was positioned at equal distances of the lateral boundaries. The position of each rootlet 

relative to the M/L and A/P axes was determined. Planarians were segmented in 2 or 10 M/L and 2, 
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5 or 20 A/P segments, then mean rootlet orientation and circular standard deviation were calculated 

for each subdivision. For analysis of the ds;odf2(RNAi), we used the automatic pipeline described in 

(Vu et al., 2018) because large specimens are difficult to analyze manually. odf2(RNAi) animals 

were re-analyzed in parallel to verify that it produces similar results as manual analysis of smaller 

specimens. ds(RNAi) planarians were also analyzed in the same experiment to confirm the 

efficiency of Ds-depletion. 

 

Live imaging 

Live animals were imaged at 10 frame.sec-1 using a M205C stereomicroscope equipped with a 0.63 

x objective (PlanApo) and DFC450 camera (Leica), or a PowerShot SX 230 HS camera (Canon) for 

analysis at longer time scales. The direction of locomotion was determined using ImageJ software 

by measuring the angle between the planarian A/P axis and the trajectory of the planarians 

(measured between the photoreceptors). Time sequences (≥ 2 seconds) during which the planarian 

body remained straight were used for this analysis. To better visualize the trajectories of the 

planarians shown in Figure 3, animals fortuitously passing in the field were erased manually before 

projecting consecutive time frames on a single image. For high speed imaging of ciliary beat, live 

planarians were mounted in a chamber obtained by cutting a ~ 2 x 2 mm square from a parafilm 

spacer placed between a microscopy slide and an 18 x 18 mm coverslip (Basquin et al., 2015), and 

were observed on an Axiovert 200 inverted microscope (Zeiss) using an oil immersion x 100 

objective. The beating of cilia located at the anterior margin were recorded with a digital camera 

(PixeLINK A741) at a rate of 355 frames per second as described previously (Papon et al., 2012).  
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Transmission Electron Microscopy 

Planarians were dissected in 4 % paraformaldehyde, 2 % glutaraldehyde in 0.1 M cacodylate pH 7.4 

and fixed 4 x 1 minute in a Model 3450 Microwave Oven (Ted Pella Inc.) at 150 W, then incubated 

48 hours at 4 °C in 3 % glutaraldehyde in cacodylate buffer. The specimens were next fixed in 1 % 

OsO4 in cacodylate buffer in the microwave (2 x 1 minute at 150 W, then 6 x 20 seconds at 450 W) 

and incubated during 1 hour at room temperature. En bloc staining was performed by incubating the 

samples in 0.5 % uranyl acetate overnight at 4 °C. Dehydration was performed using graded series 

of 35, 50, 75, 80, 95, 100 % ethanol in water. Samples were rinsed in acetone and infiltration was 

performed using graded series of 10-100 % epon/araldite resin (Ted Pella Inc.) in acetone with 10 

% increments, 4 x 1 minute in the microwave at 350 W for each concentration. Samples were 

incubated overnight in 100 % resin and then 4 hours in resin with accelerant before embedding. 

Ultrathin sections were obtained using an EM UC6 Ultracut microtome (Leica), stained with uranyl 

acetate and lead citrate, and examined in a Tecnai 12 transmission electron microscope 

(Thermofisher Scientific). 

 

Computational modelling 

To test the hypothesis that orientation of the cilia can ultimately determine the movement phenotype 

of a planarian as a whole, we devised a simple model that can predict planarian movement based on 

experimentally observed spatial and angular distributions of cilia within planarians using MATLAB 

(MathWorks). 

We simulate a planarian as a solid body, meaning that there is no deformation of the body (i.e. 

no stretching or bending): the body is translated and rotated as one solid unscalable entity. A body 

has a rectangular shape and is divided, as in our experiments, into segments; the head and the tail 

have the same geometry (Figure S4A). We can arbitrarily set the length (L), the width (W) and the 

mass (M) of the whole body; the number of segments along L and W, from which the mass and the 
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size of a single segment is then calculated. Each segment comprises a number of nodes (red circles 

in Figure S4A) that represent rootlets of cilia, and with each node cilia a beating force is associated 

during simulations. The number of nodes N in each segment is drawn randomly from a normal 

distribution, the mean and the standard deviation of which we control (Nm, Ns in Figure S4A). 

Spatial distribution of these N nodes within a segment is uniform: there is no spatial bias and a node 

can be placed anywhere inside the segment with the same probability. The parameters described 

above (planarian mass, length, width; segment mass, length, width, number; nodes numbers and 

spatial distribution) are fixed during generation of a planarian and do not change during simulation 

runs. Ideally, one segment should represent one cell with its unique spatial configuration of nodes. 

In our simulations, we construct a planarian so that its segments conform to our experimental 

planarian segmentation: 5 segments along the A/P axis and 10 segments along the M/L axis. 

However, this is absolutely not necessary to reproduce our simulation results. During each 

simulation iteration nodes in all segments individually generate a force due to cilia beating; these 

forces vary in direction and magnitude. Therefore, we associate with each node the angle of the 

beating force and its absolute magnitude f; their values will be drawn from normal distributions, the 

mean and the standard deviation of which we control (Figure S4B). The angle is counted clock-wise 

from the Tail-Head axis for positive angles and counter clock wise for negative. We also introduce 

notation of incoherency in cilia beating: at any given iteration, there is only a fraction of segment’s 

nodes (ϕon, varies from 0 to 1) that have beating cilia and thus are “on” (s = 1, red nodes), whereas 

the other segment’s nodes (1 – ϕon) have resting cilia and are “off” (s = 0, blue nodes). Thus, when 

ϕon = 1, cilia beating is fully coherent and all cilia beat together during an iteration. The fraction of 

nodes with beating cilia ϕon is drawn from a normal distribution, the mean and the standard 

deviation of which we control (Figure S4B). These three normal distributions (α, f, and ϕon) are 

constructed during generation of a planarian, apply to all segments within this planarian and do not 

change during simulation runs. During new iteration, each segment acquires a new configuration of 
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beating cilia by drawing randomly parameters α, f, and s for each node from these distributions; 

each node is first set to “off” state and then turned “on” with the probability of ϕon. Some 

parameters can be found experimentally: the planarian sizes (L, W); normal distributions for 

drawing the number of nodes per segment (N) and the angular distribution of beating forces (α) 

(may be found experimentally in each segment as in Figure 2B). Some we set arbitrarily: the 

planarian mass (M), the magnitude distribution of the beating force (f) and the probability of on-off 

state (ϕ) are set arbitrarily. 

We define planarian movement as a combination of translation of the whole body and rotation 

around its center of mass M (Figure S4D). To find the translation, we first calculate the total force F�� 

generated by all beating cilia in the planarian (in all segments at each node); since the planarian is 

modeled as a rigid body, all cilia beating forces may directly be applied to the center of mass M. 

We then model the experimentally observed constant speed movement of planarians as follows. We 

assume that during each infinitesimal time span ∆t the planarian speed starts from 0, accelerates due 

to action of F�� and decelerates back to 0 due to action of counter forces (e.g. friction). More 

specifically, in the first half (from 0 to ∆�/2) acceleration is 	 =  �/ (according to second 

Newton’s law), and during the second half (from ∆�/2 to ∆�) deceleration is 	 = − �/ (we use 

symmetric evolution of the speed for simplicity of calculations). Such periodic movement can be 

approximated as movement with constant speed � =
�∆�

��
. Thus, we can calculate the translation 

from old position p� to new position p during iteration time ∆� as 

p�� = p��� + 
����

��
∆t�  (1) 

To find the rotation, we calculate for each ith segment the net force F��� arising from all its beating 

cilia and the torque ���� = ��� × ��� about the planarian’s center of mass M that ��� generates (Figure 

S4C). The total torque of the planarian ��� is then calculated as the sum of all ����. According to 
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Euler’s second law: 
∆�

∆�
=  

 ��

!
, where 

∆�

∆�
 is the angular acceleration, " =  

#

∆�
 is the angular speed, $ =

 ∑ ��
�&��  is the moment of inertia of the planarian body with �� and &� is the position and the mass 

of the ith planarian segment. Following the same considerations as in the case of translation, we can 

approximate planarian’s rotation as rotation with constant angular speed " =  
 ∆�

�!
. Thus, we can 

calculate the rotation from old angle '� to new angle ' during iteration time ∆� as  

' = '� ±  
 

�!
∆��  (2) 

where the sign depends on the direction of the torque. 

In each new iteration, all segments acquire new cilia beating configuration, after this new total 

force F�� and total torque ��� are calculated; then using equations (1) and (2) new position and new 

body orientation ()�, ') are calculated. 

Order of events in the simulation 

• Planarian generation. Parameters of the planarian: 

o Body mass (M), length (L) and width (W), initial orientation (in Figure S4 orientation is 

90 degrees). 

o Segment numbers along body length and width NL, NW. 

o Node number bias; mean and standard deviation (Nm, Nσ). 

o Cilia beating angle bias; mean and standard deviation (αm, ασ). 

o Cilia beating force strength bias; mean and standard deviation (fm, fσ). 

o Cilia beating coherency bias; mean and standard deviation (ϕm, ϕσ). 

o Segment mass is calculated, node positions are set, cilia beating angles and forces are set, 

on/off state of each node is set. 

• Simulation starts. 
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o Iteration starts. Node positions never change. 

o Cilia beating angle changes randomly within the given bias. 

o Cilia beating force changes randomly within the given bias. 

o Cilia beating coherency is used to set randomly a fraction of nodes in off state. 

o In each segment the total cilia beating force and torque is calculated. 

o Total force and torque acting on the whole planarian body is calculated  

o The whole body is moved according to the calculated force. 

o The whole body is rotated according to the calculated torque. 

o Repeat the iteration. 

To test the simulation framework and see whether the results are qualitatively consistent, we run 

several simple tests. First, we generate two planarians: one is biased to rotate left (Figure S4E, 

planarian 2, with orange segment) and the other is biased to rotate right (planarian 1, with blue 

segment). All their segments have nodes generating force straight forward (grey segments), except 

for the colored two that have directional bias. Their trajectories are, as expected, mirrored, as shown 

with trajectory evolution and body orientation in Figure S4E. Second, we generate several 

planarians with the same shape parameters, but one without noise and the rest with random noise; 

their trajectory evolution and body orientation (Figure S4F) show the effect of noise. Varying and 

even opposite direction of rotation is caused by random asymmetrical distribution of nodes 

throughout the planarian body (which is fixed after a planarian has been generated), whereas the 

noise (visible in body orientation curves) comes from random cilia beating direction, force and 

on/off state. Next, we generate planarians with exactly the same angular bias of cilia per segment as 

in the experimentally observed RNAi treated animals and run simulations on them. Our framework 

allows us qualitatively reproduce both linear translation on short time scale and circular movement 

on longer time scale (Figure 3); the direction of translation and rotation are properly captured as 
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well. Interestingly, even though these mutants translate in opposite directions, they both circle 

(rotate) in the same direction. However, it is not possible to quantitatively reproduce the speed of 

rotation or the speed of translation with simple model; it allows only qualitative translation of 

experimentally observed angular distributions into trajectories. 

 

Quantification and statistical analysis 

Statistical analysis was performed using Oriana 3 (Kovach Computing Services) for comparison of 

local rootlet angle variation. Significance was determined using Watson-Williams test and was 

defined as P ≥ 0.05. All the other analyses were done with Prism 7.0.d (GraphPad).  Significance 

was determined using Kruskal-Wallis test followed by Dunn’s multiple comparisons test or with 

Mann-Whitney test. Statistical details can be found in the legends. Significance was defined as P ≤ 

0.05 (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001). n numbers are biological repeats and measurements are 

represented as mean ± SD. 

 

Data and code availability 

The code for computational modelling of planarian locomotion generated during this study is 

available from the GitHub source-code hosting facility (https://github.com/dershoff/simulation-of-

planarian-movement). 
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Supplemental Videos  

 

Movie S1, related to Figure 1.  

Locomotion phenotypes of control, odf2(RNAi), vfl1(RNAi) and vfl3(RNAi) planarians.  

Speed is accelerated 5 times, bar is 1 mm. 

 

Movie S2, related to Figure 1.   

High-speed imaging of cilia beating in control, odf2(RNAi) and vfl1(RNAi) planarians. 

Left: control; middle: odf2(RNAi); right: vfl1(RNAi). 

 

Movie S3, related to Figure 3.  

Locomotion phenotypes of odf2(RNAi), vfl1(RNAi) and vfl3(RNAi) planarians at longer 

time scales.  

Speed is accelerated 10 times, bar is 5 mm. 

 

Movie S4, related to Figure 5.  

Locomotion phenotypes of planarians simultaneously depleted from two or all three 

sidewinder genes.  

Speed is accelerated 5 times, bar is 5 mm. 

 

Movie S5, related to Figure 6.  

Locomotion phenotypes of planarians simultaneously depleted from sidewinder genes and 

DVL1/2.  

Speed is accelerated 5 times, bar is 5 mm. 
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1. Planarian locomotion relies on a bilaterally symmetric array of epidermal cilia 

2. The ciliary pattern emerges from a chiral centriole network organized via the 
     balanced action of ODF2 and VFL1/3  




