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Abstract. Let Σ be a finite type surface, and G a complex algebraic simple Lie group with
Lie algebra g. The quantum moduli algebra of (Σ, G) is a quantization of the ring of functions
of XG(Σ), the variety of G-characters of π1(Σ), introduced by Alekseev–Grosse–Schomerus
and Buffenoir–Roche in the mid ′90s. It can be realized as the invariant subalgebra of so-
called graph algebras, which are Uq(g)-module-algebras associated to graphs on Σ, where
Uq(g) is the quantum group corresponding to G. We study the structure of the quantum
moduli algebra in the case where Σ is a sphere with n+ 1 open disks removed, n ≥ 1, using
the graph algebra of the “daisy” graph on Σ to make computations easier. We provide new
results that hold for arbitraryG and generic q, and develop the theory in the case where q = ε,
a root of unity of odd order, and G = SL(2,C). In such a situation we introduce a Frobenius
morphism that provides a natural identification of the center of the daisy graph algebra with
a finite extension of the coordinate ring O(Gn). We extend the quantum coadjoint action
of De-Concini–Procesi to the daisy graph algebra, and show that the associated Poisson
structure on the center corresponds by the Frobenius morphism to the Fock-Rosly Poisson
structure on O(Gn). We show that the set of fixed elements of the quantum coadjoint
action in the center together with an additional central element generates the center of the
specialization at q = ε of the quantum moduli algebra obtained for generic q, and we prove
that it is a finite extension of C[XG(Σ)] endowed with the Atiyah-Bott-Goldman Poisson
structure. Finally, by using Wilson loop operators we identify the Kauffman bracket skein

algebra Kζ(Σ) at ζ := iε1/2 with this quantum moduli algebra specialized at q = ε. This
allows us to recast in the quantum moduli setup some recent results of Bonahon–Wong and
Frohman–Kania-Bartoszynska–Lê on Kζ(Σ).
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1. Introduction

Let Σ be an oriented surface of finite type, and G a complex algebraic simple Lie group with
Lie algebra g. In this paper we begin our investigation of the quantum moduli algebra defined
by quantum lattice gauge field theory (qLGFT) on Σ with gauge algebra Uε(g), where Uε(g)
is the adjoint unrestricted quantum group Uε(g) at a root of unity ε. For technical simplicity
we focus in this paper on the case where Σ has genus 0 and n ≥ 2 boundary components,
we assume that ε has odd order, and we prove our main results in the case of G = SL(2,C).
Their formulation for arbitrary G has qualitatively the same form.

Our main motivation comes from quantum topology. We aim at showing that the quantum
moduli algebras make a very efficient and unifying setting by which quantum invariant theory
for manifolds equipped with G-characters can be studied. As an example, in this paper we
will verify this postulate on the Kauffman bracket skein algebra Kζ(Σ), where ζ = iε1/2 is a
primitive root of unity of order 4l, with l ≥ 3 odd. Namely, we will recast some recent results
of Bonahon–Wong [15, 16, 17] and Frohman–Kania-Bartoszynska–Lê [43, 44] on Kζ(Σ) in the
setup of quantum moduli algebras, where they follow from our general results applied to the
case of g = sl(2).

Our approach consists genuinely of doing geometric invariant theory for quantum groups.
In order to present our results, let us recall a few facts about qLGFTs.

The qLGFTs were introduced in the mid ’90s by Alekseev–Grosse–Schomerus [1, 3, 4, 7]
and Buffenoir–Roche [21, 22], who used as gauge algebras the quantum groups H = Uq(g)
with q generic, or semi-simplifications thereof when q is a root of unity. Assuming that Σ has
non-empty boundary, which simplifies our presentation and is the case studied in this paper,
the qLGFT on Σ with gauge algebra H associates a H-module-algebra LΓ(H), called graph
algebra, to any ribbon graph Γ embedded in Σ and onto which Σ deformation retracts. The
H-invariant subalgebra LΓ(H)H is independent up to isomorphism of the choice of Γ, and so

is canonically associated to Σ. Abusing of notations we call LΓ(H)H “the” quantum moduli
algebra of the qLGFT.

In these papers LΓ(H) was defined by the method of “combinatorial quantization”, which
yields presentations by generators and relations given in matrix form. Assuming Γ has one
vertex and no edge contractible in Σ, these presentations make LΓ(H) a natural deformation

quantization of the ring of regular functions O(GE) endowed with the Fock-Rosly Poisson

structure [46, 6], where E is the number of edges (loops) of Γ. Hence LΓ(H)H is a defor-

mation quantization of O(GE)G ⊂ O(GE), the ring of regular functions invariant under the
coadjoint action of G, ie. the ring of regular functions on the variety XG(Σ) of characters of
representations π1(Σ)→ G, endowed with the Atiyah-Bott-Goldman Poisson structure.

Bullock–Frohman–Kania-Bartoszynska provided in [19] a coordinate free construction of
the qLGFTs that works for any ribbon Hopf gauge algebra H, based on the Reshetikhin-
Turaev functor. They also related the Wilson loop elements of LΓ(H)H , introduced in [22]
and associated to the isotopy classes of framed oriented links in Σ × [0, 1], to the Kauffman
bracket skein algebra of Σ. In particular, by adapting their approach to H = Uq(sl(2))
(which strictly speaking is not ribbon), they showed in [20] that the construction of Wilson
loop elements yields an isomorphism from the skein algebra Kq(Σ) defined over C(q) to the
quantum moduli algebra for H = Uq(sl(2)). This isomorphism, that we call Wilson loop map,
explained in a very natural way the emergence in qLGFTs of the Witten-Reshetikhin-Turaev



UNRESTRICTED QUANTUM MODULI ALGEBRAS OF PUNCTURED SPHERES, I 3

mapping class group representations and of the Jones polynomial of links, already discovered
in [7] and [22]. We refer to [65] for a comprehensive account of the axiomatic and algebraic
structures of qLGFTs, and to [18] for their re-appearance in the context of factorization
homology.

With the exception of the work of Frolov [45], until recently the qLGFTs for (non semi-
simplified) quantum groups at roots of unity were not studied, certainly because of their
apparent complicated definitions. Although the combinatorial quantization approach is the
less intrinsic, it has the advantage of providing computationally transparent connections with
representation theory. The more topological approach of [19] makes some invariance state-
ments obvious, but encapsulates part of representation theory in a diagrammatic calculus,
leaving many aspects rather implicit.

A major progress has been done recently by Faitg in [38, 39, 40]. He defined the qLGFTs
for arbitrary finite-dimensional ribbon factorizable Hopf gauge algebras H, not necessarily
semisimple, using combinatorial quantization. He showed that the mapping class group
representations associated to such qLGFTs coincide with those of Lyubashenko–Majid [63,
64], which were originally defined by categorical means, and provided explicit and ready-to-
use formulas for Dehn twists. In particular this includes (with little adaptation) the restricted
quantum group for sl(2) at a primitive root of unity of even order. In this case, he generalized
the Wilson loop map, and obtained new non semisimple representations of Kq(Σ). He showed
also that the corresponding qLGFT mapping class group representations coincide in genus
g = 1 with those derived from logarithmic conformal field theory in [41].

In the present paper we make a further step in the root of unity case; we note that another
approach is being developed in [47]. We consider the qLGFTs on Σ with gauge algebra an
unrestricted adjoint quantum group Uε(g), where ε is a root of unity of odd order l. As
mentioned above, for simplicity we focus on the case where Σ is a sphere with n + 1 open
disks removed, n ≥ 1 (sometimes we say for short that Σ is punctured), but qualitatively
similar results hold for surfaces of non zero genus.

First we construct the graph algebra L0,n := L0,n(g) associated to the “daisy graph” in Σ,
made of one vertex, one loop encircling each deleted disk, and one “cilium” at the vertex,
which provides an ordering of the loops by using the orientation of Σ. The embedding in Σ
gives the daisy graph a structure of ribbon graph, as shown in the picture below:

n
1

a

Figure 1.1 : the daisy graph

The graph algebra L0,n is a module-algebra over the quantum group Uq := Uq(g) with
ground ring C(q). We define L0,n by means of combinatorial quantization based on Uq, that
we reformulate also in terms of twists of module-algebras and braided tensor product. More
precisely, Uq is not a ribbon Hopf algebra, but a suitable extension of the category of finite-
dimensional Uq-modules is ribbon. So, to make sense of the construction of L0,n we replace
Uq by a categorical completion Uq.

In particular, L0,1 = Oq as a Uq-module, where Oq is the restricted dual of Uq endowed
with the right coadjoint action of Uq, and the algebra structure of L0,1 is compatible with that
action. Eventually, we find that a map due to Alekseev [1] yields an equivariant embedding
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of Uq-module-algebras

Φn : L0,n → Ũ⊗nq ⊗ C(q1/D)

where Ũq is the simply-connected quantum group associated to g, L0,n and Ũ⊗nq are endowed
with a coadjoint and an adjoint action of Uq respectively, and D is the smallest integer
such that DP ⊂ Q (P , Q being the weight and root lattices of g). In the case n = 1, Φ1

coincides with a celebrated isomorphism of Uq-modules Oq → Ũ lfq ⊗ C(q1/D), where Ũ lfq is

the subalgebra of locally finite elements of Ũq, which was first introduced by Drinfeld and
Reshetikhin–Semenov-Tian-Shansky [68], and further studied by Caldero, Joseph-Letzter and
others (see eg. [24], [52], [13]).

For the purpose of defining specializations at q = ε, we then introduce an integral form
LA0,n of L0,n, that is, an A-algebra satisfying L0,n = LA0,n ⊗A C(q), where A = Z[q, q−1]. It
is a module-algebra over the unrestricted integral form UA of Uq, as defined by De Concini–

Kac–Procesi [27, 29]. The construction of LA0,n is based on Lusztig’s [61] restricted integral
form U resA of Uq and some integrality properties of the R-matrix on U resA -modules. The

Alekseev map yields an equivariant embedding of UA-module-algebras Φn : LA0,n → Ũ⊗nA , and

the iterated coproduct ∆(n−1) of a (natural) integral form OA of Oq defines a morphism of

algebras ∆(n−1) : LA0,1 → LA0,n.
We show (see Proposition 6.9 and Theorem 6.23 for details):

Theorem 1.1. The invariant subalgebra (LA0,n)UA does not have non trivial zero divisors,

and its center is a polynomial algebra, generated by ∆(n−1)(Z(LA0,1)) and Z(LA0,n).

In the case g = sl(2) this result also follows from the isomorphismW of Theorem 1.3 below,
and the fact, proved in [67], that the skein algebras satisfy the corresponding properties. In
that paper it is also shown that the skein algebras are finitely generated and Noetherian. We
expect the same is true of (LA0,n)UA for arbitrary g.

The constructions and results above are developed from Section 2 to Section 6, for any
of the quantum groups Uq = Uq(g). As they form the basis of all results that follow we
give full details, though part of this material has already been considered in some ways in
the litterature. Along the text and especially in Section 5 we consider in detail the case of
g = sl(2).

Section 7 is devoted to the center of the specializations of LA0,n at roots of unity. For every

ε ∈ C×, set Uε := UA ⊗A Cε and

Lε0,n = LA0,n ⊗A Cε
where Cε = C as a vector space, and as an A-module, q is evaluated as ε on Cε. The Alekseev
map affords an embedding of Uε-modules Φn : Lε0,n → Ũ⊗nε . We study this map when ε is a
root of unity of odd order l.

De Concini–Kac–Procesi [27, 28, 29] showed that the center Z(Ũε) can be identified with the
coordinate ring of a Poisson-Lie group G∗ (dual to G endowed with the standard Poisson-

Lie structure), and that certain Hamiltonian vector fields on Spec(Z(Ũε)) ∼= G∗ can be
integrated to define an infinite dimensional group GDCK acting by analytic automorphisms
on Spec(Z(Ũε)), and by automorphisms on a suitable completion of Uε. The orbits of this
action, called quantum coadjoint action, lift the orbits of the conjugation action via the
natural covering map G∗ → G0, where G0 is the big cell of G. They used this action to
obtain a series of fundamental results on the simple Uε-modules.

It is not hard to make the quantum coadjoint action explicit for Uε(sl(2)). Therefore,
starting from Section 7 we restrict to the case of g = sl(2), thus omitting g from the notations
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(denoting eg. Lε0,n(sl(2)) by Lε0,n), and we put G = SL(2,C). In the case of g = sl(2) the
Alekseev map affords an isomorphism

Φn : locLε0,n → U⊗nε

where locLε0,n is the specialization at q = ε of a localization of LA0,n(sl(2)) introduced in Section
6.

After proving preliminary results on the center Z(Lε0,n) in Section 7.1, we extend the
quantum coadjoint action by means of the Alekseev map, to get in Section 7.2 an action
of a finite dimensional Lie group G on the fraction ring Ẑ(Lε0,n) (hence a partial action on
Spec(Z(Lε0,n)) by rational transformations) and on a suitable completion of Lε0,n. Then we

study the invariant subalgebra Z(Lε0,n)G . The groups G and GDCK are different. In fact, it
is necessary to adapt the constructions of De Concini–Kac–Procesi in the case n > 1 (see
Remark 7.17). We note that the problem of extending the quantum coadjoint action to graph
algebras has already been considered by Frolov in [45].

We can summarize the main results of Section 7 as follows (see Corollary 7.22 for a precise
and more complete statement). Denote by XG(Σ) the variety of characters of representations

π1(Σ) → G. We define an l-fold branched covering space G̃ of G, and an ln-fold branched

covering space X̃ ′G(Σ) of XG(Σ), related by a natural branched covering identification map

c̃ : X̃ ′G(Σ)→ G̃n. Then we prove:

Theorem 1.2. The center Z(Lε0,n) is naturally endowed with a Poisson bracket { , }QCA
inherited from the algebra structure of Lε0,n, so that there is an isomorphism of Poisson
algebras

F̃ r : (O(G̃n), { , }FR)→ (Z(Lε0,n), { , }QCA)

where { , }FR is the trivial extension to O(G̃n) of the Fock-Rosly Poisson bracket on O(Gn).

Moreover, F̃ r yields an isomorphism of Poisson algebras

F̃ r ◦ c̃−1∗ : (O(X̃ ′G(Σ)), { , }Gold)→ (Z(Lε0,n)G , { , }QCA)

where { , }Gold is the trivial extension to O(X̃ ′G(Σ)) of the Atiyah-Bott-Goldman Poisson
bracket on O(XG(Σ)).

The isomorphism F̃ r provides a precise formulation of what means combinatorial quanti-
zation of the Ad(G)-module-algebra O(Gn) at roots of unity. It maps the elements generating

O(G̃n) as an extension of O(Gn) to analogs of Casimir elements in Z(Lε0,n). On the sub-
algebra O(Gn), it is given by a Frobenius map Fr, analogous in the case n = 1 to the one
defined for Oε = SLε(2) by Parshall-Wang in [66], though much more complicated, see the
definitions 7.2 and 7.5. It satisfies the remarkable identity (and a similar one for n > 1, see
Proposition 7.8)

Fr

(
Tr

(
V2
M

))
= Tl

(
qTr

(
V2
M

))
= qTr

(
Tl(V2)

M

)
where

V2
M is the matrix of coordinate functions of G in its fundamental representation,

V2
M

is the matrix of generators of Lε0,1 in the fundamental representation V2 of Uε, Tl is the l-
th Chebyshev polynomial of the first type (suitably normalized), Tl(V2) the corresponding
virtual representation in the Grothendieck ring of Uq-modules, and qTr and Tr are the
quantum trace and classical trace of 2 × 2 matrices respectively. This identity shows how
Fr relates invariant functions on G to G-invariant central elements. The appearance of the
l-th Chebyshev polynomial Tl in this context relies on the fact that it generates the defining



6 STÉPHANE BASEILHAC, PHILIPPE ROCHE

relation of Z(Uε), between the Casimir element Ω and the generators El, F l,K±l of the
“small” center Z0(Uε) ⊂ Z(Uε).

In Section 8 we develop a topological (ie. skein theoretic) formulation of some of the
previous results.

In Section 8.1 we give two definitions of a Wilson loop functor W, defined on a category
of ribbon oriented graphs in Σ × [0, 1] colored by U resA -modules, extending the Wilson loop
map of [22] and defined for any g. One of these formulations uses the Reshetikhin-Turaev
functor, and is close to the one of [19].

In Section 8.2 we consider the restriction W of W to closed colored ribbon oriented graphs.
The image of W is (LA0,n)UA⊗AZ[q1/D, q−1/D], where we recall that (LA0,n)UA is the A-algebra

of UA-invariant elements of LA0,n. Moreover, we prove the following result, which is an integral
version (ie. over the ring A) of a combination of Theorem 10 of [19] and Theorem 1 of [20].
Denote by Kζ(Σ) the Kauffman bracket skein algebra of Σ, defined over the ring Z[ζ, ζ−1].
We have (see Theorem 8.4):

Theorem 1.3. When g = sl(2), the linear map defined by W(L) = ilk(L)W (L) on ribbon
oriented links L colored by the fundamental representation, where lk(L) is the linking number

of L, descends to an isomorphism of algebras (where ζ := iq1/2):

W : Kζ(Σ)→ (LA0,n)UA ⊗A Z[ζ, ζ−1].

By using the image by W of the multicurve basis of Kζ(Σ) (which is an instance of basis

of (LA0,n)UA constructed for any g in Proposition 6.19), we prove in Theorem 8.6 the following

result, about the specialization (LA0,n)UAε = (LA0,n)UA ⊗A Cε.

Theorem 1.4. The algebra Z(Lε0,n)G is contained in (LA0,n)UAε . Moreover, the bracket { , }QCA
extends to an action by derivations of Z(Lε0,n)G on (LA0,n)UAε .

The theorems 1.1, 1.2, 1.3 and 1.4 imply:

Corollary 1.5. (1) The skein algebra Kζ(Σ) does not have non trivial zero divisors, and its
center is the polynomial ring generated by the skein classes of the boundary components of Σ.

(2) When ζ is specialized to a root of unity ε′ of order 4l, with l ≥ 3 odd, the center
of Kε′(Σ) contains a subalgebra isomorphic to O(XG(Σ)), endowed with the image of the
Poisson bracket {, }Gold, which extends to an action by derivations on Kε′(Σ).

Details are given in Section 9. As already mentioned above, (1) has been proved in [67].
The claim (2) belongs to a corpus of results proved in [15, 16, 17] and [43, 44], for any
finite type surface and root of unity ε′. One interest of our method is to be intrinsically
algebro-geometric, and valid for any complex simple Lie algebra g. We note that the Frobe-
nius map Fr discussed after Theorem 1.2 provides an explicit, geometric realization of the
threading map Ch : K

ε′l2 (Σ) → Zε′(Σ) of Bonahon-Wong, see [15] and also [44] (note that

ε′l
2 ∈ {±1,±i}).
In works in preparation we extend and improve on the results of this paper to arbitrary

finite type surfaces, and we construct families of indecomposable representations of (LA0,n)UAε .
The quantum coadjoint action implies remarkable properties of the intertwiners of quantum
moduli algebras, establishing their relationships with the quantum hyperbolic field theories
(see [10, 11] and the references therein), and therefore quantum Teichmüller theory, by the

results of [12]. In another direction, integrating the action by derivations of Z(Lε0,n)G provides

interesting information on the finite-dimensional (LA0,n)UAε -modules. There should be no major
difficulties in generalizing these results to the higher rank case.
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2. Categorical completions

We recall here the notion of categorical completion of a Hopf algebra.

Let k be a field (in the sequel it will always be C or C(q)), and U a k-associative algebra
(not necessarily with unit). We denote by µ the multiplication map of U , and by ModU the
category of left U -modules.

Let FU : ModU → V ect be the forgetful functor from the category ModU to the category
of k-vector spaces. Denote by U the set of natural transformations from FU to FU . An
element of U is a collection (aX)X∈ModU , where aX ∈ Endk(X) satisfies FU (f) ◦ aX =
aY ◦ FU (f) for any objects X,Y in ModU and any arrow f ∈ HomU (X,Y ). The direct
product

∏
X∈ModU

Endk(X) is canonically endowed with a structure of unital k-algebra, and

U is a unital subalgebra of
∏
X∈ModU Endk(X). The multiplication map is given in each

factor by the composition map µX : Endk(X) ⊗ Endk(X) → Endk(X), u ⊗ v 7→ u ◦ v. The
map

ιU : U → U , a 7→ (aX)X∈ModU ,

where aX is the endomorphism defined by the action of a ∈ U on X, is a morphism of algebra.
When U has a unit 1, ιU is an isomorphism with inverse ι−1

U : U → U, (aX)X∈ModU 7→ aU (1),
where U is endowed with its structure of left-regular representation.

We will ”enlarge” U by considering only k-finite dimensional U -modules; we stress that,
in this situation, the map corresponding to ιU is not necessarily surjective nor injective (see
below for the case of U = Uq(g)). Let FinV ect and FinModU be respectively the full
subcategories of V ect and ModU whose objects consist of the finite dimensional k-vector
spaces and U -modules. Let FinFU : FinModU → FinV ect be the forgetful functor, and
Û the set of natural transformations from FinFU to FinFU . As U above, Û is a unital
subalgebra of

∏
X∈FinModU

Endk(X), and the map (keeping the same notation)

ιU : U → Û , a 7→ (aX)X∈FinModU

is a morphism of algebra. We will call Û the FinModU -categorical completion of U .

We will often use special elements in Û defined by series of elements of U . Consider a
sequence of elements xj of U , and assume that for any object X of FinModU , the set of
indices j such that the endomorphism (xj)X is not zero is finite. Then we can define an

element
∑

j ιU (xj) of Û by

(
∑
j

ιU (xj))X =
∑
j

(xj)X .

When ιU is injective this element is also denoted by
∑

j xj .

Let U , V be k−algebras, and Û , V̂ their FinMod− categorical completions. We de-
fine the categorical completed tensor product of Û and V̂ , denoted by Û⊗̂V̂ , as the space
of natural transformations from FU,V to FU,V , where FU,V : FinModU × FinModV →
FinV ect, (X,Y ) 7→ X ⊗k Y . An element of Û⊗̂V̂ is a collection of linear maps aX,Y ∈
Endk(X ⊗ Y ), for X ∈ FinModU and Y ∈ FinModV , such that for any arrows f ∈
HomU (X,X ′) and g ∈ HomV (Y, Y ′) one has (f ⊗ g) ◦ aX,Y = aX′,Y ′ ◦ (f ⊗ g) (identifying
FU,V (f, g) with the linear map f ⊗ g). Again the componentwise composition map endows

Û⊗̂V̂ with a structure of associative algebra, and the map ιU,V : U ⊗ V → Û⊗̂V̂ , u ⊗ v 7→
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(uX ⊗ vY )X,Y is a morphism of algebra. If µ : U ⊗ U → U is the product of U , we define

µ̂ : Û⊗̂Û → Û by
(µ̂(a))X = µX(aX,X)

for all a ∈ Û⊗̂Û and objects X of FinModU . This construction is generalized straightfor-
wardly to n-tuples of algebras U1, · · · , Un. In particular, if U1 = · · · = Un = U we put

Û ⊗̂n := Û1⊗̂ · · · ⊗̂Ûn.
Adapting Sweedler’s coproduct notation ∆(x) =

∑
(x) x(1)⊗x(2), we find convenient to write

a sum T =
∑

j uj⊗̂vj in Û⊗̂V̂ as

T =
∑
(T )

T(1)⊗̂T(2).

Assume now that U is a k-bialgebra, with coproduct ∆: U → U ⊗U and counit ε : U → k.
Denote by X0 the U -module structure on k defined by the counit ε. Set

∆̂ : Û → Û⊗̂Û , (aZ)Z∈FinModU 7→ (aX,Y )X,Y ∈FinModU

where aX,Y := aX⊗Y , and

ε̂ : Û → k, a 7→ aX0 .

These maps are morphisms of algebras, and satisfy

∆̂ ◦ ιU = ιU,U ◦∆ , (ε̂⊗̂id)(∆̂(a)) = (id⊗̂ε̂)(∆̂(a)) = id , (∆̂⊗̂id)∆̂ = (id⊗̂∆̂)∆̂.

We will still call Û a k-bialgebra although the tensor product is ⊗̂ and not the algebraic one.
In particular, given a = (aZ)Z∈FinModU ∈ Û we have

a(X,Y ),Z := ((∆̂⊗̂id)∆̂(a))X,Y,Z = ((id⊗̂∆̂)∆̂(a))X,Y,Z =: aX,(Y,Z).

We say that U is quasicocommutative in its categorical completion if there exists an invert-
ible element R ∈ Û⊗̂Û such that

∆̂cop(a) = R∆̂(a)R−1

for all a ∈ Û , where ∆̂cop := σ ◦ ∆̂, and σ(a⊗̂b) = b⊗̂a for every a, b ∈ Û . In particular, this
implies

ιU⊗U (∆cop(a)) = ιU⊗U (σ(∆(a))) = RιU⊗U (∆(a))R−1

for all a ∈ U .
Assume that U is quasicocommutative in its categorical completion. We say it is quasitri-

angular, or braided, if moreover we have

(1) (∆̂⊗̂id)(R) = R13R23 , (id⊗̂∆̂)(R) = R13R12.

Then, we call R a universal R-matrix. We use the following notations:

(2) R+ := R, R− := σ(R)−1, R′ := σ(R).

Finally assume that U is a Hopf algebra. For X a U -module, denote by X∗ the dual module
(with the standard action a·λ = λ◦S(a), for all a ∈ U and λ ∈ X∗). If X is finite dimensional,
let ψX : X∗∗ → X be the canonical isomorphism of vector spaces. We define an antimorphism
of algebras Ŝ : Û → Û by

Ŝ(a)X = ψX ◦ t(aX∗) ◦ ψ−1
X

for all X ∈ FinModU . It satisfies µ̂(Ŝ⊗̂id)∆̂(a) = µ̂(id⊗̂Ŝ)∆̂(a) = η̂ε̂ where η : k → U ,

λ 7→ λ1U , and η̂ : k → Û , λ 7→ λ1Û , are the unit maps of U and Û respectively. Hence Û is

a Hopf algebra in the generalized sense where the tensor product ⊗̂ is used in place of the
algebraic one.
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When U is a Hopf algebra braided in its categorical completion, we say it is ribbon in
its categorical completion if there exists θ ∈ Û such that θ is central, ∆̂(θ) = (R′R)−1(θ ⊗
θ), ε(θ) = 1 and Ŝ(θ) = θ.

For the sake of notational simplicity, from now on we will omit the “ˆ” symbols from the
structure morphisms of the categorical completions Û under consideration, thus denoting ∆̂
by ∆, ⊗̂ by ⊗, and so on, like for U .

3. The case of Uq(g)

Let g be a finite dimensional simple complex Lie algebra of rank m. Denote by (aij) the
Cartan matrix of g, and by di the unique coprime positive integers such that the matrix
(diaij) is symmetric. Fix a Cartan subalgebra h and a basis of simple roots αi ∈ h∗R. Denote
by ( , ) the unique inner product on h∗R such that diaij = (αi, αj). The root lattice Q is the
Z-lattice in h∗R defined by Q =

∑m
i=1 Zαi. The weight lattice P is the Z-lattice formed by all

λ ∈ h∗R such that

〈λ, αi〉 := 2
(λ, αi)

(αi, αi)
∈ Z

for every i = 1, . . . ,m. So P =
∑m

i=1 Zωi, where the ωi are the fundamental weights cor-
responding to the simple roots αi, satisfying 〈ωi, αj〉 = δi,j . Put Q+ :=

∑m
i=1 Z≥0αi and

P+ :=
∑m

i=1 Z≥0ωi, the cone of dominant integral weights. Denote by ρ half the sum of
the positive roots, and by D the smallest positive integer such that D(λ, µ) ∈ Z for every
λ, µ ∈ P . Note that (λ, αi) ∈ Z for every λ ∈ P , α ∈ Q, and D is also the smallest positive
integer such that DP ⊂ Q.

Let q1/D be a new variable, and set q = (q1/D)D, qi = qdi . The quantum group Uq = Uq(g)

is the algebra over k = C(q) with generators Ei, Fi, Ki, K
−1
i , 1 ≤ i ≤ m, and defining

relations (see eg. [25], Chapter 9.1):

KiKj = KjKi , KiK
−1
i = K−1

i Ki = 1 , KiEjK
−1
i = q

aij
i Ej , KiFjK

−1
i = q

−aij
i Fj(3)

EiFj − FjEi = δi,j
Ki −K−1

i

qi − q−1
i

(4)

1−aij∑
r=0

(−1)r
[

1− aij
r

]
qi

E
1−aij−r
i EjE

r
i = 0 if i 6= j(5)

1−aij∑
r=0

(−1)r
[

1− aij
r

]
qi

F
1−aij−r
i FjF

r
i = 0 if i 6= j.(6)

Here we put for p, k non-negative integers with 0 ≤ k ≤ p,

[0]q! = 1 , [p]q! = [1]q[2]q . . . [p]q , [p]q =
qp − q−p

q − q−1
,

[
p
k

]
q

=
[p]q!

[p− k]q![k]q!
.

The algebra Uq is a Hopf algebra with the coproduct ∆, antipode S, and counit ε defined by

∆(K±1
i ) = K±1

i ⊗K
±1
i , ∆(Ei) = Ei ⊗Ki + 1⊗ Ei , ∆(Fi) = K−1

i ⊗ Fi + Fi ⊗ 1
S(Ei) = −EiK−1

i , S(Fi) = −KiFi , S(K±1
i ) = K∓1

i
ε(Ei) = ε(Fi) = 0, ε(Ki) = 1.
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In the case of g = sl(2) we simply write E = E1, F = F1 and K±1 = K±1
1 the generators of

Uq(sl(2)). For every α ∈ Q, α =
∑m

i=1miαi, we put

Kα =

m∏
i=1

Kmi
i .

The element ` = K2ρ is group like and satisfies S2(x) = `x`−1, x ∈ Uq. Hence Uq is a pivotal
Hopf algebra, with the pivotal element `.

We will also consider the simply-connected version Ũq of Uq. It is obtained by adjoining
invertible elements `i, 1 ≤ i ≤ m, such that

Ki =

m∏
j=1

`
aji
j , `iEj`

−1
i = q

δi,j
i Ej , `iFj`

−1
i = q

−δi,j
i Fj , ∆(`±1

i ) = `±1
i ⊗ `

±1
i .

The expression of the pivotal element is

` =
m∏
j=1

`2j .

For instance, Ũq(sl(2)) is obtained from Uq(sl(2)) by adjoining a square root of K. We denote

K
1
2 = `1.

By a theorem of Harish-Chandra, the map ιU : U → Û of Section 2 is injective when U
is U(g), the universal enveloping algebra of g ([31], Theorem 2.5.7). It is also injective when
k = C(q) and U = Uq ([50], Lemma 7.1.9).

In the case of k = C(q), only specific categorical completions of Uq are ribbon. We will use
the one, that we denote by Uq, defined as follows.

Recall that every finite dimensional Uq-module X is completely reducible (see eg. [25],
Theorem 10.1.7). IfX is irreducible, it is a highest weight module parametrized by a dominant
integral weight, say λ ∈ P+, and signs σi = ±1, i ∈ {1, . . . ,m}. Then X = ⊕ε′Xε′ , where

the sum ranges over the tuples ε′ = (ε′1, . . . , ε
′
m) such that ε′i

−1εi = q(α,αi) for some α ∈ Q+,

where ε = (ε1, . . . , εm) and εi = σiq
(λ,αi), and Xε′ = {x ∈ X | Ki · x = ε′ix, i = 1, . . . ,m} is

the weight space of X of weight ε′. We say that a finite dimensional Uq-module has type 1 if
the signs σi of all its irreducible components are equal to 1. The category C with objects the
finite dimensional Uq-modules of type 1 is a semisimple tensor category.

As in Section 2, we can define the C-categorical completion U′q = Uq(g)′ of Uq as the Hopf
algebra of natural transformations from FC to FC , where FC : C → FinV ect is the forgetful
functor.

Set

Uq = U′q ⊗k C(q1/D).

Extending the coefficient ring of C from C(q) to C(q1/D) allows one to embed Ũq⊗kC(q1/D) in
Uq, and to make sure that the latter is braided and ribbon. Let us explain this. Denote by Vλ
the type 1 finite dimensional simple Uq-module parametrized by λ ∈ P+. It can be considered
as a q-deformation of the finite dimensional simple g-module of highest weight λ. Therefore,
the generators Hi ∈ g such that αi(Hj) = aji define elements of U′q: Hi acts on a weight

space Xε′ of weight ε′ = (ε′1, . . . , ε
′
m), where ε′i = q(µ,αi) and µ ∈ P , by multiplication by

(µ, αi). Passing to the coefficient ring C(q1/D), one can define an element qHi/D ∈ Uq, acting

on Xε′ ⊗ C(q1/D) by multiplication by q(µ,αi)/D. Similarly, recalling that (µ, ωi) ∈ (1/D)Z,

we can define the action of the generator Li ∈ Ũq on Xε′ ⊗ C(q1/D) as the multiplication

by q(µ,ωi). This provides the claimed embedding Ũq ⊗ C(q1/D) ⊂ Uq. It can be seen as a
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realization of the fact that the restriction functor C → C̃ is an equivalence of categories, where
C̃ is the category of type 1 finite dimensional Ũq-modules.

Denote by B ∈ Mn(Q) the matrix with entries Bij := d−1
j aij . By the same arguments as

above one can define

(7) Θ := q
∑m
i,j=1(B−1)ijHi⊗Hj ∈ U⊗2

q

as the operator acting on Xε⊗Xε′ ⊗C(q1/D) as the multiplication by q(µ,ν) ∈ Z[q1/D, q−1/D],

where ε = (ε1, . . . , εm), ε′ = (ε′1, . . . , ε
′
m), εi = q(µ,αi), ε′i = q(ν,αi) and µ, ν ∈ P .

Recall that the Drinfeld universal R-matrix Rh of the quantized universal enveloping al-
gebra Uh(g) takes the form (See [25], Chapter 8.3.C, for the notations; N is the number of

positive roots, and q = eh):

Rh = exp

h m∑
i,j=1

(B−1)ijHi ⊗Hj

 ∞∑
t1,...,tN=0

N∏
r=1

q
1
2
tr(tr+1)

βr

(1− q−2
βr

)tr

[tr]qβr !
(Eβr)

tr ⊗ (Fβr)
tr .

Since Eβr , Fβr act nilpotently on objects of C, one derives immediately that

R = ((Rh)X,Y ) ∈ U⊗2
q .

For instance, in the case of g = sl(2), we have D = 2 and Θ = qH⊗H/2. Hence, identifying
elements of Uq with their images by ιUq : Uq → Uq we can write

(8) R = qH⊗H/2
+∞∑
n=0

(q − q−1)n

[n]q!
qn(n−1)/2En ⊗ Fn.

One checks similarly that the ribbon element of Uh(g) induces an element of Uq, so that Uq
is naturally a braided and ribbon Hopf algebra in the categorical completion Uq.

Let A = Z[q, q−1]. The unrestricted integral form UA is the A-subalgebra of Uq generated
by the elements (see eg. [25], Chapter 9.2)

(9) Ei, Fi,K
±1
i ,

Ki −K−1
i

qi − q−1
i

for 1 ≤ i ≤ m.

The restricted integral form U resA is the A-subalgebra of Uq generated by the elements (see
eg. [25], Chapter 9.3)

(10)
Eri

[r]qi !
,
F ri

[r]qi !
, K±1

i for any i, rwith 1 ≤ i ≤ m, r ≥ 1.

Both UA and U resA are Hopf algebras. They satisfy UA ⊗A C(q) = Uq, U
res
A ⊗A C(q) = Uq.

One defines ŨA and Ũ resA in a similar way, replacing the generators K±1
i by `±1

i .

We will use the following property of theR-matrix. Denote by Bλ the canonical (Kashiwara-
Lusztig) basis of the Uq-module Vλ, λ ∈ P+ (see eg. [25], Chapter 14). Denote by AVλ the
A-sublattice of Vλ generated by Bλ. The restricted integral form U resA acts on AVλ.

Theorem 3.1. (Integrality property) (1) Denote by Bλµ the basis of Vλ ⊗ Vµ formed by
the vectors x⊗ y, with x ∈ Bλ, y ∈ Bµ. For every λ, µ ∈ P+, the matrix entries in the basis

Bλµ of the endomorphisms R±1
Vλ,Vµ

∈ EndC(q1/D)(Vλ ⊗ Vµ) belong to q±(λ,µ)Z[q, q−1].

(2) For every λ ∈ P+, denote by πVλ : Uq → End(Vλ) the canonical projection. We have

(πVλ ⊗ id)(R) ∈ EndA(AVλ)⊗ ŨA.
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Proof. The first claim is a classical result of Lusztig ([61], see also [59]). The second is a
consequence of the nilpotency of the elements Eβr on Vλ, and the facts that (Eβr)

tr/[tr]qβr !

acts on the A-lattice AVλ, and that (πVλ ⊗ id)(Θ) ∈ End(AVλ) ⊗ ŨA. Indeed, this last fact
can be checked by taking weight spaces Xε, Xε′ as in (7), with Xε a weight subspace of a
highest weight module Vλ, and with basis vectors {ei} of Xε. Then, setting λ =

∑m
t=1 ktωt,

we have

(Vλφ
ej

ei ⊗ id)(Θ) = δi,j

m∏
t=1

`ktt .

This concludes the proof. 2

Denote by CA the category with objects the finite dimensional U resA -modules of type 1. It

is a semisimple tensor category. Denote by CA ⊗ Z[q1/D, q−1/D] the category obtained by

extending coefficients to Z[q1/D, q−1/D]. By Theorem 3.1 (1) the braiding R of C yields a

braiding on CA⊗Z[q1/D, q−1/D], and from this one derives easily that the same is true of the

ribbon transformation. Hence CA ⊗ Z[q1/D, q−1/D] is a ribbon category. Note the following
consequence. Define the categorical completion UresA of U resA similarly as Uq above, that is

UresA = UresA ′ ⊗A Z[q1/D, q−1/D]

where UresA ′ is the Hopf algebra of natural transformations FCA → FCA , and FCA : CA →
FinV ect is the forgetful functor. Then UresA is a braided and ribbon Hopf algebra.

If ε ∈ C×, the unrestricted specialisation of Uq at q = ε is the C-Hopf algebra

(11) Uε = UA ⊗A Cε

where Cε = C as a vector space, and as an A-module, q acts on Cε by ε. One defines Ũε in a
similar way. The map ιU : U → Û of Section 2 is injective when U = Uε or Ũε and ε is not a
root of unity ([49], Proposition 5.11).

When ε is not a root of unity, the finite dimensional Uε-modules are completely reducible
(see eg. [25], Theorem 10.1.14). One can define the category Cε of type 1 finite dimensional
Uε-modules as above. The categorical Cε-completion of Uε is a braided and ribbon Hopf
algebra. Note that, in the case of g = sl(2), again when ε is not a root of unity, a similar
construction of categorical completion of Uε(sl(2)) has been done in [42].

When ε is a root of unity, the category of finite dimensional Uε-modules is not semisimple
and not braided. When g = sl(2) a classification of the simple modules is known ([8],[27]).
We will use it extensively in a sequel to this paper.

A duality pairing is defined on Uq as follows. If U is a k-Hopf algebra and X an object
of FinModU , for every v ∈ X and w ∈ X∗ denote by Xφ

w
v the linear form w(πX(.)v) ∈ U∗,

where πX is the representation associated to X; it is called a matrix coefficient of πX . Denote
by U0 the restricted dual of U , that is, the subspace of U∗ generated by the matrix coefficients
of the finite dimensional representations of U . It is naturally endowed with a structure of
Hopf algebra.

When U = Uq and k = C(q), we denote by Oq ⊂ U0
q ⊗k C(q1/D) the Hopf subalgebra

generated by the matrix coefficients of the representations associated to the objects of C (i.e

the type 1 finite dimensional Uq-modules), with coefficients extended from C(q) to C(q1/D).

Thus Oq is the set of C(q1/D)-linear maps

f : Uq ⊗k C(q1/D)→ C(q1/D)
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such that Ker(f) contains a cofinite two sided idea I ⊂ Uq, and
∏r
s=−r(Ki− qsi ) ∈ I for some

r ∈ N and every i (Here we call a k-submodule I ⊂ Uq cofinite if Uq = I ⊕M with M a free

k-module of finite rank). We denote by ? the product on Oq, induced from U0
q .

We can uniquely define a bilinear pairing 〈., .〉 between Uq and Oq such that the following
diagram is commutative (the top arrow stands for the standard duality pairing):

Oq ⊗
(
Uq ⊗k C(q1/D)

) 〈.,.〉 //
id⊗ιUq

��

C(q1/D)

Oq ⊗ Uq
〈.,.〉

66

This pairing is defined by
〈Y φwv , (aX)〉 = w(aY v)

for every (aX) ∈ Uq and Y φ
w
v ∈ Oq. It is non degenerate.

Finally, we will use the integral form OA of Oq defined in [30] and [62] (see Remark 4.1 in
[30] for the equivalence of the two definitions). Let us just mention here that OA is an A-Hopf

subalgebra of Oq satisfying OA ⊗A C(q1/D) = Oq, defined similarly as Oq above but taking

maps f : U resA → A and cofinite two-sided ideals I ⊂ U resA . The matrix elements Vλφ
ej

ei , where

λ ∈ P+, {ei} is the canonical basis Bλ of Vλ, and {ej} the dual basis, provide an A-basis of
OA, and the duality pairing OA ⊗A U resA → A is non degenerate.

4. The loop algebra L0,1(g)

First we recall a definition of L0,1 as the braided group dual to Uq, following [32] (but using
right modules instead of left ones). The merit of this definition is to be intrinsic, not given
by generators and relations.

Denote the left and right coregular actions of Uq on Oq by

x� α :=
∑
(α)

α(1)〈α(2), x〉, α� x :=
∑
(α)

〈α(1), x〉α(2)

for all x ∈ Uq and α ∈ Oq, where 〈 , 〉 : Oq ⊗ Uq → C(q1/D) is the duality pairing defined
in the previous section, and ∆(α) =

∑
(α) α(1) ⊗ α(2) (Sweedler’s coproduct notation). The

actions � and � commute, and Oq is a Uq-module algebra for both actions, i.e for all x ∈ Uq
and α, β ∈ Oq we have

x� (αβ) =
∑
(x)

(x(1) � α)(x(2) � β), (αβ) � x =
∑
(x)

(α� x(1))(β � x(2)).

Denote by Ucopq the Hopf algebra with the same algebra structure as Uq but the opposite

coproduct ∆cop and the antipode S−1. Consider the Hopf algebra (equipped with the standard
Hopf algebra structure on tensor product)

Dq = Uq⊗Ucopq .

It has a right action on Oq defined by

(12) α · (x⊗ y) := S(y) � α� x

for every x ∈ Uq, y ∈ Ucopq and α ∈ Oq, where ⊗ denotes the algebraic tensor product. This
action extends uniquely to an action of Dq on Oq.

Recall the universal R-matrix R ∈ Uq⊗Uq. Let

F := (R′)23(R′)24 ∈ (Uq⊗Ucopq )⊗2
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where (R′)kl = ikl(R
′), and ikl : Uq⊗Uq → (Uq⊗Ucopq )⊗2 identifies the subalgebra Uq ⊗ 1

(resp. 1⊗Uq) of Uq⊗Uq with the k-th (resp. l-th) tensorand of (Uq⊗Ucopq )⊗2. The tensor F
is invertible, and it satisfies

(13) (εDq ⊗ id)(F ) = (id⊗ εDq)(F ) = 1

and

(14) F12(∆Dq⊗id)(F ) = F23(id⊗∆Dq)(F ).

Put u :=
∑

(F ) F(1)S(F(2)). Denote by SDq the antipode of Dq and set

(15) ∆F
Dq(x) := F∆Dq(x)F−1 , SFDq(x) := uSDq(x)u−1, x ∈ Dq.

The maps ∆F
Dq , S

F
Dq and the counit of Dq define the comultiplication, the antipode and the

counit of a new structure of Hopf algebra on the algebra Dq. It is called the twist of Dq by
F . Denote it by Aq. Since Aq and Dq coincide as algebras, the right action of Dq on Oq is
also a right action of Aq. Define a new product on Oq by

(16) αβ =
∑
(F )

(α · F(1)) ? (β · F(2)).

Explicitly, by writing R =
∑

(R)R(1) ⊗R(2) =
∑

(R)R(1′) ⊗R(2′) we have

F =
∑

(R),(R)

1⊗R(2)R(2′) ⊗R(1) ⊗R(1′).

Then, by using (S ⊗ S)(R) = R we get

(17) αβ =
∑

(R),(R)

(R(2′)S(R(2)) � α) ? (R(1′) � β �R(1))

and conversely

(18) α ? β =
∑

(R),(R)

(R(2)R(2′) � α)(S(R(1′)) � β �R(1)).

Note that, by the expression of R and the fact that the generators Ei, Fi of Uq act nilpotently
on finite dimensional Uq-modules, there is only a finite number of non zero terms in the last
sum, which is the reason why the expression (16) is well defined.

Proposition 4.1. The right Aq-module Oq endowed with the product (16) is an Aq-module
algebra. We denote it L0,1(g), or simply L0,1.

This is checked easily; L0,1 is called the twist by F of the Dq-module algebra Oq.

Proposition 4.2. The coproduct ∆: Uq → Uq⊗Uq yields a morphism of Hopf algebras
∆: Uq → Aq.

See [32] for a proof.

By pulling-back the action of Aq by the morphism of Hopf algebras Uq ↪→ Uq
∆−→ Aq,

L0,1 becomes a right Uq-module algebra. It is easily seen that the action of Uq is the right
coadjoint action, defined by

coadr(x)(α) =
∑
(x)

S(x(2)) � α� x(1),∀x ∈ Uq,∀α ∈ L0,1.
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Next we are going to recall a fundamental relation between L0,1 and Uq. Recall that Uq is a
right Uq-module algebra for the right adjoint action, defined by

adr(y)(x) =
∑
(y)

S(y(1))xy(2), ∀x, y ∈ Uq.

It is trivially extended to Uq, and thus defines on it a structure of right Uq-module algebra.
Denote by Z(Uq) the center of Uq. We have

(19) Z(Uq) = {z ∈ Uq,∀x ∈ Uq, adr(x)(z) = ε(x)z}.

The set of locally finite elements of the simply-connected quantum group Ũq is defined by

Ũ lfq := {x ∈ Ũq | rkC(q)(ad
r(Ũq)(x)) <∞}.

It is is an adr(Uq)-module algebra, since the inclusion Uq ⊂ Ũq makes Ũq an adr(Uq)-module
algebra. Finally, the set of coadr-invariant elements of L0,1 is defined by

LUq0,1 := {α ∈ L0,1|∀y ∈ Uq, coadr(y)(α) = ε(y)α}.

Since L0,1 is a Uq-module algebra, LUq0,1 is a subalgebra of L0,1.

Theorem 4.3. Define Φ1 : L0,1 → Uq, Φ1(α) = (α⊗ id)(RR′). We have:

(1) Φ1 is a morphism of algebra, equivariant and injective.

(2) The image of Φ1 is Ũ lfq ⊗ C(q1/D) ⊂ Uq.
(3) Φ1 induces an isomorphism from LUq0,1 to Z(Ũq)⊗ C(q1/D) ⊂ Uq.

We call Φ1 the RSD map, after Reshetikhin and Semenov-Tian-Shansky [68] and Drinfeld
[34], who considered it first.

A proof of Theorem 4.3 can be found in [13], Theorem 3. To make a complete correspon-
dence with that statement, note that the arguments of our Theorem 3.1 (2) imply that Φ1

takes values in Ũq ⊗ C(q1/D) ⊂ Uq. The difficult parts of Theorem 4.3 are the injectivity of
Φ1 and the claim (2). Note that the third claim follows from the first two and (19).

An alternative proof that Φ1 is an equivariant morphism is given in [32], Proposition 4.7,
based on the construction of a left Uopq -comodule structure on L0,1. The equivariance of Φ1

also follows from a simple computation shown in Proposition 6.4 below.
Note that because the elements of the restricted dual are necessarily coadr finite, the

equivariance of Φ1 implies that their images by Φ1 are necessarily adr-finite.

Remark 4.4. We give a simple self-contained proof of of Theorem 4.3 in the sl(2) case in
Proposition 5.4.

Remark 4.5. It is a result of [51] that the adr(Uq)-module Ũ lfq is generated by the elements

`−λ, λ ∈ 2P+, where for every weight µ =
∑m

i=1 niωi we set `µ =
∏m
i=1 `

ni
i . Moreover, there

is an Ore subset S of Ũ lfq such that Ũq is a free module of finite rank over the skew fraction

ring S−1Ũ lfq (see [52]). The set S is the Abelian group generated by the elements `−λ, where
λ ∈ 2P+ ∩Q+.

Finally, we provide a definition of L0,1 by generators and relations. Though well-known,
we include a proof for completeness. Let V be an object of the category C, and define

(20)
V
M=

∑
i,j

Eji ⊗ V φ
ei

ej ∈ End(V )⊗ L0,1

where (ei) is a basis of V , (ei) the dual basis, and Eji the corresponding basis of End(V ),

defined by Eji (ek) = δj,kei. As L0,1 and Oq are isomorphic as linear spaces, the matrix
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coefficients V φ
ei

ej generate L0,1. Observe that we have the naturality property, i.e if V,W are

objects of C, and f : V →W a morphism of Uq-modules, then

(21)
W
M (f ⊗ id) = (f ⊗ id)

V
M .

Given two objects V and W of C we write

V
M1=

∑
i,j E

j
i ⊗ id⊗ V φ

ei
ej ∈ End(V )⊗ End(W )⊗ L0,1

and similarly
W
M2=

∑
i,j id⊗E

j
i ⊗Wφ

ei
ej . We view

V⊗W
M as an element of End(V )⊗End(W )

by using the standard isomorphism

End(V )⊗ End(W ) ∼= End(V ⊗W ).

Finally we view RV,W , R′V,W ∈ End(V )⊗End(W ) as elements of End(V )⊗End(W )⊗ 1 ⊂
End(V )⊗ End(W )⊗ L0,1.

Proposition 4.6. The following fusion relation holds true in End(V )⊗ End(W )⊗ L0,1:

(22)
V⊗W
M =

V
M1 R

′
V,W

W
M2 (R′V,W )−1

where the product of L0,1 is used to multiply the matrix elements of
V
M and

W
M . It implies the

reflection equation:

(23) RV,W
V
M1 R

′
V,W

W
M2 =

W
M2 RV,W

V
M1 R

′
V,W .

Conversely, the naturality relations (21) and the set of relations (22), for every objects V and
W of C, are a defining set of relations for L0,1. That is, L0,1 can be viewed as the quotient of

the algebra freely generated over k = C(q1/D) by the matrix coefficients V φ
ei

ej , for all objects

V of the category C, by the ideal generated by the relations (21) and (22).

Proof. Let us write RV,W =
∑

(R)R(1)⊗R(2) =
∑

(R)R(1′)⊗R(2′). By a direct application

of the definitions we have

(V⊗W )φ
ei⊗ek
ej⊗el = V φ

ei

ej ? Wφ
ek

el
.

Then the relation (22) is equivalent to∑
i,j,k,lE

j
i ⊗ Elk ⊗ V φ

ei
ej ? Wφ

ek
el

=
∑

(R),(R),i,j,k,lE
j
iR(2)R(2′) ⊗R(1)E

l
kS(R(1′))⊗ V φ

ei
ejWφ

ek
el
.

The isomorphism V ⊗ V ∗ → End(V ), v ⊗ f 7→ (w 7→ f(w)v), maps R(1)ek ⊗ S(R(1′))
∗el

to R(1)E
l
kS(R(1′)) and ei ⊗ (R(2)R(2′))

∗ej to EjiR(2)R(2′). Hence the above relation can be
written as∑

i,j,k,lE
j
i ⊗ Elk ⊗ V φ

ei
ej ? Wφ

ek
el

=
∑

(R),(R),i,j,k,lE
j
i ⊗ Elk ⊗

(
V φ

ei

R(2)R(2′)ej

)(
V φ

R∗
(1)
ek

S(R(1′))el

)
.

Now we have

V φ
R∗

(1)
ek

S(R(1′))el
= S(R(1′)) � V φ

ek

el
�R(1) , V φ

ei

R(2)R(2′)ej
= R(2)R(2′) � Wφ

ei

ej

where we use the coregular actions �,� and we denote now by R(1), R(1′), R(2), R(2′) ∈ Uq the
components of the universal R-matrix, instead of RV,W . Identifying the matrix coefficients
in i, j, k, l we recover the relation (18). Hence it is equivalent to the fusion relation, which
thus provides a defining set of relations for L0,1.

Finally, note that by (21) we have

σV,WRV,W
V⊗W
M =

W⊗V
M σV,WRV,W



UNRESTRICTED QUANTUM MODULI ALGEBRAS OF PUNCTURED SPHERES, I 17

where σV,W : V ⊗W →W ⊗ V is the flip map. Then

σV,WRV,W
V
M1 R

′
V,W

W
M2 (R′V,W )−1 =

W
M1 R

′
W,V

V
M2 (R′W,V )−1σV,WRV,W

= σV,W
W
M2 RV,W

V
M1

which implies the reflection equation. 2

Remark 4.7. As usual, denote by aV or πV (a) ∈ End(V ) the component of an element
a = (aV ) ∈ Uq associated to the object V of C. The right coadjoint action of Uq on L0,1 can
be written in matrix form as (see eg. the proof of (62) below for a similar computation)

(24) coadr(y)

(
V
M

)
=
∑
(y)

(
(y(1)V ⊗ id)

V
M (S(y(2))V ⊗ id)

)
.

Let λ ∈ P+, Vλ the type 1 simple Uq-module of highest weight λ, and πVλ the associated
representation. Denote by TrVλ : End(Vλ)→ k the trace on End(Vλ). Put

qTrVλ

(
Vλ
M

)
:= (TrVλ ⊗ id)

(
(πVλ(`)⊗ id)

Vλ
M

)
∈ L0,1.

Proposition 4.8. (1) The elements qTrVλ

(
Vλ
M

)
, λ ∈ P+, form a basis of LUq0,1.

(2) The elements (TrVλ⊗ id)
(
(πVλ ⊗ id)

(
(`⊗ 1)(RR′)

))
, λ ∈ P+, form a basis of Z(Ũq).

Proof. The first part is an immediate consequence of Proposition 6.19 below (namely, it is
the case n = 1, so that aλ(x) ∈ EndUq(Vλ) is a scalar for every λ ∈ P+). The second part is
a consequence of the first and Theorem 4.3. 2

Remark 4.9. Let Vω1 be the fundamental representation of Ũq. The center Z(Ũq) contains
the elements (see [37] and [14])

(25) (TrVω1 ⊗ id)
((
πVω1 ⊗ id

) (
(`⊗ id)((RR′)k)

))
, k ∈ {1, . . . ,m}.

These elements generate Z(Ũq) when g is of type Am or Cm; see [14] for a more precise
description in the other cases. Using Theorem 4.3 and

(26) (id⊗ Φ1)

(
V
M

)
= (πV ⊗ id)(RR′)

we deduce that the elements

(27) kω := (TrVω1 ⊗ id)

(
(πVω1 (`)⊗ id)

Vω1
M

k

)
, k ∈ {1, . . . ,m},

belong to and generate LUq0,1 when g is of type Am or Cm. In particular, for g = sl(2) we have

LUq0,1 = C(q1/2)[ω], with

(28) ω = qtrV2

(
V2
M

)
= TrV2

(
KV2

V2
M

)
, KV2 :=

(
q 0
0 q−1

)
where V2 is the 2-dimensional type 1 simple Uq(sl(2))-module, and as usual KV2 is the endo-
morphism of V2 given by the action of K.

Next we define the integral form of L0,1. Recall that OA ⊂ Oq is a Hopf subalgebra well-

defined over A = Z[q, q−1]. We claim that (16) defines an associative product on OA. To
see this, we have to check that products of elements of an A-basis of OA can be expressed
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as linear combinations in this basis with coefficients in A. By equation (17), and using
(id⊗ S)(R) = (id⊗ `)R−1(id⊗ `−1), we have

(29) αβ =
∑

(R),(R−1)

(R(2′)`(R
−1)(2)`

−1 � α) ? (R(1′) � β � (R−1)(1)).

Therefore, if α = Vλφ
ej

ei and β = Vµφ
fn

fm
, where λ, µ ∈ P+, Bλ = {ei}, and Bµ = {fj}, we

obtain

Vλφ
ej

ei Vµφ
fn

fm
=∑

(R),(R−1),j′,n′,n′′

(πVλ(R(2′)`(R
−1)(2)`

−1))e
j′

ei (πVµ(R(1′)))
fn
′

fm
(πVµ(R−1)(1)))

fn

fn′′
Vλφ

ej

ej′
? Vµφ

fn
′′

fn′
.

Applying Theorem 3.1, we see that the factors q+(λ,µ) cancel the factors q−(λ,µ) in the last
expression. Noting moreover that the matrix elements of ` belong to A, we finally obtain
that the coefficients in the linear combination belong to A. Thus we can set:

Definition 4.10. The algebra LA0,1 is the A-module OA endowed with the product (16).

Clearly LA0,1 ⊗A C(q1/D) = L0,1.

Lemma 4.11. The action coadr yields on LA0,1 a structure of right UA-module algebra, and

Φ1(LA0,1) is the UA-submodule of Ũq ⊗ C(q1/D), that we denote by Ũ lfA , generated by the
elements `−λ, λ ∈ 2P+.

Proof. The action coadr endows the A-module LA0,1 with a structure of right U resA -module
algebra, dual by the pairing OA ⊗A U resA → A to the structure defined by adr on U resA . We
claim that UA acts by adr on U resA , so the formula (coadr(x)(α))(y) = α(adr(x)(y)) makes

sense for every x ∈ UA, α ∈ LA0,1 and y ∈ U resA , and endows LA0,1 with a structure of right
UA-module algebra. This claim is easily checked on generators. Namely, since [l]qi ∈ A for
every 1 ≤ i ≤ m and l ∈ N, we have

adr
(
Ki −K−1

i

qi − q−1
i

)(
Erj

[r]qi !

)
= −[raij ]qi

Erj
[r]qi !

∈ U resA

adr
(
Ki −K−1

i

qi − q−1
i

)(
F rj

[r]qi !

)
= [raij ]qi

F rj
[r]qi !

∈ U resA .

Moreover Ei, Fi ∈ U resA . Therefore adr(UA)(U resA ) ⊂ U resA .
Given λ ∈ P+, choose a lowest weight vector mlw in the U resA -module AVλ, and a dual

highest weight vector m∗hw in the dual module (AVλ)∗. It exists, because the category CA
of finite dimensional U resA -modules is rigid. We just have to adapt the arguments in [13],

page 10. It holds Φ1(Vλφ
m∗hw
mlw ) = `−2λ, where Vλφ

m∗hw
mlw ∈ LA0,1, and the elements of the sets

adr(UA)(`−2λ), where λ ∈ P+, distinguish the modules AVλ. By equivariance of Φ1, it follows

that these modules are pairwise non isomorphic Φ1(LA0,1)-modules. Injectivity of Φ1 then

implies LA0,1 = OA as A-modules, and LA0,1 = coadr(UA)(Vλφ
m∗hw
mlw ). This achieves the proof. 2

5. The example of L0,1(sl(2))

In this section we provide when g = sl(2) a presentation by generators and relations of
L0,1, denoted by L0,1(sl(2)), and using it we give an elementary proof of Theorem 4.3 in this
case.
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Let Vr be the r-dimensional type 1 simple Uq(sl(2))-module, and put

(30)
V2
M=

(
a b
c d

)
∈ End(V2)⊗ L0,1(sl(2)).

Lemma 5.1. The algebra L0,1(sl(2)) is generated by the matrix elements a, b, c, d of
V2
M .

These satisfy the relations

(31)
ad = da , ab− ba = −(1− q−2)bd
db = q2bd , cb− bc = (1− q−2)(da− d2)
cd = q2dc , ac− ca = (1− q−2)dc

as well as ad− q2bc = 1. Moreover ω = qa+ q−1d is central.

Note that ω coincides with the element (28).

Proof. The family of matrix elements of
V
M for all V spans L0,1(sl(2)) over C(q1/2), since

as a vector space it is the same as Oq(sl(2)). Any finite dimensional Uq(sl(2))-module is
completely reducible, and any simple one is a direct summand of some tensor power of V2.
Hence the fusion relation (22) implies that L0,1(sl(2)) is generated by the matrix elements
a, b, c, d. The relations (31) follow easily from the reflection equation (23) associated to V2,
using the expression

RV2,V2 = q−1/2


q 0 0 0
0 1 q − q−1 0
0 0 1 0
0 0 0 q


and they imply that qa+ q−1d is central. Because V2 ⊗ V2 admits the trivial representations
as a subrepresentation, there exist non zero intertwiners

φ : V2 ⊗ V2 → C(q1/2) , ψ : C(q1/2)→ V2 ⊗ V2.

As a consequence φ ◦
V2⊗V2
M ◦ ψ is proportional to the unit element of L0,1(sl(2)). Using the

fusion relation, an easy computation provides the additional relation ad− q2bc = 1. 2

Consider the RSD map Φ1 : L0,1(sl(2))→ Uq(sl(2)), α 7→ (α⊗id)(RR′). A straightforward
computation using the expression (8) shows that

(32)
Φ1(a) = K + q−1(q − q−1)2FE , Φ1(b) = q−1(q − q−1)F
Φ1(c) = (q − q−1)K−1E , Φ1(d) = K−1.

Therefore Im(Φ1) is contained in Uq(sl(2))⊗C(q1/2) ⊂ Uq(sl(2)). The image of the central
element ω is

(33) Ω = Φ1(ω) = qK + q−1K−1 + (q − q−1)2FE

which is (q − q−1)2 times the standard Casimir element of Uq(sl(2)).

Next we show that the relations (31) and ad− q2bc = 1 yield a presentation of L0,1(sl(2)).

Let L̃0,1 be the algebra generated by elements ã, b̃, c̃, d̃ satisfying all these relations. Denote
by

j : L̃0,1 → L0,1(sl(2))

the unique morphism of algebra sending x̃ to x for x ∈ {a, b, c, d}.

Proposition 5.2. The monomials ãαb̃β c̃γ and d̃δ b̃β c̃γ, where α, β, γ, δ ∈ N and α ≥ 1, form
a basis of L̃0,1 over C(q1/2). Moreover, j is an isomorphism, Φ1 is injective, and the center

of L0,1(sl(2)) is the polynomial algebra C(q1/2)[ω].
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Proof. By inspection of the relations of Lemma 5.1, it is easily seen that the given monomi-
als form a generating set of L̃0,1. As for linear independence, consider the Verma Uq(sl(2))-
module Mx, x ∈ C×, with basis vectors vn, n ∈ N, and action

Ev0 = 0, Kvn = xq−2nvn, Fvn = vn+1.

Then

Evn = [n]q
xq1−n − x−1qn−1

q − q−1
vn−1, Ωvn = (qx+ q−1x−1)vn

where Ω is as above. By the formulas (32) we have

Φ1(aαbβcγ) = q−α−β(q − q−1)β+γ(Ω− q−1K−1)αF β(K−1E)γ

and

Φ1(dδbβcγ) = q−β(q − q−1)β+γK−δF β(K−1E)γ .

Consider a linear relation with coefficients Aαβγ , Bδβ′γ′ ∈ C(q1/2):∑
α,β,γ

Aαβγ ã
αb̃β c̃γ +

∑
δ,β′,γ′

Bδβ′γ′ d̃
δ b̃β
′
c̃γ
′

= 0.

Applying Φ1 ◦ j we get (keeping the same names for the resulting coefficients in C(q1/2)):

(34)
∑

α,β,γ,γ′

(Aαβγ(Ω− q−1K−1)αF β(K−1E)γ +Bδβ′γ′K
−δF β

′
(K−1E)γ

′
) = 0.

By acting on the highest weight vector v0 all terms on the left hand side vanish, but those
with γ = γ′ = 0. Hence∑

α,β

Aαβ0(Ω− q−1K−1)αF βv0 +
∑
δβ′

Bδβ′0K
−δF β

′
v0 = 0

implying for each β the relation∑
α

Aαβ0(qx+ q−1x−1(1− q2β))α +
∑
δ

Bδβ0x
−δq2βδ = 0.

This is a Laurent polynomial in x. Since δ ≥ 1, the highest degree term in x has vanishing
coefficient, Aαβ0 = 0, and hence Bδβ0 = 0. So (34) has no terms with γ = γ′ = 0. Then, by
acting on v1 it results again that (34) has no term with γ = γ′ = 1. Iterating this argument,
an obvious recurrence implies that all the coefficients vanish, Aαβγ = Bδβ′γ′ = 0, which

implies the linear independence of the monomials ãαb̃β c̃γ and d̃δ b̃β c̃γ and therefore proves
that they form a basis of L̃0,1.

As a by-product we see that Φ1 ◦ j is injective, and therefore j is injective too. It is also
surjective because the monomials aαbβcγ and dδbβcγ form a generating family of L0,1(sl(2)).
It follows that Φ1 is injective as well.

Finally, let z be in the center of L0,1. Then Φ1(z) commutes with Φ1(L0,1(sl(2))), and

hence with K,E, F . Thus it belongs to the centre of Uq(sl(2))⊗C(q1/2), which is C(q1/2)[Ω].
Therefore Φ1(z) = P (Ω) = P (Φ1(ω)) = Φ1(P (ω)). The result follows from the injectivity of
Φ1. 2

Remark 5.3. A consequence of this proposition shows is that the algebras L0,1(sl(2)) and

Uq(sl(2)) are not isomorphic (over C(q1/2)). Indeed the former has the family of one dimen-
sional representations ρxy (x ∈ C, y ∈ C×), defined by

ρxy(d) = 0, ρxy(a) = x, ρxy(b) = −q−1y, ρxy(c) = q−1y−1.
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Then K /∈ Im(Φ1), for otherwise K = Φ1(λ), and injectivity of Φ1 and K−1 = Φ1(d) would
imply λd = dλ = 1. But this is not possible since ρxy(d) = 0. In fact the family {ρxy}x,y
cannot be obtained by pull-back of representations of Uq(sl(2)) and the category of finite
dimensional modules of L0,1(sl(2)) is not semisimple (see [23], Proposition 9).

From the above results we can now derive an easy proof of the particular case of Theorem
4.3 for g = sl(2). Note that Ũ lfq (sl(2)) = U lfq (sl(2)) by the result of [51] recalled in Remark
4.5.

Proposition 5.4. The RSD map yields an isomorphism of Uq-module algebras

Φ1 : L0,1(sl(2))→ U lfq (sl(2))⊗ C(q1/2) ⊂ Uq.
Proof. That Φ1 is an equivariant morphism follows from the same arguments as for the

Alekseev map (see Theorem 6.4). Injectivity was shown in Proposition 5.2. We prove that

Im(Φ1) = U lfq (sl(2))⊗C(q1/2) by following closely the arguments of section (3.11) of Joseph-
Letzter [51]. For every integer m ≥ 0 we have

(35) adr(K)((EK−1)m) = q−2m(EK−1)m , adr(E)((EK−1)m) = 0.

Moreover,

adr(F )(EK−1) = q2EF − FE , adr(F 2)(EK−1) = −(q + q−1)F , ad(F 3)(EK−1) = 0
adr(E)(K−1) = EK−1(q−2 − 1) , adr(F )(K−1) = F (1− q−2)
adr(E)(F ) = −adr(F )(EK−1) , adr(F )(F ) = 0.

These relations imply that EK−1, K−1 and F belong to U lfq (sl(2)). Because Ω is invariant
under the action adr, the formulas (32) imply that Φ1(a), Φ1(b), Φ1(c) and Φ1(d) belong to

U lfq (sl(2)). Therefore Im(Φ1) ⊂ U lfq (sl(2))⊗ C(q1/2).
These above relations imply also that Φ1(c) is a highest weight vector for the action adr,

generating a copy of V3, the 3-dimensional simple Uq(sl(2))-module of type 1.
Let us show by induction that adr(Uq(sl(2)))(Φ1(c)m) = V2m+1, for an arbitrary positive

integer m. In view of (35), it remains to prove that adr(F k)((EK−1)m) 6= 0 for all integers

k ≤ 2m, and adr(F k)((EK−1)m) = 0 for k ≥ 2m+ 1. This holds true for m = 1.
If this is true for a given m, then using the formula of ∆(F ), the q-binomial identity, and

the fact that Uq(sl(2)) is an adr-module algebra, we get

adr(F k)((EK−1)m+1) =

k∑
i=0

[
k
i

]
q−2

adr(K−iF k−i)((EK−1)m)adr(F i)(EK−1)

=
2∑
i=0

[
k
i

]
q−2

adr(K−iF k−i)((EK−1)m)adr(F i)(EK−1)

since adr(F i)(EK−1) = 0 if and only if i ≥ 3. By the induction hypothesis, for k ≥ 2m + 3
each of the three terms of the sum vanishes. For k = 2m+ 2, only the term for i = 2 is non
zero, which is equal to

(36)

[
k
2

]
q−2

adr(K−2F 2m)((EK−1)m)(−(q + q−1)F ).

By induction this term is non zero. Therefore adr(F k)((EK−1)m) 6= 0 for all integers k ≤
2m+ 2. This proves our claim.

Finally the multiplication map (⊕m≥0V2m+1) ⊗ C(q1/2)[Ω] −→ U lfq (sl(2)) ⊗ C(q1/2) is
easily shown to be an isomorphism, as in [51], section (3.11). Since Ω = Φ1(ω), and V2m+1 is

generated by Φ1(c2m), we deduce the inclusion U lfq (sl(2))⊗ C(q1/2) ⊂ Im(Φ1). 2
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Let us make explicit the result of [52] mentionned in Remark 4.5. By the relations (31)
and Proposition 5.2, it is immediate that for all x ∈ L0,1(sl(2)) there exist elements y,
y′ ∈ L0,1(sl(2)) such that dy = xd and y′d = dx. So {dn}n∈N is a left and right multiplicative
Ore set in L0,1(sl(2)). As it is made of regular elements, the localization of L0,1(sl(2)) over
{dn}n∈N is well-defined (see Theorem 1.9 and Corollary 6.4 in [48]). Let us denote it by

locL0,1(sl(2)).

Proposition 5.5. The map Φ1 : locL0,1(sl(2))→ Uq(sl(2))⊗C(q1/2) defined by Φ1(d−1) = K
and the formulas (32) is an isomorphism of Uq(sl(2))-module algebras.

Proof. Since Φ1(d) is invertible, Φ1 extends to a morphism locL0,1(sl(2)) → Uq(sl(2)) ⊗
C(q1/2) uniquely (see [48], Proposition 6.3). It is an isomorphism, because the monomials

dδbβcγ with β, γ ∈ N and δ ∈ Z make a basis of locL0,1(sl(2)), and they are sent by Φ1 to a
PBW basis of Uq(sl(2)). 2

Finally consider the integral form LA0,1(sl(2)). Recall that U lfq (sl(2)) = adr(Uq(sl(2)))(K−1).
Put

U lfA (sl(2)) = adr(UA(sl(2)))(K−1).

Clearly, U lfA (sl(2)) ⊂ UA(sl(2)). The inclusion is strict, for K /∈ U lfA (sl(2)).

Lemma 5.6. The following holds:
1) The A-algebra LA0,1(sl(2)) is generated by a, b, c, d with the defining relations (31).

2) The localization of LA0,1(sl(2)) over the set {dn}n∈N, that we denote by locLA0,1(sl(2)), is

generated by a, b, c, d±1 with the defining relations (31).

3) The RSD map yields embeddings of UA-module algebras Φ1 : LA0,1(sl(2)) → U lfA (sl(2))

and Φ1 : locLA0,1(sl(2))→ UA(sl(2)), and Φ1(locLA0,1(sl(2))) = U ′A(sl(2)) is the A-subalgebra of

UA(sl(2)) generated by (q − q−1)E, (q − q−1)F and K±1.

Proof. It is shown in [30], Proposition 1.3, that OA(sl(2)) ⊂ Oq(sl(2)) is the A-subalgebra
generated by a, b, c, d. This implies the first claim, since the relations (31) make sense over
A (which is in accordance with the integrality of the product (16)). The second claim is an
immediate consequence of the first. The third claim follows from Lemma 4.11. We use the
formulas (32) to determine Φ1(locLA0,1(sl(2))). 2

6. The “daisy” graph algebra L0,n(g)

We define L0,n as a twisted product of n copies of L0,1, following [33] (but using right
modules instead of left ones).

We need to recall a few notions. Consider Hopf algebras A and B, and a bicharacter
F ∈ B ⊗A. By definition, F is an invertible tensor and satisfies

(37) (∆B ⊗ idA)(F ) = F23F13 , (idB ⊗∆A)(F ) = F12F13.

Viewing F as an element of (1⊗B)⊗ (A⊗ 1) ⊂ (A⊗B)⊗2, it is readily checked that

F12(∆A⊗B ⊗ id)(F ) = F23(id⊗∆A⊗B)(F )

and
(εA⊗B ⊗ id)(F ) = (id⊗ εA⊗B)(F ) = 1.

Therefore F can be used as a twist of A ⊗ B (endowed with the standard Hopf algebra

product structure; see (15) for the similar operation applied to Dq). Denote by A⊗F B the
resulting structure of Hopf algebra. This construction generalizes straightforwardly to the
case of categorical completions. In particular, taking A = B = Uq, the identities (1) for the
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universal R-matrix imply that R′ is a bicharacter of Uq⊗Uq, and that we have (compare with
(14))

Aq = Uq⊗R
′
Uq.

More generally, given homomorphisms of Hopf algebras fA : Uq → A, fB : Uq → B, the
element (fB ⊗ fA)(R′) is a bicharacter of A⊗B, and by Proposition 4.2 the map

fA � fB := (fA ⊗ fB) ◦∆: Uq → A⊗(fB⊗fA)(R′) B

is a morphism of Hopf algebras. Thus, taking A = B = H, the operation � endows the
set of all morphisms of Hopf algebras Uq → H with a structure of associative monoid. One
checks easily that it has the counit as neutral element. Clearly, � is natural in the sense that
(gA ◦fA)� (gB ◦fB) = (gA⊗gB)◦ (fA�fB) for any morphisms of Hopf algebras gA : A→ A′,
gB : B → B′.

In particular, by using the family of morphisms id�nUq , n ∈ N, we define Hopf algebras U�nq
as follows:

U�0
q = C(q1/D) , U�1

q = Uq
and for n ≥ 1,

U�(n+1)
q := U�nq ⊗JUq, where J = (idUq ⊗ id�nUq )(R′).

Therefore, U�nq is a twist of U⊗nq . By the coassociativity of the coproduct ∆, we have for
every k, l ∈ N an equality of Hopf algebras

U�(k+l)
q = U�kq � U�lq .

Moreover, the maps

id⊗(k−1) ⊗ ε⊗ id⊗(n−k) : U�nq → U�(n−1)
q , id⊗(k−1) ⊗∆(l−1) ⊗ id⊗(n−k) : U�nq → U�(n+l)

q

are morphisms of Hopf algebras. For instance, since Aq = U�2
q and id�2

Uq = ∆, the Hopf

algebra A�2
q = U�4

q is the twist of Aq⊗Aq by

(38) F := (∆⊗∆)(R′) = R′23R
′
13R

′
24R

′
14 ∈ Aq⊗Aq.

We are mainly concerned with the Hopf algebras A�nq = U�2n
q . Denote by Fn the twist from

A⊗nq to A�nq .

Definition 6.1. The module algebra L0,n := L0,n(g) is the twist by Fn of the right A⊗nq -

module algebra L0,1(g)⊗n (endowed with the componentwise action and product).

Hence L0,n is a right A�nq -module algebra, and it is the same as L⊗n0,1 as an A�nq -module.

Let us describe its product explicitly. For every k, l the right A�nq -module algebra L0,k�L0,l

is defined too as the twist by F (l, k) = (∆�l ⊗ ∆�k)(R′) of the A�kq ⊗A�lq -module algebra
L0,k ⊗ L0,l. By associativity of � we have

(39) L0,k � L0,l = L0,k+l.

Under this factorisation, by setting k + l = n, for every α, α′ ∈ L0,k and β, β′ ∈ L0,l the
product of L0,n takes the form

(40) (α⊗ β)(α′ ⊗ β′) =
∑

(F (l,k))

α(α′ · F (l, k)(2))⊗ (β · F (l, k)(1))β
′

where the products α(α′ ·F (l, k)(2)) and (β ·F (l, k)(1))β
′ are taken in L0,k and L0,l respectively.

Moreover, for every 1 ≤ a ≤ n the map ia : L0,1 → L0,n, identifying L0,1 with the a-th factor
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of L⊗n0,1 by putting 1’s elsewhere (1 being the unit of L0,1), is an embedding of module algebras.
We will use the notations

L(a)
0,n := Im(ia) , (α)(a) := ia(α).

Taking (α)(a) ∈ L(a)
0,n and (β)(b) ∈ L(b)

0,n with a < b, and F = F (1, 1) ∈ Aq⊗Aq as in (38), we

deduce from (40) that (all products being taken in L0,n)

(41) (β)(b)(α)(a) =
∑
(F )

(α · F(2))
(a)(β · F(1))

(b).

This commutation relation yields a presentation of L0,n by generators and relations. This
presentation is well-known (see [3, 21], [33] and [65]), but for completeness we prefer to give
a proof. Let V be an object of the category C. Similarly to (20), define

V
M

(a) =
∑
i,j

Eji ⊗ (V φ
ei

ej )
(a) =

∑
i,j

Eji ⊗ (1⊗(a−1) ⊗ (V φ
ei

ej )⊗ 1⊗(n−a)) ∈ End(V )⊗ L0,n.

Note that the matrix coefficients of the set of matrices
V
M

(a), for every object V of C and
1 ≤ a ≤ n, generate the algebra L0,n.

Proposition 6.2. For every a < b the matrices
V
M

(a) satisfy the fusion equation (22), the
naturality relations (21), and the following exchange relation (in End(V )⊗End(W )⊗L0,n)

(42) RV,W
V
M1

(a)R−1
V,W

W
M2

(b) =
W
M2

(b)RV,W
V
M1

(a)R−1
V,W .

Moreover, these relations determine the product of L0,n. Hence the algebra L0,n can be viewed

as the quotient of the algebra freely generated over k = C(q1/D) by the matrix coefficients

(V φ
ei

ej )
(a), for all objects V of C and every 1 ≤ a ≤ n, by the ideal generated by the relations

(22) and (42).

Proof. The fusion and naturality relations follows from the fact that ia : L0,1 → L0,n is a

morphism of algebras. The matrix coefficients (V φ
ei

ej )
(a) generate the subalgebras L(a)

0,n, whence

L0,n too. Conversely, by Proposition 4.6 the fusion and naturality relations determines the

product of L(a)
0,n. Hence it is enough to show that the exchange relations (42) and the commu-

tation relation (41) are equivalent. Let us write RV,W =
∑

(R)R(1)⊗R(2) =
∑

(R)R(1′)⊗R(2′).

Then (42) is equivalent to∑
(R),(R),i,j,k,l

R(1)E
j
i S(R(1′))⊗R(2)R(2′)E

l
k ⊗ (V φ

ei

ej )
(a)(Wφ

ek

el
)(b) =

∑
(R),(R),i,j,k,l

R(1)E
j
i S(R(1′))⊗ ElkR(2)R(2′) ⊗ (Wφ

ek

el
)(b)(V φ

ei

ej )
(a).

The isomorphism V ⊗ V ∗ → End(V ), v ⊗ f 7→ (w 7→ f(w)v), maps R(1)ei ⊗ S(R(1′))
∗ej to

R(1)E
j
i S(R(1′)), R(2)R(2′)ek⊗el to R(2)R(2′)E

l
k, and ek⊗ (R(2)R(2′))

∗el to ElkR(2)R(2′). Hence
the above relation can be written as∑

(R),(R),i,j,k,l

Eji ⊗ E
l
k ⊗

(
V φ

R∗
(1)
ei

S(R(1′))ej

)(a)(
Wφ

(R(2)R(2′))
∗ek

el

)(b)

=

∑
(R),(R),i,j,k,l

Eji ⊗ E
l
k ⊗

(
Wφ

ek

R(2)R(2′)el

)(b)
(
V φ

R∗
(1)
ei

S(R(1′))ej

)(a)

.
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Now we have

V φ
R∗

(1)
ei

S(R(1′))ej
= S(R(1′)) � V φ

ei

ej �R(1) = V φ
ei

ej · (R(1) ⊗R(1′))

Wφ
(R(2)R(2′))

∗ek

el = Wφ
ek

el
�R(2)R(2′) = Wφ

ek

el
· (R(2)R(2′) ⊗ 1)

Wφ
ek

R(2)R(2′)el
= R(2)R(2′) � Wφ

ek

el
= Wφ

ek

el
· (1⊗ S−1(R(2)R(2′)))

where we use the coregular actions �,� and on the right hand sides we denote by R(1), R(1′),
R(2), R(2′) ∈ Uq the components of the universal R-matrix (instead of RV,W ). Using that
(S ⊗ S)(R) = R, and denoting by m the product map of L0,n, the above relation eventually
becomes∑

i,j,k,l

Eji ⊗ E
l
k ⊗m

(
((V φ

ei

ej )
(a) ⊗ (Wφ

ek

el
)(b)) · (R13R23)

)
=

∑
i,j,k,l

Eji ⊗ E
l
k ⊗m

(
((Wφ

ek

el
)(b) ⊗ (V φ

ei

ej )
(a)) · (R−24R

−
23)
)
.

Identifying terms we get the commutation relation

(Wφ
ek

el
)(b)(V φ

ei

ej )
(a) = m

(
((V φ

ei

ej )
(a) ⊗ (Wφ

ek

el
)(b)) · (R14R24R13R23)

)
=
∑
(F )

((V φ
ei

ej )
(a) · F(2))((Wφ

ek

el
)(b) · F(1)).

where F = R′23R
′
13R

′
24R

′
14 = σ12,34(R14R24R13R23). This is the same as (41), so it is equiva-

lent to the exchange relation. 2

Proposition 6.3. Let us endow L0,n with the following action of Uq (extending the coadjoint
action on L0,1):

coadr(y)(α(1) ⊗ . . .⊗ α(n)) =
∑
(y)

coadr(y(1))(α
(1))⊗ . . .⊗ coadr(y(n))(α

(n))(43)

for all y ∈ Uq and α(1)⊗ . . .⊗α(n) ∈ L0,n. Then L0,n becomes a right Uq-module algebra, and
moreover, for all 1 ≤ a ≤ n we have:

(44) coadr(y)

(
V
M

(a)

)
=
∑
(y)

(
(y(1)V ⊗ id)

V
M

(a)(S(y(2))V ⊗ id)

)
.

Proof. Because L0,n is a A�nq -module algebra, the embedding Uq ↪→ A�nq makes L0,n a
Uq-module algebra with action coadr. The last property is a trivial computation. 2

This proposition shows that the structure of Uq-module algebra of L0,n is a by-product of
its construction by twisting. In the original papers on qLGFTs, the reflection and exchange
equations were imposed in order that this Uq-module algebra structure holds.

For every 1 ≤ a ≤ n set

R0a = (πV ⊗ ia)(R) ∈ End(V )⊗ U⊗nq
where as usual R = (RX,Y ) ∈ Uq⊗Uq is the universal R-matrix, πV : Uq → End(V ) the

canonical projection, and ia : Uq → U⊗nq the map defined by ia(x) = 1⊗(a−1)⊗ x⊗ 1⊗(n−a+1).
Consider the linear map

Φn : V ectC(q1/D)

{
(V φ

ei

ej )
(a)

∣∣∣∣ V ∈ Ob(C), 1 ≤ a ≤ n
1 ≤ i, j ≤ dim(V )

}
−→ U⊗nq
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defined by

(id⊗ Φn)(
V
M

(n)) = R0nR
′
0n(45)

(id⊗ Φn)(
V
M

(a)) = (R0n . . . R0a+1)R0aR
′
0a (R0n . . . R0a+1)−1 , 1 ≤ a < n.(46)

Since
V
M (a) =

∑
i,j E

j
i ⊗ (V φ

ei
ej )

(a), we have (id⊗ Φn)(
V
M

(a)) ∈ End(V )⊗ U⊗nq . When n = 1,

Φn coincides with the RSD map Φ1 : L0,1 → Uq. We call Φn the Alekseev map. It was first
introduced by Alekseev in [1].

We can represent (id⊗Φn)(
V
M

(a)) by the oriented colored braid shown in the figure below,
where we use the standard graphical encoding of invariant operators of ribbon categories (see
[71]). In this figure, the vertical strand with label a carries the a-th factor of U⊗nq , and the

one with label V carries End(V ). Positive crossings carry the operator Ř = σ ◦ R, where
σ(x⊗ y) = y ⊗ x as usual, and negative crossings carry the operator Ř−1.

1 a n V

U⊗nq

Figure 6.1 : the colored braid representing (id⊗ Φn)(
V
M

(a)).

Let us endow U⊗nq with the following action of Uq

(47) adr(y)(x) =
∑
(y)

∆(n)(S(y(1)))x∆(n)(y(2))

for all y ∈ Uq, x ∈ U⊗nq . Then U⊗nq becomes a right Uq-module algebra.

The next result is due to Alekseev [1].

Theorem 6.4. The Alekseev map yields an embedding of module algebras

Φn : L0,n → Ũ⊗nq ⊗ C(q1/D) ⊂ U⊗nq .

Moreover it satisfies

(48) (id⊗ Φn)(
V
M

(1) . . .
V
M

(n)) = (πV ⊗∆(n−1))(RR′).

Proof. Let us extend Φn (by keeping the same notation) in the natural way to the algebra

freely generated by the matrix coefficients (V φ
ei

ej )
(a).

By Proposition 6.2, Φn induces a well-defined algebra morphism L0,n → U⊗nq if it preserves
the fusion and exchange relations. Using the graphical encoding recalled in Figure 6.1, this
is shown in the next two figures in the case n = 2, which generalizes immediately to any n.

The symbol
�

= means equality up to isotopy. Similarly, the relation (48) is proved by the
third figure.
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�
=

W V W V

V ⊗W V W

�
=

�
=

�
=

V V V

Figure 6.2 : the colored braid identities representing the exchange relation (42) (top),
the fusion relation (22) (middle), and the relation (48) (bottom).

The linear map defined by
V
M

(a) 7→ R0aR
′
0a on the C(q1/D)-vector space spanned by all the

matrix coefficients (V φ
ei

ej )
(a), for every 1 ≤ a ≤ n and object V of C, is injective by Theorem

4.3. It differs from Φn by a linear isomorphism (induced on the a-th tensorand by conjugating
with R0n . . . R0a+1), so Φn is injective.

That Φn maps L0,n to Ũ⊗nq ⊗ C(q1/D) ⊂ U⊗nq is an immediate consequence of Theorem
4.3.

Finally, let us show that Φn is a morphism of Uq-modules. Since both multiplications
in L0,n and U⊗nq commute with the respective actions of Uq, it is enough to check this on
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generators. For those given by the matrix coefficients we then have to show that

(49) (id⊗ Φn)

(
coadr(y)

(
V
M

(a)

))
= (id⊗ adr(y))

(
(id⊗ Φn)

(
V
M

(a)

))
for every object V in C, 1 ≤ a ≤ n and y ∈ Uq. In the case a = n, Φn has the same expression
as the RSD map. Hence (49) follows from the statement of equivariance in Proposition 4.3.
This can also be proved easily:

(id⊗ adr(y))

(
(id⊗ Φn)

(
V
M

(n)

))
= (id⊗ adr(y))(πV ⊗ id)(R0nR

′
0n)

=
∑

(RR′),(y)

πV ((RR′)(1))S(y(1))(RR
′)(2)y(2)

=
∑

(RR′),(y)

πV (y(1)S(y(2)))πV ((RR′)(1))S(y(3))(RR
′)(2)y(4)

=
∑

(RR′),(y)

πV (y(1))πV ((RR′)(1))πV (S(y(2)))(RR
′)(2)S(y(3))y(4)

=
∑

(RR′),(y)

πV (y(1))πV ((RR′)(1))πV (S(y(2)))(RR
′)(2)

= (id⊗ Φn)

(
coadr(y)

(
V
M

(n)

))
,

where we have used [RR′, (S ⊗ S)(∆(y))] = 0.
More generally, by writing the actions explicitly, that result implies as well the relation

(50)
∑
(y)

(
(πV (y(1))⊗ 1)R0aR

′
0a(πV (S(y(2)))⊗ 1)

)
=
∑
(y)

(1⊗ia(S(y(1))))R0aR
′
0a(1⊗ia(y(2))).

Now set

R(a) = R0n . . . R0a+1

and denote by ian : U⊗n−aq → 1⊗a⊗U⊗n−aq ⊂ U⊗nq the identification map with the final n− a
tensorands. Then

(1⊗ Φn)

(
coadr(y)

(
V
M (a)

))
=
∑

(y)(πV (y(1))⊗ 1)R(a)R0aR
′
0aR

(a)−1(πV (S(y(2)))⊗ 1)

=
∑

(y)(πV (y(1))⊗ 1)R(a)R0aR
′
0a

× (1⊗ ian(∆(n−a−1)(S(y(2))y(3)︸ ︷︷ ︸
=ε(y(2))

)))R(a)−1(πV (S(y(4)))⊗ 1)

=
∑

(y)(πV (y(1))⊗ 1)R(a)(1⊗ ian(∆(n−a−1)(S(y(2)))))

× R0aR
′
0a(1⊗ ian(∆(n−a−1)(y(3))))R

(a)−1(πV (S(y(4)))⊗ 1).

Since R∆ = ∆′R in U⊗2
q , we have

∑
(y)R

−1(y(2) ⊗ y(1)) = (y(1) ⊗ y(2))R
−1 and then∑

(y)

(1⊗ S(y(1)))R(y(2) ⊗ 1) =
∑
(y)

(y(1) ⊗ 1)R(1⊗ S(y(2)))∑
(y)

(S(y(1))⊗ 1)R−1(1⊗ y(2)) =
∑
(y)

(1⊗ y(1))R
−1(S(y(2))⊗ 1)
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by applying id⊗ S, and using (id⊗ S)(R−1) = R. We deduce recursively∑
(y)(πV (y(1))⊗ 1)R(a)(1⊗ ian(∆(n−a−1)(S(y(2))))) =

(1⊗ ian(∆(n−a−1)(S(y(1)))))R
(a)(πV (y(2))⊗ 1)

and∑
(y)(1⊗ ian(∆(n−a−1)(y(1))))R

(a)−1(πV (S(y(2)))⊗ 1) =

(πV (S(y(1)))⊗ 1)R(a)−1(1⊗ ian(∆(n−a−1)(y(2)))).

So

(1⊗ Φn)

(
coadr(y)

(
V
M

(a)

))
=
∑

(y)(1⊗ ian(∆(n−a−1)(S(y(1)))))R
(a)(πV (y(2))⊗ 1)

× R0aR
′
0a(πV (S(y(3)))⊗ 1)R(a)−1(1⊗ ian(∆(n−a−1)(y(4))))

=
∑

(y)(1⊗ ian(∆(n−a−1)(S(y(1)))))R
(a)(1⊗ ia(S(y(2))))

× R0aR
′
0a(1⊗ ia(y(3)))R

(a)−1(1⊗ ian(∆(n−a−1)(y(4))))

=
∑

(y)(1⊗ ian(∆(n−a−1)(S(y(1)))))(1⊗ ia(S(y(2))))R
(a)

× R0aR
′
0aR

(a)−1(1⊗ ia(y(3)))(1⊗ ian(∆(n−a−1)(y(4))))

=
∑

(y)(1⊗ ia−1n(∆(n−a)(S(y(1)))))R
(a)R0aR

′
0aR

(a)−1(1⊗ ia−1n(∆(n−a)(y(2))))

=
∑

(y)(1⊗∆(n−1)(S(y(1))))R
(a)R0aR

′
0aR

(a)−1(1⊗∆(n−1)(y(2)))

where we use (50) in the second equality, and the others follow from trivial commutations
between elements lying on different tensorands, and the property (S ⊗ S)∆′ = ∆S. This
proves (49). The relation (48) has been proved with a picture which encapsulates the following
simple computation:

(id⊗ Φn)(
V
M

(1) . . .
V
M

(n)) =(51)

=
n∏
a=1

((R0n . . . R0a+1)R0aR
′
0a (R0n . . . R0a+1)−1)(52)

= R0n . . . R01R
′
01 . . . R

′
0n = (πV ⊗∆(n−1))(RR′).(53)

This concludes the proof. 2

Consider the subalgebras (L0,n)Uq and (U⊗nq )Uq of invariant elements of the Uq-module

algebras L0,n and U⊗nq respectively. We have:

Proposition 6.5. The restriction of the Alekseev map to invariant elements affords an iso-
morphism Φn : (L0,n)Uq → (Ũ⊗nq )Uq ⊗ C(q1/D).

Proof. By the previous theorem Φn((L0,n)Uq) ⊂ (Ũ⊗nq )Uq ⊗ C(q1/D) ⊂ (U⊗nq )Uq and Φn is

injective. We have to prove surjectivity. Recall that U⊗nq is endowed with the structure of

Uq-module algebra (47), denoted adrn. We can consider another action of Uq on U⊗nq defined

as the n-fold tensor product of the adjoint action of Uq on U⊗nq , which we denote (adr)⊗n. It
is defined as follows:

(adr)⊗n(y)(a(1) ⊗ . . .⊗ a(n)) =
∑
(y)

adr(y(1))(a
(1))⊗ . . .⊗ adr(y(n))(a

(n)).
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We first show that these two actions on U⊗nq define isomorphic modules. We give the proof

for n = 2, the generalisation to any n being straightforward. Consider the map ψ : U⊗2
q →

U⊗2
q , a ⊗ b 7→ R−1

12 (a ⊗ 1)R12(1 ⊗ b). We claim that ψ intertwines (adr)⊗2 and adr2. This is
seen by a small variation of the previous proof. Indeed we have

adr2(y)(ψ(a⊗ b)) =
∑

(y),(R),(R−1)

S(y(2))(R
−1)(1)aR(1)y(3) ⊗ S(y(1))(R

−1)(2)R(2)by(4)

=
∑

(y),(R),(R−1)

(R−1)(1)S(y(1))aR(1)y(3) ⊗ (R−1)(2)S(y(2))R(2)by(4)

=
∑

(y),(R),(R−1)

(R−1)(1)S(y(1))ay(2)R(1) ⊗ (R−1)(2)R(2)S(y(3))by(4)

= ψ((adr)⊗2(a⊗ b))).

It is easy to show that ψ is an isomorphism. Now, let z ∈ Ũ⊗nq ⊗C(q1/D) be adr2-invariant, that

is, z ∈ (Ũ⊗nq )Uq ⊗C(q1/D). Since ψ−1(z) is invariant under (adr)⊗2, it is in particular locally

finite for this action. By the main theorem of [57], the set (Ũ⊗2
q )lf of locally finite elements of

Ũ⊗2
q for the action (adr)⊗2 is equal to (Ũq)

lf⊗(Ũq)
lf . Therefore ψ−1(z) ∈ (Ũq)

lf⊗(Ũq)
lf , and

from the surjectivity of the map Φ1 onto (Ũq)
lf , we deduce that z = ψ◦Φ⊗2

1 (t) where t ∈ L⊗2
0,1.

But because of the identity R−1
12 R01R

′
01R12 = R02R01R

′
01R

−1
02 , which is a consequence of the

Yang-Baxter equation, we obtain that z = ψ ◦ Φ⊗2
1 (t) = Φ2(t) where we have identified the

two vector spaces L0,2 and L⊗2
0,1. This shows that Φ2 is a surjection. 2

Remark 6.6. This last result is a generalisation to n ≥ 1 of Theorem 4.3 (3).

By the integrality property recalled in Section 3, the factors q±(λ,µ) cancel each other in
the exchange relations (42), when V = Vλ and W = Vµ, λ, µ ∈ P+ are endowed with their
canonical basis Bλ, Bµ. Therefore these relations hold in A, and we can set:

Definition 6.7. The A-algebra LA0,n is the quotient of the A-algebra freely generated by the

matrix coefficients (Vλφ
ei

ej )
(a) by the ideal generated by the relations (22) and (42), for every

λ ∈ P+ and 1 ≤ a ≤ n, where Bλ = {ei}.

Clearly LA0,n ⊗ C(q1/D) = L0,n.

Lemma 6.8. The action coadr yields on LA0,n a structure of right UA-module algebra, and

the Alekseev map restricts to an embedding of UA-module algebras Φn : LA0,n → Ũ⊗nA .

Proof. The first claim follows immediately from the case of LA0,1 (see Lemma 4.11), since

LA0,n = (LA0,1)⊗n as an A-module. For the second claim, one simply note that Theorem 3.1

implies that R0n . . . R0a+1 ∈ EndA(AVλ)⊗Ũ⊗nA , for every λ ∈ P+ and 1 ≤ a < n, and use that

id⊗ Φn is defined on generators of EndA(AVλ)⊗ LA0,n as id⊗ Φ⊗n1 followed by conjugations
with matrices of the form R0n . . . R0a+1. 2

Proposition 6.9. L0,n, and therefore its subalgebras LA0,n and (LA0,n)UA, does not have non
trivial zero divisors.

Proof. Because of the injectivity of Φn it is sufficient to show that Ũ⊗nq and Ũ⊗nA have no

zero divisors. We note that UA(g)⊗n = UA(g⊕n). Then the result for U⊗nA is a consequence

of Corollary 1.8 of [27] applied to g⊕n. Note that in that paper it is assumed that the Cartan
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matrix is indecomposable but their method, which consists in proving that an associated
graded algebra is quasipolynomial, does not use this assumption. It applies as well for
Ũ⊗nA , Ũ⊗nq . 2

In the case of g = sl(2) we can restrict the target:

Proposition 6.10. The Alekseev map Φn : L0,n(sl(2))→ Ũq(sl(2))⊗n ⊗C(q1/2) takes values

in Uq(sl(2))⊗n ⊗ C(q1/2), and yields an embedding of UA-module algebras Φn : LA0,n(sl(2))→
UA(sl(2))⊗n.

Proof. The second claim follows from the first and Lemma 6.8. Consider the first claim.
For every 1 ≤ a ≤ n and object V of C we have R0aR

′
0a ∈ End(V ) ⊗ U lfq (sl(2))⊗n by

Proposition 5.4. We have to show that conjugating by R0n . . . R0a+1 ∈ End(V )⊗Uq(sl(2))⊗n

maps End(V )⊗ U lfq (sl(2))⊗n to End(V )⊗ Uq(sl(2))⊗n. It is enough to prove it for V = V2,
and for the conjugation by R0a+1 only (the general case follows from this one by an easy
induction). Recall the expression of R in (8). Using that E, F act nilpotently on V2 with
order 2, and R−1 = (S ⊗ id)(R), we get

R0a+1 = (πV2 ⊗ ia+1)(R) =

(
1⊗ qH/2 (q − q−1)1⊗ qH/2F
0 1⊗ q−H/2

)
(54)

R−1
0a+1 = (πV2 ⊗ ia+1)(R−1) =

(
1⊗ q−H/2 −q(q − q−1)1⊗ qH/2F
0 1⊗ qH/2

)
(55)

where qH/2 ∈ Uq(sl(2)) is defined in section 3, and for each matrix entry we write only the
components in the a-th and a+ 1-th tensorands of Uq(sl(2))⊗n (the others being 1’s). With
this convention, let

(56) A =

(
u⊗ 1 v ⊗ 1
w ⊗ 1 x⊗ 1

)
∈ End(V2)⊗ Uq(sl(2))⊗n.

Then

R0a+1AR
−1
0a+1 =


u⊗ 1 + q−1(q − q−1)w ⊗ F −(q2 − 1)u⊗KF − q2(q − q−1)w ⊗KF 2

+v ⊗K + q−1(q − q−1)x⊗KF

w ⊗K−1 −q(q − q−1)w ⊗ F + x⊗ 1

 .

This matrix has entries in Uq(sl(2))⊗n if the matrix entries of A belong to Uq(sl(2))⊗n.
Conjugating recursively R0aR

′
0a with R0i, for i from a+ 1 to n, by the same computation we

deduce that Φn takes values in Uq(sl(2))⊗n. 2

We are now going to define a localization of L0,n(sl(2)), which will satisfy a generalization

of Proposition 5.5. We need the following lemma. For every u ∈ Uq(sl(2)), denote by u(i) the
element of Uq(sl(2))⊗n with u in the i-th tensorand and 1’s elsewhere. Analogously to (30),
for every 1 ≤ i ≤ n, put

(57)
V2
M

(i) =

(
a(i) b(i)

c(i) d(i)

)
∈ End(V2)⊗ L0,n(sl(2))(i).

Lemma 6.11. For every 1 ≤ i ≤ n, Φ⊗n1 (L(i)
0,n(sl(2))) is contained in the subalgebra of

Uq(sl(2))⊗n generated by Im(Φn) and the elements K(i+1), . . . ,K(n).
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Proof. The case i = n is clear, as Φ⊗n1 (L(n)
0,n(sl(2))) = Φn(L(n)

0,n(sl(2))) by definition. We

argue by decreasing induction on i ∈ {1, . . . , n}. Take

A = (id⊗ Φ⊗n1 )(
V2
M

(n−1))

in (56). The entries ofA generate the algebra Φ⊗n1 (L(n−1)
0,n (sl(2))). By the formula ofR0nAR

−1
0n

we have Φn(c(n−1)) = w ⊗K−1. Hence w ⊗ 1 = (w ⊗K−1)(1 ⊗K) belongs to the algebra

generated by Φn(L0,n(sl(2))) and K(n). Since q−1(q − q−1)(1 ⊗ F ) = Φ⊗n1 (b(n)) = Φn(b(n)),

the same is true of −q(q− q−1)w⊗F , and hence eventually also of x⊗ 1, u⊗ 1 and v⊗ 1 by
using again the formula of R0nAR

−1
0n . This proves the statement for i = n− 1. Inducting on

i, using the matrix A of generators of L(i)
0,n(sl(2)), the same reasoning proves the result for

all values of i. 2

Put δ(n) = d(n). Since Φn(δ(n)) = (K−1)(n) generates a multiplicative left and right Ore

subset of Uq(sl(2))⊗n, the same is true of δ(n) in L0,n(sl(2)). Hence we can define the localiza-

tion of L0,n(sl(2)) over {δ(n)k}k∈N; denote it (n)L0,n(sl(2)). As in Proposition 5.5, there is a

unique injective morphism of algebras Φn : (n)L0,n(sl(2))→ Uq(sl(2))⊗n extending the Alek-

seev map. It satisfies Φn((δ(n))−1) = K(n), whence Φn((n)L0,n(sl(2))) is the subalgebra of

Uq(sl(2))⊗n generated by Im(Φn) andK(n), or equivalently by Im(Φn) and 1⊗(n−1)⊗Uq(sl(2)).
The module structure of L0,n(sl(2)) extends to (n)L0,n(sl(2)) by transporting the action of

Uq(sl(2)) on K(n) via Φn, which thus becomes a morphism of module algebras. By Lemma

6.11 and the fact that Φ⊗n1 (d(i)) = (K−1)(i) for every i = n − 1, . . . , 1, we can continue this
process recursively by decreasing values of i:

• define δ(i) ∈ (i+1)L0,n(sl(2)) by Φn(δ(i)) = (K−1)(i),

• define (i)L0,n(sl(2)) as the localization of (i+1)L0,n(sl(2)) over the set {δ(i)k}k∈N,

and set

locL0,n(sl(2)) := (1)L0,n(sl(2)).

Proposition 6.12. The elements δ(1), . . . , δ(n) commute and satisfy the relation

(58) δ(i) · · · δ(n) = (
V2
M

(i) · · ·
V2
M

(n))22

where 22 denotes the lower right matrix element. Moreover, the monomials δ(1)k1 . . . δ(n)kn,
k1, . . . , kn ∈ N, form a multiplicative left and right Ore subset of L0,n(sl(2)), and the local-
ization of L0,n(sl(2)) by this subset coincides with locL0,n(sl(2)).

Proof. That the elements δ(1), . . . , δ(n) commute is clear by definition. As in (48) we have

(id⊗ Φn)(
V
M

(i) · · ·
V
M

(n)) = R0n . . . R0iR
′
0i . . . R0n

= (πV2 ⊗ 1⊗(i−1) ⊗∆(n−i))(RR′).

The lower right matrix element of (πV2 ⊗ id)(RR′) is equal to K−1. As a result, by applying

∆(n−i) we obtain

(59) Φn((
V
M

(i) · · ·
V
M

(n))22) = 1⊗(i−1) ⊗∆(n−i)(K−1) = (K−1)(i) · · · (K−1)(n)

By injectivity of Φn this proves (58). The last claim follows at once from the facts that

δ(1), . . . , δ(n) commute and each set {δ(i)ki}ki∈N is a multiplicative left and right Ore subset
of L0,n(sl(2)). 2
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We can define the localization locLA0,n(sl(2)) of the integral form LA0,n(sl(2)) in the very
same way. Let

Φn : locL0,n(sl(2))→ Uq(sl(2))⊗n

be the unique morphism of module algebras extending the Alekseev map.

Proposition 6.13. The extended Alekseev map Φn : locL0,n(sl(2)) → Uq(sl(2))⊗n is an
isomorphism of Uq-module algebras. It restricts to an embedding of UA-module algebras

Φn : locLA0,n(sl(2)) → UA(sl(2))⊗n, which becomes an isomorphism by adjoining to A the

inverse of q − q−1.

Proof. All claims are clear by the previous results, except surjectivity in the first and
third claims. For the first, it follows from Lemma 6.11, since the algebra generated by

Φ⊗n1 (L(i)
0,n(sl(2))) and K(i) is Uq(sl(2))(i) (the i-th tensorand). For the third, it follows from

Lemma 5.6 (3). 2

Remark 6.14. One can check that {d(1)k1 . . . d(n)kn}k1,...,kn∈N is not a (left or right) Ore
subset of L0,n(sl(2)), so it is not clear how to define an algebra extension of L0,n(sl(2))

containing inverses of the elements d(i), replacing locL0,n(sl(2)). This is the reason why we

are led to define the elements δ(i).

Next we go back to the general situation of LA0,n = LA0,n(g) for an arbitrary g. We need the
following fact, proved in [33] for Oq, but which extends immediately to OA:

Proposition 6.15. The iterated coproduct ∆(n−1) : OA → O⊗nA , considered as a linear map

LA0,1 → LA0,n, is an algebra morphism and satisfies the following commutative diagram:

LA0,1
∆(n−1)

//

Φ1

��

LA0,n
Φn
��

ŨA
∆(n−1)

// Ũ⊗nA .

Proof. The main point of the proof is that

(60) (id⊗∆(n−1))

(
V
M

)
=

V
M

(1) . . .
V
M

(n),

as can be seen by a direct application of the definitions. But Proposition 4.6 implies that
∆(n−1) : LA0,1 → LA0,n is an algebra morphism if and only if the matrix on the left hand side
of (60) satisfies the fusion relation, which is easily shown to be true of the right hand side
by using the exchange relation (42) recursively. This proves the proposition. It shows as

well that ∆(n−1)(LA0,1) is the algebra generated by the set of matrix elements of (60) in the
basis of V extracted from the canonical basis Bλ, λ ∈ P+. The commutativity diagram is a
reformulation of (48). 2

Consider now the algebra of invariant elements,

(LA0,n)UA := {α ∈ LA0,n|∀y ∈ UA, coadr(y)(α) = ε(y)α}.

LUq0,n := {α ∈ L0,n|∀y ∈ Uq, coadr(y)(α) = ε(y)α}.

Note that LUq0,n = (LA0,n)UA ⊗A C(q1/D).

Proposition 6.16. The algebra (LA0,n)UA is the centralizer of ∆(n−1)(LA0,1) in LA0,n. As a

corollary we have Z(LA0,n)UA = Z(LA0,n).
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Proof. Clearing denominators it is enough to give the details for LUq0,n. First note that an

element z of Ũ⊗nq is invariant under the right adjoint action of Uq if and only if it commutes

with ∆(n−1)(x) for every x ∈ Uq. Indeed, we have

z∆(n−1)(x) =
∑
(x)

zε(x(1))∆
(n−1)(x(2)) =

∑
(x)

ε(x(1))z∆
(n−1)(x(2))

=
∑
(x)

∆(n−1)(x(1))∆
(n−1)(S(x(2)))z∆

(n−1)(x(3)) =
∑
(x)

∆(n−1)(x(1))ad
r(x(2))(z).

Hence z∆(n−1)(x) =
∑

(x) ∆(n−1)(x1)ε(x(2))z = ∆(n−1)(x)z if z is an invariant element. Con-

versely, if z commutes with ∆(n−1)(x) for every x ∈ Uq, then

adr(x)(z) =
∑
(x)

∆(n−1)(S(x(1)))∆
(n−1)(x(2))z = ∆(n−1)(ε(x))z = ε(x)z.

This proves our claim. Now, let α ∈ LUq0,n. Then Φn(α) is an adr(Uq)-invariant element of

Ũ⊗nq , by Theorem 6.4. By the claim above, and the fact that commuting with elements of

Ũq or Uq is the same, Φn(α) commutes with the matrix coefficients of (πV ⊗∆(n−1))(RR′),
for every object V of C. By the injectivity of Φn and the relation (48), α commutes with the

matrix coefficients of (60) for all objects V of C. These generate the algebra ∆(n−1)(L0,1), so

LUq0,n lies in the centralizer of the latter.

Conversely, the same reasoning shows that if α lies in the centralizer of ∆(n−1)(L0,1), then

Φn(α) commutes with the matrix coefficients of (πV ⊗ ∆(n−1))(RR′), for every object V of

C. From Theorem 4.3 we deduce that Φn(α) lies in the centralizer of ∆(n−1)(Ũ lfq ). This is

the same as the centralizer of ∆(n−1)(Ũq) by Remark 4.5 (1), so as above we deduce that

Φn(α) is an invariant element of Ũ⊗nq , and by injectivity and equivariance of Φn that α is an
invariant element of L0,n.

The corollary is immediate, because a central element of L0,n necessarily commutes with

∆(n−1)(LA0,1), so it is invariant. 2

We now give an explicit basis of the algebras of invariant elements in term of intertwiners.
Let n be an integer greater than 1. For every 2 ≤ k ≤ n we denote by S(k) ∈ Uq⊗n the
element defined by

S(k) = id⊗(k−2) ⊗
(
id⊗∆(n−k)

)
(R).

Let λ1, ..., λn ∈ P+, and Vλ1 , . . . , Vλn the type 1 simple U resA -modules of highest weights
λ1, ..., λn respectively. Put [λ] = (λ1, ..., λn), and consider the U resA -module

V[λ] =
n⊗
j=1

Vλj .

Define
[λ]

M∈ End(V[λ])⊗ LA0,n by
[λ]

M=
Vλ
M if n = 1, and if n ≥ 2 by

(61)
[λ]

M=
Vλ1
M 1

(1)
n∏
k=2

(
S(k)−1

Vλ1 ,...,Vλn

Vλk
M k

(k)

)
2∏

k=n

S(k)Vλ1 ,...,Vλn .

For example for n = 2 we have

[λ]

M=
Vλ1
M 1

(1)R−1
12

Vλ2
M 2

(2)R12
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and for n = 3,

[λ]

M=
Vλ1
M 1

(1)(id⊗∆)(R−1)
Vλ2
M 2

(2)(R−1)23

Vλ3
M 3

(3)R23(id⊗∆)(R).

The reason for considering the matrices
[λ]

M comes from the two following propositions. The
first generalizes the identity (24).

Proposition 6.17. The right coadjoint action of UA on the matrix elements of
[λ]

M can be
written in matrix form as

(62) coadr(y)

(
[λ]

M
)

=
∑
(y)

(
(πV[λ](y(1))⊗ id)

[λ]

M (πV[λ](S(y(2)))⊗ id)

)
.

Proof. We show it for n = 2, since the general proof follows from it by an easy induction
on n. We have

coadr(y)

(
[λ]

M
)

= coadr(y)

(
Vλ1
M 1

(1)R−1
12

Vλ2
M 2

(2)R12

)

=
∑
(y)

(y(1))1

Vλ1
M 1

(1)S(y(2))1R
−1
12 (y(3))2

Vλ2
M 2

(2)S(y(4))2R12

=
∑
(y)

(y(1))1

Vλ1
M 1

(1)(y(2))2R
−1
12 (S(y(3)))1

Vλ2
M 2

(2)S(y(4))2R12

=
∑
(y)

(y(1) ⊗ y(2))
Vλ1
M 1

(1)R−1
12

Vλ2
M 2

(2)(S(y(3))⊗ S(y(4)))R12

=
∑
(y)

(y(1) ⊗ y(2))
Vλ1
M 1

(1)R−1
12

Vλ2
M 2

(2)R12(S(y(4))⊗ S(y(3)))

=
∑
(y)

(
(πV[λ](y(1))⊗ id)

[λ]

M (πV[λ](S(y(2)))⊗ id)

)
.

All equalities are clear but the third and fifth, which follow from (id ⊗ S−1)(R) = R−1,
R∆R−1 = ∆cop, ∆ ◦ S = (S ⊗ S) ◦∆, and the fact that S is an algebra antimorphism. The
result follows. 2

Denote by (
[λ]
e i) and (

[λ]
e i) the canonical basis of V[λ] (the tensor product of the canonical

basis Bλj ) and the dual basis.

Proposition 6.18. The elements (
[λ]
e j ⊗ id)

[λ]

M (
[λ]
e i ⊗ id) of LA0,n, where [λ] ∈ Pn+, i labels the

basis of V[λ] and j the dual basis, form an A-basis of LA0,n. Equivalently, for every x ∈ LA0,n
there exists a unique family of endomorphisms a[λ](x) ∈ EndA(V[λ]), [λ] ∈ Pn+, which is zero
except possibly for a finite number of terms, such that

(63) x =
∑
[λ]

(TrV[λ] ⊗ id)

(
(πVλ(`)a[λ](x)⊗ id)

[λ]

M
)

=
∑
[λ]

qTrV[λ]

(
(a[λ](x)⊗ id)

[λ]

M
)

where as usual ` is the pivotal element and πVλ(`) is the endomorphism of V[λ] given by the
action of `.
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Note that πVλ(`) is introduced in (63) in order to simplify the statement of the next
proposition.

Proof. We show the first claim of the proposition for n = 2; the general proof is similar.
In this case it is sufficient to prove that the set of matrix elements of the tensors

Vλ1
M 1

(1)R−1
12

Vλ2
M 2

(2) =
∑
(R)

(R(2))2

Vλ1
M 1

(1)
Vλ2
M 2

(2)S(R(1))1 , [λ] ∈ Pn+,

is a basis of LA0,2. Note that we use R−1 = (S ⊗ id)(R) =
∑

(R) S(R(1)) ⊗ R(2) in the above

equality. Let T = (S ⊗ S−1)(R−1), that we denote as usual by T =
∑

(T ) T(1) ⊗ T(2). From

the identity 1⊗ 1 = (S ⊗ id)(R−1R) =
∑

(R),(T ) S(R(1))T(1′) ⊗ S(T(2′))R(2), we obtain

Vλ1
M 1

(1)
Vλ2
M 2

(2) =
∑
(T )

S(T(2))2

Vλ1
M 1

(1)R−1
12

Vλ2
M 2

(2)(T(1))1.

The conclusion follows from this, since the set of matrix elements of
Vλ1
M 1

(1)
Vλ2
M 2

(2), [λ] ∈ P 2
+,

is a basis of LA0,2.
The second claim is a trivial consequence of the first one. 2

By combining the two previous propositions we obtain the following characterisation of
the invariants elements.

Proposition 6.19. An element x ∈ LA0,n belongs to (LA0,n)UA if and only if for every [λ] ∈ Pn+
we have a[λ](x) ∈ EndUresA

(V[λ]). Therefore, the elements

(64) v[λ](a
(k)
[λ] ) := qTrV[λ]

(
a

(k)
[λ]

[λ]

M
)
,

where
{
a

(k)
[λ]

}
k

is any A-basis of EndUresA
(V[λ]), make an A-basis of (LA0,n)UA.

Proof. We have x ∈ (LA0,n)UA if and only if coadr(y)(x) = ε(y)x for every y ∈ UA, or
equivalently for every y ∈ U resA . From Proposition 6.17, Proposition 6.18, and the fact that
S2(y) = `y`−1, this is equivalent to

∑
(y) S

−1(y(2))V[λ]a[λ](x)(y(1))V[λ] = ε(y)a[λ](x) for every

[λ] ∈ Pn+, which is also equivalent to yV[λ]a[λ](x) = a[λ](x)yV[λ] . 2

In the case of g = sl(2), let us state the following result. It is a direct consequence of
Theorem 8.4 and the fact that the skein algebra Kζ(Σ) is finitely generated and Noetherian,
which is proved in [67], Theorem 3, by topological means. The method relies on the fact that

LA0,n has a natural filtration, and consists in proving that the graded algebra associated to

(LA0,n)UA by this filtration is finitely generated and Noetherian. We expect the same result

holds true for the invariant algebras (LA0,n)UA associated to any g.

Theorem 6.20. The algebra (LA0,n(sl(2)))UA(sl(2)) is finitely generated and Noetherian.

Next we turn to the centers Z(L0,n) and Z(LUq0,n) of L0,n and LUq0,n. The basis we find

clearly form A-basis of Z(LA0,n) and (Z(LA0,n)UA) too.

Proposition 6.21. The Alekseev map affords an isomorphism from Z(L0,n) to Z(Ũ⊗nq ).
Moreover, the elements

λω
(i) := qTrVλ

(
Vλ
M

(i)

)
, λ ∈ P+, i ∈ {1, . . . , n},
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belong to the center Z(L0,n) and the family of elements
∏n
i=1 λiω

(i), where λ1, . . . , λn ∈ P+,
form a basis of Z(L0,n).

Proof. We have Φn(Z(L0,n)) = Z(Φn(L0,n)) by Theorem 6.4. We claim that if x ∈ Ũ⊗nq
commutes with Φn(L0,n), it is central. Indeed, x commutes with Φn(L(n)

0,n) = 1⊗(n−1) ⊗ Ũ lfq ,

and hence with 1⊗(n−1)⊗Ũq, and the matrix coefficients of R±1
0n by Remark 4.5. (For instance,

when g = sl(2), K = qH and qH/2 commute and are diagonalizable on objects of C, and since

x commutes with 1⊗(n−1) ⊗ K, it commutes with 1⊗(n−1) ⊗ qH/2 too, and the conclusion

follows from (54) and (55)). Using that x commutes also with Φn(L(n−1)
0,n ), and hence with

the matrix coefficients of R0nR0n−1R
′
0n−1R

−1
0n , we deduce that it commutes with the matrix

coefficients of R0n−1R
′
0n−1, and hence with every element of 1⊗(n−2) ⊗ Ũq ⊗ 1. Continuing

in this way recursively, we get that x ∈ Z(Ũ⊗nq ), which proves our claim. It implies that

Φn(Z(L0,n)) ⊂ Z(Ũ⊗nq ).

Let us prove the converse inclusion. Put R(a) := R0n . . . R0a+1. For every 1 ≤ a ≤ n we
have

Φn

(
qTrVλ

(
Vλ
M

(a)

))
= (TrVλ ⊗ id)

(
(πVλ(`)⊗ id)R(a)R0aR

′
0aR

(a)−1
)

(65)

= (TrVλ ⊗ id)
(
(πVλ(`)⊗ id)R0aR

′
0a

)
= ia

(
Φ1

(
qTrVλ

(
Vλ
M

)))
where Φ1 in the last equality is the RSD map, and the second equality follows from R−1 =
(S ⊗ id)(R) and S2(a) = `a`−1 for every a ∈ Uq. By Theorem 4.3 and Proposition 4.8, the
family of these elements, when λ spans P+, forms a basis of the center of the a-th tensorand
of Ũ⊗nq . By injectivity of Φn this proves the second claim of the statement, as well as the

inclusion Z(Ũ⊗nq ) ⊂ Φn(Z(L0,n)). By our first claim they eventually coincide. The conclusion
follows. 2

In particular, recall from (57) that for g = sl(2) and every 1 ≤ i ≤ n we put

V2
M

(i) =

(
a(i) b(i)

c(i) d(i)

)
∈ End(V2)⊗ L0,n(sl(2))(i).

Set

ω(i) = qa(i) + q−1d(i) = qTrV2

(
V2
M

(i)

)
.

By (65) we have

Φn(ω(i)) = Ω(i),

that is, (q − q−1)2 times the Casimir element of the i-th tensorand of Uq(sl(2))⊗n, and

Z(Uq(sl(2))⊗n) = C(q1/2)[Ω(1), . . . ,Ω(n)]. Then the proposition implies

(66) Z(L0,n(sl(2))) = C(q1/2)[ω(1), . . . , ω(n)].

More generally, by the same arguments and the results recalled in Remark 4.9, there is an
analogous description of Z(L0,n(g)) as a polynomial algebra for an arbitrary finite dimensional
complex simple Lie algebra g of type A,B,C or D.

For every λ ∈ P+ denote

λη = qTrVλ

(
Vλ
M

(1) . . .
Vλ
M

(n)

)
.
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In the specific case of g = sl(2), let us put

(67) η := qTrV2

(
V2
M

(1) · · ·
V2
M

(n)

)
.

Lemma 6.22. Z(LUq0,n) contains the commutative algebra generated over C(q1/D) by the ele-

ments λ1ω
(1), . . . , λnω

(n) and λη for all λ, λ1, . . . , λn ∈ P+.

Proof. Clearly Z(LUq0,n) contains Z(L0,n)Uq , whence the elements λ1ω
(1), . . . , λnω

(n) for every

λ1, . . . , λn ∈ P+, by Proposition 6.21 and Proposition 6.16. Moreover, by this result LUq0,n is

the centralizer of ∆(n−1)(L0,1) in L0,n. Therefore Z(LUq0,n) ⊃ ∆(n−1)(Z(L0,1)). By Proposition

4.8 and the relation (60), the elements λη, λ ∈ P+, form a basis of ∆(n−1)(Z(L0,1)). The
result follows. 2

Note that the C(q1/D)-algebra generated by the elements λ1ω
(1), . . . , λnω

(n) and λη for
all λ, λ1, . . . , λn ∈ P+ is just the polynomial algebra generated by these elements when
λ, λ1, . . . , λn are fundamental weights. We have even a much better result:

Theorem 6.23. Z(LUq0,n) is equal to the polynomial algebra generated over C(q1/D) by the

elements λ1ω
(1), . . . , λnω

(n) and λη for all fundamental weights λ, λ1, . . . , λn. In particular,
when g = sl(2) we have

Z(L0,n(sl(2))Uq(sl(2))) = C(q1/2)[ω(1), . . . , ω(n), η].

This is a consequence of the following lemmas, which are interesting by themselves. Denote
by U~ := U~(g) the Hopf algebra over C[[~]] generated topologically (in the ~-adic sense)
by Ei, Fi, Hi, where i = 1, ...,m, satisfying the relations [Hi, Hj ] = 0, [Hi, Ej ] = aijEj ,

[Hi, Fj ] = −aijFj and (4), (5) and (6), where Ki is replaced by qHii and qi by edi~. By the

same formula as (47) with U~ in place of Uq, U~ acts on U⊗n~ by the right adjoint action. Let
Z(U~) be the center of U~.

Lemma 6.24. The ~-adic completion of ∆(n−1)(Z(U~)) ⊗C[[~]] Z(U~)⊗n, considered as a

subalgebra of U⊗n~ , is the center of (U⊗n~ )U~.

Proof. Denote by U = U(g) the envelopping algebra of g, and by ∆0 its canonical coproduct.
We have U~/~U~ = U. As shown in [69], Lemma 3.10, a direct application of Theorem 10.1 of
[55] proves the result for ~ = 0, i.e for U . Because g is finite dimensional and semisimple, Drin-
feld’s results in [34] show that there exists an isomorphism of algebras φ : U~ → U [[~]], equal
to the identity on the quotient U~/~U~, and there exists an invertible element J ∈ U⊗2[[~]]
such that ∀x ∈ U~, (φ ⊗ φ)(∆(x)) = J∆0(φ(x))J−1. By using J one can easily define an

invertible element Jn ∈ U⊗n[[~]] such that ∀x ∈ U~, (φ⊗n)(∆(n−1)(x)) = Jn∆
(n−1)
0 (φ(x))J−1

n .

As a result the map ψ : (U⊗n~ )U~ → (U⊗n)U [[~]], ψ(x) = J−1
n (φ⊗n(x))Jn, is an isomorphism of

algebras. We obviously have φ(Z(U~)) = Z(U)[[~]]. The lemma follows after having checked

that ψ−1(Z(U)⊗n[[~]]) = Z(U~)⊗n and ψ−1(∆
(n−1)
0 (Z(U)[[~]]) = ∆(n−1)(Z(U~)). 2

Lemma 6.25. The center of (U⊗nq )Uq is Z((U⊗nq )Uq) = ∆(n−1)(Z(Uq))⊗C(q) Z(Uq)
⊗n.

Proof. By Lemma 6.22 it only remains to prove the inclusion “⊂”. Let ϕ : UA⊗AC[[~]]→ U~
be the morphism of algebras defined by ϕ(Ki) = e~diHi , ϕ(Ei) = Ei, ϕ(Fi) = Fi. Let z ∈
Z((U⊗nq )Uq). Up to multiplication by an element of A we can assume that z ∈ Z((U⊗nA )UA).

Because ϕ⊗n(z) centralizes ϕ⊗n((U⊗nA )UA ⊗A C[[~]]), it centralizes its ~-completion. Com-

bining Proposition 6.5 and Proposition 6.19 we get that the elements Φn(v[λ](a
(k)
[λ] ) make an
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A-basis of (U⊗nA )UA . These results still hold by working with U~ and the topological version of

L0,n defined over C[[h]], so ϕ⊗n(Φn(v[λ](a
(k)
[λ] )) is a C[[~]]-topological basis of (U⊗n~ )U~ . We de-

duce that ϕ⊗n(z) centralizes (U⊗n~ )U~ , and therefore ϕ⊗n(z) ∈ ∆(n−1)(Z(U~))⊗C[[~]]Z(U~)⊗n

by Lemma 6.24. This proves z ∈ ∆(n−1)(Z(Uq))⊗C(q) Z(Uq)
⊗n. 2

Proof of Theorem 6.23. We have an isomorphism LUq0,n
∼= (Ũ⊗nq )Uq⊗C(q1/D) by Proposition

6.5, and Z((Ũ⊗nq )Uq) = ∆(n−1)(Z(Ũq))⊗C(q)Z(Ũq)
⊗n by the last lemma applied to Ũq instead

of Uq. But Φ−1
n (Z(Ũq)

⊗n) is the vector space generated by λ1ω
(1), . . . , λnω

(n) for λ1, . . . , λn ∈
P+ (by Proposition 4.8), and Φ−1

n (∆(n−1)(Z(Ũq))) is the vector space generated by λη for all
λ ∈ P+ (by Proposition 4.8 and the relation (60)). 2

7. Center of unrestricted specializations at roots of unity

Let ε ∈ C×. We defined the unrestricted specialization Uε of Uq in (11). Similarly, the

unrestricted specialisation of LA0,n at ε is the Uε-module algebra

(68) Lε0,n = LA0,n ⊗A Cε

where Cε = C as a vector space, and as an A-module, q is evaluated on Cε by ε. By Lemma
6.8 the Alekseev map yields an embedding of Uε-module algebras

Φn : Lε0,n → Ũ⊗nε .

By Lemma 4.11, when n = 1 we have an isomorphism

(69) Φ1 : Lε0,1 → Ũ lfA ⊗A Cε.

When ε is a root of unity, Ũε is a free module of finite rank over its center (see eg. [25],

Section 9.2). Hence Ũ lfε = Ũε. On another hand, Ũ lfA ⊗A Cε is strictly contained in Ũε; for
instance it does not contain the elements Ki.

Finally, recall that (LA0,n)UA is the centralizer of ∆(n−1)(LA0,1), see Proposition 6.16. By the

same arguments (Lε0,n)Uε is the centralizer of ∆(n−1)(Lε0,1). We have obvious inclusions

Z(Lε0,n) ⊂ (Lε0,n)Uε , (LA0,n)UA ⊗A Cε ⊂ (Lε0,n)Uε

and the multiplication map

((LA0,n)UA ⊗A Cε)⊗Z(Lε0,n)→ (Lε0,n)Uε

is a morphism of algebras. In the rest of this paper we will simplify notations by setting

(LA0,n)UAε := (LA0,n)UA ⊗A Cε.

Since (LA0,n)UA is a free A-module, (LA0,n)UA ⊗Z C is isomorphic to (LA0,n)UAε ⊗C C[q, q−1] by

mapping the elements v[λ](a
(k)
[λ] ) defined in (64) to a basis of (LA0,n)UAε . Moreover, by the same

arguments as of Proposition 6.9, taking q = ε, we have:

Proposition 7.1. The algebra Lε0,n does not have non trivial zero divisors, and therefore the

subalgebra (LA0,n)UAε too.
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7.1. Center of Lε0,n(sl(2)). From now, we stipulate that g = sl(2) and ε is a primitive l-th
root of unity, with l ≥ 3 is odd. We omit g from the notations of the various algebras, and
denote Uε(sl(2)) by Uε, etc.

As above define

(70) locLε0,n = locLA0,n ⊗A Cε.

By Lemma 5.6 (3), Proposition 6.10 and Proposition 6.13, the Alekseev map yields embed-
dings of Uε-module algebras

Φ1 : Lε0,1 → Uε, Φn : Lε0,n → U⊗nε

and isomorphisms of Uε-module algebras

Φ1 : locLε0,1 → Uε, Φn : locLε0,n → U⊗nε .

Arguing as in the proof of Proposition 6.5, working with (LA0,n)UA instead of (L0,n)Uq , one
obtains that the restriction of Φn to the invariant subalgebras is an isomorphism,

(71) Φn : (Lε0,n)Uε → (U⊗nε )Uε .

By the relations (32) and (33), Φ1(Lε0,1) = Ũ lfA ⊗A Cε = U lfA ⊗A Cε is the algebra generated

over C by Ω, EK−1, F and K−1. Adding the generator K gives Uε. By results of [27], the

center Z(Uε) of Uε is the C-algebra generated by El, F l, K±l and Ω satisfying the relation

(72)
l∏

j=1

(Ω− cj) = (ε− ε−1)2lElF l +K l +K−l − 2,

where cj = εj + ε−j . Let Z0(Uε) be the subalgebra of Z(Uε) generated by El, F l and K±l.
It is a sub-Hopf algebra of Uε, with

∆(K±l) = K±l ⊗K±l , ∆(El) = El ⊗K l + 1⊗ El , ∆(F l) = K−l ⊗ F l + F l ⊗ 1

S(El) = −ElK−l , S(F l) = −K lF l , S(K±l) = K∓l

ε(El) = ε(F l) = 0, ε(K l) = 1.

Consider the sequence of polynomials Tk, k ∈ N, defined recursively by

(73) T0(x) = 2, T1(x) = x, Tk(x) = xTk−1(x)− Tk−2(x) for k ≥ 2.

Note that Tk(x)/2 is the k-th Chebyshev polynomial of the first type in the variable x/2.

One has Tk(u+u−1) = uk+u−k, from which one derives easily that Tl(x)−2 =
∏l
j=1(x−cj).

Therefore, the relation (72) can be written as:

(74) Tl(Ω) = (ε− ε−1)2lElF l +K l +K−l.

Since l is odd, it is also equivalent to

(75)

l∏
j=1

(Ω + cj) = (ε− ε−1)2lElF l +K l +K−l + 2.

By (32) we have

(76) Φ1(ω) = Ω, Φ1(bl) = (ε− ε−1)lF l, Φ1(cl) = (ε− ε−1)l(EK−1)l, Φ1(dl) = K−l.

Hence

(77) Tl(ω) = blcld−l + d−l + dl.
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Using that Φ1 is equivariant, injective, and surjective when extended to the localization, we
deduce

Z(locLε0,1) = C[ω, bl, cl, d±l]/I

Z(Lε0,1) = C[ω, bl, cl, dl]/I

where I is the ideal of Z(Lε0,1) generated by (Tl(ω) − dl)dl − blcl − 1. Moreover, we have

(U lfA ⊗A Cε)Uε = Z(U lfA ⊗A Cε) by the arguments of Corollary 6.16 for n = 1. Therefore

Z(Lε0,1) = Φ−1
1 ((U lfA ⊗A Cε)Uε) = (Lε0,1)Uε .

We can now define a notion of quantum Frobenius homomorphism for Lε0,1, similar in spirit

to the one defined for Oε in [66], which is a map O1 → Z(Oε). Consider the specialization L1
0,1

of L0,1 at q = 1. We have L1
0,1 = O1 = O(G) as commutative algebras (with G = SL(2,C))).

Denote by a, b, c, d the images of the generators a, b, c, d of L0,1 under the specialization

map L0,1 → L1
0,1. They satisfy ad − bc = 1. Let us define Ql ∈ C[X,Y ] by Ql(X,Y ) =

Tl(εX + ε−1Y )−X l − Y l. Recall that a and d commute. So we put:

Definition 7.2. The Frobenius map Fr : L1
0,1 → Z(Lε0,1) is the homomorphism of algebras

given by

Fr(a) = al +Ql(a, d) = Tl(ω)− dl, F r(b) = bl, F r(c) = cl, F r(d) = dl.

We shall denote

(78)
V2
M =

(
a b
c d

)
and Fr

V2
M =

(
al +Ql(a, d) bl

cl dl

)
.

Note that :

• det
(
Fr

V2
M

)
− 1 = (Tl(ω)− dl)dl − blcl − 1, ie. the generator of the ideal I.

• Tl
(
qTr

(
V2
M

))
= Tr

(
Fr

V2
M

)
.

The notions above can be developed similarly for every Lε0,n, n ≥ 1. First, recall the

additional generators δ(i)−1 of the localization locLε0,n, defined after Lemma 6.11.

Proposition 7.3. We have

Z(Lε0,n) = C[ω(i), b(i)l, c(i)l, d(i)l, i = 1, . . . , n]/(I(i), i = 1, . . . , n),

Z(locLε0,n) = C[ω(i), b(i)l, c(i)l, d(i)l, (δ(i)l)−1, i = 1, . . . , n]/(I(i), i = 1, . . . , n)

where I(i) is the ideal generated by the element (Tl(ω
(i))− d(i)l)d(i)l − b(i)lc(i)l − 1.

Proof. First we prove that Φn(b(i)l), Φn(c(i)l), Φn(d(i)l) ∈ Z(U⊗nε ) for every i = 1, . . . , n.

By injectivity of Φn it will follow that b(i)l, c(i)l, d(i)l ∈ Z(Lε0,n). By (76) the claim is true

for i = n. Let 1 ≤ i ≤ n − 1, and denote R(i) := R0n . . . R0i+1 ∈ End(V2) ⊗ Ũ⊗nq , with q an

indeterminate, as in the previous sections. Define r
(i)
11 , r

(i)
12 , r

(i)
21 , r

(i)
22 ∈ Ũ

⊗n
q by

R(i) =

(
r

(i)
11 r

(i)
12

r
(i)
21 r

(i)
22

)
and m

(i)
11 , m

(i)
12 , m

(i)
21 , m

(i)
22 ∈ 1⊗(i−1) ⊗ U lfq ⊗ 1⊗(n−i) by

idV2 ⊗
(

1⊗(i−1) ⊗ Φ1 ⊗ 1⊗(n−i)
)(

a(i) b(i)

c(i) d(i)

)
=

(
m

(i)
11 m

(i)
12

m
(i)
21 m

(i)
22

)
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where as in (57) we put

V2
M

(i) =

(
a(i) b(i)

c(i) d(i)

)
∈ End(V2)⊗ L(i)

0,n.

By Proposition 5.4, m
(i)
11 , m

(i)
12 , m

(i)
21 , m

(i)
22 generate the subalgebra 1⊗(i−1) ⊗ U lfq ⊗ 1⊗(n−i)

of U⊗nq . These elements satisfy the relations (31), with m
(i)
11 , m

(i)
12 , m

(i)
21 , m

(i)
22 replacing a,

b, c, d respectively, and they commute with r
(i)
11 , r

(i)
12 , r

(i)
21 , r

(i)
22 , since the non trivial tensor

components of the latters do not lie on the i-th tensorand of U⊗nq . Denote iin : U⊗(n−i)
q → U⊗nq

the identification map with the last n−i tensorands. We have R(i) = (πV2⊗ iin◦∆(n−i−1))(R)
by the relation (1). So the formulas (54)-(55) yield

r
(i)
21 = 0 , r

(i)
22 = r

(i)−1
11 , r

(i)
12 r

(i)
11 = qr

(i)
11 r

(i)
12 , r

(i)
12 = r

(i)
11 f

(i)
12 and R(i)−1 =

(
r

(i)−1
11 −qr(i)

12

0 r
(i)
11

)
where

(79) r
(i)
11 = iin ◦∆(n−i−1)(qH/2) , f

(i)
12 = iin ◦∆(n−i−1)((q − q−1)F ).

Therefore

R(i)
(
idV2 ⊗

(
1⊗(i−1) ⊗ Φ1 ⊗ 1⊗(n−i)

))(
a(i) b(i)

c(i) d(i)

)
R(i)−1 =(

m
(i)
11 + r

(i)
12 r

(i)−1
11 m

(i)
21 ∗

r
(i)−2
11 m

(i)
21 −qg(i)−1

11 r
(i)
12m

(i)
21 +m

(i)
22

)
.

Note also that, by definition,

(idV2 ⊗ Φn)

(
a(i) b(i)

c(i) d(i)

)
= R(i)

(
idV2 ⊗

(
1⊗(i−1) ⊗ Φ1 ⊗ 1⊗(n−i)

))(
a(i) b(i)

c(i) d(i)

)
R(i)−1.

Hence

Φn(c(i)) = r
(i)−2
11 m

(i)
21 ,

Φn(d(i)) = −qg(i)−1
11 r

(i)
12m

(i)
21 +m

(i)
22 .

Let now take the specialization q = ε as above, a primitive l-th root of unity where l ≥ 3 is
odd. We have

Φn(c(i)l) = (r
(i)−2
11 m

(i)
21 )l = r

(i)−2l
11 m

(i)l
21 ,(80)

Φn(d(i)l) = (−εr(i)−1
11 r

(i)
12m

(i)
21 +m

(i)
22 )l = −r(i)−l

11 r
(i)l
12 m

(i)l
21 +m

(i)l
22 ,(81)

by using m
(i)
21m

(i)
22 = ε2m

(i)
22m

(i)
21 , the q-binomial formula (see eg. [53], Proposition IV.2.2), and

the vanishing at q = ε of the q-Gauss polynomials [l]q/[k]q[l − k]q, 0 < k < l. Now

m
(i)l
21 = (ε− ε−1)l1⊗(i−1) ⊗ (K−1E)l ⊗ 1⊗(n−i), r

(i)−2l
11 = iin ◦∆(n−i−1)(K−l).

These are central elements of U⊗nε , so Φn(c(i)l) is central. As

r
(i)−l
11 r

(i)l
12 = f

(i)l
12 = iin ◦∆(n−i−1)((ε− ε−1)lF l)

and Z0(Uε) is a Hopf algebra, r
(i)−l
11 r

(i)l
12 is a central element of U⊗nε . Again, m

(i)l
21 and m

(i)l
22

being central in U⊗nε , Φn(d(i)l) is central.
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Finally, recalling that L(i)
0,n is isomorphic to L0,1, by specializing q to ε we get

(82) d(i)lTl(ω
(i))− d(i)2l − 1 = b(i)lc(i)l.

We know that ω(i) ∈ Z(Lε0,n) and we just proved that d(i)l, c(i)l ∈ Z(Lε0,n). Therefore, for

every x ∈ L0,n we get b(i)lc(i)lx = xb(i)lc(i)l = b(i)lxc(i)l i.e (b(i)lx− xb(i)l)c(i)l = 0, c(i)l is not

a zero divisor, we deduce b(i)lx− xb(i)l = 0. Hence b(i)l is central in Lε0,n.

A formula of Φn(b(i)l) can be obtained as follows. Recall that (65) implies

(83) Φn(ω(i)) = Ω(i).

This can also be checked by using the above formulas:

Φn(ω(i)) = qΦn(a(i)) + q−1Φn(d(i)) = q(m
(i)
11 + q−1f

(i)
12 m

(i)
21 ) + q−1(m

(i)
22 − qf

(i)
12 m

(i)
21 )

= qm
(i)
11 + q−1m

(i)
22 .

Then, by applying Φn to the relation (82) and using (80), (81) and (83), one finds

(84) Φn(b(i)l) = −r(i)l
11 r

(i)l
12 (Tl(Ω

(i))− 2m
(i)l
22 ) + r

(i)2l
11 m

(i)l
12 − r

(i)2l
12 m

(i)l
21 .

We can now achieve the proof. Note that C[ω(1), . . . , ω(n)] = Z(LA0,n) ⊗A Cε by (7.1). The

inclusion Z(LA0,n) ⊗A Cε ⊂ Z(Lε0,n) is clear, and the natural embedding Lε0,n → locLε0,n
maps Z(Lε0,n) into Z(locLε0,n). By the case n = 1 the elements ω(i), b(i)l, c(i)l, d(i)l generate

Z(Lε0,n(i)), with ideal of relations I(i). The set of these ideals for i = 1, . . . , n provide all the
relations in Z(Lε0,n), for there are no others in Im(Φn) (as shows eg. Corollary 7.6 below).
Therefore one has inclusions

C[ω(i), b(i)l, c(i)l, d(i)l, i = 1, . . . , n]/(I(i), i = 1, . . . , n) ⊂ Z(Lε0,n) ⊂ Z(locLε0,n).

The conclusion follows at once, since by their very definition the elements δ(i)±l are central
in locLε0,n, and Φn maps the algebra generated by them and the left-hand side isomorphically

to U⊗nε . 2

Recall that we denote (LA0,n)UA ⊗A Cε by (LA0,n)UAε .

Corollary 7.4. The algebra Lε0,n is a free Z(Lε0,n)-module of rank l3n. Moreover the multi-

plication map (LA0,n)UAε ⊗Z(Lε0,n)→ (Lε0,n)Uε is surjective.

Proof. By Proposition 5.2 and the identity a = q−1(ω − q−1d), the monomials dδbβcγ

(β, γ, δ ∈ N) form a basis of L0,1 over C(q1/2)[ω]. Then Proposition 7.3 and the linear

isomorphism Lε0,n → (Lε0,1)⊗n imply that the products
∏n
i=1 d

(i)δib(i)βic(i)γi , where βi, γi,
δi ∈ {0, . . . , l − 1}, form a basis of Lε0,n over Z(Lε0,n). This proves the first claim. By
Proposition 6.18 such products are C-linear combinations of elements v[λ](a[λ]) defined as

in (64), but with a[λ] ∈ EndC(V[λ]). Expanding the elements of (Lε0,n)Uε as Z(Lε0,n)-linear
combinations of these elements v[λ](a[λ]), and arguing as in Proposition 6.19, we get for each
of them that a[λ] ∈ EndUε(V[λ]) = EndUresA

(V[λ]) ⊗A Cε. Hence the multiplication map is
surjective. 2

Analogously to the case n = 1, recalling that L1
0,1 = O(G) we put:

Definition 7.5. The Frobenius map Fr : (L1
0,1)⊗n → Z(Lε0,n) is the homomorphism of

algebras given by

Fr(a(i)) = a(i)l +Ql(a
(i), d(i)), F r(b(i)) = b(i)l, F r(c(i)) = c(i)l, F r(d(i)) = d(i)l.
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We shall denote

(85)
V2
M

(i) =

(
a(i) b(i)

c(i) d(i)

)
and Fr

V2
M

(i) =

(
a(i)l +Ql(a

(i), d(i)) b(i)l

c(i)l d(i)l

)
where we recall that a(i)l + Ql(a

(i), d(i)) = Tl(ω
(i)) − d(i)l. We can express Φn ◦ (Φ⊗n1 )−1 on

the center as follows. Set

R(i) =

(
r

(i)l
11 r

(i)l
12

0 r
(i)−l
11

)
(86)

M(i) =
(

1⊗(i−1) ⊗ Φ1 ⊗ 1⊗(n−i)
)(

Fr
V2
M

(i)

)
=

(
Tl(Ω

(i))−m(i)l
22 m

(i)l
12

m
(i)l
21 m

(i)l
22

)
where we use the notations in the proof of Proposition 7.3. These matrices belong to
End(V2) ⊗ Z0(Ũε)

⊗n and End(V2) ⊗ Z0(Uε)
⊗n respectively. Here we note that Z(Ũε) is

generated by Ω, El, F l and K±
l
2 satisfying the relation (72) (or (75)), and we define Z0(Ũε)

as the subalgebra generated by El, F l and K±
l
2 .

By using (80), (81), (83) and (84) it is easy to check that:

Corollary 7.6. The map Φn ◦ (Φ⊗n1 )−1 : Z0(Uε)
⊗n → Z0(Uε)

⊗n is given by(
idV2 ⊗ (Φn ◦ (Φ⊗n1 )−1)

)
(M(i)) = R(i)M(i)R(i)−1.

We will find useful later to have explicit formulas. Let us introduce the following generators
of Z0(Uε):

(87) x = −(ε− ε−1)lElK−l , y = (ε− ε−1)lF l , z±1 = K±l.

Similarly, denote by Z0(Ũε) ⊂ Ũε the subalgebra generated by x, y, z and

z′±1 = K±
l
2 .

For every a ∈ {x, y, z±1} put a(i) = 1⊗(i−1) ⊗ a ⊗ 1⊗(n−i). We can view Z0(Uε)
⊗n as a

polynomial algebra in the variables x(i), y(i), (z±1)(i), and Z0(Ũε)
⊗n as a polynomial algebra

in x(i), y(i), (z′±1)(i). Then

(88) M(i) =

(
Tl(Ω

(i))− (z−1)(i) y(i)

−x(i) (z−1)(i)

)
=

(
z(i)(1− x(i)y(i)) y(i)

−x(i) (z−1)(i)

)
.

Also,

r
(i)l
11 = (z′−1)(i+1) . . . (z′−1)(n)(89)

r
(i)l
12 = (z′−1)(i+1) . . . (z′−1)(n)

y(i+1) +

n−i−1∑
j=1

(z−1)(i+1) . . . (z−1)(i+j)y(i+j+1)

(90)

yields

Φn(c(i)l) = r
(i)−2l
11 m

(i)l
21 = −x(i)(z−1)(i+1) . . . (z−1)(n)(91)

Φn(d(i)l) = m
(i)l
22 −m

(i)l
21 r

(i)−l
11 r

(i)l
12(92)

= (z−1)(i) + x(i)

y(i+1) +
n−i−1∑
j=1

(z−1)(i+1) . . . (z−1)(i+j)y(i+j+1)

 .
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One can readily express Φn(b(i)l) = −r(i)l
11 r

(i)l
12 (Tl(Ω

(i)) − 2m
(i)l
22 ) + r

(i)2l
11 m

(i)l
12 − r

(i)2l
12 m

(i)l
21 as

well as a polynomial in the variables x(j), y(j), (z±1)(j).

In [66], Parshall-Wang showed that the quantum Frobenius homomorphism O1 → Z(Oε)
they defined is a morphism of coalgebra. As we now explain, our quantum Frobenius homo-
morphism Fr : L1

0,1 → Z(Lε0,1) satisfies a similar property.

Recall the algebra morphism ∆(n−1) : LA0,1 → LA0,n (see Proposition 6.15). Denote again

by ∆(n−1) : Lε0,1 → Lε0,n its evaluation at ε. For every 1 ≤ i1 < . . . < ik ≤ n we define
ιi1,...,ik : Lε0,k → Lε0,n to be the identification map of the j-th tensorand of Lε0,k with the ij-th
tensorand of Lε0,n, 1 ≤ j ≤ k.

Lemma 7.7. For every 1 ≤ i1 < . . . < ik ≤ n we have

(93) ιi1,...,ik ◦∆(k−1)(Fr
V2
M) = Fr

V2
M

(i1) . . . F r
V2
M

(ik).

Proof. First we show (93) in the case k = n = 2, that is

(94) ∆(Fr
V2
M) = Fr

V2
M

(1)Fr
V2
M

(2).

The commutation relations of
V2
M

(1) and
V2
M

(2) being complicated, we cannot compute the
matrix components directly (which is the way used in [66] for their quantum Frobenius
homomorphism O1 → Z(Oε), where such computations reduce to the q-binomial identity).
Instead, we first use the Alekseev map. Indeed, because Φ2 is an algebra embedding, it is
sufficient to show that (94) holds after having been composed with Φ2. We have :

Φ1(Fr
V2
M) =

(
Tl(Ω)−K−l (ε− ε−1)lF l

(ε− ε−1)l(EK−1)l K−l

)
.

Therefore (94) is a consequence of the following four equations in U⊗2
ε :

∆(K−l) = Φ2(c(1)lb(2)l + d(1)ld(2)l)

∆((ε− ε−1)l(EK−1)l) = Φ2(c(1)l(a(2)l +Ql(a
(2), d(2))) + d(1)lc(2)l)

∆((ε− ε−1)lF l) = Φ2((a(1)l +Ql(a
(1), d(1)))b(2)l + b(1)ld(2)l)

∆(Tl(Ω)−K−l) = Φ2((a(1)l +Ql(a
(1), d(1)))(a(2)l +Ql(a

(2), d(2))) + b(1)lc(2)l).

We listed them in order of complexity. The first equation, using the explicit expression of Φ2

on components, is rewritten as:

∆(K−l) = (ε− ε−1)2l(K−1E ⊗K−1)l(1⊗F l) + (K−1⊗ 1− ε(ε− ε−1)2K−1E ⊗F )l(1⊗K−l).
This relation holds thanks to the q−binomial identity. The other three relations, although
more complicated, are shown similarly by a direct computation and using the expressions
(80), (81), (83) and (84).

Because the relative commutations relations of
V2
M

(1), . . . ,
V2
M

(k) and
V2
M

(i1), . . . ,
V2
M

(ik) for
general sequences i1 < ... < ik are the same, the proof of (93) follows immediately from the
case where ij = j, for 1 ≤ j ≤ k. This, in turn, follows from (94) by induction on k. This
concludes the proof. 2

The following consequence of the Lemma will be a key tool in Section 9.

Proposition 7.8. For every 1 ≤ i1 < . . . < ik ≤ n we have

Tl

(
qTr

(
V2
M

(i1) . . .
V2
M

(ik)

))
= Tr

(
Fr

V2
M

(i1) . . . F r
V2
M

(ik)

)
.

In particular, this element is central in Lε0,n.
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Proof. Let ιi1,...,ik : Lε0,k → Lε0,n be the identification map of the j-th tensorand of Lε0,k with
the ij-th tensorand of Lε0,n, 1 ≤ j ≤ k. We have

Tl

(
qTr

(
V2
M

(i1) . . .
V2
M

(ik)

))
= Tl

(
qTr

((
id⊗

(
ιi1,...,ik ◦∆(k−1)

))( V2
M

)))
= Tl

((
ιi1,...,ik ◦∆(k−1)

)(
qTr

(
V2
M

)))
=
(
ιi1,...,ik ◦∆(k−1)

)(
Tl

(
qTr

(
V2
M

)))
=
(
ιi1,...,ik ◦∆(k−1)

)
(Tl(ω)) .

In the first equality we used the formula (60), the second and fourth equalities follow from

definitions, and the third comes from the fact that ∆(k−1) : LA0,1 → LA0,k is a homomorphism

of algebras. By the identity (77) and the fact that Z0(Uε) ∼= C[bl, cl, d±l] is a Hopf subalgebra

of Uε, we have ∆(k−1) (Tl(ω)) ∈ Z(locLε0,1)⊗k. This and Proposition 7.3 imply that the above
element is central in Lε0,n. Moreover

ιi1,...,ik ◦∆(k−1) (Tl(ω)) = ιi1,...,ik ◦∆(k−1)

(
Tr

(
Fr

V2
M

))
= Tr

((
id⊗ ιi1,...,ik ◦∆(k−1)

)(
Fr

V2
M

))
= Tr

(
Fr

V2
M

(i1) . . . F r
V2
M

(ik)

)
where the first equality follows from the observations we made before Proposition 7.3, and
the others from the previous Lemma. 2

7.2. G-invariant central elements and SL(2,C)-characters. We are going to relate
Z(Lε0,n) with the algebra of regular functions on the variety of SL(2,C)-characters of the
sphere with n + 1 punctures, endowed with the Atiyah-Bott-Goldman Poisson structure.
This is achieved in Section 7.2.2. To this aim we recall a few preliminary results in the next
section.

7.2.1. The quantum coadjoint action for Uε. We refer to [27, 28, 29] for details about the
material discussed in this section. It can be formulated for any of the quantum groups Uε(g),
but we restrict to Uε(sl(2)) as we shall need Proposition 7.3 in Section 7.2.2.

Consider the sets Spec(Z(Uε)) and Spec(Z0(Uε)) of algebra homomorphisms from Z(Uε)
and Z0(Uε) to C, respectively. They are affine algebraic sets. An element of Spec(Z(Uε)) is
called a central character of Uε. The inclusion Z0(Uε) ⊂ Z(Uε) induces a regular (restriction)
map

(95) τ : Spec(Z(Uε)) −→ Spec(Z0(Uε)).

Since Z0(Uε) is a polynomial algebra, any χ ∈ Spec(Z0(Uε)) is entirely defined by its values
(xχ, yχ, zχ) ∈ C2 ×C∗ on the tuple (x, y, z) of generators of Z0(Uε) defined in (87). By (72)-

(75), any χ ∈ Spec(Z(Uε)) is entirely defined by its values (xχ, yχ, zχ,Ωχ) ∈ C2 × C∗ × C on
the tuple (x, y, z,Ω) of generators of Z(Uε), solutions to one of the equivalent equations

l∏
j=1

(Ωχ ∓ cj) = −xχyχzχ + zχ + z−1
χ ∓ 2
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where cj = εj + ε−j . Hence τ has degree l, and Spec(Z(Uε)) is a branched covering of

Spec(Z0(Uε)) = C2×C∗ of degree l, a hypersurface in C2×C∗×C with quadratic singularities
at the points (0, 0,±1,±cj), j = 1, . . . , (l − 1)/2. Because Z0(Uε) is a commutative Hopf
algebra, Spec(Z0(Uε)) has a canonical group structure defined dually by

(96) χ1χ2(u) := (χ1 ⊗ χ2)∆(u) , χ−1
1 (u) := χ1(S(u)) , e(u) := ε(u)

for any u ∈ Z0(Uε) and χ1, χ2 ∈ Spec(Z0(Uε)), where e ∈ Spec(Z0(Uε)) is the identity
element. In formulas:

(97)
xχ1χ2 = xχ1 + z−1

χ1
xχ2 , yχ1χ2 = yχ1 + yχ2z

−1
χ1

, zχ1χ2 = zχ1zχ2

xχ−1 = −zχxχ , yχ−1 = −yχzχ , zχ−1 = z−1
χ

xe = 0 , ye = 0 , ze = 1.

This can be formulated as follows. Put G = SL(2,C), and let G∗ be the group formed by
the pairs of matrices((

a b
0 a−1

)
,

(
a−1 0
c a

))
∈ SL(2,C)op × SL(2,C)op

where SL(2,C)op is SL(2,C) endowed with the opposite multiplication. Set

ψ

((
z′ z′y
0 z′−1

)
,

(
z′−1 0
z′x z′

))
= (x, y, z′2).

Identifying Spec(Z0(Uε))) with C2 × C∗ by mapping χ to (xχ, yχ, zχ) defined as above, it is
readily checked that this defines a surjective morphism of algebraic groups

ψ : G∗ → Spec(Z0(Uε)))

with kernel the subgroup generated by −(I, I), where I is the 2-by-2 identity matrix. Put

Ḡ∗ = G∗/{±(I, I)}.

We will denote the quotient isomorphism by

ψ̄ : Ḡ∗ → Spec(Z0(Uε))).

Let us endow the ring of regular functions O(G) with the Sklyanin-Drinfeld Poisson bracket
{ , }, associated to the classical r-matrix

r =
1

4
H ⊗H + E ⊗ F ∈ g⊗ g.

Recall that it can be given the following expression (see eg. [70], or [2], [25] for a setup close
to ours). First note that it is entirely determined by its values on the matrix coefficients
(coordinate functions) l11, l12, l21, l22 of the fundamental representation of G on C2. Put

(98) L =

(
l11 l12

l21 l22

)
=

2∑
r,s=1

Esr ⊗ lrs ∈ End(C2)⊗O(G).

Denote by {
1
L,

2
L} and

1
L

2
L the tensors in End(C2)⊗ End(C2)⊗O(G) defined by

{
1
L,

2
L} =

2∑
r,s,t,u=1

Esr ⊗ Eut ⊗ {lrs, ltu} ,
1
L

2
L=

2∑
r,s,t,u=1

Esr ⊗ Eut ⊗ lrsltu
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and as usual put
1
L=

∑2
r,s=1E

s
r ⊗ 1 ⊗ lrs,

2
L=

∑2
t,u=1 1 ⊗ Eut ⊗ ltu. The r-matrix in the

fundamental representation is

r =
1

4

(
1 0
0 −1

)
⊗
(

1 0
0 −1

)
+

(
0 1
0 0

)
⊗
(

0 0
1 0

)
∈ End(C2)⊗ End(C2)

which we identify with r⊗ 1 ∈ End(C2)⊗End(C2)⊗O(G). Then the bracket { , } on O(G)
is defined by the identity

(99) {
1
L,

2
L} = [r,

1
L

2
L] = r

1
L

2
L −

1
L

2
L r.

The group G with the bracket { , } is a Poisson-Lie group. As such, it admits a dual Poisson-
Lie group, which is precisely the group G∗ defined as above. Its Poisson bracket { , }G∗ is
defined by

(100) {
1
L±,

2
L±}G∗ = [r,

1
L±

2
L±] , {

1
L+,

2
L−}G∗ = [r,

1
L+

2
L−]

where (L+, L−) is the pair of matrices of coordinate functions onG∗ ⊂ SL(2,C)op×SL(2,C)op.
We will denote by {, }Ḡ∗ the induced bracket on Ḡ∗. The push-forward ψ∗{ , }G∗ is a Poisson
bracket on Spec(Z0(Uε)) that can be defined directly via the quantum coadjoint action, that
we now recall.

The specialization morphism evε : UA⊗C[q, q−1]→ Uε, q 7→ ε, is surjective, with kernel the

subalgebra (ql−q−l)UA⊗C[q, q−1]. Given an element x ∈ Uε, let us denote by x̃ ∈ ev−1
ε (x) any

preimage of x. For every a ∈ Z(Uε), u ∈ Uε we have [ã, ũ] = ãũ−ũã ∈ (ql−q−l)UA⊗C[q, q−1].
So, let us put

(101) Da(u) = − lim
q→ε

[ã, ũ]

l(ql − q−l)
, a ∈ Z0(Uε).

It is easy to check that the maps Da : Uε → Uε are well-defined (they do not depend on the
choices of ã and ũ), and that they are derivations of Uε preserving Z0(Uε) and Z(Uε). Hence
they define algebraic vector fields on Spec(Z0(Uε)). Since Ω is central in Uq(sl(2)), Da is the
zero map when a ∈ C[Ω].

Let us introduce the elements e, f defined in [27] by

(102) e = −xz = (ε− ε−1)lEl, f = −yz = −(ε− ε−1)lF lK l.

Direct computations from the definition and the fact that DeΩ = 0 imply the formulas:

Dz(K) = 0, Dz(E) = −1

l
zE , Dz(F ) =

1

l
zF,(103)

De(K) =
1

l
eK,De(E) = 0, De(F ) = −1

l
(ε− ε−1)l−1[K; 1]El−1,(104)

Dy(K) = −1

l
yK,Dy(F ) = 0, Dy(E) =

1

l
(ε− ε−1)l−1[K;−1]F l−1,(105)

where [K; r] =
Kεr −K−1ε−r

ε− ε−1
, r ∈ Z.

A Poisson bracket { , }QCA is defined on Z(Uε) by

{a, b}QCA = Da(b).

With this Poisson bracket Z(Uε) is a Poisson algebra, Z0(Uε) being a Poisson ideal. The
Poisson structure on Z0(Uε) is completely defined by the formulas

(106) {y, x}QCA = −1 + xy + z−2 , {z, x}QCA = −zx , {z, y}QCA = yz
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which can be straithforwardy checked using the definition. From them it is easy to show that
the Poisson center of Z0(Uε) is the commutative algebra generated by −xyz + z + z−1.

Let us introduce the family of automorphisms of Uq(sl(2)) defined as follows. Let r ∈ Z,
and τr, Tr the automorphisms of Uq(sl(2)) defined by:

τr(K) = K, τr(E) = KrE, τr(F ) = FK−r(107)

Tr(K) = K−1, Tr(E) = −FK−r, Tr(F ) = −KrE.(108)

Note that Tr = τr ◦ T0 and T1 is the braid group automorphism. We have

T1(x) = y, T1(y) = z2x.

These automorphisms of Uq(sl(2)) define automorphisms of the specialisation Uε and we will
keep the same notation for them. If T is any automorphism of the type Tr or τr, it is easy to
show from the definition of Da for a ∈ Z(Uε) that

DT (a) ◦ T = T ◦Da.

Denote by G0 the big cell of G = SL(2,C). It consists of the matrices with non vanishing
lower right entry, and satisfies G0 = B+B−, where B+ and B− are the subgroups of G of
upper and lower triangular matrices. We have an unramified 2-fold covering

(109)
σ : G∗ −→ G0

(b+, b−) 7−→ b+b
−1
− .

It induces a diffeomorphism
σ̄ : Ḡ∗ → G0.

Setting z := z′2 and

(110) M = σ

((
z′ z′y
0 z′−1

)
,

(
z′−1 0
z′x z′

))
we have

M =

(
z − zxy y
−x z−1

)
.

Consider the Poisson bracket { , }FR on O(G) defined by

{
1
L,

2
L}FR = r

1
L

2
L −

1
L

2
L r′+

2
L r′

1
L −

1
L r

2
L

where r′ is r post-composed with the flip map a ⊗ b 7→ b ⊗ a. The bracket { , }FR has
been introduced in [70] and generalized in the work of Fock-Rosly [46] (which explains our
notation). Note that O(G0) is the localization of the algebra O(G) with respect to the matrix
coefficient l22 in (98). As a consequence, the Poisson bracket {, }FR being quadratic, it can
be extended to O(G0).

The next result sums up the relationships between the brackets { , }FR, { , }G∗ , and
{ , }QCA:

Theorem 7.9. (1) ([28, 29]) The map ψ̄ : (Ḡ∗, { , }Ḡ∗) → (Spec((Z0(Uε)), { , }QCA) is an
isomorphism of complex Poisson-Lie groups.

(2) ([70]) The map σ̄ : (Ḡ∗, { , }Ḡ∗) → (G0, { , }FR) is a diffeomorphism of complex
Poisson manifolds.

The first claim is proved in [28, 29] for the simply-connected quantum groups Ũε(g), where
g is a complex finite dimensional simple Lie algebra (see Remark 7.11 below). We state it
rather in the case of Uε(sl(2)), the adjoint quantum group for g = sl(2), where it follows
from straighforward computations using the formulas (100) and (106). The second statement
follows as well from straighforward computations. Namely, by using the identities (100) and
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σ∗(L) = L+L
−1
− , and the fact that r + r′ is ad-invariant, one can identify the formulas of

{ , }FR and

σ∗({ , }G∗)(L⊗ L) = {σ∗(
1
L), σ∗(

2
L)}G∗ .

We leave the verifications to the reader.

The next statement summarizes the results of De Concini-Kac-Procesi on the quantum
coadjoint action. Recall the elements e = −xz, f = −yz of Z0(Uε) (see (102)). Let us identify
Spec(Z0(Uε)) with G0 using the map σ̄ ◦ ψ̄−1 of Theorem 7.9, and hence the derivations De,
Df , Dz of Z0(Uε) with algebraic vector fields on G0 (and hence on G). Denote by H, X, Y
the left-invariant vector fields on G associated to the generators H, X, Y of sl(2), where

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

Denote by Ẑ0(Uε) the vector space of power series in the generators x, y, and z±1 of Z0(Uε)
whose sums converge when evaluated on any χ ∈ Spec(Z0(Uε)) ∼= C2 × C∗, χ = (xχ, yχ, zχ)
(thus defining holomorphic functions). Set

(111) Ûε = Uε ⊗Z0(Uε) Ẑ0(Uε) , Ẑ(Uε) = Z(Uε)⊗Z0(Uε) Ẑ0(Uε).

Theorem 7.10. ([28, 29]) (a) We have Dz = zH/2, De = −zY , Df = zX.

(b) For every t ∈ C the power series exp(tDe), exp(tDf ) converge to automorphisms of Ûε
preserving Ẑ0(Uε) and Ẑ(Uε), and fixing C[Ω].

Denote by GDCK the subgroup of Aut(Ûε) generated by the 1-parameter groups (exp(tDe))t∈C
and (exp(tDf ))t∈C. It acts dually by holomorphic transformations on Spec(Z0(Uε)) and

Spec(Z(Uε)) by defining g.χ on u ∈ Ẑ0(Uε), for every g ∈ G and χ ∈ Spec(Z(Uε)), by
u(g.χ) = (g−1.u)(χ). Then:

(c) The diffeomorphism σ̄ ◦ ψ̄−1 : Spec(Z0(Uε)) → G0 maps the action of GDCK on the
tangent spaces of (0, 0,±1) ∈ Spec(Z0(Uε)) to the coadjoint action of G on sl(2,C)∗, the
tangent spaces of ±I ∈ G0.

(d) For any conjugacy class Γ in SL(2,C), (ψ̄ ◦ σ̄−1)(Γ ∩ G0) is a (non empty) GDCK-
orbit in Spec(Z0(Uε)), and τ−1 of this orbit has l connected components, all of whose are
GDCK-orbits in Spec(Z(Uε)).

(e) An element a ∈ Z(Uε) is GDCK-invariant if and only if a ∈ C[Ω]. Dually, the sets
of fixed points of the action of GDCK on Spec(Z0(Uε)) and Spec(Z(Uε)) are respectively
(0, 0,±1) := (ψ̄ ◦ σ̄−1)({±I}) and

D := τ−1((0, 0,±1)) = {(0, 0,±1,±cj), j = 1, . . . , (l − 1)/2}.
(f) The GDCK-orbits on Spec(Z0(Uε)) and Spec(Z(Uε)) are the symplectic leaves of { , }QCA.

Remark 7.11. In the statements of Theorem 7.9 and Theorem 7.10 we use our conventions,
which differ from those in [28, 29] in the following ways:

(i) Theorem 7.9 (1) for the simply connected quantum group Ũε(sl(2)) instead of Uε(sl(2)),

as in [28, 29], states an isomorphism of (G∗, { , }G∗) with (Spec((Z0(Ũε)), { , }QCA); as we

take opposite comultiplications on Ũε(sl(2)), we get opposite multiplications of G∗ (whence
Ḡ∗ for Uε(sl(2))).

(ii) Our derivations Da differ by a sign, which we introduce in order to get the equality of
σ̄∗{ , }Ḡ∗ with { , }FR in Theorem 7.9 (2);

(iii) In [27, 28, 29], the matrix M in (110) is different because they use the opposite

coproduct on Ũε(sl(2)); their braid group automorphism T is in our notation T−1, which
satisfies T−1(e) = f.
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It is easily checked that the identities (106) imply

(112) DzM =
[z

2
H,M

]
, DxM =

[
−z−1X,M

]
, DyM =

[
z−1Y ,M

]
.

where M is defined by (110). Hence we get

(113) Dz =
z

2
H , Dx = −z−1X , Dy = z−1Y .

This is the content of Theorem 7.10 (a) expressed in terms of the derivations Dz, Dx, Dy.

In Theorem 7.10 (b), Uε is enlarged to Ûε in order to define the automorphisms exp(tDe),
exp(tDf ) because the derivations De, Df are not nilpotent.

For reasons that will be explained in Remark 7.17, we will need a result analogous to
Theorem 7.10 but based on different derivations. This leads to substantial differences in the
details, so we give all proofs.

Consider the following derivations on Uε:

(114) E = zDx,F = −zDy,H = −2z−1Dz.

Lemma 7.12. The derivations E, F and H satisfy the following commutation relations,
generating therefore the Lie algebra sl(2):

(115) [H, E ] = 2E , [H,F ] = −2F , [E ,F ] = H.

Proof. Straightforward computation using (106). 2

For any C-algebra A and endomorphism V ∈ End(A) we can define

exp(tV) : A −→ A[[t]]

a 7−→
∑
n≥0

tn

n!
Vn(a).

If V is a derivation, exp(tV) is a morphism of algebras. It admits a unique extension (by
continuity for the t-adic topology) exp(tV) : A[[t]] → A[[t]] which is an automorphism with
inverse exp(−tV).

We now give expressions of exp(tF), exp(tE) : Uε → Uε[[t]]. For every α ∈ C consider the
following elements of C[[t]]:

(1 + t)α =
∑
n≥0

1

n!
tnα(α− 1) · · · (α− n+ 1),

ψα(t) =
∑
n≥1

(−1)n

n!
tn−1α(α− 1) · · · (α− n+ 1) =

(1− t)α − 1

t
.

For any a ∈ Z0(Uε), we can similarly define elements (1 + ta)α, ψα(ta) ∈ Z0(Uε)[[t]].

Lemma 7.13. The action of exp(tF) is given by:

exp(tF)(K) = (1− tyz)−1/lK, exp(tF)(K−1) = (1− tyz)1/lK−1

exp(tF)(F ) = F

exp(tF)(E) = E − (ε− ε−1)l−2(Kε−1tzψ−1/l(tyz) +K−1εtzψ1/l(tyz))F
l−1.

Proof. From (105) we have

(116) F(K) =
zy

l
K,F(F ) = 0,F(E) = −(ε− ε−1)l−1 z

l
[K,−1]F l−1.

Iterating this, a straightforward computation proves the lemma. 2
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Lemma 7.14. The action of exp(tE) is given by:

exp(tE)(K) = (1− txz)−1/lK, exp(tE)(K−1) = (1− txz)1/lK−1

exp(tE)(K−1E) = K−1E

exp(tE)(FK) = FK + (ε− ε−1)l−2(Kεtzψ−1/l(txz) +K−1ε−1tzψ1/l(txz))(K
−1E)l−1.

Proof. This is a little trickier than the previous proof, because it is Dy which appears
in (105) and E involves Dx. We therefore use the automorphism T−1 which is such that
T−1(y) = −x. As a result, by applying it to (116), we obtain

(117) Dx(K−1) = −x
l
K−1, Dx(K−1E) = 0, Dx(FK) = (ε− ε−1)l−1 1

l
[K, 1](K−1E)l−1

which imply

(118) E(K) =
zx

l
K, E(K−1E) = 0, E(FK) = (ε− ε−1)l−1 z

l
[K, 1](K−1E)l−1.

Iterating this, a straightforward computation proves the lemma. 2

Because E and F leave invariant Z(Uε) and Z0(Uε) they define maps exp(tE), exp(tF) :
Z(Uε)→ Z(Uε)[[t]] and Z0(Uε)→ Z0(Uε)[[t]].

Proposition 7.15. We have

exp(tE)(x) = x , exp(tF)(y) = y , exp(tE)(Ω) = exp(tF)(Ω) = Ω,

exp(tE)(z) = (1− tzx)−1z , exp(tE)(y) = y + t(−xyz + z − z−1) + t2x,

exp(tF)(z) = (1− tzy)−1z , exp(tF)(x) = x+ t(−xyz + z − z−1) + t2y.

Proof. Rather than using the explicit action of exp(tE)and exp(tF) on Uε, we remark that
from (112) we have

(119) exp(tE)(M) = exp(−tX)M exp(tX) , exp(tF)(M) = exp(−tY )M exp(tY ).

The announced expressions follow by writing the matrix elements of these equations. 2

Let G be the free product of (C,+) with itself; it can be equivalently seen as the group
generated by elements φs, ψs, where s ∈ C, with the relations φsφs′ = φs+s′ , ψsψs′ = ψs+s′
for every s, s′ ∈ C.

We can define a partial action of G on Spec(Z(Uε)) and on Spec(Z0(Uε)), in the sense of
[35]. Let s ∈ C, and denote by D(φs) the set of χ ∈ Spec(Z0(Uε)) such that for all u ∈ Z0(Uε)
the series (exp(sE)(u))(χ) is normally convergent in a small neighborhood of s. Equivalently
D(φs) = {χ ∈ Spec(Z0(Uε)), |sxχzχ| < 1}. We define an action of φs on D(φs) by

(120) u(φs.χ) = (exp(−sE)(u))(χ).

Similarly, put D(ψs) = {χ ∈ Spec(Z0(Uε)), |syχzχ| < 1} and define an action of ψs on D(ψs)
by

(121) u(ψs.χ) = (exp(−sF)(u))(χ).

The domains D(φs) (resp. D(ψs)) cover Spec(Z0(Uε)) as s varies in C. By results of Exel
([35] and [36], Examples (1) and (4)), the set formed by the local actions (120) (resp. (121))
on the domains D(φs) (resp. D(ψs)) defines a partial action of the one-parameter group
(φs)s∈C (resp. (ψs)s∈C) on Spec(Z(Uε)), and combining the two we get a partial action of
their free product G on Spec(Z(Uε)). Similarly we get a partial action of G on Spec(Z(Uε))
by replacing Z0(Uε) by Z(Uε).
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We call them the partial quantum coadjoint actions of G. Orbits (called partial orbits in
[35]) are defined as for group actions: the G-orbit of a point χ ∈ Spec(Z(Uε)) is the set of
points g.χ, for every possible g ∈ G such that g.χ is defined.

The next result states the analogs of Theorem 7.10 (c)–(f) obtained by replacing GDCK by
G. In particular, it describes the G-orbits.

Theorem 7.16. (a) The diffeomorphism σ̄ ◦ ψ̄−1 maps the action of G on the tangent spaces
of (0, 0,±1) ∈ Spec(Z0(Uε)) to the coadjoint action of G on sl(2,C)∗ = T±I(G

0).
(b) For any conjugacy class Γ in G, (ψ̄ ◦ σ̄−1)(Γ ∩ G0) is a (non empty) G-orbit in

Spec(Z0(Uε)), and τ−1 of this orbit has l connected components, all of whose are G-orbits
in Spec(Z(Uε)).

(c) An element a ∈ Z(Uε) is G-invariant if and only if a ∈ C[Ω]. Dually, the sets of fixed
points of the partial G-action on Spec(Z0(Uε)) and Spec(Z(Uε)) are respectively (0, 0,±1) :=
(ψ̄ ◦ σ̄−1)({±I}) and

D := τ−1((0, 0,±1)) = {(0, 0,±1,±cj), j = 1, . . . , (l − 1)/2}.
(d) The G-orbits on Spec(Z0(Uε)) and Spec(Z(Uε)) are the symplectic leaves of { , }QCA.

Proof. (a) Using σ̄−1∗ ◦ ψ̄∗ to identify Z0(Uε) with O(G0), this is a direct consequence of
(119) and the fact that M = ±I at the fixed point.

(b) That Γ ∩ G0 is non-empty and connected is classical. Then so is (ψ̄ ◦ σ̄−1)(Γ ∩ G0).
Take a point χ ∈ (ψ̄ ◦ σ̄−1)(Γ ∩ G0). Evaluating (119) at χ shows that G · χ is contained in
(ψ̄ ◦ σ̄−1)(Γ ∩ G0). We claim that G · χ is an open and closed subset, so by connectedness
of (ψ̄ ◦ σ̄−1)(Γ ∩ G0) it coincides with it. Indeed, it is an open subset because any point
of Spec(Z0(Uε)) (whence of G · χ) belongs to the domains D(φs) and D(ψs) for s small
enough. Since the one-parameter groups (φs)s∈C and (ψs)s∈C are obtained by integrating
the derivations E and F , it follows from Lemma 7.12 that G · χ contains a neighborhood
in (ψ̄ ◦ σ̄−1)(Γ ∩ G0) of each of its points. By the same reason any limit point of G · χ in
Spec(Z0(Uε)) has a neighborhood where the partial G-action is defined and which intersects
G ·χ. Therefore it belongs to G ·χ, which shows that G ·χ is also closed in (ψ̄ ◦ σ̄−1)(Γ∩G0).
Because the covering map τ is unramified of degree l, the result for Spec(Z(Uε)) follows at
once.

(c) Any χ ∈ Spec(Z0(Uε)) belongs to the domains D(φs), D(ψs) for s small enough. Solving
the equations φs(χ) = χ and ψs(χ) = χ by using the formulas in Proposition 7.15 imposes
χ = (0, 0,±1). This gives the fixed point set of Spec(Z0(Uε)); the result for Spec(Z(Uε))
follows immediately. As for the first claim, note that for any conjugacy class Γ of maximal
dimension the set Γ∩G0 contains a diagonal matrix, and that the union of such sets forms a
Zariski open and dense subset of G. Hence (b) above implies that a central invariant element
is completely determined by its value at points (0, 0, zχ,Ωχ). Therefore it is non zero if and
only if it belongs to C[Ω].

(d) The groups G and GDCK are obtained by integrating the derivations E , F , and De,
Df respectively, and the Lie algebras generated by these two pairs of derivations have the
same span at every point of Spec(Z0(Uε)) or Spec(Z(Uε)). Then the conclusion follows from
Theorem 7.10 (f). 2

Remark 7.17. A difficulty with the group G is that its elements act only on subsets of
Spec(Z(Uε)): in the formulas (119), the parameter t ∈ C must be such that the lower right
entries of the computed matrices are non zero. However it has various merits as compared
to the group GDCK of Theorem 7.10:

(i) G is finite dimensional, associated to the Lie algebra sl(2) (by Lemma 7.12), whereas
GDCK is infinite-dimensional.
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(ii) The partial action of G on Spec(Z(Uε)) is by birational transformations (by Proposition

7.15), whereas GDCK is a subgroup of Aut(Ûε), acting on Spec(Z(Uε)) by holomorphic (entire)
transformations.

(iii) G can be generalized straightforwardly to Lε0,n, whereas GDCK does not. This is our
main motivation for developing this construction. We do it in the next section.

Remark 7.18. We think useful to have in mind the following description of Spec(Z(Uε))

(see [27]). Denote by G//G the affine variety with coordinate ring O(G)G, the ring of regular
functions on G invariant under the coadjoint action of G. We have an isomorphism

(122) G//G ∼= C∗/(t ∼ t−1).

In fact, denote by T the torus of G formed by the diagonal matrices, and by O(T ) its
coordinate ring. Then T ∼= C∗ and O(T ) ∼= C[t, t−1], where t is the coordinate function of
the upper left entry of elements of T . The Weyl group W of G acts on T by inversion, and

(123) O(G)G ∼= O(T )W = C[t+ t−1].

Consider the maps

(124) p : G −→ G//G , pk : G//G −→ G//G,

where p : G→ G//G is the quotient map, and pk is induced by the k-th power map g 7→ gk,

g ∈ G, k ∈ Z. Note here that on coordinate functions we have pk(t + t−1) = tk + t−k, so pk
is just realized by the k-th Chebyshev polynomial Tk. Consider the fibered product of p and
pl, that is, the affine variety

(125) G×G//G G//G = {(g, [t]) ∈ G×G//G | p(g) = pl([t])}.

Set

(126) G̃ = G×G//G G//G, G̃0 = G0 ×G//G G//G.

Then Spec(Z(Uε)) is isomorphic to G̃0. In fact, by Theorem 7.9 and the defining relation (72)
we know that Z0(Uε) is isomorphic to O(G0), and that Z(Uε) = Z0(Uε)⊗Z0(Uε)∩C[Ω]C[Ω]. By

the quantum Harish-Chandra homomorphism, see [27] for details, C[Ω] ∼= C[K + K−1] and

Z0(Uε) ∩ C[Ω] ∼= C[K l + K−l]. Let us identify C[K,K−1] with O(T ). Then C[Ω] ∼= O(T )W

and C[K l +K−l] ∼= O(T/µl)
W , where µl is the subgroup of T corresponding to the lth-roots

of unity under the isomorphism T ∼= C∗. Hence

Z(Uε) ∼= O(G0)⊗O(T/µl)W
O(T )W .

The isomorphism of Spec(Z(Uε)) with G0 ×G//G G//G follows by duality.

7.2.2. Extension to Lε0,n. The results of the previous section extend naturally to Lε0,n. First
we consider the generalization of Theorem 7.9.

The bracket { , }FR on G has been extended to Gn by Fock-Rosly [46]. From its very
definition, it is readily checked to be defined by

{
1
L

(i),
2
L

(i)}FR = r
1
L

(i)
2
L

(i)−
1
L

(i)
2
L

(i)r′+
2
L

(i)r′
1
L

(i)−
1
L

(i)r
2
L

(i)(127)

{
1
L

(i),
2
L

(j)}FR = r
1
L

(i)
2
L

(j)+
1
L

(i)
2
L

(j)r−
2
L

(j)r
1
L

(i)−
1
L

(i)r
2
L

(j)(128)

where L(i) =
V2
M

(i) (see (85)), i, j ∈ {1, . . . , n}, and i < j.
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The formula (101) extends naturally to define derivations Da : locLε0,n → locLε0,n preserving
Z(locLε0,n), for every a ∈ Z(locLε0,n). Hence we can define a Poisson bracket { , }QCA on
Z(locLε0,n) (keeping voluntarily the same notation as on Z(Uε)) by

{a, b}QCA = Da(b)

for every a, b ∈ Z(locLε0,n). As Φn is an isomorphism of algebras, both derivations and Poisson

bracket can be defined and computed by means of their pushforwards on U⊗nε . Indeed, for
any a ∈ Z0(locLε0,n), Φn(a) ∈ Z0(U⊗nε ), so the derivation DΦn(a) : U⊗nε → U⊗nε is defined and

we can put Da = Φ−1
n DΦn(a)Φn. For every a ∈ Z(Lε0,n), by the inclusion Lε0,n ⊂ locLε0,n it

yields a derivation Da : Lε0,n → Lε0,n preserving Z(Lε0,n).

Denote by Z0(Lε0,n) (resp. Z0(locLε0,n)) the subalgebras of Z(Lε0,n) (resp.Z(locLε0,n)) gener-

ated by b(i)l, c(i)l, d(i)l, (resp. b(i)l, c(i)l, d(i)l and δ(i)±l) for i = 1, . . . , n (hence removing the

generators ω(i)). Recall the Frobenius morphism Fr : (L1
0,1)⊗n → Z0(Lε0,n) (see (85)), and

the identification L1
0,1 = O(G).

Theorem 7.19. The map

Φ := (σ̄−1∗ ◦ ψ̄∗)⊗n ◦ Φ⊗n1 : (Z0(locLε0,n), { , }QCA)→ (O(G0)⊗n, { , }FR)

is an isomorphism of Poisson algebras, and Φ−1 restricted to O(G)⊗n ⊂ O(G0)⊗n coincides
with the Frobenius homomorphism. Hence Fr : (O(G)⊗n, { , }FR) → (Z0(Lε0,n), { , }QCA) is
an isomorphism of Poisson algebras.

Proof. The map σ̄−1∗ ◦ ψ̄∗ : (Z0(Uε), { , }QCA) → (O(G0), { , }FR) is an isomorphism of

Poisson algebras by the results recalled in the previous section. Since Φ1 : locLA0,1 → U ′A is an
algebra isomorphism by Lemma 5.6, when specializing at q = ε it yields a Poisson isomorphism
between (Z0(locLε0,1), { , }QCA) and (Z0(Uε), { , }QCA). This proves the case n = 1.

When n ≥ 2, the map is well-defined because Z0(locLε0,n) = locZ0(Lε0,n) (the localization by

the powers δ(i)lk, k ∈ Z), Z0(Lε0,n) = Z0(Lε0,1)⊗n by Proposition 7.3, and Φ⊗n1 extends from
Z0(Lε0,n) to locZ0(Lε0,n) for obvious reasons (the algebra being commutative). On another

hand, since Φn : locLA0,n → U⊗nA is an equivariant algebra isomorphism and Φn(ω(i)) = Ω(i),
when specializing at q = ε it yields a Poisson isomorphism between (Z0(locLε0,n), { , }QCA) and

(Z0(Uε), { , }QCA)⊗n, ie. the algebra Z0(Uε)
⊗n with the product Poisson structure. Hence it

is enough to prove that

Φ ◦ Φ−1
n : (Z0(Uε), { , }QCA)⊗n → (O(G0)⊗n, { , }FR)

is an isomorphism of Poisson algebras. This can be checked on generators, which is most
easily done by using the inverse map. Put Π = idV2 ⊗ (Φn ◦ (Φ⊗n1 )−1). By Corollary 7.6 we
have

(129) Π
(
M(i)

)
= R(i)M(i)R(i)−1.

Moreover, (88) and (110) show that σ̄−1∗◦ψ̄∗ identifies the matrix coefficients of Φ1(Z0(Lε0,1))
in the fundamental representation V2 of Uε, and the matrix coefficients of the fundamental
representation of G on C2. Therefore it is enough to check that

(130) {Π∗(
1
L

(i)),Π∗(
2
L

(j))}⊗nQCA = {
1
L

(i),
2
L

(j)}FR

for every i, j ∈ {1, . . . , n}, where Π∗(L(i)) is the pull-back of L(i) via Π, ie. its expression as

a function of the matrices M(i). Now we have

(131) M(i) =M(i)
+ M

(i)−1
−
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where

M(i)
+ =

(
z′(i) z′(i)y(i)

0 z′(i)−1

)
, M(i)

− =

(
z′(i)−1 0

z′(i)x(i) z′(i)

)
.

Note also that (89)-(90) imply

(132) R(i) =M(n)
+ . . .M(i+1)

+ .

Using the map σ−1∗ ◦ψ∗ to identifyM(i)
+ ,M(i)

− with matrices L+, L− of coordinate functions
in G∗, we see that they satisfy the bracket identities (100). Since G∗ is a Poisson-Lie group,

products of matrices L+ have the same bracket as L+. In particular this applies to R(i), and
we can write

Π∗(L(i)) = R(i)M(i)
+M

(i)−1
− R(i)−1

where all matrices in the product have known brackets. Then (130) can be straightforwardly
compared with (127)-(128), using the Leibniz rule for simplifications, and the fact that r+ r′

is ad-invariant. We leave the verifications to the reader.
The equality of Φ−1 with Fr on O(G)⊗n follows immediatly from the fact that σ̄−1∗ ◦ ψ̄∗

identifies matrix coefficients, as discussed above. The image of Fr is Z0(Lε0,n), by Proposition
7.3. This achieves the proof. 2

Next we turn to our generalization of Theorem 7.16. First we define a partial action of
the group G on Spec(Z0(locLε0,n)) and Spec(Z(locLε0,n)) by generalizing the method we used
in the n = 1 case.

Recall the derivations Da : locLε0,n → locLε0,n, defined for every a ∈ Z(locLε0,n). Denote

by x̂(i), ŷ(i), ẑ(i) ∈ Z(locLε0,n) the inverse images by Φn of the elements x(i), y(i), z(i), and let

E(i),F (i),H(i) be the derivations of locLε0,n defined by

(133) E(i) = ẑ(i)Dx̂(i) ,F
(i) = −ẑ(i)Dŷ(i) ,H

(i) = −2ẑ(i)−1Dẑ(i) .

Note that because of the relations (91) and the definition of δ(i) we can obtain simple formulas

for ẑ(i) and x̂(i), namely:

(134) ẑ(i)±1 = δ(i)∓l , x̂(i) = −c(i)l
n∏

k=i+1

δ(k)−l.

Set

(135) E∆ =

n∑
i=1

E(i) ,F∆ =

n∑
i=1

F (i) ,H∆ =

n∑
i=1

H(i).

Proposition 7.20. (1) The derivations E∆, F∆ and H∆ satisfy the following commutation
relations, generating the Lie algebra sl(2):

[H∆, E∆] = 2E∆, [H∆,F∆] = −2F∆, [E∆,F∆] = H∆.

(2) The power series exp(tE∆), exp(tF∆) define morphisms of algebras from locLε0,n to

locLε0,n[[t]], sending Z(locLε0,n) to Z(locLε0,n)[[t]] and fixing the elements ω(i). Moreover

exp(tΦn(E∆))(M(i)) = exp(−tX)M(i) exp(tX)

exp(tΦn(F∆))(M(i)) = exp(−tY )M(i) exp(tY ).

As a result exp(tE∆) and exp(tF∆) are sending Z0(locLε0,n) to Z0(locLε0,n)[[t]].
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Proof. (1) Straighforward from (115) and from the local Poisson-commutativity, i.e the

property that {a, b} = 0 when a ∈ {x(i), y(i), z(i)}, b ∈ {x(j), y(j), z(j)}, i 6= j.
(2) The first claim is straightforward, the second is a direct application of (119) and the

local Poisson-commutativity. 2

As in (120) let s ∈ C, and denote by D(φ(i)
s ) the set of points χ ∈ Spec(Z0(locLε0,n)) such

that for all u ∈ Z0(locLε0,n) the series (exp(sE(i))(u))(χ) is normally convergent in a small

neighborhood of s. Thus D(φ(i)
s ) = {χ ∈ Spec(Z0(locLε0,n)), |sx̂(i)

χ ẑ
(i)
χ | < 1}. Define an action

of the element φ(i)
s on D(φ(i)

s ) by

(136) u(φ(i)
s .χ) = (exp(−sE(i))(u))(χ).

Similarly, put D(ψ(i)
s ) = {χ ∈ Spec(Z0(locLε0,n)), |sŷ(i)

χ ẑ(i)
χ | < 1}, and define an action of ψ(i)

s

on D(ψ(i)
s ) by

(137) u(ψ(i)
s .χ) = (exp(−sF (i))(u))(χ).

Denote by G(i) the group generated by φ(i)
s , ψ

(i)
s , s ∈ C. It is isomorphic to G. Denote by

Gtot the direct product of the groups G(i), and by G∆ the subgroup of Gtot generated by
the diagonal elements φ∆

s = (φ(1)
s , ..., φ(n)

s ) (resp. ψ∆
s = (ψ(1)

s , . . . , ψ(n)
s )). These elements

act on D(φ∆
s ) = ∩ni=1D(φ(i)

s ), (resp D(φ∆
s ) = ∩ni=1D(ψ(i)

s )), by acting dually with the series

exp(sE∆) (resp. exp(sF∆)).
As in the case n = 1, the results of Exel [35, 36] imply that (136) and (137) define partial

action of the group Gtot ∼= Gn and G∆ ∼= G on Spec(Z0(locLε0,n)). We call the first one the total
partial quantum coadjoint action and the second one the diagonal partial quantum coadjoint
action.

Next we need the following result of Fock-Rosly. Recall that we denote by XG(Σ) the
variety of G-characters of the sphere Σ with n+ 1 punctures, and by { , }Gold the Goldman
Poisson bracket on XG(Σ). Denote by Gn//G the algebraic quotient of Gn by the adjoint

action of G. It is the affine variety with coordinate ring O(Gn)G, the ring of regular functions
on Gn invariant under the coadjoint action of G. The points of XG(Σ) are in one-to-one
correspondence with the trace equivalence classes of representations π1(Σ) → G. Therefore,
choosing a basepoint and generators of the fundamental group of Σ affords an isomorphism
of algebraic sets

c : XG(Σ)→ Gn//G.

Theorem 7.21. ([46]) The adjoint action of the Poisson-Lie group (G, { , }) on the Poisson
manifold (Gn, { , }FR) is a Poisson map. Hence { , }FR defines a Poisson bracket on Gn//G.
Moreover the map c is a Poisson isomorphism: c∗{ , }Gold = { , }FR.

The theorems 7.19 and 7.21 relate Z0(Lε0,n) with O(Gn) and O(Gn)G with O(XG(Σ)). We
need to “lift” these results to the whole center Z(Lε0,n) and corresponding rings of regular
functions.

At first, recall the isomorphism O(G̃0) ∼= Z(Uε) of Remark 7.18. It maps O(T )W to C[Ω],
the G-invariant subalgebra of Z(Uε). Composing it with Φ−1

1 , we get an isomorphism of

O(G̃0) with Z(locLε0,1), mapping the subalgebras O(G̃) and O(G) to Z(Lε0,1) and Z0(Lε0,1)
respectively. It follows straightforwardly from the arguments of Theorem 7.19 that Fr extends
to an isomorphism

F̃ r : (O(G̃)⊗n, { , }FR)→ (Z(Lε0,n), { , }QCA)
mapping the n copies of O(T )W associated to the factors of O(G̃n) to C[ω(1)], . . . ,C[ω(n)].

Note in particular that { , }FR extends trivially fromO(G)⊗n toO(G̃)⊗n. Also, the restriction
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map (keeping voluntarily the notation of (95))

(138) τ : Spec(Z(Lε0,n)) −→ Spec(Z0(Lε0,n)),

which by Proposition 7.3 is a regular map of degree ln, corresponds under F̃ r to the projection
map G̃n → Gn.

Now, let us identify as above Gn with the space of representation RG(Σ) = Hom(π1(Σ), G)
(fixing a basepoint and generators of π1(Σ)). The conjugation action extends trivially fromGn

to G̃n. Then the projection map G̃n → Gn provides an identification of G̃n with a branched
covering space R̃′G(Σ) of RG(Σ), endowed with the conjugation action of G. The points of

R̃′G(Σ) are given by representations ρ : π1(Σ) → G endowed with a choice of solution x ∈ C
of the equation Tl(x) = Tr(ρ(γi)), 1 ≤ i ≤ n, where γ1, . . . , γn are the n chosen generators

of π1(Σ). Taking algebraic quotients yields a branched covering map X̃ ′G(Σ) → XG(Σ) of
the same degree ln, and one can lift Theorem 7.21 to an isomorphism (with, again, { , }Gold
trivially lifted from XG(Σ)):

c̃ : (X̃ ′G(Σ), { , }Gold)→ (G̃n//G, { , }FR).

We can now state and prove our generalization of Theorem 7.16. When considering the
(partial) action of G on Spec(Z0(Lε0,n)) it will always be meant to be the diagonal action, by

means of G∆.

Corollary 7.22. (1) The dual diffeomorphism Fr∗ : (Spec(Z0(Lε0,n)), { , }QCA)→ (Gn, { , }FR)
maps the action of G on the tangent spaces of (0, 0,±1)n onto the coadjoint action of G on
sl(2,C)∗n.

(2) For any conjugacy class Γ in Gn, (Fr∗)−1(Γ) is a (non empty) G-orbit in Spec(Z0(Lε0,n)),

and τ−1 of this orbit has ln connected components, all of whose are G-orbits in Spec(Z(Lε0,n)).

(3) The map F̃ r ◦ c̃−1∗ takes values in Z(Lε0,n)G, and therefore affords an isomorphism of
Poisson algebras

F̃ r ◦ c̃−1∗ : (O(X̃ ′G(Σ)), { , }Gold)→ (Z(Lε0,n)G , { , }QCA).

(4) The orbits of the group Gtot in Spec(Z(Lε0,n)) are the symplectic leaves of { , }QCA.

These project onto the symplectic leaves of { , }QCA in Spec(Z(Lε0,n)G).

Proof. (1) Using as usual the isomorphism σ̄−1∗ ◦ ψ̄∗ to identify Z0(Uε) with O(G0), it fol-
lows easily from (129), (131) and (132) that the automorphism Φn ◦ (Φ−1

1 )⊗n of O(G0)⊗n is

equivariant with respect to the coadjoint action of G. Since Φ−1∗
n ((0, 0,±1)n) = (±I, . . . ,±I),

the formulas in Proposition 7.20 (2) show that dΦ−1∗
n maps the action of E∆, F∆ on the tan-

gent spaces of (0, 0,±1)n to the coadjoint action of X, Y on sl(2,C)∗n. Post-composing
Φ−1∗
n with (Φ−1∗

1 )⊗n ◦ Φ∗n, Proposition 7.20 (1) proves that Φ−1∗ maps the action of G on
the tangent spaces of (0, 0,±1)n ∈ Spec(Z0(locLε0,n)) onto the coadjoint action of G on

sl(2,C)∗n ∼= T ∗(±I,...,±I)(G
0)n. The result follows, Fr∗ being an extension of Φ−1∗.

(2) This is an integrated version of (1) above. It follows from the arguments used to prove
Theorem 7.16 (c), by replacing (119) with the formulas in Proposition 7.20 (2), and Lemma
7.12 with Proposition 7.20 (1).

(3) It is enough to prove that Fr◦c−1∗ establishes a Poisson isomorphism betweenO(XG(Σ))

and Z0(Lε0,n)G . By Theorem 7.19, Fr = Φ−1
|O(Gn) : (O(G)⊗n, { , }FR)→ (Z0(Lε0,n), { , }QCA) is

an isomorphism of Poisson algebras. By (2) above Fr maps invariants functions to invariant

functions. That the bracket { , }QCA is well-defined on Z0(Lε0,n)G is an immediate consequence
of its definition and the structure of module algebra of Lε0,n. Then the conclusion follows from
the last claim of Theorem 7.21.
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(4) The first claim follows from Theorem 7.16 (d), and the facts that Φn is a Poisson
isomorphism from (Z0(locLε0,n), { , }QCA) to (Z0(Uε), { , }QCA)⊗n (see the proof of Theorem

7.19), and that Φ−1∗
n maps the partial action of Gtot on Spec(Z0(Lε0,n)) to the partial action

of Gn (the n-fold direct product) on Spec(Z0(Uε))
n (by the definition of Gtot). The second

claim follows from the first one in Theorem 7.21. 2

8. Topological formulation

8.1. The Wilson loop functor. Recall that we denote by CA the semisimple category of
finite dimensional U resA -modules of type 1, and that CA⊗Z[q1/D, q−1/D] is a ribbon category.
Recall also the following notions (see [71]). Denote by RibCA the category whose morphisms

are the isotopy classes rel(∂) of oriented ribbon graphs in [0, 1]3 colored over CA (ie. with each
component labelled by an object of CA), with boundary segments (if any) in ]0, 1[×{1/2} ×
{i}, where i ∈ {0, 1}. The objects of RibCA are the tuples ((V1, ε1), . . . , (Vk, εk)), where
ε1, . . . , εk = ± and V1, . . . , Vk are objects of CA. The source and target object of a morphism
of RibCA thus correspond to tuples of segments in ]0, 1[×{1/2}×{i}, i ∈ {0, 1}, endowed with
normal co-orientations specifying the associated signs ±. We denote by RT the corresponding
Reshetikhin-Turaev functor,

RT : RibCA → CA ⊗ Z[q1/D, q−1/D].

Now, fix points p1 < · · · < pn in ]0, 1/2[, and define Ribn,CA as the category with the
same objects as RibCA but morphisms the isotopy classes rel(∂) of oriented ribbon graphs in

[0, 1]3 \ ({p1, . . . , pn} × {1/2} × [0, 1]), colored over CA and with boundary segments (if any)
in ]1/2, 1[×{1/2} × {i}, i ∈ {0, 1}. The following picture shows an example.

p1 p3p2

Figure 8.1: a morphism of Ribn,CA .

The composition of morphisms of Ribn,CA is defined as for RibCA . That is, given morphisms
T1, T2 with a same pattern of co-oriented boundary segments on the bottom of T1 and top of
T2, T1 ◦ T2 is obtained by placing T1 atop T2, gluing the corresponding boundary segments,
and deforming the result by isotopy into [0, 1]3 \ ({p1, . . . , pn} × {1/2} × [0, 1]). Identifying
[0, 1]3 with the “right half” cube [1/2, 1] × [0, 1]2 in [0, 1]3 \ ({p1, . . . , pn} × {1/2} × [0, 1])
yields an obvious faithful functor

ι : RibCA → Ribn,CA .
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The morphisms of Ribn,CA are obtained by composing morphisms of RibCA and elementary
morphisms as shown in the following picture, for a = 1, . . . , n.

1 a n V1 ⊗ · · · ⊗ Vk

Figure 8.2: a generating morphism of Ribn,CA not in RibCA .

Recall that we denote by Σ the sphere with n+1 open disks removed. Denote by LCA(Σ) the
A-module freely generated by the empty set and the isotopy classes of closed oriented ribbon
graphs in Σ × [0, 1] colored over CA. The stacking product L.L′ of elements L,L′ ∈ LCA(Σ)
is defined as the isotopy class of the disjoint union of representatives of L and L′, pushed in
Σ× [0, 1/2] and Σ× [1/2, 1] respectively. The stacking product makes LCA(Σ) an A-algebra.

Since Σ is diffeomorphic to the closure of [0, 1]2 \ ({p1, . . . , pn} × {1/2}), LCA(Σ) can be
identified with the A-algebra generated by the morphisms ∅ → ∅ of Ribn,CA , the stacking
product being the A-linear extension of the composition of morphisms.

Define a new category CA(LA0,n) with objects the couples (n, V ), where V is an object of

CA ⊗ Z[q1/D, q−1/D], and with spaces of morphisms

Hom((n, V ), (n,W )) =
(
HomUresA

(V,W )⊗ Z[q1/D, q−1/D]
)
⊗ LA0,n

where the composition is the tensor product of the product in LA0,n and the composition of
U resA -homomorphisms of modules.

The following result follows from the arguments in Section 6.1–6.2 of Faitg’s PhD thesis
[38], to which we refer for full details. These arguments generalize and simplify those of
[22]. In these works only the Wilson loop map W was considered, but the extension to W is
straightforward.

Theorem 8.1. There is unique functor W : Ribn,CA → CA(LA0,n) such that on objects we have

W((V1, ε1), . . . , (Vk, εk)) = (n, V ε1
1 ⊗ . . . ⊗ V

εk
k ), where V +

j = Vj and V −j = V ∗j (the dual of

Vj), and on morphisms:

• W(ι(T )) = RT(T )⊗ 1 for every morphism T of RibCA;

• W gives the value
V
M

(a) to the morphism shown in Figure 8.2, in the case where there
is a single ribbon colored by V := V1.

Moreover the morphism of algebras W : LCA(Σ)→ LA0,n⊗Z[q1/D, q−1/D] obtained by restricting

W to LCA(Σ) takes values in the invariant subalgebra (LA0,n)UA ⊗ Z[q1/D, q−1/D].

We call W the Wilson loop functor, and W the Wilson loop map. By construction, for
every element T̂ ∈ LCA(Σ), and any morphism T of Ribn,CA obtained from T̂ by cutting open
ribbons with colors V1, . . . , Vk, setting V = V1 ⊗ . . .⊗ Vk we have

(139) W (T̂ ) = qTrV (W(T )) .
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Here is an alternative way of defining W, purely in terms of RT. Define a category CA(Ũ⊗nA )

with same objects (n, V ) as CA(LA0,n) but with spaces of morphisms

Hom((n, V ), (n,W )) =
(
HomUresA

(V,W )⊗ Z[q1/D, q−1/D]
)
⊗ Ũ⊗nA

where the composition is the tensor product of the product in Ũ⊗nA and the composition of
HomUresA

(V,W ). The Alekseev map being a morphism of algebra, it defines a functor

Φn : CA(LA0,n)→ CA(Ũ⊗nA )

by setting Φn(f ⊗ a) = f ⊗Φn(a) for every a ∈ LA0,n, f ∈ HomUresA
(V,W ). To any morphism

T of Ribn,CA we can associate a colored oriented ribbon graphs in [0, 1]3,

T ] = (∪ni=1[pi − δ, pi + δ]× {1/2} × [0, 1])ŨA ∪ T,

where δ > 0 is small and the cores of the ribbons [pi − δ, pi + δ]× {1/2} × [0, 1] are oriented
from {pi} × {1/2} × {1} to {pi} × {1/2} × {0} and colored by the regular representation of

ŨA. Denote by RibCA the category with morphisms given by the ribbon graphs T ]; clearly

the map T 7→ T ] yields a functor

] : Ribn,CA → Ribn,CA .

Associating σ◦(id⊗πV )(R±) : End(V )⊗ŨA → ŨA⊗End(V ) to crossings of index ±1 colored

over CA and ŨA, in the same way as σ ◦ (πW ⊗ πV )(R±1) is associated by RT to crossings
colored by objects V,W of CA, extends RT to a functor

RT : Ribn,CA → CA(Ũ⊗nA ).

The next fact is a direct consequence of the definition of Φn, and its representation by Figure
6.1. Note that Φn being injective, it defines W uniquely from RT.

Proposition 8.2. We have a commutative diagram of functors:

Ribn,CA
]
//

W
��

Ribn,CA

RT
��

CA(LA0,n)
Φn // CA(Ũ⊗nA ).

8.2. The Wilson loop isomorphism. Define a one-coupon multicurve as an element of
LCA(Σ) that can be represented by a (oriented, CA-colored) ribbon graph embedded in Σ×{0}
and having a single coupon. An example of graph in Σ × [0, 1] representing a one-coupon
multicurve is shown in Figure 8.3, where Σ is the four-holed sphere (ie. n = 3).
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a[λ]

Figure 8.3: a one-coupon multicurve in Σ0,4 × [0, 1].

Recall the peculiar expression (61) of
[λ]

M. Let a[λ] ∈ EndUresA
(V[λ]), [λ] ∈ P 3

+, and denote

by L(a[λ]) the one-coupon multicurve in Figure 8.3. It is clear that

(140) W (L(a[λ])) = qTrV[λ]

(
a[λ]

[λ]

M
)
.

This generalizes immediately to any n. Using Proposition 6.19 we deduce:

Lemma 8.3. The Wilson loop map W : LCA(Σ)→ (LA0,n)UA ⊗A Z[q1/D, q−1/D] is surjective.

In the sequel we assume that g = sl(2).

Set ζ := iq1/2, and denote by Lζ(Σ) ⊂ LCA(Σ)⊗Z[ζ, ζ−1] the subalgebra freely generated as

a Z[ζ, ζ−1]-module by the empty set and the isotopy classes of oriented ribbon links in Σ×[0, 1]
colored by the fundamental representation V2. Recall that the Kauffman bracket skein algebra
Kζ(Σ) is the Z[ζ, ζ−1]-algebra obtained from Lζ(Σ) by forgetting the link orientations, and
taking the quotient by the ideal generated by the relations

L = ζL+ + ζ−1L−(141)

L t© = −(ζ2 + ζ−2)L(142)

where in the second identity © is the trivial ribbon link in a ball disjoint from L, and in the
first identity L,L+, L− ∈ Lζ(Σ) are identical up to isotopy except in a ball in which they
look like (the strands representing flat ribbons on a meridional projection disk):

L L+ L−

Figure 8.4: skein related ribbon links.

The following result is essentially an integral version (ie. over the ring A) of a combination
of Theorem 10 of [19] and Theorem 1 of [20]. For completeness we give a proof, by using the
notions we have introduced.
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Theorem 8.4. The linear map defined by W(L) = ilk(L)W (L), where L ∈ Lζ(Σ) and lk(L)

is the linking number of L, descends to an isomorphism of algebras (where ζ := iq1/2):

W : Kζ(Σ)→ (LA0,n)UA ⊗A Z[ζ, ζ−1].

Proof. The facts that the values of W do not depend on the link orientations, and that
W maps to 0 the ideal of Lζ(Σ) generated by the skein relations (141)-(142), follow from
Proposition 8.2, injectivity of Φn, and the properties of RT and the R-matrix RV2,V2 proved
eg. in [56], Lemma 3.18, Theorem 4.3 and Corollary 4.13. We stress that the skein relations

require the choice of variable ζ := iq1/2, and the normalisation by ilk(L). Therefore W
descends to a module map defined on Kζ(Σ). Since the stacking product is induced from
Lζ(Σ), W is a morphism of algebras.

To show that W is an isomorphism we use the following basis of Kζ(Σ) (see eg. [54, 60]).
Let Γ be a trivalent ribbon graph onto which Σ retracts by deformation. Recall that an
admissible coloring of Γ is an assignment of a nonnegative integer to each edge, called the
color of the edge, so that the colors adjacent to each vertex form admissible triples. A triple
of colors (a, b, c) is admissible if a ≤ b+ c, b ≤ a+ c, c ≤ a+ b and a+ b+ c is even. There is a
skein Γγ in Kζ(Σ) corresponding to every admissible coloring γ of Γ, obtained by replacing an
edge with color m by the m-th Jones–Wenzl idempotent and vertices with Kauffman triads
(these being defined in eg. [60], page 136 and Fig. 14.7). Because Γ is a spine of Σ, the set
of skeins Γγ forms a basis of Kζ(Σ).

By an isotopy of Σ× [0, 1] ∼= [0, 1]3\({p1, . . . , pn}×{1/2}× [0, 1]) we can deform Γ (keeping
the same notation) so that a neighborhood of the vertices lies inside a coupon embedded in
]1/2, 1[×{1/2} × [0, 1], and the n ribbons forming the portion Γ′ of Γ outside the coupon
are attached to its left side, encircling {pi} × {1/2} × [0, 1], for i = 1, . . . , n. Let γ be an
admissible coloring of Γ. Put Γ′′ = Γ \Γ′, and denote by Γ′γ , Γ′′γ the graphs Γ′, Γ′′ with edges

colored by γ. Denote by e1, . . . , en the edges of Γ′ ordered by increasing height, by γi the
color of ei plus 1, and fix some orientation of the edges of Γ so that each ei is oriented from
top to bottom. In order to fit with the standard framework for computations with RT, let
us rotate the cube [0, 1]3 clockwise by an angle of π/2 around the axis {1/2}× [0, 1]×{1/2}.
Then, using Theorem 8.1 and the fact that the m-th Jones–Wenzl idempotent projects V ⊗m2
onto a subspace isomorphic to Vm+1, we see that

W(Γ′γ) =
Vγ1
M

(1) ⊗ . . .⊗
Vγn
M

(n),

which is an element of ⊗ni=1

(
Vγi ⊗ V ∗γi

)
⊗ LA0,n by identifying End(V ) with V ⊗ V ∗, and

W(Γ′′γ) ∈ HomUresA

(
⊗ni=1

(
Vγi ⊗ V ∗γi

)
, 1
)
⊗A Z[ζ, ζ−1].

By definitions we haveW(Γγ) = W(Γ′′γ)(W(Γ′γ)), and the map γ 7→W(Γ′′γ) maps the admissi-

ble colorings of Γ to a basis of the space of invariant elements of ⊗1
i=nEnd(Vγi)

∗⊗A Z[ζ, ζ−1]
for the action (adr)⊗n. Therefore the set {W(Γγ), γ admissible} is a basis of the space of

invariant elements of (LA0,1)⊗n ⊗A Z[ζ, ζ−1] for the action (coadr)⊗n. By applying to it the

linear isomorphism Φ−1
n ◦ ψ ◦ Φ⊗n1 : (LA0,1)⊗n → LA0,n, with ψ the intertwiner of (adr)⊗n and

adrn defined in the the proof of Proposition 6.5, we get a basis of (LA0,n)UA ⊗A Z[ζ, ζ−1]. This
concludes the proof. 2

Remark 8.5. Above we can replace W(Γ′γ) with
[λ]

M, where [λ] = (γ1, . . . , γn), by “parsing”
the ends of e1, . . . , en as do the strands just above the coupon a[λ] in Figure 8.3. Correspond-

ingly W(Γ′′γ) becomes an element of HomUresA
(1, (⊗ni=1Vγi)⊗ (⊗ni=1Vγi)

∗)⊗A Z[ζ, ζ−1]. With
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these choices, the pairing of W(Γ′γ) and W(Γ′′γ) is equivariant with respect to the actions coadrn
and adrn, and it puts in duality the product of LA0,n and the comultiplication map constructed
in [19]. 2

8.3. The threading map and G-invariant central elements. A multicurve on Σ is a
union of disjoint simple non trivial (ie. not bounding a disk) closed curves considered up to

isotopy. Any multicurve γ is a stacking product
∏k
i=1 γ

ci
i , where γ1, . . . , γk are disjoint (hence

commuting) non-isotopic simple non trivial closed curves on Σ, and γcii , ci ∈ N, consists of ci
parallel copies of γi.

Denote by S(Σ) the set of multicurves on Σ. Recall the normalized Chebyshev polynomials

Tk, k ∈ N, defined in (73). For γ ∈ S(Σ), γ =
∏k
i=1 γ

ci
i , set

T (γ) :=
∏k
i=1 Tci(γi).

It is standard that S(Σ) is a Z[ζ, ζ−1]-basis of Kζ(Σ) (see eg. [67], Theorem 7) and that

{Tk}k is a basis of Z[X]. Therefore {T (γ), γ ∈ S(Σ)} is a Z[ζ, ζ−1]-basis of Kζ(Σ). It is
called the Chebyshev basis (see [44] and the references therein).

Theorem 8.4 implies that {W(T (γ)), γ ∈ S(Σ)} is a Z[ζ, ζ−1]-basis of (LA0,n)UA⊗AZ[ζ, ζ−1].
Note that it is a peculiar instance of the basis obtained in Proposition 6.19, by taking powers
of V2 in place of the colors λj ∈ P+ (as explained in the proof of Theorem 8.6 below), and
an A-basis of the Temperley-Lieb algebra for the coupons.

Now let as usual l ≥ 3 be an odd integer. Define Sl(Σ) ⊂ S(Σ) as the set of multicurves

of the form γ∂
∏k
i=1 γ

ci
i , where γ∂ is peripheral, ie. a monomial in the skein classes of the

boundary components of Σ, γi is a non peripheral curve, and l divides ci for every i ∈
{1, . . . , k}.

Let ε be a primitive root of unity of odd order l. Recall Z(Lε0,n)G and the derivations
Da : Lε0,n → Lε0,n, a ∈ Z(Lε0,n), defined in Section 7.2.2.

Theorem 8.6. (1) The set {W(T (γ)), γ ∈ Sl(Σ)} is a C-basis of the algebra generated by

Z(Lε0,n)G and η. In particular, it is a central subalgebra of (LA0,n)UAε .

(2) The derivations Da, a ∈ Z(Lε0,n)G, act on (LA0,n)UAε .

Proof. (1) First note that for every γ ∈ S(Σ), γ = γ∂
∏k
i=1 γ

ci
i with γ∂ peripheral, we have

(143) W(T (γ)) =W(T (γ∂))
k∏
i=1

Tci(W(γi)).

Denote by ∂1, . . . , ∂n+1 the boundary components of Σ, ordered so that the diffeomorphism
identifying Σ with the closure of [0, 1]2 \ ({p1, . . . , pn} × {1/2}) maps ∂n+1 to ∂([0, 1]2), and
∂i to a small loop encircling (pi, 1/2), 1 ≤ i ≤ n. By (139) we have

(144) W(∂n+1) = qTr

(
V2
M

(1) . . .
V2
M

(n)

)
= η, W(∂i) = qTr

(
V2
M

(i)

)
= ω(i), 1 ≤ i ≤ n.

Therefore the elements W(T (γ∂)) form a basis of C[ω(1), . . . , ω(n), η], which is a central sub-

algebra of (LA0,n)UAε (see Theorem 6.23). We can give formulas of the other terms as follows.
Deform a ribbon neighborhood of γ in Σ× [0, 1] so that for every i ∈ {1, . . . , k}, γi is repre-
sented by a one-coupon multicurve like in Figure 8.3, the coupon being filled with r simple
arcs (possibly pairwise intersecting), for some r ∈ N. Since γi is colored by V2, we see that
(140) takes the form

(145) W(γi) = qTrV ⊗r2
(a(γi)M(γi))
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where a(γi) ∈ EndUresA
(V ⊗r2 ), and M(γi) is defined as

[λ]

M, replacing the modules Vλ1 , . . . , Vλn
associated to the sequence [λ] = (λ1, . . . , λn) by V2 or the trivial module V1 (this latter case
happens when the module labels a strand which has to be removed to get the one-coupon
multicurve representing γi). In order to get simultaneously a simple expression of all the
elements W(γ1), . . . ,W(γk), note that each γi, being a simple closed curve, separates Σ in
two disks with punctures. We can choose the above diffeomorphism of Σ with the closure
of [0, 1]2 \ ({p1, . . . , pn} × {1/2}) so that the ordering of p1, . . . , pn makes γi bounding a
punctured disk Di ⊂ [0, 1]2 with successive punctures pi1 , pi1+1, . . . , pi1+ni−1. Then, for every
i ∈ {1, . . . , k} we have

(146) W(γi) = qTrV2

(
V2
M

(i1) . . .
V2
M

(i1+ni−1)

)
.

The algebras (LA0,n)UA ⊗A Z[ζ, ζ−1], and therefore the expressions of W(γi), associated to
different presentations of Σ as above are related by isomorphisms induced by the mapping
class group of Σ.

Now assume that γ ∈ Sl(Σ), so l divides ci, 1 ≤ i ≤ k, in (143). Put c′i := ci/l. Then

Tci (W(γi)) = Tc′i (Tl (W(γi)))

= Tc′i

(
Tr

(
Fr

V2
M

(i1) . . . F r
V2
M

(i1+ni−1)

))
(147)

where we use the standard identity Tci = Tc′i ◦ Tl in the first equality, and Proposition 7.8 in

the second. By the First Fundamental Theorem of classical invariant theory for SL2 (see eg.
[58]) and the Cayley-Hamilton identity, the set of trace functions

ti1,...,i1+ni−1 : (
V2
M

(1), . . . ,
V2
M

(n)) 7→ Tr

(
V2
M

(i1) . . .
V2
M

(i1+ni−1)

)
for all possible tuples (i1, . . . , i1 +ni− 1) are generating functions of O(Gn)G. By (147) they

are sent by Fr to Tl (W(γi)) for some γi. By Corollary 7.22 (3), F̃ r is an isomorphism from

O(G̃n)G to Z(Lε0,n)G , mapping O(Gn)G to Z0(Lε0,n)G , and the n copies of O(T )W associated

to the factors of O(G̃n) to C[ω(1)], . . . ,C[ω(n)] ⊂ (LA0,n)UAε . Therefore Z(Lε0,n)G is spanned over
C by the elements W(T (γ)) with γ ∈ Sl(Σ) and γ∂ a monomial in ∂1, . . . , ∂n. In particular

Z(Lε0,n)G is a (central) subalgebra of (LA0,n)UAε .

(2) It is enough to show that the derivations Da, a ∈ Z(Lε0,n)G , restrict to endomorphisms

of (LA0,n)UAε . This follows from the inclusion Z(Lε0,n)G ⊂ (LA0,n)UAε , since [ã, u] ∈ (LA0,n)UA

for every ã, u ∈ (LA0,n)UA (LA0,n being an UA-module algebra), which by the definition of Da

implies that Da((LA0,n)UAε ) ⊂ (LA0,n)UAε when a ∈ Z(Lε0,n)G . 2

Remark 8.7. (Threading Tl(V2)) For every 1 ≤ i ≤ n, 0 ≤ k ≤ n− i we have

Tl

(
qTrV2

(
V2
M

(i)
V2
M

(i+1) . . .
V2
M

(i+k)

))
= qTrTl(V2)

(
Tl(V2)

M
(i)

Tl(V2)

M
(i+1) . . .

Tl(V2)

M
(i+k)

)
where Tl(V2) is the virtual representation in the Grothendieck ring of U resA -modules, obtained
by plugging V2 in the l-th Chebyshev polynomial Tl. Indeed

Tl

(
qTr

(
V2
M

))
= qTr

(
Tl(V2)

M

)
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because (using eg. the second picture in Figure 6.2)

qTr

(
V ⊗k2

M

)
=

(
qTr

(
V2
M

))k
.

This and the computations in the first half of the proof of Proposition 7.8 prove our claim.

Remark 8.8. By a result of [43], the set {T (γ), γ ∈ Sl(Σ)} is a C-basis of the center of

Kε′(Σ). Therefore the proof of (1) shows that Z(Lε0,n)G and η generate Z((LA0,n)UAε ).

Remark 8.9. As in the proof of (1), denote by ∂1, . . . , ∂n+1 the boundary components of Σ,
and fix the generators of π1(Σ) to be ∂1, . . . , ∂n (for some choice of basepoints). Consider the
fiber product (with the notations of Remark 7.18)

G̃n ×G//G G//G =
{

((g̃1, . . . , g̃n), [t]) ∈ G̃n ×G//G | p(g1 . . . gn) = pl([t])
}
.

As before Corollary 7.22, one can identify G̃n ×G//G G//G with an l-fold branched covering

space R̃G(Σ) of R̃′G(Σ), whose points are given by representations ρ : π1(Σ) → G endowed
with a choice of solution x ∈ C of the equation Tl(x) = Tr(ρ(∂i)), for every i = 1, . . . , n and

i = n + 1. Taking algebraic quotients yields a branched covering map X̃G(Σ) → XG(Σ) of

degree ln+1, and one can lift F̃ r ◦ c∗−1 to an isomorphism from O(X̃G(Σ)) onto the algebra

generated by η and Z(Lε0,n)G .

9. Applications to skein algebras

In this Section we use Theorem 8.4 to reformulate some of our results on (LA0,n)UAε , in the
case of g = sl(2).

In [67] it was proved that Kζ(Σ) does not have non trivial zero divisors, and its center was
computed by topological means. On the contrary the proof we give below of these two facts
is purely algebraic, based on properties of (LA0,n)UA proved in Section 6, that hold true for
any complex finite dimensional simple Lie algebra g.

Corollary 9.1. The skein algebra Kζ(Σ) does not have non trivial zero divisors, and its

center is the polynomial algebra over Z[ζ, ζ−1] generated by the classes ∂1, . . . , ∂n+1 of the
boundary components of Σ.

Proof. The claims are direct consequences of Theorem 8.4, the formulas (144), and Propo-

sition 6.9 and Theorem 6.23 in the case of g = sl(2) (the basis of LUq0,n described there being

indeed a basis of its A-sublattice (LA0,n)UA). 2

Next we deduce from the results of Section 7 some properties of the center of the special-
izations of Kζ(Σ) at roots of unity of order 4l, l ≥ 3 odd. Let ε′ be such that (ε′)2 = −ε.
Define

Kε′(Σ) := Kζ(Σ)⊗Z[ζ,ζ−1] Cε′
where Cε′ = C as a vector space, and as an A′-module, the action of ζ on Cε′ is by multi-
plication by ε′. Note that ε′ is a primitive root of unity of order 4l, and that W yields an
isomorphism of algebras

W : Kε′(Σ)→ (LA0,n)UAε .

Since Kζ(Σ) is a free Z[ζ, ζ−1]-module, the sets S(Σ) and {T (γ), γ ∈ S(Σ)} are C-basis of
Kε′(Σ).

Denote by Z(Kε′(Σ)) the center of Kε′(Σ). Theorem 8.4 and Theorem 8.6 (1) imply
immediately:
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Corollary 9.2. The set {T (γ), γ ∈ Sl(Σ)} is a C-basis of a central subalgebra Z ′(Kε′(Σ)) of
Z(Kε′(Σ)), which is generated by η and the image of the embedding

ChW :=W−1 ◦ F̃ r ◦ c̃∗−1 : O(X̃ ′G(Σ))→ Z(Kε′(Σ)).

Therefore Z ′(Kε′(Σ)) is endowed with a natural Poisson bracket, the image of { , }Gold, which
extends to an action by derivations of Z ′(Kε′(Σ)) on Kε′(Σ).

In fact Z ′(Kε′(Σ)) = Z(Kε′(Σ)) (see [43]). One can check that ChW is a version of the
threading map Ch : K

ε′l2 (Σ)→ Zε′(Σ) of Bonahon-Wong (see [15], and also [44]). The point
is that it affords an explicit realization of Ch in classical invariant theory terms (via the
formulas (143), (144) and (147)), and pulls the geometric tools of Section 7 onto Kε′(Σ). A

more symmetric statement is obtained by extending ChW to the ring O(X̃G(Σ)) of Remark
8.9, so that ∂n+1 belongs to its image.

References

[1] A. Yu. Alekseev, Integrability in the Hamiltonian Chern-Simons theory, Alg. i Anal. 6 (2) (1994) 53–66
[2] M. Audin, Lectures on gauge theory and integrable systems, in “Gauge Theory and Symplectic Geometry”,

J. Hurtubise and F. Lalonde and G. Sabidussi (eds), NATO ASI Series book series (ASIC, volume 488),
Springer (1997)

[3] A. Y. Alekseev, H. Grosse, V. Schomerus, Combinatorial quantization of the Hamiltonian Chern-Simons
theory I, Comm. Math. Phys. 172 (1995) 317–358

[4] A. Y. Alekseev, H. Grosse, V. Schomerus, Combinatorial quantization of the Hamiltonian Chern-Simons
theory II, Comm. Math. Phys. 174 (1996) 561–604

[5] A. Y. Alekseev, A. Malkin, Symplectic structure of the moduli space of flat connections on a Riemann
surface, Commun. Math. Phys. 169 (1995) 99–119

[6] A. Y. Alekseev, A. Malkin, E. Meinrenken, Lie group valued moment maps, J. Diff. Geom. 48 (1998)
445–495

[7] A. Y. Alekseev, V. Schomerus, Representation theory of Chern-Simons observables, Duke Math. J. 28 (2)
(1996) 447–510

[8] D. Arnaudon, Ph. Roche, Irreducible representations of the quantum analogue of SU(2), Lett. Math.
Phys. 17 (4) (1989) 295–300

[9] S. Baseilhac, Quantum coadjoint action and the 6j-symbols of Uqsl(2), in“Interactions between Hyperbolic
Geometry, Quantum Topology and Number Theory”, AMS Cont. Math. Proc. Ser. 541 (2011) 103–144

[10] S. Baseilhac, R. Benedetti, Analytic families of quantum hyperbolic invariants, Alg. Geom. Topol. 15-4
(2015) 1983–2063, DOI 10.2140/agt.2015.15.1983

[11] S. Baseilhac, R. Benedetti, Non ambiguous structures on 3-manifolds and quantum symmetry defects,
Quantum Topol. 8-4 (2017) 749–846, DOI: 10.4171/QT/101

[12] S. Baseilhac, R. Benedetti, On the quantum Teichmüller invariants of fibred cusped 3-manifolds, Geom.
Dedicata 197(1) (2018) 1–32, DOI 10.1007/s10711-017-0315-0

[13] P. Baumann, Another proof of Joseph and Letzter’s separation of variables theorem for quantum groups,
Transf. Groups 5 (1) (2000) 3–20

[14] P. Baumann, On the center of quantized enveloping algebras, J. Alg. 203 (1998) 244–260
[15] F. Bonahon, H. Wong, Representations of the Kauffman skein algebra I: invariants and miraculous can-

cellations, Invent. Math. 204 (2016) 195–243
[16] F.Bonahon, H.Wong, Representations of the Kauffman Bracket Skein Algebra II: Punctured Surfaces, Alg.

Geom. Topology 17 (2017), 3399–3434
[17] F.Bonahon, H.Wong, Representations of the Kauffman bracket skein algebra III: closed surfaces and

naturality , math.GT/ arXiv:1505.01522
[18] A. Brochier, D. Ben-Zvi, D. Jordan, Quantum character varieties and braided module categories, Selecta

Math. 24 (5) 4711–4748
[19] D. Bullock, C. Frohman, J. Kania-Bartoszynska,Topological interpretations of lattice gauge field theory,

Comm. Math. Phys 198 (1998) 47–81
[20] D. Bullock, C. Frohman, J. Kania-Bartoszynska,The Kauffman bracket skein as an algebra of observables,

Proc. Amer. Math. Soc 130 (8) 2479–2485
[21] E. Buffenoir, P. Roche, Two dimensional lattice gauge theory based on a quantum group, Comm. Math.

Phys. 170 (1995) 669–698

http://arxiv.org/abs/1505.01522
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Birkhäuser, Progr. in Math. 92 (1990) 471–506
[28] C. De Concini, V. Kac, C. Procesi, Quantum coadjoint action, J. Amer. Math. Soc. 5 (1992) 151–189
[29] C. De Concini, C. Procesi, Quantum groups, Springer, Lect. Notes Math. Vol. 1565 (1993)
[30] C. De Concini, V. Lyubashenko, Quantum function algebra at roots of 1, Adv. Math. 108 (2) (1994)

205–262
[31] J. Dixmier, Envelopping Algebras, AMS Grad. Studies Math. 11 (1996)
[32] J. Donin, A. Mudrov, Reflection Equation, Twist, and Equivariant Quantization, Isr. J. Math. 136 (2003)

11–28
[33] J. Donin, P. P. Kulish, A. I. Mudrov, On universal solution to reflection equation, Lett. Math. Phys. 63

(3) (2003) 179–194
[34] V.G.Drinfeld, ”Quasi-Hopf algebras and the Knizhnik-Zamolodchikov equations”, in Problems of Modern

Quantum Field Theory, A.A. Belavin, A.U. Klimyk and A.B.Zamolodchikov (eds) pp1-13, Springer,
Berlin.

[35] R.Exel, Partial Dynamical Systems, Fell Bundles and Applications, AMS Math. Surv. Monogr. 224 (2017),
arXiv:1511.04565v2

[36] R.Exel, Partial Group actions, Lectures Notes at the ICMAT (2013)
[37] L. D. Faddeev, N. Yu. Reshetikhin, L. A. Takhtadjian, Quantization of Lie groups and Lie algebras,

Leningrad Math. J. 1 (1990) 193–225
[38] M. Faitg, Mapping class groups and skein algebras in combinatorial quantization, PhD Thesis, Université
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