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Optical non-linearities at the single photon level are key features to build efficient photon-photon
gates and to implement quantum networks. Such optical non-linearities can be obtained using
an ideal two-level system such as a single atom coupled to an optical cavity. While efficient, such
atom-photon interface however presents a fixed bandwidth, determined by the spontaneous emission
time and thus the spectral width of the cavity-enhanced two-level transition, preventing an efficient
transmission to bandwidth-mismatched atomic systems in a single quantum network. In the present
work, we propose a tunable atom-photon interface making use of the direct dipole-dipole coupling
of two slightly different atomic systems. We show that, when weakly coupled to a cavity mode
and directly coupled through dipole-dipole interaction, the subradiant mode of two slightly-detuned
atomic systems is optically addressable and presents a widely tunable bandwidth and single-photon
nonlinearity.

I. INTRODUCTION

Quantum light is a natural support of the quantum
information [1] for entanglement distribution in quan-
tum networks and long distance quantum communica-
tions [2, 3]. In this context, efficient light-matter inter-
faces are key building blocks to store single photons in
quantum memories, to manipulate them in order to build
efficient photon-photon gates [4–7] for local quantum
computing or to implement quantum relays [8]. The ma-
nipulation or storage of single photons has been demon-
strated both with atomic ensembles [9–11] or with indi-
vidual atoms [12–14]. The latter approach relies on the
anharmonicity of a two-level system in a single natural
atom or a solid-state artificial atom, and results in an
optical non-linearity at the single photon scale [5, 7, 15–
17]. Many systems have been explored as quantum nodes
in the last decade and have individually shown interest-
ing and highly complementary properties. For instance,
defects in diamonds and single atoms have shown the pos-
sibility to store the quantum information on the millisec-
ond time scale [14], allowing for the deployment of quan-
tum memory-based quantum networks [2], while semi-
conductor quantum dots can generate indistinguishable
photons at a high rate in an scalable way [18–20]. Versa-
tile quantum network architectures would highly benefit
from the combination of all these properties, combining
various atomic systems as quantum nodes. An important
challenge however is the natural bandwidth mismatch of
these atomic systems, inherent to their different spectral
widths and spontaneous emission times. In this regard,
the development of bandwidth tunable atom-photon in-
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terfaces is highly desirable.
An efficient atom-photon interface can be obtained by

engineering the electromagnetic environment of an atom,
placing the quantum emitter in a cavity [21]. The ideal
situation is obtained when the incident light is efficiently
injected and collected into and from the cavity [22] and
when the spontaneous emission of the quantum emitter
in other modes than the cavity mode is negligible. Sys-
tems with good overall efficiencies are obtained with nat-
ural atoms [4, 5, 23] or semiconductor quantum dots in
optical cavities [24–26] as well as superconducting quan-
tum bits in microwave cavities [27, 28]. In each case,
the saturation of the atomic transition at the level of
the single photon has been used to demonstrate pho-
ton blockade [4, 16, 17, 23], photon-Fock state filter-
ing [15, 25, 26, 29] as well as photon-photon gates [4, 6].
In this work, we propose an interface based on a two-

atom system coupled to a single cavity mode and ex-
ploit superradiance and subradiance phenomena to ob-
tain a bandwidth tunable atom-photon interface. In the
following, we derive our study in the case of two semi-
conductor quantum dots (QDs) coupled to a microcav-
ity, a system that has shown state-of-the-art single pho-
ton emission [20] as well as genuine single-photon non-
linearities [25, 26, 29]. Moreover, this system allows for
direct dipole-dipole interaction by using well established
growth techniques to vertically stack QDs with a control
of the inter-dot distance at the nanoscale [30]. Finally,
doping of the structure and bias application allows to
tune two QD resonances through the confined Stark ef-
fect [31].
We study the influence of direct dipole-dipole interac-

tion on the collective states of the quantum dots. By
an effective Hamiltonian approach, we show that the col-
lective states are robust to detuning only when there is
a direct dipole-dipole interaction between the QDs. We
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FIG. 1. The CW laser of power PLaser pumps the cavity
mode and we measure the reflected power PReflected. Both
QDs interact equally with the cavity mode at a rate g. The
varying parameters are the frequency detuning of the QDs
∆12 = ω1−ω2

2 and the direct dipole-dipole coupling with a
rate Ω12. |ei〉 and |gi〉 are the excited and ground state of the
i-th QD respectively. The spontaneous decay rates γ into the
environment can change depending on the direct coupling.

show that in the weak light-matter coupling regime, and
with slight detuning in energy of the two atomic sys-
tems, both the superradiant and subradiant states result-
ing from the dipole-dipole coupling can independently be
probed, allowing to separately take advantage of the dif-
ferent behaviors of these states. In this case, it is possible
to widely tune the bandwidth of the –now visible– sub-
radiant state by controlling the frequency mismatch of
the QDs. This also allows controlling the single-photon
nonlinearity of the system, in particular its nonlinear-
ity threshold and the bandwidth of the photon blockade
effect, over orders of magnitude.

The outline of the paper is as follows. In Sec. II we
present the theoretical model and the dipole-dipole cou-
pling rate. In Sec. III we study the eigenstates when
varying the detuning between the QDs and the direct
dipole-dipole coupling. In Sec. IV, the non-linear behav-
ior and the bandwidth of these collective subradiant and
superradiant states is analyzed. Sec. V is devoted to the
study of the photon blockade effect.

II. THE SYSTEM

The system consists of two quantum dots (QD) cou-
pled with a single mode of an optical solid state cavity as
shown in figure 1. It can be seen as two interacting sub-
systems which are on the one hand, the two QDs, and
on the other hand, the cavity. The quantum dots are
described as two level systems (TLS), with their ground
state |gi〉 and their excited state |ei〉 with i = 1, 2 and a
transition energy E|ei〉 − E|gi〉 = ~ωi. γ is the free-space
spontaneous emission rate into the environment taken
equal for both QDs. The two parameters that control
the system are the detuning of the QDs ∆12 = ω1−ω2

2
and the direct dipole-dipole coupling [32] of the QDs.
The dipole-dipole coupling is characterized by its energy
exchange rate Ω12 and by the modification of the spon-
taneous emission rates by an amount equal to ±γ12 [33].
The QDs are both coupled to the fundamental mode of a

Fabry-Perot cavity, whose frequency is ωc, with a rate g
which is taken equal for both QDs. The cavity damping
rate is κ and accounts for radiative losses of the cavity.
It can be decomposed as κ = κleft + κright + κother. The
first two terms are the damping rates of photons escaping
through the cavity mirrors while the last term is the un-
wanted photon loss in other directions. The desired crit-
ical coupling is obtained for κleft/κ = 50% but for sim-
plicity we consider here a symmetric cavity, κleft = κright
and we neglect other dampings κother = 0. The cavity
allows to have light-matter interaction at the single pho-
ton level and to better collect the emitted light through a
partially reflecting mirror [21, 23, 24]. The whole system
is probed by a continuous wave (CW) incident laser of
power Plaser pumping the cavity mode by one of the mir-
rors. The nonlinear behavior of the system is studied by
measuring the reflectivity PReflected

PLaser
as a function of the

incident power. The reflectivity changes due to satura-
tion of the QDs [16]. The saturation of a single two-level
system inside a cavity is described in the steady state
by the critical photon number, which corresponds to the
average photon number needed inside the cavity to sat-
urate the QD. Without pure dephasing processes of the
QDs the critical photon number is given by [34–36]:

nc0 = γ2

8g2 . (1)

Thus the nonlinear behavior of the system can be modi-
fied by changing either the coupling strength or the spon-
taneous emission rate of the TLS.

A. Model

The system is modeled by the driven Tavis-Cummings
model [37] for two TLS coupled to a single mode of a cav-
ity. The Hamiltonian describing the driven cavity con-
taining the two coupled QDs is written in the frame rotat-
ing at the frequency of the laser and using the rotating-
wave approximation we get with ~ = 1 [38]:

H = (ω1 − ωL)σ+
1 σ1 + (ω2 − ωL)σ+

2 σ2 + (ωc − ωL)a†a

+ i
√

2g
(
a†

(σ1 + σ2)√
2

− a (σ+
1 + σ+

2 )√
2

)
+ Ω12

(
σ+

1 σ2 + σ1σ
+
2
)
− iEp(a† − a) (2)

where ωi, ωc and ωL are the frequencies of the i-th QD,
the cavity mode and the laser respectively, σi = |gi〉〈ei| is
the lowering operator for the i-th QD, a is the cavity field
annihilation operator, g is the coupling between one QD
and the cavity mode taken to be equal for both QDs and
Ep is the field amplitude of the laser coupled to the cavity
mode: Ep =

√
κ
2Plaser/~ωL. The dipole-dipole coupling

rate Ω12 is written for two parallel dipoles in the dipolar
approximation [33, 38, 39]:

Ω12 = Re{γ F (kd)} (3)
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with:

F (x) = −3
4e

ix

[
1
x

+ i

(x)2 −
1

(x)3

]
, (4)

d the distance separating the two QDs and k = 2π
λ the

wavevector in the bulk material. For InGaAs QDs in
GaAs it is close to λ = 930 nm/nGaAs, with nGaAs =
3.6 [40]. When the two quantum dots are close to each
other, kd� 1, so that:

Ω12 ' γ
3

4 (kd)3 . (5)

The open system evolution is best described using the
density matrix to take into account the interaction with
the environment. The coherent evolution is described by
the Hamiltonian [41]:

{ρ̇}coh = i[ρ,H]. (6)

The incoherent coupling to the environment is described
by:

{ρ̇}incoh = κL(a) +
∑
i

(
γL(σi) + γ∗L(σ+

i σi)
)

(7)

where for a given operator ô, L(ô) = ôρô†− 1
2 ô
†ôρ− 1

2ρô
†ô.

The first term describes the leak of a cavity excitation
through the mirrors with a rate κ. The next term de-
scribes free-space spontaneous emission of the i-th QD
with a rate γ, i.e. the emission of the quantum dot into
electromagnetic modes other than the cavity mode (the
so called environment or leaky modes). The final term
describes pure dephasing at a rate γ∗. In practice collec-
tive effects are observable for γ∗ smaller than 4g2

κ . State
of the art systems [24, 26] have obtained negligible pure
dephasing and they are not taken into account in the rest
of this article, i.e. we set γ∗ = 0. Dipole-dipole interac-
tion is responsible for a modification in the free-space
spontaneous emission of the QDs. It corresponds to a
new term in the incoherent part of the equation which is
written [38, 42]:

γ12
∑
i 6=j

(
σiρσ

+
j −

1
2σ

+
j σiρ−

1
2ρσ

+
j σi

)
(8)

with

γ12 = −1
2 Im{γ F (kd)} (9)

with F (x) given in Eq. 4. Again in the small distance
approximation, kd� 1:

γ12 ' γ . (10)

When adding all the incoherent terms together and after
rearrangement we obtain:

{ρ̇}incoh = κL(a) + (γ + γ12)L
(
σ1 + σ2√

2

)
+ (γ − γ12)L

(
σ1 − σ2√

2

)
. (11)

It can be seen that dipole-dipole interaction modifies
spontaneous emission of the coupled QDs into the leaky
modes: it increases the emission rate by γ12 for in phase
emission (emission of the symmetric state) and it de-
creases the rate by γ12 for out of phase emission (emission
of the antisymmetric state). It can be noted that both
the coherent energy exchange rate Ω12 and the modi-
fication of the incoherent spontaneous emission by γ12
due to dipole-dipole coupling, are described by the same
function F and that for large distances between the QDs
they both tend to 0. This limiting case, i.e. Ω12 = 0
and γ12 = 0 which corresponds to isolated QDs, will be
taken as a reference in what follows, and will be referred
as Ω12 = 0. In this article we consider self assembled
InGaAs QDs that can be vertically stacked with small
separation distances d � λ [43]. In this case γ12 ' γ
and the spontaneous emission of the fully antisymmetric
state is almost suppressed while the emission of the sym-
metric state is doubled. Finally the master equation can
be cast in the form:

ρ̇ = i[ρ,H] + κL(a) + (γ + γ12)L
(
σ1 + σ2√

2

)
+ (γ − γ12)L

(
σ1 − σ2√

2

)
. (12)

We use parameter values that correspond to typical ex-
periments of self-assembled InGaAs QDs in micropillar
cavities [19] but that are also valid for other solid-state
CQED experiments with two-level systems like color cen-
ters [44] or QDs in photonic crystal cavities [45]. The
values are {g, κ, γ} = {20, 200, 0.6} µeV, corresponding
to a system of high cooperativity [46] (thus high Purcell
factor) C = 2g2

κγ = 7, but still in the weak coupling or
bad-cavity regime. For a negligible pure dephasing, the
cooperativity is simply equal to half of the Purcell factor
which is given by the cavity-enhanced decay rate of the
QD,

Γ0 = 4g2

κ
, (13)

over the decay rate into free space γ. So in the bad
cavity high cooperativity regime, called also the Purcell
regime, the quantum dots interact mostly with the cav-
ity mode and consequently can efficiently be probed. In
this regime there is no vacuum Rabi splitting and the
states are mainly excitonic for the QDs and photonic for
the cavity mode. In this system, the light-matter inter-
action depends on the direct coupling Ω12 between the
QDs and also on the detuning ∆12 between them. To
identify the effects of these two parameters, we consider
four separate cases: first the simple case of two identi-
cal and independent QDs. We will then separately study
the effect of detuning and direct dipole-dipole interac-
tion. And finally we will look at the system with both
detuning and direct coupling of the QDs.
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III. SYSTEM EIGENSTATES

A. Identical QDs: ∆12 = 0 and Ω12 = 0

First we consider the case with identical QDs (∆12 =
0), that are not directly coupled to each other, (Ω12 = 0).
The two QDs couple only via the cavity mode. This
is the textbook Tavis-Cummings case [35, 37], even if
here the system is in the Purcell regime [47]. The
four eigenstates of the QDs consist of the antisymmet-
ric singlet |−〉 = |e,g〉−|g,e〉√

2 and the symmetric triplet{
|gg〉 ; |+〉 = |e,g〉+|g,e〉√

2 ; |ee〉
}

as shown in figure 2(a).
The antisymmetric state |−〉 does not couple to the cav-
ity, it is a dark state. The coupling of the symmetric state
|+〉 with the cavity mode is enhanced: it now scales as√

2g due to the coherent coupling with the cavity mode.
Concerning free-space spontaneous emission outside the
cavity mode, since the two QDs are not directly cou-
pled, the two eigenstates |+〉 and |−〉 spontaneously de-
cay to the ground state with the same rate γ of a single
QD. This amounts to consider that kd� 1 which means
γ12 ' 0. Finally, without dipole-dipole coupling or de-
tuning (Ω12 = 0), the energy states are not split so the
transition |gg〉 ↔ |+〉 is resonant with |+〉 ↔ |ee〉 as
shown in the diagram. The system can then absorb two
photons with the same frequency so there is no single
photon blockade effect.

B. Dipole-dipole coupling only, ∆12 = 0 and
Ω12 6= 0

We now take dipole-dipole interaction into account by
setting the distance of the two QDs to d = 10nm. The
eigenstates of the QDs are still completely symmetric
and antisymmetric but the energies are split and the
spontaneous decay rates in free space change as shown
in figure 2(b). For stacked QDs the dipoles are par-
allel and the symmetric state |+〉 is blue shifted while
the antisymmetric state |−〉 is red shifted by Ω12 re-
spectively. The free-space decay rates are modified as
specified by Eq. 12: spontaneous decay through the sym-
metric branch |ee〉 → |+〉 → |gg〉 is enhanced and it is
now equal to γ+γ12 ' 2γ. The state |+〉 is called super-
radiant. The free-space decay rate is decreased for the
antisymmetric branch |ee〉 → |−〉 → |gg〉 and it is equal
to γ − γ12 ' 0. The state |−〉 is called subradiant. It is
completely antisymmetric and stays dark as it does not
couple to the cavity mode and cannot be excited. The
superradiant state is completely symmetric so it couples
as
√

2g with the cavity mode. But since the transitions
|gg〉 ↔ |+〉 and |+〉 ↔ |ee〉 are not resonant anymore,
the superradiant state |+〉 behaves now as an effective
two-level system in the sense that at most one photon at
the frequency of the transition |gg〉 ↔ |+〉 can be simul-
taneously absorbed. One can then use Eq. 1, and obtain

Energy
𝜔"+𝜔$

𝜔"+𝜔$
2

0

|𝑒𝑒⟩

|𝑔𝑔⟩

|+**	⟩

|−**	⟩

𝛾

𝛾

𝛾

𝛾

|𝑒𝑒⟩

|𝑔𝑔⟩

|+*	⟩
|−*	⟩

Energy
2	𝜔.

𝜔.

0

𝛾

|𝑒𝑒⟩

|𝑔𝑔⟩

|+⟩|−⟩

𝛾

𝛾

𝛾

2𝑔

2𝑔

(a) ∆"$=0 ; Ω"$=0

𝛾+𝛾"$

𝛾+𝛾"$

|𝑒𝑒⟩

|𝑔𝑔⟩

|+⟩

|−⟩

(b) ∆"$=0 ; Ω"$>0

Ω"$$+Δ$

𝛾−𝛾"$

𝛾−𝛾"$

Ω"$

Δ

(c) ∆"$>0 ; Ω"$=0 (d) ∆"$>0 ; Ω"$>0

FIG. 2. Energy diagram for the QDs. |ee〉 and |gg〉 represent
the states with both QDs excited or in the ground state. The
other states are entangled states and are described in the main
text. The dotted arrows represent spontaneous decays and
the double arrows depict coherent coupling of levels through
the cavity mode. (a) Ω12 = 0, ∆12 = 0, only the symmetric
state |+〉 couples to the cavity by absorbing or emitting a pho-
ton with a rate

√
2g. The antisymmetric state |−〉 is a dark

state and doesn’t interact with the cavity. The spontaneous
decay is the same for all states and is equal to the single QD
decay rate γ. (b) Ω12 > 0, ∆12 = 0, QDs are dipole-dipole
coupled. The entangled eigenstates are still completely sym-
metric and antisymmetric but they are now energy split by
±Ω12 and the spontaneous decay rates are modified by ±γ12
respectively. (c) Ω12 = 0, ∆12 > 0, QDs are detuned, the
new entangled eigenstates |−′〉 and |+′〉 are a superposition
of the previous totally symmetric and antisymmetric states.
|−′〉 now couples to the cavity mode. There is no dipole-dipole
coupling so the spontaneous decay rates are not modified and
are still equal to γ for all the states. (d) Ω12 > 0, ∆12 > 0
Detuned and dipole-dipole coupled QDs: the eigenstates are
energy split by

√
Ω2

12 + ∆2
12, |+′′〉 and |−′′〉 are both coupled

to the cavity and the spontaneous decay rates are modified.

the critical photon number to saturate this transition:

nc|+〉 = (γ + γ12)2

8(
√

2g)2
' γ2

4g2 = 2nc0 , (14)

with γ12 ' γ. Twice as much intensity is needed to sat-
urate the superradiant state compared to a single QD
due to its larger spontaneous emission rate into the leaky
modes.
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FIG. 3. Modulus of the decomposition coefficients A (lower
curve) and B (upper curve) for the entangled states |+′〉 and
|−′〉 of Eq. 15 as a function of detuning between the two QDs.
Parameters are {g,γ,κ}={20, 0.6, 200} µeV. The vertical line
indicates detuning ∆12 = Γ0.

C. Detuned QDs with no direct coupling, ∆12 6= 0
and Ω12 = 0

We now study the influence of detuning by taking
non identical QDs with different bare frequencies so that
∆12 6= 0. We set for the moment Ω12 = γ12 = 0, i.e.
kd � 1, the dipole-dipole interaction will be added in
the next paragraph. The energy diagram of this case is
sketched in figure 2(c). The state |gg〉 and |ee〉 stay un-
changed but the new entangled states |+′〉 and |−′〉 are
now a mixture of the previous symmetric and antisym-
metric states |+〉 and |−〉. This case has been studied
theoretically and experimentally in the strong coupling
regime [45, 48–50]. The interesting feature is the appear-
ance of a new peak in the scattering spectrum of the
system when the QDs are detuned. This new peak corre-
sponds to the antisymmetric state which is totally dark
when the QDs are resonant ∆12 = 0 but that starts to
couple to the cavity mode once a detuning between the
QDs is introduced (∆12 6= 0) [51]. To our knowledge this
system hasn’t been studied in the Purcell regime. In this
regime we can focus on the new entangled states of the
QDs which are written for g � κ:

|−′〉 ' A |+〉+B |−〉
|+′〉 ' B |+〉 −A |−〉 , (15)

where A and B are coefficients that depend on ∆12.
Their evolution in the linear (low power) regime is plot-
ted in figure 3. It has been calculated using the effec-
tive Hamiltonian approach, see appendix A. Two dis-
tinct regimes appear depending on the value of detun-
ing. For ∆12 <

2g2

κ , |B| is higher than |A|, so following

Eq. 15 it means that the eigenstates |+′〉 and |−′〉 have
a high symmetric and antisymmetric component respec-
tively. Indeed B = 〈+|+′〉 = 〈−|−′〉. The two QDs are
coupled through the cavity mode and the collective states
appear. For ∆12 >

2g2

κ , |A| and |B| are each equal to 1√
2 ,

the eigenstates |+′〉 and |−′〉 have lost their respective
symmetric and antisymmetric character and now behave
as independent QDs. The limiting value separating the
two different regimes is

∆12 = 2g2

κ
= Γ0

2 , (16)

the cavity-enhanced decay rate of a single QD of Eq. 13
over 2. The two different regimes arise due to the fact
that when the total detuning 2∆12 is shorter than the de-
cay rate in the cavity Γ0 (i.e. beating period between the
two QDs longer than the Purcell-enhanced decay time)
the two QDs can effectively couple before they desyn-
chronize. Whereas when the total detuning 2∆12 is larger
than the decay rate in the cavity Γ0 (i.e. beating period
between the two QDs shorter than the Purcell-enhanced
decay time), desynchronization between the QDs sup-
presses the symmetric and antisymmetric character of
the states. Thus, in the Purcell regime without direct
coupling, it is not possible to probe the collective states
independently (by detuning them enough) without sup-
pressing their collective behavior. In the next paragraph
we will see that introducing a direct interaction between
the QDs allows recovering the symmetric and antisym-
metric character and thus the collective behavior of the
coupled states even for ∆12 >

Γ0
2 .

D. Dipole-dipole coupled AND detuned QDs,
∆12 6= 0 and Ω12 6= 0

To be able to address separately the superradiant and
subradiant states and also tune their spontaneous de-
cay rates, we now consider the case when the two QDs
are both detuned and directly coupled. Detuning will
allow the interaction of the cavity mode with the two
entangled states, including the subradiant state, as de-
picted in figure 2(d). And dipole-dipole interaction will
allow to maintain the collective behavior of the states at
larger detunings. The states are now written |+′′〉 and
|−′′〉. As before their symmetric and antisymmetric com-
ponent will depend on the detuning. The decomposition
into these states can be written in the same way as before
for g � κ but with different coefficients:

|−′′〉 ' µ |+〉+ ν |−〉
|+′′〉 ' ν |+〉 − µ |−〉 , (17)

where µ and ν are the new coefficients of the decom-
position. Their modulus is plotted in figure 4. They
are calculated numerically by diagonalizing the effective
Hamiltonian as before, see appendix A. An analytical ap-
proximation is obtained when considering only the sub-
system of the coupled QDs without the cavity mode, we
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FIG. 4. Modulus of the decomposition coefficients µ (lower
curves) and ν (upper curves) for the entangled states |+′′〉
and |−′′〉 of Eq. 17. Dashed lines show the analytical results
of Eq. 18. Parameters are the same as figure 3 but now Ω12 =
31 µeV corresponding to a distance of d = 10 nm.

can then write µ and ν as function of only the atomic
parameters ∆12 and Ω12. We find [52]:

µ = δ√
δ2 +

(
1 +
√

1 + δ2
)2

ν = 1 +
√

1 + δ2√
δ2 +

(
1 +
√

1 + δ2
)2 (18)

with δ = ∆12
Ω12

. The analytical value, plotted in the same
figure, is very close to the numerical solution and this for
the whole range of ∆12 considered. This means that in
the case of direct coupling in the Purcell regime the col-
lective states depend mostly on the direct coupling rate
Ω12. Note that in this limit, µ and ν do not depend on
g2

κ . As it can be seen, |ν| stays close to 1 for a much
larger range of ∆12 than before, which means |+′′〉 and
|−′′〉 have a larger symmetric and antisymmetric compo-
nent respectively over a wider detuning range. So even
for large detuning, we will have |+′′〉 behaving mostly as
a symmetric state |+〉 and |−′′〉 mostly as an antisym-
metric state |−〉. Dipole-dipole coupling thus allows to
probe the coupled states separately and to take advan-
tage of their different properties even in the bad cavity
regime. As both entangled states possess a fraction of
the completely symmetric state |+〉, both couple to the
cavity mode. These rates are calculated in appendix B
and we obtain:

g|−′′〉 = µ
√

2g
g|+′′〉 = ν

√
2g . (19)

In addition, due to dipole-dipole interaction, |+′′〉 has
an enhanced free-space spontaneous emission and |−′′〉
a reduced free-space spontaneous emission. Assuming
d� λ, the decay rate of these states are given by:

γ|−′′〉 = µ2(γ + γ12) ' 2µ2γ

γ|+′′〉 = ν2(γ + γ12) ' 2ν2γ , (20)

where we have neglected terms in γ − γ12 ' 0. Equa-
tions 19 and 20 show that both the coupling to the cavity
modes and the spontaneous decay rates now depend on
the detuning and on the direct coupling. Furthermore
since the states are energy split by ±

√
∆2

12 + Ω2
12, the

transitions |gg〉 ↔ |−′′〉 and |−′′〉 ↔ |ee〉 are not reso-
nant and neither are |gg〉 ↔ |+′′〉 and |+′′〉 ↔ |ee〉. So
we can consider the states |−′′〉 and |+′′〉 as effective TLS
and we can then use the same expression for the critical
photon number. When replacing g and γ by their expres-
sion 19 and 20 we get:

nc|−′′〉 = (µ2(γ + γ12))2

8(µ
√

2g)2
' (2µ2γ)2

8(µ
√

2g)2
= 2µ2nc0 (21)

nc|+′′〉 = (ν2(γ + γ12))2

8(ν
√

2g)2
' (2ν2γ)2

8(ν
√

2g)2
= 2ν2nc0 . (22)

Since µ � 1 the nonlinear behavior of the subradiant
state |−′′〉 is enhanced. For the parameters considered
here and ∆12 = 20 µeV, we obtain: nc|−′′〉 = 0.16nc0 ,
so the subradiant state should saturate for an incident
pump laser intensity an order of magnitude smaller than
the case of a single QD. Instead, the superradiant state
|+′′〉 is more robust to saturation nc|+′′〉 = 1.8nc0 .

IV. TUNABLE BANDWIDTH AND
NONLINEARITY

The previous discussion has shown that the combina-
tion of detuning and direct coupling allows to obtain sub-
radiant and superradiant states with different coupling to
the cavity mode and saturation behavior The resulting
modification of the linewidth and of the non-linear be-
havior of the system will now be explored by calculating
the power dependent reflectivity spectra. All calcula-
tions have been performed using the MATLAB quantum
optics toolbox which numerically solves the master equa-
tion for the density matrix [53]. The reflectivity spectra
of the system in the four different cases considered before
are shown in figure 5. In all four cases, the Fabry-Perot
cavity mode appears as a dip in reflectivity while the
different peaks indicate states involving the QDs. The
plots in each of the four columns represent a different set
of parameters corresponding to the four different cases
of figure 2. The rows represent the same experiments
but with increasing pump power. First row (i) is for
Plaser = 1pW , the second row (ii) for Plaser = 1nW and
the third row (iii) for Plaser = 10nW . As the states sat-
urate they interact less with the cavity mode and their
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FIG. 5. Reflectivity of the cavity containing two QDs. The columns represent: (a) QDs in resonance and without dipole-dipole
coupling. (b) and (c) are the cases with dipole-dipole coupling and detuning respectively. (d) The two QDs are both detuned
and dipole-dipole coupled. (e) Same as (d) but with smaller detuning. The three rows show the same spectra but for increasing
incident laser power of (i) 1pW (ii) 1nW and (iii) 10nW . Parameters are {g, κ, γ} = {20, 200, 0.6} µeV.

peak’s height is reduced until the empty cavity behavior
is retrieved.
(a) ∆12 = 0 and Ω12 = 0. In the first column of the

figure, the QDs are resonant and not directly coupled,
i.e. ∆12 = 0 and Ω12 = 0, only the symmetric state |+〉
is coupled to the cavity mode and appears as a large peak
at ωc as shown in figure 5(a). The peak width is equal
to the cavity enhanced spontaneous emission rate of this
state as written in Eq. 13, except that now the coupling
to the cavity mode is

√
2g so

Γ|+〉 = 8g2

κ
. (23)

The other entangled state, |−〉, is dark and does not
appear in the spectrum, Γ|−〉 = 0. When increasing
the pump power, the |+〉 state starts to saturate, the
peak’s height is reduced. Nevertheless since the transi-
tion |gg〉 ↔ |+〉 is resonant with |+〉 ↔ |ee〉, the absorp-
tion of a second photon at the same frequency can take
place preventing saturation at the single photon level.
Thus the peak corresponding to the |+〉 state stays visi-
ble even at high power.
(b) ∆12 = 0 and Ω12 6= 0. Fig. 5(b) displays the

case of no detuning but with dipole-dipole coupling. The
coupling to cavity mode of the two eigenstates remains
the same as in the previous case and hence the linewidths
are unchanged. The subradiant state is still totally anti-
symmetric, so it is dark and does not appear in the re-
flected light whereas the superradiant state has the same
width than the symmetric state of figure 5(a), but now its
energy is shifted by Ω12. The transitions |gg〉 ↔ |+〉 and
|+〉 ↔ |ee〉 are not resonant anymore, and the new su-
perradiant state |+〉 acts now as an effective TLS. When
the laser power is increased, this state saturates quicker

than in the first column as can be seen when comparing
the peak’s height.
(c) ∆12 6= 0 and Ω12 = 0. In the column Fig. 5(c),

only detuning between the QDs is considered and no
direct dipole-dipole interaction. Two peaks appear at
the frequencies ±∆12 corresponding to the states |+′〉
and |−′〉 of Eq. 15. But as discussed before, without
dipole-dipole coupling, the collective states behave as the
states of the independent QDs |e, g〉 and |g, e〉 as soon as
∆12 >

2g2

κ . This is the case for the detuning considered
here and that is why the two peaks that appear are iden-
tical and behave as the states of each independent QD
|eg〉 and |ge〉 interacting independently with the cavity
mode. Their linewidth is equal to the linewidth of the
single QD:

Γ|+′〉 ' Γ|−′〉 ' Γ0 . (24)

Concerning the non-linear behavior, when pump power
is increased they saturate as a single QD would do, and
since the critical photon number for a single QD is smaller
than for the superradiant state as stated in Eq. 14, they
saturate faster than the state |+〉 of column (b).
(d) and (e) ∆12 6= 0 and Ω12 6= 0. If now we

consider both detuned and dipole-dipole coupled QDs as
shown in figure 5(d,e) not only we observe the blue shifted
superradiant state |+′′〉 but also the red shifted much
narrower antisymmetric state |−′′〉 that now couples to
the cavity. Their different linewidth is due to different
coupling to the cavity mode: |−′′〉 couples very slightly
to the cavity as opposed to |+′′〉 as presented in Eq. 19.
When replacing their coupling rate to the cavity mode
we obtain linewidths equal to

Γ|+′′〉 = ν28g2

κ
(25)
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and

Γ|−′′〉 = µ28g2

κ
, (26)

with µ and ν given by equation 18. And as expected from
the critical photon number of these two states shown in
Eq. 21, the subradiant state |−′′〉 saturates for a much
lower incident power. Indeed already in the second row
its height is greatly reduced. A remarkable feature of
this system is that both the linewidth and the saturation
intensity can be tuned by controlling ∆12. This is directly
seen when comparing the columns (d) with ∆12 = 20 µeV
and (e) with ∆12 = 10 µeV: the state |−′′〉 linewidth is
reduced and it saturates at lower laser power for smaller
detunings.

As mentioned in the introduction, the linewidth tun-
ability is a very interesting property for interfacing band-
width mismatched atomic systems. Quantum dots in mi-
cropillars possess bandwidths one or two order of mag-
nitude larger than other common systems such as cold
atoms, cold ions or superconducting circuits [4, 27, 28,
54]. The strong tunability of the subradiant state’s
linewidth Γ|−′′〉, associated to the strong tunability of
the coupling with the cavity mode g|−′′〉, allows to span
the whole range of bandwidths smaller or equal than the
one of the single quantum dot in a microcavity. This is
performed by playing with the detuning between the two
QDs, ∆12. Indeed Eq. 26 indicates that the bandwidth
directly depends on µ2, which has been plotted in the in-
set of Fig. 7 as a function of ∆12. Importantly, only small
changes in the detuning ∆12 are needed to obtain vari-
ations of several orders of magnitude of the bandwidth.
Indeed, for detunings in the range ∆12 ∈ [3; 50] µeV, one
obtains the bandwidths Γ|−′′〉 ∈ [0.038; 3.8] µeV: two or-
ders of magnitude are available for a detuning of some
tens of µeV.
The other important parameter that can be tuned is

the nonlinear behavior of the superradiant and subra-
diant states |+′′〉 and |−′′〉. This is explored in more
detail by calculating the reflectivity for a large range of
incident laser powers. We plot the reflectivity of each
state as a function of the incident laser power and com-
pare it to the reference case of a single QD in a cavity.
The laser frequency is now tuned to the energy of the
state we want to study. We also tune the cavity mode
to this frequency so that at very high power we obtain
the same final reflectivity. The results are shown in fig-
ure 6 for QDs separated by d = 10 nm. The black dot-
ted line shows the response of the reference system with
only one quantum dot. The reflectivity goes from close
to one when the QD is not saturated to zero when the
QD is completely bleached and the system behaves as
an empty cavity and all the pump is transmitted. The
superradiant state |+′′〉, shown in dashed blue, is more
robust to saturation and the reflectivity starts decreas-
ing only at twice the incident power. On the contrary
the subradiant state |−′′〉 saturates easily and the non-
linear behavior is observed for an incident power almost
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FIG. 6. Reflectivity vs incident laser power. In dotted black
for one quantum dot, in dashed blue for the superradiant
state |+′′〉 of two dipole-dipole coupled, detuned quantum
dots with ∆12 = 20 µeV, in solid red the subradiant state |−′′〉
with the same detuning, and in dashed-dotted yellow the same
state |−′′〉 but for a smaller detuning of ∆12 = 10 µeV. The
parameters are {g, κ, γ} = {20, 200, 0.6} µeV. The pump laser
and the cavity mode are each time tuned to the frequency of
the state in consideration.

an order of magnitude smaller for ∆12 = 20 µeV. If now
∆12 = 10 µeV the non-linearity threshold of |−′′〉 is re-
duced by a factor 3. This can be seen when comparing
the solid red curve and the dotted dashed yellow curve
representing these two cases. Indeed, as the linewidth of
the states, the saturation threshold depends directly on
the detuning between the two quantum dots. This can
be calculated with the critical photon number of Eq. 21.
As before the tunability comes from the modification of
the coupling of the state to the cavity mode, but now it
also depends on the modification of the free-space spon-
taneous emission γ|−′′〉 of Eq. 20. In the end, we get the
same dependence on µ2 for the critical photon number
than with the linewidth: nc|−′′〉 = 2µ2nc0 . To illustrate
this, we plot in figure 7 the same nonlinear curves of fig-
ure 6 but now as a function of ∆12 in the x-axis and
the laser pump power in the y-axis. For a given detun-
ing, the reflectivity goes from 1 to 0 for increasing pump
power as before, but the threshold changes as a function
of the chosen detuning. For detunings much larger than
Ω12 the system behaves as independent quantum dots.
Accordingly the saturation threshold is the one observed
for a single QD. As ∆12 is decreased the threshold of
nonlinearity decreases over orders of magnitude.

V. BANDWIDTH TUNABLE PHOTON
BLOCKADE

The single photon non-linearity described above is cen-
tral to the photon blockade phenomena, where a single
photon conditions the transmission or reflection of a sec-
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FIG. 7. Colormap of the reflectivity of the subradiant state
|−′′〉 as a function of the incident laser power and of the QDs
detuning ∆12 = ω1−ω2

2 . Dipole-dipole interaction is kept the
same with Ω12 = 31 µeV. The laser and cavity frequency
are set to ωL = ωc = ω1+ω2

2 −
√

∆2
12 + Ω2

12, in resonance
with |−′′〉. The subradiant state saturates at lower incident
power for smaller detuning since its antisymmetric compo-
nent is more pronounced. For very small detuning the state
is completely antisymmetric and dark and doesn’t couple to
cavity. Inset: µ2 the coefficient controlling the critical pho-
ton number for the subradiant state as a function of detuning.
Parameters as in fig.6.

ond one [4, 5, 7, 25, 26, 29]. Such feature, which al-
lows to build efficient photon-photon gates [4, 6], can
be evidenced through photon correlation measurements
performed on a reflected laser beam on the device: a
coherent light beam is converted into a subpoissonian
light field showing anti-bunching over a time scale cor-
responding to the atomic transition optical strength [4,
7, 23, 25, 26, 29]. Indeed the reflected light results from
the coherent superposition of the reflected laser and of
the emitted light by the TLS through the cavity. Since
we consider here a symmetric cavity, in the absence of
the TLS and when ωL = ωc, no light from the laser is
reflected: Rmin = 0. In the presence of the TLS, the light
reflected is entirely due to the TLS emission and is thus
antibunched. The poissonian statistics of the laser is con-
verted in sub-poissonian, so the second-order correlation
function of the reflected light at zero delay tends to zero:
g2(0) = 0 [55]. The width of the correlation dip depends
on the rate of re-excitation of the TLS through the cav-
ity after having emitted one photon, which corresponds
to the Purcell-enhanced linewidth Γ of Eq. 13 and scales
as 1/Γ in the low excitation limit [56]. It is thus interest-
ing to compare the response in correlation of the different
coupled states of our system which behave as TLS with
different linewidths Γ. As seen in Eq. 25 and Eq. 26,
the superradiant state |+′′〉 has a cavity-enhanced emis-
sion rate Γ|+′′〉 close to twice as large as a single QD and
the subradiant state |−′′〉 has a cavity-modified emission
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FIG. 8. Normalized second-order correlation function g2(τ) as
a function of delay between two detections. In dotted black
for one quantum dot, in dashed blue for the superradiant
state |+′′〉 with ∆12 = 20 µeV. The subradiant state |−′′〉 has
been shown at two different detunings ∆12 = 20 µeV in solid
red and ∆12 = 10 µeV in dashed-dotted yellow. The cavity
and laser frequency are matched to the respective state and
Plaser = 10 pW. Parameters are the same as in fig.6.

rate Γ|−′′〉 ranging from 0 to Γ0 depending strongly on
the detuning ∆12. The normalized intensity correlation
function [56]

g2(τ) = 〈a
†
out(0)a†out(τ)aout(τ)aout(0)〉

〈a†outaout〉2
, (27)

with aout the reflected field operator, has been plotted for
these two states and for the single QD case in figure 8.
The cavity and laser frequencies are again matched to
the state in consideration. All the curves show dips at
zero delay but with different widths. As expected, the
superradiant state has a thinner dip in correlation than
the case of the single QD. On the contrary, the subra-
diant state has a larger dip than the single QD case.
Importantly, the width of the dip can be adjusted by
controlling the QD detuning ∆12. For example, when re-
ducing the detuning from ∆12 = 20 µeV to ∆12 = 10 µeV,
it can be seen that the correlation dip of the |−′′〉 state
gets much wider and reaches a FWHM surpassing the
nanosecond. Such long-lived and detuning tunable an-
tibunching shows that the memory time of the system
can be increased reaching values largely surpassing the
nanosecond.

VI. CONCLUDING REMARKS

In summary, we have presented a theoretical study
of two dipole-dipole coupled quantum dots interacting
weakly with a laser-pumped cavity. We have found that
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detuning between the QDs allows to probe not only the
superradiant state but also the subradiant state which is
no longer dark. In the Purcell regime, only direct cou-
pling allows to maintain collective behavior for detunings
large enough so as to distinguish the different collective
states. Having both detuning and direct coupling allows
to independently take advantage of the superradiant and
subradiant behaviors. In particular the non-linear be-
havior of the subradiant state can vary over order of
magnitudes for very small changes in detuning. This
was confirmed by calculations of the delayed second-order
correlation function which showed that antibunching can
be extended to very long delays by controlling the de-
tuning between the QDs. The corresponding bandwidth
tunability of the subradiant state can be useful to inter-
face different quantum systems in view of building hybrid
quantum networks where matching the spectral shape of
an incoming pulse with the linewidth of the state is nec-
essary to reach the maximum routing efficiency [57].

As an example, QDs in micropillars, which are the
most efficient single photon sources thus far [18, 19],
present an optical bandwidth that is typically one or two
orders of magnitude larger than cold atoms memories [4].
One could envision to use the subradiant state of a cou-
pled QD system to generate single photons matched to
the smaller bandwidth of cold atoms or cold ions [54].
Another attractive possibility would be to use such cou-
pled QDs system to store on a longer time scale short
single photons emitted by bright QD based single photon
sources [20]. To do this, one should excite the subradiant
state for the detuned QDs case, choosing the appropri-
ate detuning to match the incoming photon, and then,
after the absorption, adiabatically bring them back to
resonance. The stored photon could then be re-emitted
when desired by detuning the QDs back again.

ACKNOWLEDGMENTS

We thank N. Schilder for his precious help in the
beginning of this study. This work was supported by
SAFRAN-IOGS chair on Ultimate Photonics, by the
ERC Starting Grant No. 277885 QD-CQED, the French
Agence Nationale pour la Recherche grant SPIQE: ANR-
14-CE32-0012; grant QDQN:ANR-17-ERC2-0014-01 and
a public grant overseen by the French National Research
Agency (ANR) as part of the "Investissements d’Avenir"
program (Labex NanoSaclay, reference: ANR-10-LABX-
0035), and the iXcore foundation. J.-J.G. acknowledges
the support of Institut Universitaire de France.

Appendix A: Effective Hamiltonian

The eigenstates of the system are obtained by studying
the fluorescence emission spectra. Evolution of expec-
tation values of operators defining the cavity field and
the QDs dipole is calculated using the master Eq. 12

and the property for a given operator ô of the system〈 ˙̂o
〉

= Tr(ôρ̇). The coherent pump beam is replaced by
incoherent pumping of the QDs or the cavity described
by a term PcL(â†) and PiL(σ+

i ) for the the cavity or the
i-th QD. Pc and Pi are the corresponding pump powers.
We obtain:

i
∂

∂t

〈σ1〉
〈σ2〉
〈a〉

 =

 ω̃1 Ω12 − iγ12
2 −ig

Ω12 − iγ12
2 ω̃2 −ig

ig ig ω̃c

〈σ1〉
〈σ2〉
〈a〉


(A1)

where we have introduced the complex frequencies ω̃j =
ωj − iγ2 − iPj and ω̃c = ωc − iκ2 + iPc [58]. These equa-
tions are valid only at low excitation pump power (linear
regime) with the approximation 〈σz〉 ' −1 for each QD.
They are exact in the spontaneous emission case with at
most one excitation in the system, restricted to the basis
|0, g, g〉, |0, g, e〉, |0, e, g〉 and |1, g, g〉 where the first value
in the ket corresponds to the number of photons in the
cavity mode [59]. The spectral function of the cavity is
given by [45]:

S(ω) ∝ lim
t→∞

Re
∫ ∞

0
dτe−iωτ

〈
a†(t+ τ)a(t)

〉
. (A2)

According to the quantum regression theorem, the evolu-
tion of the first order correlation function

〈
a†(t+ τ)a(t)

〉
obeys the same equations as 〈a〉. The eigenstates are
then obtained by diagonalizing the matrix of Eq. A1.
Fig. 3 and Fig. 4 present the components of the excitonic
eigenvectors without or with dipole-dipole interaction.

Appendix B: Cavity coupling rate

Interaction with the cavity is described by the term
i
√

2g
(
a† (σ1+σ2)√

2 − a (σ+
1 +σ+

2 )√
2

)
of the Hamiltonian of

eq. 2. By rewriting the symmetric operator σ1+σ2√
2 as

a function of the new coupled states we get:

σ1 + σ2√
2

= ν
(
|+′′〉〈ee|+ |gg〉〈+′′|

)
+ µ

(
|gg〉〈−′′|+ |−′′〉〈ee|

)
(B1)

where |i〉〈j| is the operator that transforms the state j of
the collective basis in the state i. We directly deduce the
coupling strength of |−′′〉 and |+′′〉 to the cavity mode:

g|−′′〉 = µ
√

2g (B2)
g|+′′〉 = ν

√
2g . (B3)

Appendix C: Spontaneous emission rate

The spontaneous emission rate of the new states is cal-
culated in the same way. The Lindbladian describing
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spontaneous emission of the QDs is:

(γ + γ12)L
(
σ1 + σ2√

2

)
. (C1)

We neglect here the antisymmetric terms by consider-
ing γ − γ12 ' 0. When injecting the expression of the
symmetric operator B1 in Eq. C1 we obtain:

(γ + γ12)
(
ν2L

(
|+′′〉〈ee|+ |gg〉〈+′′|

)
+ µ2L

(
|−′′〉〈ee|+ |gg〉〈−′′|

)
+ µν

(
|gg〉〈−′′|+ |−′′〉〈ee|

)
ρ
(
|ee〉〈+′′|+ |+′′〉〈gg|

)
+ µν

(
|gg〉〈+′′|+ |+′′〉〈ee|

)
ρ
(
|ee〉〈−′′|+ |−′′〉〈gg|

)
+ 1

2µν
(
|+′′〉〈−′′| − |−′′〉〈+′′|

)
ρ

+ 1
2µνρ

(
|+′′〉〈−′′| − |−′′〉〈+′′|

))
.

The first term is the decay through the symmetric branch
|ee〉 → |+′′〉 → |gg〉 with a rate ν2(γ + γ12), the sec-
ond term is the decay through the antisymmetric branch
|ee〉 → |−′′〉 → |gg〉 with a (negligible) rate µ2(γ + γ12)
and the last term are cross terms that couple incoherently
the entangled states with a rate µν(γ + γ12).
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