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The ability to generate light in a pure quantum state is essential for advances in optical quantum
technologies. However, obtaining quantum states with control in the photon-number has remained
elusive. Optical light fields with zero and one photon can be produced by single atoms, but so
far it has been limited to generating incoherent mixtures, or coherent superpositions with a very
small one-photon term. Here, we report on the on-demand generation of quantum superpositions
of zero, one, and two photons via pulsed coherent control of a single artificial atom. Driving the
system up to full atomic inversion leads to the generation of quantum superpositions of vacuum
and one photon, with their relative populations controlled by the driving laser intensity. A stronger
driving of the system, with 2π-pulses, results in a coherent superposition of vacuum, one, and two
photons, with the two-photon term exceeding the one-photon component, a state allowing phase
super-resolving interferometry. Our results open new paths for optical quantum technologies with
access to the photon-number degree-of-freedom.

Controlling the photon-number in a light pulse has
been a primary task enabling progress in optical quantum
technologies [1, 2]. Single-, and N-photon sources [3–5]
are at the heart of future quantum communication net-
works [6, 7], sensors [8, 9], as well as optical quantum
computers [10, 11] and simulators [12–15]. These achieve-
ments make use of the interference of indistinguish-
able single-photons, allowing the realisation of quantum
gates [16, 17], and protocols such as quantum telepor-
tation [18] and entanglement swapping [19]. The one-
photon term has been exploited heretofore, and the vac-
uum component has been considered detrimental to the
overall protocol efficiency, motivating a quest for de-
terministic sources producing single-photon Fock states
with no vacuum component [20–23]—a challenging task,
to say the least. If vacuum is set instead in a quantum
superposition with the single-photon, one could use it
to encode quantum information in the photon-number—
becoming a resource for optical quantum information
processing. For instance, vacuum within a pure quantum
state can be exploited in quantum teleportation [24], or
quantum random number generators [25]. However, ob-
taining quantum superpositions in the photon-number
basis has so far demanded complex quantum state engi-
neering and conditioned state preparation [26, 27].

The text-book model of a quantum emitter is a two
level atom—a system shown to generate quantum light
in various excitation regimes. Incoherent non-resonant
excitation of natural [28] and artificial atoms [29–31] can
produce optical fields with a large single-photon compo-
nent, but without coherence in the photon-number ba-
sis due to the incoherent creation process of the atomic
population. In contrast, coherent driving of an atom can
in principle be used to transfer the coherence between

the atomic ground and excited state to the emitted light
field. This has so far been explored in the weak-excitation
regime to produce quantum light that exhibits coher-
ence with the driving laser—observed with atoms [32],
as well as semiconductor quantum dots [33–36]. This
regime has been shown to produce squeezed light where
an atomic dipole—with vanishing population—elastically
scatters a coherent superposition of vacuum and a small
one-photon term [37]. Generating a photon-number su-
perposition with large single-photon population requires
to create an atomic population—inherently coupled to
its environment—that remains insensitive to any deco-
herence until spontaneous emission takes place. To the
best of our knowledge, the generation of photon-number
quantum superpositions under strong coherent driving
has not been reported so far, neither with natural atoms,
nor with artificial ones.

In this work, we report on the on-demand generation
of quantum superpositions in the photon-number basis,
in light pulses emitted by a single artificial atom. We
observe superpositions of zero, one, and two photons
emitted from semiconductor quantum dots coupled to
optical microcavities [20, 38]. We use pulsed coherent
driving, beyond full inversion of the atomic population,
and perform interferometric measurements with a path-
unbalanced Mach-Zehnder interferometer (MZI). As sup-
ported by our theoretical calculations, phase-dependent
oscillations at the interferometer output demonstrate the
production of coherent superpositions of vacuum, one,
and two photons. Below π-pulse driving, we obtain su-
perpositions of vacuum and one-photon Fock states, with
their relative populations controlled by the driving laser
intensity. By driving the quantum dot with 2π-pulses,
we obtain a state with the two-photon component larger
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than the one-photon population—a state allowing phase
super-resolving interferometry, and incidentally resem-
bling a small Schrödinger-cat state.

Coherent driving and photon statistics
We investigate semiconductor devices consisting of a
single quantum dot (QD) positioned with nanometer-
scale accuracy at the centre of a connected-pillar cav-
ity [20, 39, 40]. The QD layer is inserted in a p-i-n
diode structure, and electrical contacts are defined to
control the QD resonance through the confined Stark
effect. We note that the experimental results reported
here have been observed on various QD-cavity devices.
We focus hereafter on two devices: a neutral (QD1) and
a charged (QD2) exciton coupled to the cavity mode,
see Methods. QD1 (QD2) is excited resonantly with
linearly-polarised 40 ps (15 ps) laser pulses at 925 nm,
and its emission is collected using a crossed-polarisation
scheme that separates it from the laser, see Fig. 1a. Fig-
ure 1b shows the detected countrates for QD1 as a func-
tion of the excitation pulse area A, evidencing well de-
fined Rabi oscillations. The signal is damped by sponta-
neous emission due to the relatively long 40 ps excitation
pulses [38] as compared to the measured emission decay
time of 166±16 ps. Second-order autocorrelation func-
tions g(2)(∆t) measured along Rabi cycles evidence a dis-
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FIG. 1. Coherent control of an artificial atom. a
Schematics of the setup. A single semiconductor QD is kept in
a cryostat at 9 K, and is excited under pulsed resonant excita-
tion. The QD emitted state |Ψ〉 is separated from the laser in
a cross-polarisation scheme, by using a polarising beamsplit-
ter (PBS), a quarter- (Q), and half-wave plate (H). b Rabi
oscillation of the QD coherent driving. The emission is col-
lected by a single-mode fibre and directly detected with an
APD. c Second-order autocorrelation function g(2)(∆t) mea-
sured at π-pulse with QD1, and d at 2π-pulse driving with
QD2.

tinct and complementary behaviour between π-, and 2π-
pulse driving. A pronounced antibunched photon statis-
tics at π-pulse is observed for both QD1 and QD2, with

g
(2)
π (0)=0.037±0.002 for QD1, see Fig. 1c. Such observa-

tions show light wavepackets consisting mostly of either
vacuum or one photon. However, bunched statistics is

observed at 2π-pulse for QD2, with g
(2)
2π (0)=2.98±0.11,

see Fig. 1d. This evidences, as recently observed [41],
wavepackets containing two-photon populations. In the
following, we investigate the nature of light in the photon-
number degree-of-freedom: whether it contains photon
Fock-states emitted in a mixture or in a pure quantum
state.

Quantum superposition of zero and one photon
The Hong-Ou-Mandel (HOM) effect [42] describes two
single-photons simultaneously impinging on a beamsplit-
ter. If the photons are polarisation, spatially, and fre-
quency indistinguishable, they bunch at the output of
the beamsplitter—a behaviour exclusively of quantum
mechanical origin. This requires that the interfering pho-
tons are in the same pure quantum state in these degrees-
of-freedom.

As discussed now, interference can also be used to
unravel coherences in the Fock-state basis. Consider
a beamsplitter with inputs a, b, and outputs c, d, onto
which pure states of photon-number superpositions im-
pinge. These are in the form |Ψa〉=

√
p0|0a〉+

√
p1e

iα|1a〉,
and |Ψb〉=

√
p0|0b〉+

√
p1e

i(α+φ)|1b〉, with p0+p1=1, p0,1
the vacuum and one-photon populations, and φ a rel-
ative phase between the states. When p1=1, their
quantum interference leads to the well known two-
photon output state (|2c0d〉−|0c2d〉) /

√
2—the HOM ef-

fect. However, as soon as p1<1, the output state shows
other photon terms that lead to a mean photon-number
Nc,d=p1 (1± p0 cosφ) at the beamsplitter outputs, see
Supplementary Information. That is, if states are pure
in the photon-number basis, their interference leads to
oscillations measured at the output of the interferometer
device, with a visibility amplitude equal to the vacuum
population p0.

The previous example describes the idealised case
of pure states—instances non-existing in the physical
world. To account for impurity in the photon-number
basis, we consider that each light wavepacket imping-
ing on the beamsplitter is described by a density ma-
trix ρS=λρpure+(1−λ)ρmixed, with ρpure=|Ψi〉〈Ψi| a pure
state (i=a, b), ρmixed=diag{p0, p1} a diagonal matrix,
and 0≤λ≤1 a parameter tuning the photon-number pu-
rity. Moreover, limited purity in the frequency domain is
taken into account by the non-unity mean wave-packet
overlap M between interfering photons. It can be shown,
see Supplementary Information, that such interfering in-
put states result in

nc,d =
1

2
(1± v cosφ) , (1)
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FIG. 2. Quantum superposition of vacuum and one photon. a Sketch of the MZI used to probe coherences in the
photon-number. The MZI delays one arm by τ=12.34 ns as to allow interference of two consecutive wave-packets in the fibre
beamsplitter FBSHOM. The phase φ between the two arms of the MZI is not stabilised and thus it freely evolves in time. A
half-wave plate H in one arm tunes the photon distinguishability via their polarisation. b Normalised single countrates nc

(blue) and nd (red) for a pulse area A=0.61π. Light blue (light red) traces display nc (nd) for A=0.14π. Each data point
here was accumulated for ∼300 ms. c Measured visibility v (blue squares) as a function of the countrates detected from our
first collecting fibre. The blue solid line is a linear fit used to obtain the purity of the generated state, and the dashed blue
lines consider lower purity values. d Visibility v in terms of the photon indistinguishability M (varied via polarisation). Blue,
green, and red data points are taken for pulse areas A of 0.14π, 0.42π, 0.76π, respectively; and their corresponding curves
follow the theoretical model v=λ2p0

√
M . e Blue line: theoretical prediction for the probability p1 of the QD to emit one

photon. Blue data points: experimental one-photon population. Green full line: theoretical prediction of the photon-number
coherence amplitude (|ρ01|=λ

√
p0p1) assuming that the emitted state is pure (λ=1). Dashed green lines same: same as before

for cases with less purity. Green data points: extracted values for |ρ01| deduced from the measured visibilities. Black data
points: extracted values of the purity P.

where nc,d=Nc,d/ (Nc+Nd) oscillate with a visibility

v=λ2p0
√
M . We observe, from Eq. 1, that if the inter-

fering states are distinguishable (M=0), or if the state
is emitted in a statistical mixture of photon-numbers
(λ=0), then v vanishes. Thus, observing v 6=0 implies
that neither case is true: the state contains quantum co-
herences in the photon-number basis.

Coherent driving of a two-level system creates a quan-
tum superposition of ground and excited state, with a
relative phase governed by the classical phase of the driv-
ing laser. If this coherence is transferred to the emit-
ted light state through spontaneous emission, we obtain
a photonic state with coherences between the vacuum
and one-photon components. We test this hypothesis by
performing the above described interferometric measure-
ments. To do so, we utilise an unbalanced MZI with a
path-length difference matching the temporal separation
of consecutive emitted wavepackets from the quantum
dot to temporally overlap them on a beamsplitter, see
Figure 2a. The free space part of the MZI leads to small
path variations in the order of the photon wavelength,
acting as the previously described phase φ.

Figure 2b shows our measurements of nc,d for pulse ar-
eas A=0.61π, and A=0.14π. The single detector counts
undergo clear oscillations with time, as the optical phase
φ freely evolves in time within the interferometer—
evidencing quantum coherence in the photon-number ba-
sis. As predicted, the amplitude of the oscillations in-
creases with the vacuum population, controlled here by
choosing the driving pulse area. Figure 2c shows the
extracted oscillation visibilities, obtained from maxima
and minima of nc,d with respect to φ, for different val-
ues of single-photon countrates (bottom axis) as the
pulse area varies within 0<A≤π (top axis). We ob-
serve the expected increase in visibility when increasing
the vacuum part. The visibility v also depends on the
mean wave-packet overlap M , which is extracted from
coincidences counts at the MZI output. We measured
Mπ=0.903±0.008 at π-pulse excitation, a value limited
by a small residual phonon sideband [43] since no spec-
tral filtering was used. We can then tune M via the rel-
ative photon polarisation, see Fig. 2d, and observe that
the oscillation visibility vanishes for distinguishable pho-
tons, as expected. We observe that v is linear in the
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single-photon countrates, see Fig. 2c—accordingly, pro-
portional to vacuum—from which we deduce an average
λ=0.965±0.018 for all pulse areas up to π-pulse. The
state purity in the photon-number basis P=Tr

(
ρ2
)

is
extracted knowing p0, p1, and λ. We obtain an aver-
age value of P=0.968±0.008 in the full [0−π] pulse area
range, see Fig. 2e, evidencing the high degree of purity.
These states are produced on-demand: for each excita-
tion pulse, the device emits a photon-number superposi-
tion, with p0+p1=1.

To support the model described above, we consider
the situation where a two-level system, with ground |g〉
and excited state |e〉, is coupled to a single spatial mode
of the optical field, i.e., a one-dimensional atom [44], a
model that has been shown to account well for the system
under study [38]. We calculate the light-field generated
by the QD by solving the Lindblad equation that ac-
counts for the evolution of a two-level system—treating
the incoming laser field, the interaction unitary Hamilto-
nian, as well as the non-unitary dynamics of spontaneous
emission and pure dephasing, see Supplementary Infor-
mation. We obtain a system output state that can be
written as the density matrix ρS . This matrix is time
integrated over the whole light pulse, an approach that
is valid for excitation pulses well below the spontaneous
emission time.

We theoretically obtain the population p1 (respec-
tively, p0), and coherences λ

√
p0p1 of ρS from parameters

within the one-dimensional atom model. Pure dephasing
contributes to reducing the mean wave packet overlap
of the emitted photons, as well as the populations. The
solid blue line in Fig. 2e shows the calculated populations
p1, and the solid green line the corresponding coherences
for the case of maximally pure states (λ=1).

To the best of our knowledge, our observations re-
port for the first time the on-demand direct generation
of highly-pure optical quantum states in the photon-
number basis. Such photon-number quantum superpo-
sitions were demonstrated for microwave photons, us-
ing quantum feedback with Rydberg atoms [45], or
through synthesized methods using a superconducting
phase qubit [46]. Here, the quantum superposition is
directly obtained from the spontaneous emission of a
quantum emitter. This is observed not only in the weak-
excitation regime [35]—i.e., elastic scattering—where the
atomic population nearly vanishes, but also up to popu-
lation inversion. As a result, by adjusting the excitation
pulse area, we can generate quantum superpositions of
zero and one photon with controlled populations. We
note that our measurements provide information of the
purity of the quantum state at the output of the emitter.
Imperfect photon extraction from the device, or losses in
the optical setup have no impact in the presented interfer-
ometric measurements, see Supplementary Information.
In the next part, we study the case of even stronger driv-
ing, under 2π-pulse area, and report on the generation of

a quantum superposition of zero-, one-, and two-photon
Fock-states.

Quantum superpositions up to two photons
Strong driving of the atom has been proposed as a mean
to generate photon-bundles [47], and evidences for two-
photon emission from an artificial atom has been re-
ported recently by coherently driving a charged exciton
at 2π-pulse [41]. The excited state population at 2π-
pulse drive is expected to be zero, unless some relaxation
process takes place during the pulse. In particular, as
long as the driving pulse duration is not infinitely short,
the atom in its excited state shows a non-zero probabil-
ity to undergo spontaneous emission during the pulse. In
such a case, a first photon is spontaneously emitted, and
the probability for a second excitation during the pulse
is non-zero, leading to the emission of a second photon
at the end of the excitation.

The pronounced photon bunching observed at 2π-pulse
excitation with our second device QD2, see Fig. 1d, quan-

tified by g
(2)
2π (0)=2.98±0.11, shows that its emission at

A=2π contains non-zero two-photon terms. The gener-
ated light wavepacket is then composed by zero-, one- and
two-photon Fock-states (higher-number terms are neg-
ligible when the excitation pulse-length is significantly
shorter than the spontaneous emission time [41]). We
now argue that the generated state contains quantum co-
herences in the photon-number basis. Indeed, the exper-
imental setup depicted in Fig. 2a allows to quantify the
photon-number populations—including the two-photon
component—and degree of purity in this basis.

We learned, from Eq. 1, that the counts of a single de-
tector at the output of the path-unbalanced MZI inter-
ferometer carry information on the quantum coherence
between the zero and one-photon Fock states. If we now
consider the coincidence counts from the two output de-
tectors as well, we show that we can obtain information
on the purity in the number basis up to two photons.
In general, we can extend the previous analysis and con-
sider an input state ρS now containing terms up to the
|m〉 Fock-state. We consider a state with the same gen-
eral form as before, i.e., ρS=λρpure+(1−λ)ρmixed, in a
simplified picture where the state impurity is described
through a single parameter λ, reducing here all coher-
ences in the same way. Within such framework, it can
be shown, see Supplementary Information, that the de-
tected single-click count rates Nc,d at the interferometer
outputs c and d, see Fig. 2a, read

Nc,d =
1

2
[〈n〉 ± C1 cos(φ)] , (2)

where 〈n〉=
∑m
n npn is the system mean photon-number,

and C1=λ2
(∑m

n

√
npnpn−1

)2
is a first-order coherence

term, with the summation indices hereafter from 0 to
m, and λ accounts for the photon-number purity. The
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FIG. 3. Quantum superposition of vacuum, one, and two photons. a Normalised single counts nc as the phase φ
freely evolves in time. b Coincidence rate at zero delay evolving in time (full data was taken during 1500 s), cycling twice per
unit of interferometric phase cycle ∆φ=2π—i.e., showing phase super-resolution. c Normalised time-correlated coincidences
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for the same Fock-state populations {pn} in the cases of maximally pure, i.e., λ=1 (blue dashed line), and classical statistical
mixtures, i.e., λ=0 (gray dashed line). e Populations {pn} and purity P of the emitted state at A=2π.

coincidence rate (at zero delay) follows

C(0) =
1

8
[〈n(n−1)〉 − C2 cos(2φ)] , (3)

with 〈n(n−1)〉=
∑m
n n(n−1)pn the non-

normalised second-order correlation function, and

C2=λ2
(∑m

n

√
n(n− 1)pnpn−2

)2
a coherence term

of second-order. In virtue of Eqs. 2 and 3, we ob-
tain the normalised output coincidences at zero delay
C̄(0)=C(0)/ (NcNd) = 1

2g
(2)(0) (1−v2 cos 2φ) /

(
1−v21 cos2 φ

)
,

where g(2)(0)=〈n(n−1)〉/〈n〉2 is the normalised
second-order correlation function of the input state,
v1=C1/〈n〉 is the single detector counts visibility, and
v2=C2/〈n(n−1)〉 the coincidences visibility. See that
Eq. 3 shows oscillations modulated at twice the phase-
dependence of Eq. 2: coherences in the photon-number
allow phase super-resolving interferometry.

The state generated at 2π-pulse driving contains
up to two-photon terms. In which case we ob-
tain v1=λ2p1

(
p0+2

√
2p0p2+2p2

)
/ (p1+2p2), v2=λ2p0,

and g(2)(0)=2p2/ (p1+2p2)
2
. Thus, by measuring v1,

v2, g(2)(0), and taking into account normalisation
p0+p1+p2=1, we univocally determine p0, p1, p2, and λ.
Figures 3a, 3b show respectively our measurements for
nc=Nc/〈n〉= (1+v1 cosφ) /2, and coincidences propor-
tional to C(0)∝ (1−v2 cos(2φ)) with a rate specific to the

losses of our setup. Figure 3c shows our obtained time-
correlated coincidence measurements C̄(∆t). As pre-
dicted, the coincidences at zero delay C̄(0) oscillate with
2φ—with minima (maxima) of coincidences occurring for
φ=0 (φ=π/2). The full phase span for C̄(0) (modulo π)
is shown in Fig. 3d. In the case of fully mixed (pure)
states in the photon-number basis, i.e., λ=0 (λ=1), os-
cillation visibilities in the coincidence-counts fully vanish
(maximally oscillate), see dashed grey (dot-dashed blue)
curve in Fig. 3d.

We extract v1=0.192±0.008, v2=0.452±0.038, which

together with the measured value of g
(2)
2π (0)=2.98±0.11,

see Fig. 1d, and the normalisation of probabilities, re-
sults in the distribution {pn, λ}, with p0=0.838±0.012,
p1=0.051±0.002, p2=0.111±0.010, and λ=0.734±0.025.
The generation of light states with p2>p1 is observed with
charged excitons under a strong 2π-pulse drive of the QD,
see Methods. The state ρ2πS contains zero, one and two
photons, with a quantum state purity of P=0.870±0.024,
see Fig. 3(e). Note that the above theoretical analysis for
2π-pulse driving does not account for the effect of limited
photon indistinguishability (M<1). Accordingly, the re-
ported purity contains both the photon-number purity
and indistinguishability imperfections, thus representing
a lower bound for the photon-number purity alone.

This state, with p2>p1, incidentally resembles other
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quantum states of interest. The obtained pho-
ton distribution {p2πn } presents a statistical fidelity
Fcat=

∑
n

√
p2πn p

cat
n to {pcatn }, the probability distribu-

tion of an even “Schrödinger-cat” state |cat〉∝|α〉+|−α〉,
with |α〉 a coherent state, of Fcat=0.974±0.016 for a
small cat state with |α|2=0.5. Thus, by simply driving a
charged quantum dot with 2π-pulses, we are able to gen-
erate other photonic states that may find applications in
coherent-state driven quantum computation [48, 49] and
quantum metrology [50].

Conclusions
Quantum states with a high degree of purity are essential
in all quantum-enhanced technologies. Optical quantum
technologies have so far exploited various degrees-of-
freedom, such as time-frequency, angular momentum,
or polarisation [1, 2]; but not the photon-number due
to the absence of suitable sources. Our work demon-
strates that state-of-the-art semiconductor QD emitters
not only provide high purity in the frequency basis
but also non-classical photon-number superpositions
on-demand. We are now able to generate highly-pure
light wave-packets with tuneable zero- and one-photon
components. Other non-classical states can be also
generated by adjusting the coherent excitation pulse
duration and intensity, as shown here driving the atom
at 2π−pulse. We believe that the generation of quantum
superpositions of photon-numbers opens new exciting
routes for optical quantum technologies. For instance,
we now can exploit the interference of these novel
photonic states, potentially impacting on the complexity
of existing quantum-enhanced protocols, such as in
quantum computing, or quantum walks.
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METHODS
Sample The microcavity samples were grown by molec-
ular beam epitaxy. A λ-GaAs cavity is surrounded by a
bottom and a top mirror made of 29 and 14 pairs of
GaAs/Al0.9Ga0.1As, respectively. The mirrors are grad-
ually n-doped and p-doped in order to tune the quantum
dot transition through the confined Stark effect. The
cavities are centered on the quantum dots using the in-
situ optical lithography technique [39]. Then the sam-
ple is etched and standard p-contacts are defined on a
large frame (300×300 µm2) connected to the circular
frame around the micropillar. A standard n-contact is
defined on the sample back surface. A neutral exciton
is coupled to the cavity mode for QD1. For the op-
tical measurements, the polarisation of the laser is set
so that the fine-structure splitting results to emission in
crossed-polarisation, see ref. [38]. A positively-charged
exciton is coupled to the cavity mode for QD2, and in
this case the circular-polarisation and optical transition
rules naturally allows obtaining a signal in the crossed-
polarisation configuration. The generation of pure co-
herent superpositions of zero and one photon has been
observed for half a dozen devices, based either on neu-
tral or charged exciton transitions, when exciting below
π-pulse. The generation of light states with p2>p1, on the
other hand, is only observed with charged excitons in the
present experimental configuration. Indeed, in a crossed-
polarisation collection scheme, the neutral exciton spon-
taneous emission is time delayed by the fine structure
splitting [38], preventing an efficient re-excitation within
the same pulse.

Time-tagged correlation measurements Simulta-
neous acquisition of single counts and double coinci-
dences are recorded by measuring the photon count-rate
and photon event time-tags in the output detectors (Si
avalanche photodiodes) of the MZI, which are connected
to a computer-controlled HydraHarp 400 autocorrelator.

Under free evolution of the phase φ between the two
arms of the MZI, the total acquisition time per point
has been set to Tacq=310 ms (810 ms) for the results de-
scribed in Fig. 2 (Fig. 3), with an integration time for the
photon time-tags of TTT=200 ms (500 ms). Given the rel-
atively fast acquisition of experimental points, the phase
φ remains approximately unchanged during each acquisi-
tion run. The measurement protocol for each data point
runs as follows: the Hydraharp autocorrelator reads the
laser clock signal (24.6700± 0.0026 ns), a period of time
which serves as a reference to determine the photon time
tags of the detected events (accumulated during TTT);
consecutively, during the interval Tacq−TTT, the coun-
trates in the APDs are averaged, from where the phase φ
is eventually obtained, see Supplementary Information.

Data analysis The outcome of the time-tagged mea-
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surements renders the countrates and two-photon coinci-
dences as function of time (the total integration time is in
the order of 10-15 minutes for a given pulse area and rela-
tive photon polarisation in the MZI). From the oscillation
of the single counts, an intensity-to-phase mapping or-
ganises the phase-dependent two-photon coincidences as
function of the relative phase φ. We use the normalised
intensity counts, e.g., nc, to assign a corresponding φ
value for each given acquisition time-bin. For example,
at a given time-bin, the nc values that are maximum,
minimum, or equal to nd, are mapped to phases φ equal
to 0, π, or π/2, respectively. See Supplementary Infor-
mation for further explanations.
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SUPPLEMENTARY INFORMATION

SIMULATION OF THE EMISSION PROCESS

Here we present the model used to compute the quan-
tum state of the emitted field. For the device used in
the experiment, the cavity relaxation rate reads κ =
400 ± 100 µeV while the light-matter coupling constant
equals g = 20 ± 5 µeV (Weak coupling regime). In this
case the cavity mode can be adiabatically eliminated and
the medium is modeled as a two-level system (TLS) cou-
pled to a waveguide, a 1D atom [44]. The TLS sponta-
neous emission rate γ accounts for the Purcell enhance-
ment induced by the weak coupling to the cavity. Due
to the interaction with the solid-state environment, the
TLS also undergoes pure dephasing with a typical rate
γ∗.

The QD is pumped with a pulsed laser, resonant with
the QD transition. The pump is modeled by a classical
field containing nin photons per pulse on average. The
Hamiltonian of the system in the referential rotating at
the pump frequency writes

Ĥ = i~Ω(t)(σ − σ†) (4)

where Ω(t)=
√
ninγξ(t) is the classical Rabi fre-

quency and the temporal profile of the pulse
ξ(t) is a normalized Gaussian function: ξ(t) =(

4 ln(2)

πτ2

)1/4

exp(−t2/τ28 ln(2)). The lowering operator

is denoted σ=|g〉〈e|. The dynamics of the QD is ruled
by the Lindbladt Master equation:

ρ̇ = − i
~

[
Ĥ, ρ

]
+Dγ,σ[ρ] +Dγ∗/2,σz [ρ] (5)

where σz=
[
σ†, σ

]
and D are super-operators defined as

Dα,A[ρ] =
α

2

(
2AρA† −A†Aρ− ρA†A

)
(6)

Finally, the polarization of the collected light is orthog-
onal to the polarization of the the incident laser light,
such that the output field aout solely depend on the TLS
dipole:

aout =
√
γσ (7)

The Lindbladt equation is time-integrated, giving ac-
cess to the total number of emitted photons Nout during
the process and the second-order autocorrelation func-
tion C(0):

Nout =

∫
dtTr

[
ρ(t)a†outaout

]
(8)

C(0) =

∫
dtdτTr

[
ρ̃(t, τ)a†outaout

]
(9)

with:

ρ̃(t, τ) = U(t, t+ τ)aoutρ(t)a†outU
†(t, t+ τ) (10)

where U(t1, t2) is an evolution operator, that satisfies
ρ(t) = U(t0, t)ρ(t0)U†(t0, t).

From these parameters we easily deduce the Fock
states populations:

p0 = 1−Nout +
C(0)

2
, (11)

p1 = Nout − C(0), (12)

p2 =
C(0)

2
. (13)

The description of the eventual loss of purity induced
by pure dephasing would require to model the complete
1D atom (i.e., the TLS coupled to an infinite amount of
photonic modes) coupled to a pure dephasing reservoir,
which is beyond the scope of the present paper. Instead,
we make the assumption that the QD emits pure pho-
tonic states |ψa〉 and |ψb〉 (See main text and below). In
this simplified model, the pure dephasing events mostly
impact the time evolution of the TLS population, hence
the relative populations of the Fock states.

Experimental imperfections are modeled in an effective
manner. Reduced indistinguishability between the inter-
fering photons due to pure dephasing and/or differences
in the temporal profiles of the emitted photons give rise
to a reduction of the overlapping factor M (See main text
and below). Reduced purity due to decoherence in the
Fock space basis is taken into account by the factor λ
(See main text and below).

MODELLING INTERFERENCES FOR PURE
INDISTINGUISHABLE SUPERPOSITIONS OF

FOCK-STATES

In this section we present a simple model describing
the photon interference taking place in the FBSHOM (de-
fined in the Fig. 2 of the main text) of the MZI between
quantum states of light in a coherent superposition in the
photon-number basis. Here we ignore the temporal struc-
ture of the field emitted by the QD and treat the input
and output ports of the BS as effective modes a, b, c, d,
respectively. This allows to directly calculate the inter-
ference of the two input states, |ψa〉 and |ψb〉, according
to the beam splitter transformations.

This basic model allows in principle computing Nc,d
and C(0) between arbitrary photon-number superposi-
tion input states |ψa〉 and |ψb〉, directly interfering in
a beam-splitter. The general expression of the two dif-

ferent pure states is |ψa〉=
∑ma
n=0

√
pane

iαn (a†)n√
n!
|0a〉 and

|ψb〉=
∑mb
n=0

√
pbne

i(βn+nφ) (b
†)n√
n!
|0b〉, with

∑ma,b
n=0 p

a,b
n =1,

considering different maximal number of photons ma,b
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and different relative phases among Fock terms αn and
βn for each input state. Note that the |ψb〉 state acquires
an additional phase φ, emulating its passage through one
of the arm of the MZI. Assuming that the QD is emitting
for each laser pulse the same kind of state |ψ〉, we take
ma = mb and αn=βn.

Under such conditions, we write the initial input state
as |ψin〉=|ψa〉 ⊗ |ψb〉 and we apply the transformation
of a balanced beam splitter on the creation operators
a†, b† following a†=

(
c†+d†

)
/
√

2 and b†=
(
c†−d†

)
/
√

2.
The final output state |ψout〉 contains all the information
to calculate the Nc,d and C(0). The expressions for single
detector counts, simultaneous two detector coincidence
counts and visibility of single detector counts read,

Nc,d =
∑
nc,d

nc,d|〈nc,d|ψout〉|2 (14)

C(0) =
∑
nc,md

ncmd|〈ncmd|ψout〉|2 (15)

v = max
φ

Nc −Nd
Nc +Nd

(16)

Then, the normalised simultaneous two detector coin-
cidence counts that we measure after the MZI, C(0), is
obtained following C(0)=C(0)/(NcNd). The normalised
single counts in detectors c, d will be obtained by simply
dividing each expression by the total amount of single
detector counts Nc+Nd. We now restrict the study to
the N=1, 2 cases describing our experiments, for an ar-
bitrary relative phase αn between the Fock terms in each
input state.

Vacuum and one-photon

In the first case up to N=1 photons, the two input
states take the form |ψa〉=

(√
p0+
√
p1e

iα1a†
)
|0a〉 and

|ψb〉=
(√
p0+
√
p1e

i(α1+φ)b†
)
|0b〉. The expression of the

output state resulting from the interference of |ψa〉 and
|ψb〉 is explicitly written in the next equation:

|ψout〉 = p0|0, 0〉+
p1√

2
ei(2α1+φ) (|2, 0〉 − |0, 2〉)

+
√

2p0p1e
i(α1+

φ
2 )

(
cos

φ

2
|1, 0〉 − i sin

φ

2
|0, 1〉

)
(17)

For the sake of clarity, we have removed the explicit
indication of the output modes c and d in the Fock-
states, so that |nc,md〉≡|n,m〉. It is worth mentioning
that the well known NOON state, 1/

√
2 (|2, 0〉 − |0, 2〉),

is retrieved when p0 = 0. Instead, if p0 6= 0 a term with
photon states |1, 0〉 and |0, 1〉 appear (see second line in
Eq. 17), which produces the oscillation of single counts
as function of the MZI phase φ, reported in Fig. 2 of the
main text. In this case, and following Eq. 14, the visibil-
ity of the normalised single detector counts nc,d is v=p0,
(where obviously C(0)=0) and, as we can see, there is no
influence of α1 in the observed oscillation of the single de-
tector counts. For this reason, our measurements of sin-
gle detector counts and two detector coincidence counts
at the output of the MZI do not allow to retrieve infor-
mation about the α1 phase value of the emitted states of
light.

In the particular case of interfering two states of su-
perposition of vacuum and one photon, but with differ-
ent phases α1, β1, then the normalised single detection
counts read nc,d=(1±p0 cos(α1−β1−φ))/2. Therefore, a
finite relative phase α1−β1 would be observed as an ad-
ditional phase in the oscillation of nc,d as function of φ.

Vacuum, one, and two photons

In a second case regarding up to N=2 pho-
tons, we consider two input states given by
|ψa〉=

(√
p0+
√
p1e

iα1a†+
√
p2e

iα2(a†)2/
√

2
)
|0a〉 and

|ψb〉=
(√
p0+
√
p1e

i(α1+φ)b†+
√
p2e

i(α2+2φ)(b†)2/
√

2
)
|0b〉,

which have identical {pn} distributions. The resulting
state |ψout〉 of the interference takes a expression given
by:

|ψout〉 = p0|0, 0〉+
√

2p0p1e
i(α1+

φ
2 )
(
|1, 0〉 cos

φ

2
− i|0, 1〉 sin φ

2

)
+

p1√
2
ei(2α1+φ)(|2, 0〉 − |0, 2〉)

+
√
p0p2e

i(α2+φ)
(

(|0, 2〉+ |2, 0〉) cosφ− i
√

2|1, 1〉 sinφ
)

+

√
p1p2

2
ei(α1+α2+

3φ
2 )
(

(
√

3|3, 0〉 − |1, 2〉) cos
φ

2
+ i(
√

3|0, 3〉 − |2, 1〉) sin
φ

2

)
+
p2
4
ei2(α2+φ)

(√
6|0, 4〉 − 2|2, 2〉+

√
6|4, 0〉

)
(18)

Let us consider first that α2=2α1; this renders a visi- bility and double coincidence rate of:



11

v1 = p1
p0 + 2p2 + 2

√
2p0p2

p1 + 2p2
, (19)

C(0) =
p2
4

(1− p0 cos(2φ)) . (20)

It is worthy to note that in this case, the oscillation
of the single detection counts will be observed (v1 6= 0)
only if p1 > 0. The overall behaviour of v1 shows that
the increase of vacuum is transformed in an increase of
the oscillation visibility. It can be shown that in the par-
ticular case of up to two photons, and in the generalised
case of up to m photons, one can rewrite Nc,d and C(0)
in the form of Eqs. 2,3 in the main text.

Finally, let us consider that α1 and α2 have nonzero
values in the states with up to N=2 photons. Now the
visibility v1 takes a modified form from that given in Eq.
19 (in particular, note the new term cos(2α1 − α2)):

vα1 = p1
p0 + 2p2 + 2

√
2p0p2 cos(2α1 − α2)

p1 + 2p2
(21)

Equation 21 shows that α2 6=2α1 reduces the visibility.
It can be demonstrated that, in this case, C(0) takes the
same form as the one shown in Eq. 20 under the condition
α2=2α1.

EXPERIMENTAL IMPERFECTIONS

As mentioned above, two kinds of experimental imper-
fections are considered: decoherence in the Fock-state
basis or in the spectral basis, that are respectively quan-
tified by the coherence damping factor λ<1 and the finite
overlap between photonic states M<1. This finite over-
lap can be due to spectral decoherence (pure dephasing)
or to the emission of wave-packets that are not identical.

0 + 1 photons decohering in the Fock states basis

It is useful to rewrite Eqs. 14 as Nc = 〈ψout|c†c|ψout〉
as a function of the input state. Introducing the unitarity
matrix U that transforms the input modes a, b into the
output modes c, d of the BS, we have c := ã = U†aU =
(a + b)/

√
2 (resp. d := b̃ = U†bU = (−a + b)/

√
2) and

|ψout〉 = U |ψin〉. Finally,

Nc = 〈ψin|ã†ã|ψin〉 (22)

Nd = 〈ψin|b̃†b̃|ψin〉 (23)

Denoting as |ψain〉=
√
p0|0a〉+

√
p1|1a〉 (resp.

|ψbin〉=
√
p0|0b〉+

√
p1e

iφ|1b〉) the input state in the
a (resp. b) input port, the global input state is a
product |ψin〉=|ψain〉⊗|ψbin〉. By developing, e.g., the
product ã†ã, the interference terms in Nc and Nd (i.e.,

oscillating as a function of φ) are found proportional
to I = 〈ψin|a†b|ψin〉 + cc, where cc stands for complex
conjugate.

The interference term can thus be rewritten as I =
〈ψain|a|ψain〉〈ψbin|b†|ψbin〉 + cc. In view of modeling the
decoherence in the Fock state basis, we now rewrite
〈ψoin|o|ψoin〉=Tr[ρoino], where Tr stands for the trace op-
eration, and ρoin=|ψoin〉〈ψoin| is the density matrix repre-
senting the quantum state in the input port o=a, b:

ρain = p0|0a〉〈0a|+ p1|1a〉〈1a|+
√
p0p1λ|0a〉〈1a|

+ h.c. (24)

ρbin = p0|0b〉〈0b|+ p1|1b〉〈1b|+
√
p0p1λe

iφ|0b〉〈1b|
+ h.c, (25)

where h.c. stands for hermitic conjugate.
Let us consider the term Tr[ρaina]. It reduces to

Tr[ρaina]=〈1a|ρaina|1a〉=〈1a|ρain|0a〉 and is damped with
respect to the ideal case of a pure superposition by a
factor λ. In the same way, the term Tr[ρbinb] is damped
by a factor λ. The decoherence in the Fock state basis
thus leads to a damping of the interference term by a
factor |λ|2, such as v → |λ|2v. The same reasoning can
be extended to superpositions of 0, 1 and 2 photons.

Distinguishable photons

We now model the effect of the distinguishability
of the photons impinging on the BS. Supposing that
the quantum states sent in a and b are pure but
have a temporal structure and correspond to differ-
ent wave packets. The interference term now reads
I=
∫
dt〈ψin|a†(t)b(t)|ψin〉+cc, where we have introduced

o(t) the annihilation of a photon at time t in the
mode o, verifying [o(t), o†(t

′
)]=δ(t−t′). One photon

in the mode o now writes |1o〉=
∫
dtf∗o (t)o†|0〉, where∫

dt|fo(t)|2=1. With these notations, the interference
term can be rewritten I=

∫
dtfa(t)f∗b (t) + cc. Denot-

ing M=|
∫
dtfa(t)f∗b (t)|2 the real number quantifying the

overlap between two photons, we simply find that the dis-
tinguishability of the impinging photons leads to a damp-
ing of the interference term by a factor

√
M , such as

v →
√
Mv. The same effect is reached when the spectral

purity of the two photons is reduced by pure dephasing.
In our experiment, we measured a degree of indis-

tinguishability M=0.903±0.008, see Fig. 4a, for single-
photons emitted ∼12 ns appart from the QD, and when
they are indistinguishable in all other degrees-of-freedom
(polarisation, time of arrival) upon impinging at a beam-
splitter. From this point, we vary their distinguishabil-
ity via tuning their relative polarisations. We measured
the visibility v, as well as the indistinguishability M , as
function of the angle θ between the interfering polari-
sations (θ=0 for parallel, and θ=π/2 for orthogonal po-
larisations) for various pulse areas, see Fig. 4b,c. These
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FIG. 4. Probing photon distinguishability. a Indistinguishability, M=0.903±0.008, measured in a Hong-Ou-Mandel setup,
as explained in the main text, for single-photons emitted with ∼12 ns separation. b Single detector countrate visibility in terms
of the polarisation angle θ of interfering photons, measured for pulse areas A=0.14π, 0.39π, 0.61π, 0.76π. c Indistinguishability
measured for the same values of θ and pulse areas used in b. Note that, for a given angle θ, the indistinguishability remains
the same across all pulse areas. In b, c, the solid lines are fits to the experimental data according to the equations described
in the main text.

measurements are used for displaying the behaviour of v
in terms of M shown in Fig. 2d of the main text.

ROLE OF OPTICAL LOSSES

Here we show that optical losses in the experimental
setup have no impact on the observations reported in
the main text. To illustrate this, we drive the QD with a
pulse area of A=0.7π, and compare measurements with
different amounts of losses.

Figure 5a shows the single detector countsNc (red) and
Nd (blue) measured through our MZI interferometer with
its nominal optical transmission, leading to ∼300kHz of
total single-photons (black). At this point, we intro-
duce extra losses to modify the measured countrates for
at least one order-of-magnitude, resulting in about ∼10
times less signal. Figure 5b displays the normalised sin-
gle detector counts nc before and after the extra losses
are introduced, thus evidencing that optical losses have
no impact on the observed visibilities.

From this, we deduce that our measurements contain
information on the photonic state prior to any element
acting as optical loss, thus at the level of the emitter.

TIME-TO-PHASE MAPPING

Here we describe how we obtained the interferometric
phase φ from the raw measured countrates freely evolv-
ing in time. As an example, we take the measurements
of nc,d for a pulse area A=0.39π, see Fig. 6a,b. An inten-
sity binning of the data, see Fig. 6c, d, allows to assign
a one-to-one correspondence between intensity bins and
phase bins, thus obtaining the corresponding values of φ
(modulo π) at each instant of time.

Similarly, the raw measurements taken at 2π-pulse
area follow the same analysis, see Fig. 7. Here, we moni-
tor single detector, see Fig. 7a,b, and coincidence counts
simultaneously, see Fig. 7c. Each time-bin obtained from
the single counts is assigned to one phase-bin. Finally,
this information is used to obtain the phase-resolved co-
incidence measurements, see Fig. 7d.
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FIG. 5. Role of losses. a Countrates in each detector (red, blue), and their sum (black) as function of time for a pulse area
A=0.7π. The countrates evolve in time as they depend on a freely evolving phase φ(t). b Normalised single detector counts
nc, with its oscillation visibility remaining unchanged when introducing extra optical losses.
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FIG. 6. Retrieving phase values. a Single detector countrates Nc (blue), Nd (red), and their sum (black) for a pulse area
A=0.39π, used to obtain the normalised counts nc,d shown in b. We select 20 intensity bins (c), and assign to each a phase
value between φ=0 and φ=π (d).

FIG. 7. Phase-resolved coincidence detection. a Single detector countrates (blue, red), and their sum (black) for a pulse
area A=2π. b The corresponding normalised ηc. c Two-photon countrates accumulated in a 2 ns window for multiple τ delays
between detected events, evolving during the same time-lapse in a. d Phase-resolved normalised coincidences obtained from
the time-to-phase mapping described in Fig. 6.
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