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Introduction

Unwanted vibrations due to Limit Cycle Oscillations (LCO) generated by dynamic instabilities are encountered in a numerous industrial applications. Dry friction systems are good examples of these systems [START_REF] Chevennement-Roux | Flexible Wiper System Dynamic Instabilities: Modelling and Experimental Validation[END_REF]; [START_REF] Sinou | Mode coupling instability in frictioninduced vibrations and its dependency on system parameters including damping[END_REF]). They undergo dynamic instabilities related to the friction. A way to explain these instabilities is the so-called sprag-slip mechanism and more generally the mode-coupling phenomenon. In most self-excited friction system, the instability is due to mode-coupling phenomenon [START_REF] Fritz | Investigation of the relationship between damping and mode-coupling patterns in case of brake squeal[END_REF]; [START_REF] Oden | Models and computational methods for dynamic friction phenomena[END_REF]) which is under consideration in this paper. Moreover, several papers as D 'Souza and Dweib (1990); [START_REF] Eriksson | Friction behaviour and squeal generation of disc brakes at low speeds[END_REF]; [START_REF] Hoffmann | Effects of damping on modecoupling instability in friction induced oscillations[END_REF] showed that the well-known two degrees of freedom Hultèn's model [START_REF] Hultén | Friction phenomena related to drum brake squeal instabilities[END_REF][START_REF] Hultén | Brake squeal -a self-exciting mechanism with constant friction[END_REF]) is an useful way to investigate the mode-coupling instability. After an exponential transient growth of its amplitude, the unstable friction system saturates to the LCO that may affect their efficiency and the user comfort because of the generation of squeal noise [START_REF] Kinkaid | Automotive disc brake squeal[END_REF]; [START_REF] Wang | Noise performance improvements and tribological consequences of a pad-on-disc system through groove-textured disc surface[END_REF]). In recent years, particular attention has been paid to understand the mechanisms generating noise and to predict it in probabilistic approach incorporating uncertainty in the model parameters [START_REF] Tison | Improvement in the predictivity of squeal simulations: Uncertainty and robustness[END_REF]; [START_REF] Lü | Brake squeal reduction of vehicle disc brake system with interval parameters by uncertain optimization[END_REF]; [START_REF] Renault | Experimental investigations for uncertainty quantification in brake squeal analysis[END_REF]). In fact, uncertainty might have a large effect on the performance of the friction system. Developing strategies to control instabilities is therefore crucial. The classical example from mechanical engineering has been the addition of a vibration absorber to the main system.

Over the past decade, vibrations mitigation using Nonlinear Energy Sinks (NESs) has been a major interest in different engineering applications. The NESs are strongly nonlinear vibration absorber whose operation is relies on the concept of Targeted Energy Transfer (TET). TET have been studied a lot, for example in their seminal paper, [START_REF] Vakakis | Energy pumping in nonlinear mechanical oscillators: Part II -Resonance capture[END_REF] analyzed TET in terms of resonance capture. Moreover, it has been shown that the NESs are very efficient for vibration mitigation [START_REF] Vakatis | Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems[END_REF]) and noise reduction [START_REF] Bellet | Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber[END_REF]). Depending on the type of the nonlinearity, the NESs can be classified as a cubic NESs (the most common NESs), a vibro-impact NESs [START_REF] Gendelman | Analytic treatment of a system with a vibroimpact nonlinear energy sink[END_REF]), a piece-wise NESs [START_REF] Lamarque | Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink[END_REF]) or a rotational NESs [START_REF] Sigalov | Resonance captures and targeted energy transfers in an inertially-coupled ro-tational nonlinear energy sink[END_REF]. In this paper, the cubic NESs are considered. Because this type of nonlinearity, NESs can adjust their frequency to that of the primary system subject to unwanted vibrations. The NESs can therefore dissipate energy over a wide range of frequencies. In the review paper, [START_REF] Lee | Passive non-linear targeted energy transfer and its applications to vibration absorption: A review[END_REF] discus the recent efforts to passively mitigate unwanted vibrations from a primary structure to NESs by utilizing TET.
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NESs are also used in the context of instability mitigation. They allow to mitigate or even suppress the instability and to enlarge the area of stability of a primary system. The possible mitigation of the LCO of a Van der Pol oscillator using NESs is demonstrated numerically in [START_REF] Lee | Suppression of limit cycle oscillations in the van der Pol oscillator by means of passive non-linear energy sinks[END_REF] and a theoretical method allowing the prediction of the regime has been proposed in [START_REF] Gendelman | Bifurcations of self-excitation regimes in a Van der Pol oscillator with a nonlinear energy sink[END_REF]. Lee et al. (2007a,b) demonstrated numerically and experimentally that NESs can be effectively used to perform aeroelastic instability suppression. The authors observed the four typical steady-state regimes resulting of the NESs coupling: complete suppression, mitigation through periodic response, mitigation through strongly modulated response and no suppression of the instability. These results have been proved theoretically by an asymptotic analysis by Gendelman et al. (2010). [START_REF] Bergeot | Analysis of steady-state response regimes of a helicopter ground resonance model including a non-linear energy sink attachment[END_REF]Bergeot et al. ( , 2017a) observed these regimes to perform the capacity of NESs to control helicopter ground resonance instability. In this paper, following [START_REF] Bergeot | Asymptotic analysis of passive mitigation of dynamic instability using a nonlinear energy sink network[END_REF], the four typical regimes are classified into two categories depending on whether the NESs mitigate or not the instability and therefore separating mitigated situations from unmitigated situations. In recent work by the authors (Bergeot et al. (2017b)), the effect of using NESs to control mode coupling instability in a friction system have been studied. To achieve that, the Hultèn's model is coupled to two NESs. Again the regimes described above have been observed and authors proposed analytical approach which allows to explain and predict some them. The difficulties encountered to differentiate, in the parameters space, mitigated situations from unmitigated situations have been solved in [START_REF] Bergeot | Steady-state regimes prediction of a multi-degree-of-freedom unstable dynamical system coupled to a set of nonlinear energy sinks[END_REF]. It has been shown that the transition from mitigated regimes to unmitigated regimes with respect to a parameter variation can involve a discontinuity in the steady-state amplitude profiles. This makes the behavior of the system extremely sensitive to design parameters. As, in the friction systems, the parameters as the friction coefficient and the damping coefficient can undergo a large dispersion, the efficiency of the NESs may be more or less high depending on the values of the uncertain parameters. A slight variation of the value of an uncertain parameter may lead a strong change in the dynamical behavior of the primary system coupled with NESs. Thus, the parametric uncertainties may have a strong influence on the propensity to be in a mitigated regime, in others words, the Propensity to undergo a Harmless Steady-State regime (PHSSR). Hence, it becomes necessary to take into account these uncertainties in the study of the dynamical behavior of the system.

Several probabilistic approaches are used for propagating uncertainties in a deterministic model (DM) of a mechanical system and for evaluating the statistical characteristics or/and the distribution law of a quantity of Interest (QoI) which is a response from the DM. A review on the numerical methods for stochastic prediction can be found in [START_REF] Schuëller | Computational stochastic mechanics -recent advances[END_REF], or more recently in [START_REF] Nouy | Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations[END_REF].

Monte Carlo (MC) method is a well-known technique in this field [START_REF] Fishman | Monte carlo: concepts, algorithms, and applications[END_REF]) and often used as a reference. However, it may require a huge number of DM evaluations (i.e. high computational cost). Methods such as the generalized Polynomial Chaos (gPC) and the Multi-Element generalized Polynomial Chaos (ME-gPC), have been developed as a less costly alternative to the MC approach. These methods expand the quantity of interest of the DM in series of polynomials of uncertain variables. The coefficients of the expansion, i.e. the gPC coefficients, are deterministic. They are the unknowns of the problem and therefore must be evaluated, using either intrusive or non-intrusive methods. In the intrusive method, modifications of DM are requested to determine the gPC coefficients which may be inconvenient in a industrial context. The non-intrusive strategy only requires a number of simulations of DM to obtain the gPC coefficients, this approach is used in this paper. The gPC has been used to perform stochastic analysis of the dynamic behavior of friction systems in [START_REF] Sarrouy | Piecewise polynomial chaos expansion with an application to brake squeal of a linear brake system[END_REF]. For instance, [START_REF] Nechak | Non-intrusive generalized polynomial chaos for the robust stability analysis of uncertain nonlinear dynamic friction systems[END_REF] studied the stability of a break system using the indirect Lyapunov approach associated with a non-intrusive gPC. Uncertainties due to friction in gear system have been investigated using the gPC in [START_REF] Guerine | A polynomial chaos method for the analysis of the dynamic behavior of uncertain gear friction system[END_REF]. Moreover, the ME-gPC is shown to be very efficient to predict the friction-induced vibrations in a nonlinear uncertain dry friction system [START_REF] Nechak | A polynomial chaos approach to the robust analysis of the dynamic behaviour of friction systems[END_REF][START_REF] Nechak | Prediction of random self friction-induced vibrations in uncertain dry friction systems using a multi-element generalized polynomial chaos approach[END_REF]. More recently in [START_REF] Trinh | Stability analysis of a clutch system with multi-element generalized polynomial chaos[END_REF], the ME-gPC has been used to perform stability analysis of a clutch system, a significant reduction of the computational cost in comparison with the standard gPC has been highlighted.

As described above, TET and NESs have been studied extensively in a deterministic context but there is very little works performing stochastic approach. In [START_REF] Gourdon | Nonlinear energy sink with uncertain parameters[END_REF], by means gPC approach the effects on the NESs behavior during instationary regimes in a two DOF academic system are analyzed by introducing uncertain parameters to verify the robustness of the TET when parameters are not well known. In [START_REF] Sapsis | Effect of stochasticity on targeted energy transfer from a linear medium to a strongly nonlinear attachment[END_REF] a TET problem from a linear medium to a nonlinear attachment is studied in the presence of stochasticity. The approach leads to a stochastic differential equation which is numerically solved. The analysis reveals that in presence of uncertain parameters the optimal TET regimes, predicted in a deterministic context, are preserved and even enhanced because of the interaction between nonlinearity and stochasticity. [START_REF] Cataldo | Free vibrations of an uncertain energy pumping system[END_REF] studied the TET robustness considering a one linear DOF coupled to one NESs with three uncertain parameters. Moreover, [START_REF] Boroson | Optimization under uncertainty of parallel nonlinear energy sinks[END_REF] investigated the optimization of multiple NESs configured in parallel taking into account uncertainties in the design optimization of parallel NESs. Therefore no study have been achieved to analyze the dynamical behavior of an unstable friction system with NESs taking account uncertain parameters.

As explained above, a friction system coupled to NESs may be in a regime with harmful Limit cycle Oscillation or not according to the values of the uncertain parameters. Moreover, the transition from the mitigated regimes to the unmitigated regimes as a function of these uncertain parameters implies a discontinuity in the steady-state amplitude profiles (the amplitude will be the QoI in this paper). The objective of this paper is therefore to develop a method to locate this discontinuity in the dynamical behavior of a friction system coupled to two NESs and then to predict, with a low computational cost, the PHSSR, being given the probability density function of the uncertain parameters. The goal is not to obtain an accurate representation of the QoI but to be able to locate the discontinuity. This allows to determine the PHSSR of the system which corresponds to the region of the uncertain parameters space in which the steady-state regime is harmless . For this purpose, an original method based on the ME-gPC will be established and applied on the Hultèn's model coupled to two NESs.

This paper is organized as follows. The gPC and the ME-gPC formalisms are presented in Sect. 2. In Sect. 3, the proposed method, using ME-gPC, to locate a discontinuity in the quantity of interest profile is described. Sect. 4 describes the system under study which consists in the two DOF Hultén's model coupled to two NESs. The possible steady-state regimes resulting of the NESs attachments are presented in Sect. 5. In Sect. 6, the method presented in Sect. 3 is applied to locate the discontinuity in the steadystate amplitude profiles and then to compute PHSSR of the system under study. Moreover, for validation purposes, the method is compared to a reference method. Finally, conclusions perspectives are given in Sect. 7.

Polynomial Chaos theory

Generalized Polynomial Chaos (gPC)

Let β = (β 1 , ..., β r ) the vector of r uncertain physical parameters supposed to be uniformly distributed within a given space ∏ r i=1 [a i , b i ]. Let ξ = (ξ 1 , ..., ξ r ) is the vector of r independent random variables within the space [-1 1] r and linked to β(β 1 , ..., β r ) by

β j (ξ j ) = a j + b j 2 + b j -a j 2 ξ j , (j = 1, . . . , r). (1) 
From the gPC theory [START_REF] Xiu | The wiener-askey polynomial chaos for stochastic differential equations[END_REF]; [START_REF] Cameron | The orthogonal development of nonlinear functionals in series of fourier-hermite functionals[END_REF]; [START_REF] Wiener | The homogeneous chaos[END_REF]), a second order process, so called quantity of Interest (QoI), may be approximated by a truncated orthogonal Legendre polynomial function series as

X(ξ) ≈ Np j=0 xj φ j (ξ), (2) 
where φ j (ξ) are orthogonal polynomials constructed from Legendre polynomials which represent the stochastic part of the process whereas gPC coefficients xj which take into account the deterministic part of the process.

Therefore to obtain the approximated values of the QoI X the coefficients xj of the truncated series Eq. ( 2) must be computed. From [START_REF] Xiu | The wiener-askey polynomial chaos for stochastic differential equations[END_REF], the number of terms N p + 1 is given by the following expression

N p + 1 = (p + r)! p!r! , ( 3 
)
where r is the number of uncertain parameters and p is the order of the gPC.

As mentioned previously, the gPC coefficients can be determined either from intrusive methods or from nonintrusive methods. In this paper, non-intrusive methods are preferred because they are more suitable in an industrial context. Indeed, they do not require to modify the DM of the mechanical system as explained in the previous section; the gPC coefficients are built from a quite number of values of the QoI X, obtained from numerical simulations of the DM of the mechanical system. The non-intrusive method used in this paper is the regression method [START_REF] Berveiller | Stochastic finite element: a non intrusive approach by regression[END_REF]) which requires a minimum of Q = N p simulations to built the coefficients. These Q simulations may be performed at points chosen with the Latin Hypercube Samples (LHS) method [START_REF] Mckay | A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF]) and will be called Numerical Experimental Design (NED) in this paper. In practice, Q = kN p simulations (with k a small integer usually equal to 2, 3 or 4) are used.

Multi-Element Generalized Polynomial Chaos (ME-

gPC) gPC can be interpreted as a polynomial approximation of the QoI depending on ξ. To reduce the approximation error, high polynomial orders may be required. Thus, when the QoI is non linear and the number of uncertain parameters is high, the number of simulations required to calculate the gPC coefficients may be high. Thus, with a high degrees of freedom number DM the calculation cost may be prohibitive. The solution is,therefore, to split ξ into a collection of m non-intersecting elements and to use a low order polynomial approximation on each element. That is basically what the scheme of ME-gPC rely on [START_REF] Wan | An adaptive multi-element generalized polynomial chaos method for stochastic differential equations[END_REF].

The local physical variables

β k j , in each the k th ele- ment ∏ r i=1 [a k i , b k i ], are expressed in terms of independent uniform random variables ξ k j in [-1, 1] r through β k j = b k j + a k j 2 + b k j -a k j 2 ξ k j . (4) 
Consequently, the Legendre polynomials can be exploited.

The gPC can be used locally as follows :

X k ( ξk ) ≈ Np j=0 xk,j φ j ( ξk ). (5) 
where X k ( ξk ) is the random process corresponding to the k th element.

The local mean Xp,k and variance σ 2 p,k approximated in the k th element by the gPC with order p are:

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ Xp,k = xk,0 σ 2 p,k = 1 2 r Np j=1 x2 k,j ⟨φ 2 j ⟩. (6) 
Several criteria have been proposed in the literature for the convergence of the ME-gPC algorithm and they depend on the aim of using the ME-gPC. For this study, the criteria are presented in the next section.

ME-gPC to locate a discontinuity in the quantity of interest

Algorithm

In this section, a method based on ME-gPC to locate a discontinuity in a quantity of Interest (QoI) derived from a deterministic model (DM) of a mechanical system is proposed. The goal is not to obtain an accurate representation of the QoI but to be able to locate the discontinuity, i.e. to know the values of the uncertain parameters for which the discontinuity appears.

The idea of the method is based on the fact that a QoI that contains a discontinuity has a high variance compared to a QoI that does not contain discontinuity. The use of gPC to estimate the variance of the QoI is justified by the fact that the variance of a gPC expansion is estimated directly from the chaos coefficients (Eq. ( 6)) without the need for additional calculations. Moreover, the method consists to determinate the QoI with a low order polynomials in the ME-gPC representation (in this paper, p = 1, 2 and 3). Then, it is assumed that if the discontinuity is in the given element of the stochastic parameters space, the ME-gPC expansion has a large value of the variance.

From these considerations a ME-gPC algorithm is built, in which at each step and for each element the variance σ 2 p,k , computed directly from the gPC coefficients using Eq. ( 6), is compared to a threshold θ 1 . Then, if for a given element k

σ 2 p,k ≥ θ 1 , (7) 
it is assumed that the discontinuity is in the element. The latter is divided by two in each direction of the stochastic space in order to identify more accurately the localization of the discontinuity. On the contrary, if the condition Eq. ( 7) is not satisfy the element k is supposed not to contain a discontinuity, this information is save and the element is removed from the algorithm. θ 1 is choosed so that the variance of the element which contains the discontinuity always satisfy the condition Eq. ( 7). Therefore, two other criteria to stop the algorithm are introduced. The first is based on the element size. Thus, after defining the minimum element size J min as follows

J min = θ 2 J 0 (8)
where J 0 is the size of the initial element corresponding to the stochastic parameters space and θ 2 is a percentage. The element is actually divided into two equal parts in each direction of the stochastic space if the following condition

J i ≥ J min (9)
holds, where J i represents the size of the elements at a given iteration i, it is the same for all elements because at each iteration the division is performed in each direction of the stochastic. If conditions (9) does not hold the algorithm is stopped and we assume that the discontinuity in the QoI profile is in remaining elements. In Sect. 6, a comparison is performed with a reference method which needs N simulations of the DM to locate a discontinuity in the QoI profile. Therefore, the proposed method is effective if the number of numerical simulations N ′ required to obtain the gPC coefficients in all elements is smaller than N . Consequently, N ′ should verify

N ′ ≤ N. ( 10 
)
Otherwise the algorithm is stopped and, in general, the discontinuity in the QoI profile has not been located. The algorithm is summarized in Fig. 1. At the first step, only one element is present (i.e. the whole stochastic parameter space) and for a given iteration the parameter space has been divided into K elements during the previous iterations. At each iteration, the gPC coefficients are computed for the K elements and we check if the computational cost of this is larger than the one of the reference (Eq. ( 10)). If that is the case the algorithm is stopped and in general the discontinuity in the QoI profile has not been located. If Eq. ( 10) holds, we check the variance of each of the K elements (Eq (8)). If it is smaller than the threshold θ 1 , the element is removed from the algorithm. If it is larger, it is kept and K ′ elements remain at the exit of the loop in k. If Eq. ( 9) does not hold, the algorithm is stopped and we assume that the discontinuity in the QoI profile is in the K ′ remaining elements. If Eq. ( 9) holds, then each of the K ′ elements is divided into two in each direction of the stochastic parameters space, then a new iteration begins with K = 2 r K ′ .

The Numerical Experimental Design (NED)

In the context of the ME-gPC method mQ is the maximum necessary number of simulations required to built the gPC coefficients in the case of m elements. In practice it is possible to reduce this number. Indeed, the points used to calculate the gPC coefficients of an element at the i th iteration can be used to estimate the gPC coefficients for the elements of the (i + 1) th iteration generated from the split of the element of the i th iteration. The set of points at (i + 1) th iteration for an element therefore is equal to Q ′ = Q inherited + Q added where Q inherited is the number of inherited points from the i th iteration and which belong to the considered element and Q added is new set of points Consider the iteration in which the stochastic parameter space is divided into elements, (for the first iteration we have ).

i th K K = 1

-Build the PC expansion for the each elements ( ), ( simulations of the DM are needed to built the PC expansions).

-Calculate the variance and the size of the elements.

k k = 1,…, K N′ K σ 2 p,k J i N′ ≤ N Consider the first element ( ). k = 1 σ 2 p,k ≥ θ 1 J i ≥ J min
Each of the elements is divided into 2 in each direction of the stochastic parameters space.

K′

and .

i = i + 1 K = 2 r K′ k = K STOP The discontinuity has been located.
Remove the element from the algorithm.

k th k = k + 1
We assume that the discontinuity in the QoI profile is in remaining elements.

K′

STOP

The discontinuity has not been located in general.

elements remain at the exit of the loop in .

K′ k

Figure 1: Algorithm of the proposed method based on the ME-gPC.

generated Q added < Q. Thus, the number of simulations is equal to the sum of the added points for all elements.

The method is illustrated in Fig. 2 for r = 1, p = 1 and k = 2 (N p = 2, Q = 4). In this work, the NED is built by this method. 

System under study

The primary system

The well-known two degree-of-freedom (DOF) Hultèn's analytical model [START_REF] Hultén | Friction phenomena related to drum brake squeal instabilities[END_REF][START_REF] Hultén | Brake squeal -a self-exciting mechanism with constant friction[END_REF]) is used in this paper. This phenomenological simple model is able to reproduce the typical behavior of friction system, especially the mode-coupling phenomenon. The model is composed of a mass m held against a moving strip. The contact between the mass and the strip is modeled by two plates supported by two different springs each comprising a linear component (k 1 and k 2 ), and a cubic component (k N L 1 and k N L

2 ) as shown in Fig. 3. Damping is integrated as indicated in Fig. 3 introducing the damping coefficients c 1 and c 2 . It is assumed that there is always sliding contact between the mass and the strip. The friction coefficient is assumed to be constant and the strip moves at a constant velocity. The direction of friction force is assumed to do not change because the relative velocity between the strip speed and dx 1 dt or dx 2 dt is supposed to be positive. The Coulomb's law is assumed for the description of the friction contact: the tangential friction force F T is proportional to the normal force F N , i.e. F T = µF N , where µ is the friction coefficient. The equations of motion can be written as follows

m d 2 x 1 dt 2 + c 1 dx 1 dt + k 1 x 1 -µk 2 x 2 + k N L 1 x 3 1 -µk N L 2 x 3 2 = 0 (11a) m d 2 x 2 dt 2 + c 2 dx 2 dt + k 2 x 2 + µk 1 x 1 + µk N L 1 x 3 1 + k N L 2 x 3 2 = 0. (11b) 
Eq. ( 11) which is defined as the primary system in this study.

• µ 

• µ c 1 c 2 k 2 , k N L 2 k 1 , k N L 1 x 2 x 1 m NES 1 NES 2 (a) NES 1 c h k h , k N L h h 1 (b) NES 2 c h k h , k N L h h 2 (c)

Mechanical model with Nonlinear Energy Sinks

Two strongly cubic and identical NESs with masses m h in kg, damping coefficients c h and a cubic stiffness k N L h , are attached on the primary system in an ungrounded configuration (see Fig. 3).

Introducing the NESs displacements h 1 (t) and h 2 (t) in Eq. ( 11), the equations of motion of the coupled system are

d 2 x 1 dt 2 + η 1 ω 1 dx 1 dt + ω 2 1 x 1 -µω 2 2 x 2 + ϕ 1 x 3 1 -µϕ 2 x 3 2 + η h ω 1 dx 1 dt - dh 1 dt + ξ h (x 1 -h 1 ) + ϕ h (x 1 -h 1 ) 3 = 0 (12a) d 2 h 1 dt 2 + η h ω 1 dh 1 dt - dx 1 dt + ξ h (h 1 -x 1 ) + ϕ h (h 1 -x 1 ) 3 = 0 (12b) d 2 x 2 dt 2 + η 2 ω 2 dx 2 dt + ω 2 2 x 2 + µω 2 1 x 1 + µϕ 1 x 3 1 + ϕ 2 x 3 2 + η h ω 1 dx 2 dt - dh 2 dt + ξ h (x 2 -h 2 ) + ϕ h (x 2 -h 2 ) 3 = 0 (12c) d 2 h 2 dt 2 + η h ω 1 dh 2 dt - dx 2 dt + ξ h (h 2 -x 2 ) + ϕ h (h 2 -x 2 ) 3 = 0, (12d) 
where the following notation has been introduced: the relative damping coefficient

η i = c i √ mk i , the natural pulsa- tions ω i = k i m, ϕ i = k N L i m (with i = 1, 2), = m h m, ξ h = k h m, η h = c h √ mk 1 and ϕ h = k N L h m.
Because strongly cubic NESs are assumed k h ≪ ϕ h . In theoretical and experimental works studying systems with NESs, the mass ratio is in general in a range 0.01-0.1 and this convention will be followed in current work.

Preliminary results: vibratory levels and possible steady-state regimes

In this section, the role of the NESs attachments to control the amplitudes of the LCOs is presented. Bergeot et al. (2017b) have been shown that, as usual in the context of LCOs mitigation by means of NES, four main types of steady-state regimes generated when two NESs is attached on the primary system: complete suppression of the instability, mitigation through Periodic Response (PR), mitigation through Strongly Modulated Response (SMR) or no mitigation.

An illustration of these different steady-state regimes is presented in Fig. 4 which shows the displacements x 1 (t) with respect to times with and without the NESs attachments. The regimes described above are classified into two categories depending on whether the NESs act or not and therefore if the instability is mitigated or not. The first ones are mitigated regimes which group the complete suppression (see. In the studies presented in the following sections the QoI under consideration is the amplitude of the variables x 1 in the system with NES (Eq. ( 12)) and within steadystate regime, it is denoted A wN ES x1 and defined as follows

A wN ES 1 = max x SSR 1 (t) -min x SSR 1 (t) 2 , ( 13 
)
where x SSR 1 (t) is the times series of the variables x 1 obtained from the numerical integration of the coupled system (Eq. ( 12)) within the steady-state regime. For comparison the amplitude A woN ES 1 corresponding to the system without NES (see Eq. ( 11)) is also defined.

In practice, the time integration of the system ((12) resp. ( 11)) is done between t b = 0 and t e = 4 seconds and the amplitude A wN ES 1 (resp. A woN ES

1

) is computed in the interval [0.9t e t e ] in which we assume that the system has reached its steady-state regime.

The amplitudes A wN ES 1 and A woN ES 1 are plotted as a function of the friction coefficient µ in Fig. 5 for the following set of parameters ω 1 = 2π100 (rad⋅s -1 ), ( 14a)

ω 2 = 2π85 (rad⋅s -1 ), (14b) η 1 = 0.02, (14c) 
η 2 = 0.06, (14d)

ϕ 1 = 10 5 (N⋅kg -1 ⋅m -3 ), ( 14e 
)
ϕ 2 = 0 (N⋅kg -1 ⋅m -3 ), (14f) = 0.05, (14g) 
ξ h = 0.001 (N⋅kg -1 ⋅m -1 ), ( 14h 
)
η h = 0.02, (14i) 
ϕ h = 1.4 ⋅ 10 5 (N⋅kg -1 ⋅m -3 ). ( 14j 
)
The figure shows clearly the four steady-state regimes described in the last section and highlight a jump (or discontinuity) in the amplitude profile A wN ES 1 . This discontinuity corresponds, when µ increases, to the transition from SMR to no suppression regime and separates mitigated regimes and unmitigated regimes. The mitigation limit of the friction parameter is denoted by µ ml , this is the value of µ at the jump.

The following section is devoted to the determination of the mitigation limit considering that two parameters of the model can be uncertain : µ the friction coefficient and η 1 the damping coefficient in the direction x 1 . To achieve that, A wN ES 1 is described using ME-gPC and then, because A wN ES 1 can have a discontinuity in its profile, the method described in Sect. 3 is used.

Application and results

In this section, the method presented in Sect. 3 is applied to locate the discontinuity in the steady-state amplitude profile A wN ES 1 (see Eq. ( 13) and Fig. 5) of the system under study Eq. ( 12). Then the Propensity of the system to undergo a Harmless Steady-State Regime (PHSSR), defined below, is computed. Finally, for validation purposes, the method is compared to a reference method.

The uncertain parameters are supposed to be driven by a uniform distribution law. Two parameters are assumed to be uncertain: the friction coefficient µ and the damping coefficient η 1 . First only µ is considered uncertain and then both of the parameters are supposed to be uncertain.

Propensity to undergo Harmless Steady-State Regimes

The discontinuity in the A wN ES 1 profile is located in the uncertain parameters space V and then the part of V in which the steady-state regimes are harmless is denoted V H . The system is in a harmless steady-state regime if it is not in a no suppression regime (see Sect. 5), i.e.

• it would be stable even without the NESs, or • it is in complete suppression regime, or • it is in mitigated regime (PR or SMR). 14) is used.

In Fig. 5, all the steady-state regimes situated on the left of the mitigation limit µ ml are harmless.

Generally, if β = (β 1 , ..., β r ) is the vector of r uncertain physical parameters under consideration and f (β) the associated probability density function. Then, the PHSSR is defined as follows

PHSSR = V H f (β)dβ, (15) 
which becomes for uniformly distributed parameters within the space

∏ r i=1 [a i , b i ] PHSSR = V H 1 ∏ r i=1 (b i -a i ) dβ. (16) 
In the next sections, the results are presented in terms of computational cost on the one hand and in terms of accuracy compared to the reference method on the other hand. To this end, some quantities are introduced for each simulation:

• the ratio θ 1 (Max Ref -Min Ref ) to know how much the variance criterion θ 1 varies compared to the reference (Max Ref and Min Ref represent respectively the maximum and the minimum of the amplitude found by the reference method).

• the number of simulations to estimate the computational cost of the method.

• the PHSSR value from the method estimated using the upper bounds of the last intervals find by the algorithm presented in Fig. 1.

• the relative error E PHSSR of the PHSSR obtained with the presented ME-gPC based method (PHSSR ME-gPC ) and the PHSSR obtained with the reference method (PHSSR Ref ), it is defined as follows

E PHSSR = PHSSR ME-gPC -PHSSR Ref PHSSR Ref × 100. ( 17 
)
In the case with one uncertain parameter, the last interval found the algorithm of the method is denoted

I ml = [µ 1 , µ 2 ].
This interval contains the jump (i.e. µ ml ∈ I ml ). Then, the midpoint µ mid of the interval is calculated giving two criteria. The first is the relative error E between the midpoint of the interval and reference value of the mitigation limit found by the reference:

E = µ mid -µ Ref ml µ Ref ml × 100 (18) 
where µ Ref ml is the mitigation limit found by the reference method. The second is the relative difference D between the midpoint and the bounds of the interval:

D = µ 1 -µ mid µ mid × 100. (19) 
In the case of two uncertain parameters, when the algorithm stopped several subplanes [µ

(k) 1 , µ (k) 2 ] × [η 1 (k) 1 , η 1 (k) 2 ]
(with k = 1, . . . , K) containing the discontinuity frontier are found (see black line in Fig. 8). The relative differences D µ and D η1 between the midpoints µ mid and η 1mid in each direction and the corresponding bounds are computed as

D µ = µ (k) 1 -µ (k) mid µ (k) mid × 100, (k = 1, . . . , K) (20) 
and

D η1 = η 1 (i) 1 -η 1 (i) mid η 1 (i) mid × 100, (k = 1, . . . , K). (21) 
Note that because in each direction for all k = 1, ⋯, K, µ

(k) 1 -µ (k) mid and η 1 (i) 1 -η 1 (i)
mid are constant, D µ and D η1 are also constant.

One uncertain parameter: the friction coefficient µ

In this section only the friction coefficient µ is uncertain and it is assumed that it lies within the interval [a, b] = [0, 0.4].

Reference study

As a reference, the DM is simulated for N = 100 linearly increasing values of µ from 0 to 0.4 and considering the set of parameters. ( 14). The interval of µ for which a jump in the amplitude profile is observed is located and we define the mitigation limit as the upper bound of the interval. In this case, the mitigation limit is µ ml = 0.2061 leading, through ( 16), to a PHSSR equals to 51.52%.

Results

Now the method presented in Sect. 3 is used to estimate the mitigation limit and the PHSSR. The QoI (A wN ES 1 ) estimated by the ME-gPC based method is built through the procedure presented in Sect. 2.2.

First, Fig. 6 shows the successive iterations of the proposed algorithm (see Fig. 1), the gPC order is p = 1 and the following criteria are used: θ 1 = 0.7 ⋅ 10 -3 and θ 2 = 1%. The curve in black is the amplitude obtained by the reference and the color curves are the amplitude obtained from the gPC in each of the K elements of the considered iteration. At the first iteration (Fig. 6(a)) we have only one element and, because Eqs. ( 7)-( 9)-( 10) hold, it is divided into two parts shown in Fig. 6(b). In the latter, Eqs. ( 7)-( 9)-(10) hold again in both elements and therefore they are divided and we move to the third iteration (Fig. 6(c)). At this iteration the variance of the leftmost element does not satisfy Eq. ( 7) and it is therefore removed from the algorithm and the corresponding amplitude is not depicted on the figure. The three other elements are divided into two parts and we move to next iteration and so on until the algorithm stops the eighth iteration because Eq. ( 9) is not satisfied anymore. We assume that the mitigation limit µ ml is within the last element in which the amplitude is depicted in orange in Fig. 6(h).

Then, in order to find the right combination between the values of the different criteria and the computational cost, several simulations have been made with different value of θ 1 and of the order p of the gPC. The NED is built each time according to the method described in Sect. 3.2.

The results are presented in Tab. 1 which shows the comparison between the reference and the proposed method for θ 2 = 1%, p = 1, 2 and 3 and for different value of the criterion θ 1 .

Because the algorithm of the ME-gPC based method is always stopped due to the criterion θ 2 , the width of the last interval I ml is the same whatever the value of the criterion θ 1 and of the gPC order p. The last interval found is I ml = [0.2031, 0.2063] that it can be defined also as I ml = 0.2047± 0.78%. The size of this interval represent 0.8% of the main interval. It is well below θ 2 = 1%. The midpoint value is compared with the mitigation limit found by the reference method, the relative error is equal to 0.44%. The PHSSR is equal to 51.57% which leads to a relative error compared with the reference method equals to 0.68%. Note that when the N ′ = 100 the algorithm is stopped because of (10) and the mitigation limit is not located. For all the cases, the maximum value of the variance criterion θ 1 represents the value which corresponds to a change of criteria that stops the algorithm (i.e. after this value, the criterion θ 1 starts to stop the algorithm). This value is the optimal because it corresponds to the smallest possible value of the number of simulations to locate the mitigation limit. According to these last values (θ 1 = 17 ⋅ 10 -3 for p = 1, θ 1 = 0.9 ⋅ 10 -3 for p = 2 and θ 1 = 0.4 ⋅ 10 -3 for p = 3), the number of simulations is lower when p = 1 than in the case when p = 2 and p = 3 and the PHSSR remains constant because the intervals I ml are the same for each case.

In order to obtain a reduced calculation cost, it is possible to increase the value of the threshold for second criterion θ 2 . For example, in the case that θ 2 = 5%, the last found interval is I ml = [0.2, 0.2125]. The size of the interval increases compared to the case where θ 2 = 1% which increases the relative error E PHSSR from 1.21% in the case that θ 2 = 1% to 4.25%. The number of simulations reduces and becomes equal to 40 for θ 1 = 10 ⋅ 10 -3 and p = 1.

As a conclusion, the best choice for the value of the gPC order appears to be p = 1. Indeed, because the accuracy of the PHSSR prediction is fixed by the choice of the criterion θ 2 , the prediction with p = 1 is as accurate as for larger order (p = 2 or 3) but with a smaller number of simulations. 

p = 1 p = 2 51.57 p = 3 E PHSSR (%) p = 1 p = 2 0.097 p = 3 I ml p = 1 p = 2 [0.2031, 0.2063] p = 3 µ mid p = 1 p = 2 0.2047 p = 3 E (%) p = 1 p = 2 0.68 p = 3 D (%) p = 1 p = 2
0.78 p = 3 6.3. Two uncertain parameters: the friction coefficient µ and the damping coefficient η 1 In this section, the parameter η 1 is also assumed to be uncertain and driven also by an uniform distribution within [0.1 , 2.1]. η 2 is fixed and it is equal to 0.09.

Reference study

The reference is obtained in a similar way as in Sect. 6.2.1. The 2-dimensional parameter space is divided into N = 100 × 100 = 10000 squares between µ = 0 and µ = 0.4 and η 1 = 0.1 and η 1 = 2.1, again considering the parameters ( 14), except for η 1 and η 2 . Fig. 7 shows a 3D graph containing the N = 10000 realizations of the amplitude of displacement A wN ES 1 , as a function of the two uncertain parameters. The discontinuity in the amplitude surface is visible and allows us to define, as previously in Sect. 6.2.1, the mitigation limit as the projection of it in the (µ, η 1 )plane. This projection is depicted in Fig. 8 together with lines corresponding to the Hopf bifurcation points with and without NESs 1 . The four regimes described in Sect. 5 and depicted in the case with only one uncertain parameter in Fig. 5 are shown here.

1 As usual, the bifurcation point of the system without NESs (resp. with NESs) are found by looking the sign of the eigenvalues real parts of the system (11) (resp. ( 12)).

In the (µ, η 1 )-plane, the mitigation limit can be defined as the curve η 1,ml as a function of µ. Then, through (16), we obtain

PHSSR = 0.4 0 η 1,ml (µ) 0.1 1 0.4 × 2 dµdη 1 = ∫ 0.4 0 [η 1,ml (µ) -0.1] dµ 0.8 . ( 22 
)
The integral in the numerator of ( 22) is evaluated numerically and we find a PHSSR equal to 92.16%.

Results

The evolution of the mitigation limit is now determined by the proposed method in the considered stochastic space. As in the case of one uncertain parameter, the NED is built according to the method described in Sect. 3.2. Overall, the number of simulations needed to obtain the prediction of the PHSSR is logically larger than in the case of a single uncertain parameter.

Tab. 2 shows the comparison with the reference method for p = 1, 2 and 3 and for θ 2 = 1%. The relative differences D µ and D η1 are equal to 1.2% and 12.45% respectively. As previously, increase the value of θ 1 reduces the number of simulations to reach 2122 simulations when θ 1 = 29 ⋅ 10 -3 and p = 1, 4195 simulations when θ 1 = 5 ⋅ 10 -3 and p = 2 and 7293 simulations where θ 1 = 1 ⋅ 10 -3 and p = 3. Whatever the value of p, the PHSSR, calculated from the lower bounds (the red line in Fig. 9), is equal to 92.39% with a relative error E PHSSR equals to 0.24%.

As an example of the effect of increasing θ 2 , results for θ 2 = 5% were obtained. Only the main conlculions are here given. The relative error E PHSSR increases compared to the value obtained for θ 2 = 1% and it reaches E PHSSR = 1.31%. The number of simulations decreases and becomes equal to 448 for θ 1 = 20 ⋅ 10 -3 and p = 1.

As a conclusion, p = 1 is again the best choice for the gPC order in terms of accuracy and computational cost. The difficulty of the method is to find the value of θ 1 which allows to identify the jump and at the same time to get the number of simulations as low as possible.

Conclusion

In the present work, mitigation of friction-induced vibrations in a 2-DOF friction system with uncertain parameters by means of Nonlinear Energy Sinks (NESs) has been considered. In this kind of unstable systems coupled to NESs, a discontinuity is often observed in the evolution of the Limit Cycle Oscillation (LCO) amplitude with respect to a chosen bifurcation parameter. This discontinuity represents the transition from mitigated regimes (called harmless steady-state regimes because having small amplitudes) to unmitigated regimes (with large LCO amplitudes).

The aim was to develop an original method which allows to predict these discontinuities and therefore to estimate the Propensity of the system to undergo a Harmless Steady-State Regime (PHSSR) in taking into account the probability distribution of uncertain bifurcation parameters.

The method is an algorithm based on the Multi-Element generalized Polynomial Chaos (ME-gPC) and consists of dividing, at each iteration, the stochastic parameters space and building a metamodel of the LCO amplitude in each subspace. A variance threshold and an subspace size criterion are used to know in which subspace is the discontinuity and to stop the algorithm respectively. When the algorithm is stopped the discontinuities are localized in the last small subspaces of the stochastic parameters space.

The results can be summarized as follows: firstly, because the objective of this study is to predict the discontinuity and not to obtain an accurate representation of the
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 2 Figure 2: Mapping the LHS sample to the design space in iteration 2 with r = 1, p = 1, k = 2 and Q = 4. ( * ) Inherited points from the element [0 , 0.4] of the iteration 1. (•) New LHS points at the first element [0 , 0.2] of the iteration 2. ( ) New LHS points at the second element [0.2 , 0.4] of the iteration 2.
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 3 Figure 3: The mechanical model. (a) Mechanical system with NESs; (b) Zoom on the NES 1 ; (c) Zoom on the NES 2 .

  Fig. 4(a)), PR (see. Fig. 4(b)) and SMR (see. Fig. 4(c)) regimes. The second is the no mitigation (see. Fig. 4(d)) regime.
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 4 Figure 4: Comparison between time serie x 1 (t) resulting from the numerical integration of the friction system with and without NESs. (a) Complete suppression, µ = 0.16; (b) Mitigation: PR, µ = 0.18; (c) Mitigation: SMR, µ = 0.2; (d) No mitigation, µ = 0.22. The set of parameters Eq. (14) is used.
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 5 Figure 5: Amplitudes A wN ES 1

Figure 6 :

 6 Figure 6: The evolution of the decomposition algorithm. The friction coefficient µ is uncertain, θ 1 = 0.7 ⋅ 10 -3 , θ 2 = 1% and p = 1. (a) Iteration 1; (b) Iteration 2; (c) Iteration 3; (d) Iteration 4; (e) Iteration 5; (f) Iteration 6; (g) Iteration 7; (h) Iteration 8.
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 7 Figure 7: Amplitude A wN ES 1as a function of the friction coefficient µ and the damping coefficient η 1 . ω 1 = 2π100, ω 2 = 2π85, ϕ 1 =10 0000, ϕ 2 = 0, = 0.05, ξ h = 0.001, η h = 0.02 and ϕ h = 140000.
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 8 Figure 8: Evolution of the mitigation limit and Hopf bifuraction points with and without NESs using the 10 000 simulations of the reference. (blue line) Hopf Bifurcation point without NES (η 1 wo b ); (red line) Hopf Bifurcation point with NES (η 1 w b ); (black line) Mitigation limit (η 1ml ). 1: Linear stability without NESs; 2: Linear stability with NESs; 3: Mitigated regimes (PR or SMR); 4: No mitigated regimes.
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 9 Figure9: The mitigation limit in the (µ, η 1 )-plane. The reference is the black line. The last K ′ elements which remain at the end of the algorithm presented in Fig.1are depicted by gray squares. The left side of the squares (the red line) constitutes the mitigation limit. The parameters µ and η 1 are uncertain , θ 1 = 1 ⋅ 10 -3 , θ 2 = 1% and p = 1.

Table 1 :

 1 comparison of the results between the reference method and the ME-gPC based method, θ 2 = 1% and the parameter µ is uncertain.

	ME-gPC

Table 2: Comparison of the results between the reference method and the ME-gPC based method, θ 2 = 1% and the parameters µ and η 1 are uncertain.

ME-gPC

Variance criterion 

LCO amplitude, a polynomial chaos expansion with an order p = 1 must be chosen. Indeed, the prediction with p = 1 is as accurate as for larger order (p = 2 or 3) but with a smaller number of simulations needed to obtain the prediction (i.e. the computational cost). Secondly, for given value of the subspace size criterion, the variance threshold must be chosen as large as possible to ensure en accurate prediction of the PHSSR with a minimum of computational cost. Finally, decreasing the criterion of the subspace size reduces the relative error of the PHSSR compared to the reference but increase the number of simulations.

As a conclusion, the proposed ME-gPC based method proved its capacity to predict the PHSSR and it is less time consuming than the reference method. There is a good compromise between computational cost and accuracy.

As a perspective of this work, the method could be used associated with optimization tools in a strategy of robust design of dry-friction system attached to several NESs by increasing in parallel the number of uncertain parameters.