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Prediction of the dynamic behavior of an uncertain friction system coupled to
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Abstract

In this paper, a friction system with uncertain parameters and coupled to two Nonlinear Energy Sinks (NESs) is
studied. The dispersion of some physical parameters due to their uncertain nature may generate a dynamic instability
which leads to a Limit Cycle Oscillations (LCO) causing a propensity of squeal. The concept of Targeted Energy
Transfer (TET) by means of NESs to mitigate this squealing noise is proposed. In this kind of unstable dynamical
system coupled to NES, the transition from harmless regimes (i.e. the LCO is mitigated) to harmful regimes (i.e. the
LCO is not mitigated) as a function of the uncertain parameters implies a discontinuity in the steady-state amplitude
profiles. In this context, a Multi-Element generalized Polynomial Chaos (ME-gPC) based method is proposed to locate
this discontinuity (called mitigation limit) and therefore to predict the Propensity of the system to undergo an Harmless
Steady-State Regime (PHSSR). The results obtained with this original method lead to a good compromise between
computational cost and accuracy in comparison with a reference method.

Keywords: Friction-induced vibration, Nonlinear Energy Sink, Uncertainty, Robust modeling, Multi-Element
generalized Polynomial Chaos

1. Introduction

Unwanted vibrations due to Limit Cycle Oscillations
(LCO) generated by dynamic instabilities are encountered
in a numerous industrial applications. Dry friction systems
are good examples of these systems (Chevennement-Roux
et al. (2007); Sinou and Jézéquel (2007)). They undergo
dynamic instabilities related to the friction. A way to ex-
plain these instabilities is the so-called sprag-slip mecha-
nism and more generally the mode-coupling phenomenon.
In most self-excited friction system, the instability is due
to mode-coupling phenomenon (Fritz et al. (2007); Oden
and Martins (1985)) which is under consideration in this
paper. Moreover, several papers as D’Souza and Dweib
(1990); Eriksson and Jacobson (2001); Hoffmann and Gaul
(2003) showed that the well-known two degrees of freedom
Hultèn’s model (Hultén (1997, 1993)) is an useful way to
investigate the mode-coupling instability. After an expo-
nential transient growth of its amplitude, the unstable fric-
tion system saturates to the LCO that may affect their ef-
ficiency and the user comfort because of the generation of
squeal noise (Kinkaid et al. (2003); Wang et al. (2016)). In
recent years, particular attention has been paid to under-
stand the mechanisms generating noise and to predict it
in probabilistic approach incorporating uncertainty in the
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model parameters (Tison et al. (2014); Lü and Yu (2014);
Renault et al. (2016)). In fact, uncertainty might have
a large effect on the performance of the friction system.
Developing strategies to control instabilities is therefore
crucial. The classical example from mechanical engineer-
ing has been the addition of a vibration absorber to the
main system.

Over the past decade, vibrations mitigation using Non-
linear Energy Sinks (NESs) has been a major interest in
different engineering applications. The NESs are strongly
nonlinear vibration absorber whose operation is relies on
the concept of Targeted Energy Transfer (TET). TET have
been studied a lot, for example in their seminal paper,
Vakakis and Gendelman (2001) analyzed TET in terms of
resonance capture. Moreover, it has been shown that the
NESs are very efficient for vibration mitigation (Vakatis
et al. (2008)) and noise reduction (Bellet et al. (2010)).
Depending on the type of the nonlinearity, the NESs can
be classified as a cubic NESs (the most common NESs),
a vibro-impact NESs (Gendelman (2012)), a piece-wise
NESs (Lamarque et al. (2011)) or a rotational NESs Sigalov
et al. (2012). In this paper, the cubic NESs are consid-
ered. Because this type of nonlinearity, NESs can adjust
their frequency to that of the primary system subject to
unwanted vibrations. The NESs can therefore dissipate
energy over a wide range of frequencies. In the review pa-
per, Lee et al. (2008) discus the recent efforts to passively
mitigate unwanted vibrations from a primary structure to
NESs by utilizing TET.
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NESs are also used in the context of instability miti-
gation. They allow to mitigate or even suppress the insta-
bility and to enlarge the area of stability of a primary
system. The possible mitigation of the LCO of a Van
der Pol oscillator using NESs is demonstrated numeri-
cally in Lee et al. (2006) and a theoretical method al-
lowing the prediction of the regime has been proposed in
Gendelman and Bar (2010). Lee et al. (2007a,b) demon-
strated numerically and experimentally that NESs can be
effectively used to perform aeroelastic instability suppres-
sion. The authors observed the four typical steady-state
regimes resulting of the NESs coupling: complete sup-
pression, mitigation through periodic response, mitigation
through strongly modulated response and no suppression
of the instability. These results have been proved the-
oretically by an asymptotic analysis by Gendelman et al.
(2010). Bergeot et al. (2016, 2017a) observed these regimes
to perform the capacity of NESs to control helicopter ground
resonance instability. In this paper, following Bergeot and
Bellizzi (2018), the four typical regimes are classified into
two categories depending on whether the NESs mitigate or
not the instability and therefore separating mitigated situ-
ations from unmitigated situations. In recent work by the
authors (Bergeot et al. (2017b)), the effect of using NESs
to control mode coupling instability in a friction system
have been studied. To achieve that, the Hultèn’s model is
coupled to two NESs. Again the regimes described above
have been observed and authors proposed analytical ap-
proach which allows to explain and predict some them.
The difficulties encountered to differentiate, in the param-
eters space, mitigated situations from unmitigated situa-
tions have been solved in Bergeot and Bellizzi (2019). It
has been shown that the transition from mitigated regimes
to unmitigated regimes with respect to a parameter vari-
ation can involve a discontinuity in the steady-state am-
plitude profiles. This makes the behavior of the system
extremely sensitive to design parameters. As, in the fric-
tion systems, the parameters as the friction coefficient and
the damping coefficient can undergo a large dispersion, the
efficiency of the NESs may be more or less high depending
on the values of the uncertain parameters. A slight vari-
ation of the value of an uncertain parameter may lead a
strong change in the dynamical behavior of the primary
system coupled with NESs. Thus, the parametric uncer-
tainties may have a strong influence on the propensity to
be in a mitigated regime, in others words, the Propen-
sity to undergo a Harmless Steady-State regime (PHSSR).
Hence, it becomes necessary to take into account these un-
certainties in the study of the dynamical behavior of the
system.

Several probabilistic approaches are used for propagat-
ing uncertainties in a deterministic model (DM) of a me-
chanical system and for evaluating the statistical charac-
teristics or/and the distribution law of a quantity of In-
terest (QoI) which is a response from the DM. A review
on the numerical methods for stochastic prediction can be
found in Schuëller (2001), or more recently in Nouy (2009).

Monte Carlo (MC) method is a well-known technique in
this field (Fishman (1996)) and often used as a reference.
However, it may require a huge number of DM evalua-
tions (i.e. high computational cost). Methods such as
the generalized Polynomial Chaos (gPC) and the Multi-
Element generalized Polynomial Chaos (ME-gPC), have
been developed as a less costly alternative to the MC ap-
proach. These methods expand the quantity of interest
of the DM in series of polynomials of uncertain variables.
The coefficients of the expansion, i.e. the gPC coefficients,
are deterministic. They are the unknowns of the prob-
lem and therefore must be evaluated, using either intru-
sive or non-intrusive methods. In the intrusive method,
modifications of DM are requested to determine the gPC
coefficients which may be inconvenient in a industrial con-
text. The non-intrusive strategy only requires a number
of simulations of DM to obtain the gPC coefficients, this
approach is used in this paper. The gPC has been used
to perform stochastic analysis of the dynamic behavior of
friction systems in Sarrouy et al. (2013). For instance,
Nechak et al. (2013) studied the stability of a break sys-
tem using the indirect Lyapunov approach associated with
a non-intrusive gPC. Uncertainties due to friction in gear
system have been investigated using the gPC in Guerine
et al. (2016). Moreover, the ME-gPC is shown to be very
efficient to predict the friction-induced vibrations in a non-
linear uncertain dry friction system Nechak et al. (2011,
2012). More recently in Trinh et al. (2016), the ME-gPC
has been used to perform stability analysis of a clutch sys-
tem, a significant reduction of the computational cost in
comparison with the standard gPC has been highlighted.

As described above, TET and NESs have been stud-
ied extensively in a deterministic context but there is very
little works performing stochastic approach. In Gourdon
and Lamarque (2006), by means gPC approach the effects
on the NESs behavior during instationary regimes in a two
DOF academic system are analyzed by introducing uncer-
tain parameters to verify the robustness of the TET when
parameters are not well known. In Sapsis et al. (2011) a
TET problem from a linear medium to a nonlinear attach-
ment is studied in the presence of stochasticity. The ap-
proach leads to a stochastic differential equation which is
numerically solved. The analysis reveals that in presence
of uncertain parameters the optimal TET regimes, pre-
dicted in a deterministic context, are preserved and even
enhanced because of the interaction between nonlinearity
and stochasticity. Cataldo et al. (2013) studied the TET
robustness considering a one linear DOF coupled to one
NESs with three uncertain parameters. Moreover, Boro-
son et al. (2017) investigated the optimization of multiple
NESs configured in parallel taking into account uncertain-
ties in the design optimization of parallel NESs. Therefore
no study have been achieved to analyze the dynamical be-
havior of an unstable friction system with NESs taking
account uncertain parameters.

As explained above, a friction system coupled to NESs
may be in a regime with harmful Limit cycle Oscillation
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or not according to the values of the uncertain parame-
ters. Moreover, the transition from the mitigated regimes
to the unmitigated regimes as a function of these uncer-
tain parameters implies a discontinuity in the steady-state
amplitude profiles (the amplitude will be the QoI in this
paper). The objective of this paper is therefore to develop
a method to locate this discontinuity in the dynamical be-
havior of a friction system coupled to two NESs and then
to predict, with a low computational cost, the PHSSR,
being given the probability density function of the uncer-
tain parameters. The goal is not to obtain an accurate
representation of the QoI but to be able to locate the dis-
continuity. This allows to determine the PHSSR of the
system which corresponds to the region of the uncertain
parameters space in which the steady-state regime is harm-
less . For this purpose, an original method based on the
ME-gPC will be established and applied on the Hultèn’s
model coupled to two NESs.

This paper is organized as follows. The gPC and the
ME-gPC formalisms are presented in Sect. 2. In Sect. 3,
the proposed method, using ME-gPC, to locate a disconti-
nuity in the quantity of interest profile is described. Sect. 4
describes the system under study which consists in the two
DOF Hultén’s model coupled to two NESs. The possible
steady-state regimes resulting of the NESs attachments are
presented in Sect. 5. In Sect. 6, the method presented in
Sect. 3 is applied to locate the discontinuity in the steady-
state amplitude profiles and then to compute PHSSR of
the system under study. Moreover, for validation purposes,
the method is compared to a reference method. Finally,
conclusions perspectives are given in Sect. 7.

2. Polynomial Chaos theory

2.1. Generalized Polynomial Chaos (gPC)
Let β = (β1, ..., βr) the vector of r uncertain physical

parameters supposed to be uniformly distributed within a
given space ∏ri=1[ai, bi]. Let ξ = (ξ1, ..., ξr) is the vector of
r independent random variables within the space [−1 1]r

and linked to β(β1, ..., βr) by

βj(ξj) =
aj + bj

2
+

bj − aj

2
ξj , (j = 1, . . . , r). (1)

From the gPC theory (Xiu and Karniadakis (2002);
Cameron and Martin (1947); Wiener (1938)), a second or-
der process, so called quantity of Interest (QoI), may be
approximated by a truncated orthogonal Legendre poly-
nomial function series as

X(ξ) ≈
Np

∑

j=0
x̄jφj(ξ), (2)

where φj(ξ) are orthogonal polynomials constructed from
Legendre polynomials which represent the stochastic part
of the process whereas gPC coefficients x̄j which take into
account the deterministic part of the process.

Therefore to obtain the approximated values of the QoI
X the coefficients x̄j of the truncated series Eq. (2) must be
computed. From Xiu and Karniadakis (2002), the number
of terms Np + 1 is given by the following expression

Np + 1 =
(p + r)!

p!r!
, (3)

where r is the number of uncertain parameters and p is
the order of the gPC.

As mentioned previously, the gPC coefficients can be
determined either from intrusive methods or from non-
intrusive methods. In this paper, non-intrusive methods
are preferred because they are more suitable in an indus-
trial context. Indeed, they do not require to modify the
DM of the mechanical system as explained in the previ-
ous section; the gPC coefficients are built from a quite
number of values of the QoI X, obtained from numeri-
cal simulations of the DM of the mechanical system. The
non-intrusive method used in this paper is the regression
method (Berveiller et al. (2006)) which requires a mini-
mum of Q = Np simulations to built the coefficients. These
Q simulations may be performed at points chosen with the
Latin Hypercube Samples (LHS) method (McKay et al.
(1979)) and will be called Numerical Experimental Design
(NED) in this paper. In practice, Q = kNp simulations
(with k a small integer usually equal to 2, 3 or 4) are used.

2.2. Multi-Element Generalized Polynomial Chaos (ME-
gPC)

gPC can be interpreted as a polynomial approxima-
tion of the QoI depending on ξ. To reduce the approxima-
tion error, high polynomial orders may be required. Thus,
when the QoI is non linear and the number of uncertain
parameters is high, the number of simulations required to
calculate the gPC coefficients may be high. Thus, with a
high degrees of freedom number DM the calculation cost
may be prohibitive. The solution is,therefore, to split ξ
into a collection of m non-intersecting elements and to use
a low order polynomial approximation on each element.
That is basically what the scheme of ME-gPC rely on Wan
and Karniadakis (2005).

The local physical variables βkj , in each the kth ele-
ment ∏ri=1[a

k
i , b

k
i ], are expressed in terms of independent

uniform random variables ξkj in [−1,1]r through

βkj =
bkj + a

k
j

2
+

bkj − a
k
j

2
ξkj . (4)

Consequently, the Legendre polynomials can be exploited.
The gPC can be used locally as follows :

Xk(ξ̄
k
) ≈

Np

∑

j=0
x̄k,jφj(ξ̄

k
). (5)

where Xk(ξ̄
k
) is the random process corresponding to the

kth element.
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The local mean X̂p,k and variance σ2
p,k approximated

in the kth element by the gPC with order p are:

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

X̂p,k = x̄k,0

σ2
p,k=

1

2r

Np

∑

j=1
x̄2k,j⟨φ

2
j ⟩.

(6)

Several criteria have been proposed in the literature
for the convergence of the ME-gPC algorithm and they
depend on the aim of using the ME-gPC. For this study,
the criteria are presented in the next section.

3. ME-gPC to locate a discontinuity in the quan-
tity of interest

3.1. Algorithm
In this section, a method based on ME-gPC to locate a

discontinuity in a quantity of Interest (QoI) derived from
a deterministic model (DM) of a mechanical system is pro-
posed. The goal is not to obtain an accurate representation
of the QoI but to be able to locate the discontinuity, i.e.
to know the values of the uncertain parameters for which
the discontinuity appears.

The idea of the method is based on the fact that a
QoI that contains a discontinuity has a high variance com-
pared to a QoI that does not contain discontinuity. The
use of gPC to estimate the variance of the QoI is jus-
tified by the fact that the variance of a gPC expansion
is estimated directly from the chaos coefficients (Eq. (6))
without the need for additional calculations. Moreover,
the method consists to determinate the QoI with a low
order polynomials in the ME-gPC representation (in this
paper, p = 1,2 and 3). Then, it is assumed that if the
discontinuity is in the given element of the stochastic pa-
rameters space, the ME-gPC expansion has a large value
of the variance.

From these considerations a ME-gPC algorithm is built,
in which at each step and for each element the variance
σ2
p,k, computed directly from the gPC coefficients using

Eq. (6), is compared to a threshold θ1. Then, if for a given
element k

σ2
p,k ≥ θ1, (7)

it is assumed that the discontinuity is in the element. The
latter is divided by two in each direction of the stochastic
space in order to identify more accurately the localiza-
tion of the discontinuity. On the contrary, if the condition
Eq. (7) is not satisfy the element k is supposed not to
contain a discontinuity, this information is save and the
element is removed from the algorithm.

θ1 is choosed so that the variance of the element which
contains the discontinuity always satisfy the condition Eq. (7).
Therefore, two other criteria to stop the algorithm are in-
troduced. The first is based on the element size. Thus,
after defining the minimum element size Jmin as follows

Jmin = θ2J0 (8)

where J0 is the size of the initial element corresponding
to the stochastic parameters space and θ2 is a percentage.
The element is actually divided into two equal parts in each
direction of the stochastic space if the following condition

Ji ≥ Jmin (9)

holds, where Ji represents the size of the elements at a
given iteration i, it is the same for all elements because at
each iteration the division is performed in each direction
of the stochastic. If conditions (9) does not hold the algo-
rithm is stopped and we assume that the discontinuity in
the QoI profile is in remaining elements.

In Sect. 6, a comparison is performed with a reference
method which needs N simulations of the DM to locate a
discontinuity in the QoI profile. Therefore, the proposed
method is effective if the number of numerical simulations
N ′ required to obtain the gPC coefficients in all elements
is smaller than N . Consequently, N ′ should verify

N ′
≤ N. (10)

Otherwise the algorithm is stopped and, in general, the
discontinuity in the QoI profile has not been located.

The algorithm is summarized in Fig. 1. At the first
step, only one element is present (i.e. the whole stochastic
parameter space) and for a given iteration the parameter
space has been divided into K elements during the previ-
ous iterations. At each iteration, the gPC coefficients are
computed for the K elements and we check if the compu-
tational cost of this is larger than the one of the reference
(Eq. (10)). If that is the case the algorithm is stopped
and in general the discontinuity in the QoI profile has not
been located. If Eq. (10) holds, we check the variance of
each of the K elements (Eq (8)). If it is smaller than the
threshold θ1, the element is removed from the algorithm.
If it is larger, it is kept and K ′ elements remain at the exit
of the loop in k. If Eq. (9) does not hold, the algorithm is
stopped and we assume that the discontinuity in the QoI
profile is in the K ′ remaining elements. If Eq. (9) holds,
then each of the K ′ elements is divided into two in each
direction of the stochastic parameters space, then a new
iteration begins with K = 2rK ′.

3.2. The Numerical Experimental Design (NED)
In the context of the ME-gPC method mQ is the maxi-

mum necessary number of simulations required to built the
gPC coefficients in the case of m elements. In practice it
is possible to reduce this number. Indeed, the points used
to calculate the gPC coefficients of an element at the ith

iteration can be used to estimate the gPC coefficients for
the elements of the (i + 1)th iteration generated from the
split of the element of the ith iteration. The set of points
at (i + 1)th iteration for an element therefore is equal to
Q′

= Qinherited +Qadded where Qinherited is the number of
inherited points from the ith iteration and which belong
to the considered element and Qadded is new set of points
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Consider the  iteration in which the stochastic parameter space is 
divided into  elements, 

(for the first iteration we have ).

ith

K
K = 1

- Build the PC expansion for the each  elements ( ), 
 (  simulations of the DM are needed to built the  PC expansions). 

- Calculate the variance  and the size  of the elements.

k k = 1,…, K
N′� K

σ2
p,k Ji

N′� ≤ N

Consider the first element ( ).k = 1

σ2
p,k ≥ θ1

Ji ≥ Jmin

Each of the  elements is divided into 2 in each 
direction of the stochastic parameters space.

K′�

 and .i = i + 1 K = 2rK′�

k = K

STOP 
The discontinuity has 

been located.

Remove the  
element from 
the algorithm.

kth

k = k + 1
We assume that the 

discontinuity in the QoI 
profile is in  remaining 

elements.  
K′�

STOP 
The discontinuity has not 
been located in general.

 elements remain at the 
exit of the loop in .

K′�
k

Figure 1: Algorithm of the proposed method based on the ME-gPC.

generated Qadded < Q. Thus, the number of simulations is
equal to the sum of the added points for all elements.

The method is illustrated in Fig. 2 for r = 1, p = 1 and

k = 2 (Np = 2, Q = 4). In this work, the NED is built by
this method.
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Figure 2: Mapping the LHS sample to the design space in iteration
2 with r = 1, p = 1, k = 2 and Q = 4. (∗) Inherited points from
the element [0 , 0.4] of the iteration 1. (●) New LHS points at the
first element [0 , 0.2] of the iteration 2. (◯) New LHS points at the
second element [0.2 , 0.4] of the iteration 2.

4. System under study

4.1. The primary system
The well-known two degree-of-freedom (DOF) Hultèn’s

analytical model (Hultén (1997, 1993)) is used in this pa-
per. This phenomenological simple model is able to re-
produce the typical behavior of friction system, especially
the mode-coupling phenomenon. The model is composed
of a mass m held against a moving strip. The contact
between the mass and the strip is modeled by two plates
supported by two different springs each comprising a lin-
ear component (k1 and k2), and a cubic component (kNL1

and kNL2 ) as shown in Fig. 3. Damping is integrated as
indicated in Fig. 3 introducing the damping coefficients c1
and c2. It is assumed that there is always sliding contact
between the mass and the strip. The friction coefficient
is assumed to be constant and the strip moves at a con-
stant velocity. The direction of friction force is assumed
to do not change because the relative velocity between the
strip speed and dx1/dt or dx2/dt is supposed to be pos-
itive. The Coulomb’s law is assumed for the description
of the friction contact: the tangential friction force FT is
proportional to the normal force FN , i.e. FT = µFN , where
µ is the friction coefficient. The equations of motion can
be written as follows

m
d2x1
dt2
+ c1

dx1
dt
+ k1x1 − µk2x2 + k

NL
1 x31 − µk

NL
2 x32 = 0

(11a)

m
d2x2
dt2
+ c2

dx2
dt
+ k2x2 + µk1x1 + µk

NL
1 x31 + k

NL
2 x32 = 0.

(11b)

Eq. (11) which is defined as the primary system in this
study.

•µ

•
µ

c1

c2 {
k2, k

NL
2

}

{
k1, k

NL
1

}

x2

x1

m

NES1

NES2

(a)

NES1

ch

{
kh, k

NL
h

}

h1

(b)

NES2

ch

{
kh, k

NL
h

}

h2

(c)

Figure 3: The mechanical model. (a) Mechanical system with NESs;
(b) Zoom on the NES1; (c) Zoom on the NES2.

4.2. Mechanical model with Nonlinear Energy Sinks
Two strongly cubic and identical NESs with massesmh

in kg, damping coefficients ch and a cubic stiffness kNLh ,
are attached on the primary system in an ungrounded con-
figuration (see Fig. 3).

Introducing the NESs displacements h1(t) and h2(t)
in Eq. (11), the equations of motion of the coupled system
are

d2x1
dt2
+ η1ω1

dx1
dt
+ ω2

1x1 − µω
2
2x2 + ϕ1x

3
1 − µϕ2x

3
2+

ηhω1 (
dx1
dt
−

dh1
dt

) + ξh (x1 − h1) + ϕh (x1 − h1)
3
= 0

(12a)

ε
d2h1
dt2
+ ηhω1 (

dh1
dt
−

dx1
dt

) + ξh (h1 − x1) + ϕh (h1 − x1)
3
= 0

(12b)

d2x2
dt2
+ η2ω2

dx2
dt
+ ω2

2x2 + µω
2
1x1 + µϕ1x

3
1 + ϕ2x

3
2+

ηhω1 (
dx2
dt
−

dh2
dt

) + ξh (x2 − h2)
+
ϕh (x2 − h2)

3
= 0

(12c)

ε
d2h2
dt2
+ ηhω1 (

dh2
dt
−

dx2
dt

) + ξh (h2 − x2) + ϕh (h2 − x2)
3
= 0,

(12d)
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where the following notation has been introduced: the rel-
ative damping coefficient ηi = ci/

√

mki, the natural pulsa-
tions ωi =

√

ki/m, ϕi = kNLi /m (with i = 1,2), ε = mh/m,
ξh = kh/m, ηh = ch/

√

mk1 and ϕh = kNLh /m. Because
strongly cubic NESs are assumed kh ≪ ϕh. In theoreti-
cal and experimental works studying systems with NESs,
the mass ratio ε is in general in a range 0.01-0.1 and this
convention will be followed in current work.

5. Preliminary results: vibratory levels and possi-
ble steady-state regimes

In this section, the role of the NESs attachments to
control the amplitudes of the LCOs is presented. Bergeot
et al. (2017b) have been shown that, as usual in the context
of LCOs mitigation by means of NES, four main types of
steady-state regimes generated when two NESs is attached
on the primary system: complete suppression of the insta-
bility, mitigation through Periodic Response (PR), mitiga-
tion through Strongly Modulated Response (SMR) or no
mitigation.

An illustration of these different steady-state regimes
is presented in Fig. 4 which shows the displacements x1(t)
with respect to times with and without the NESs attach-
ments. The regimes described above are classified into two
categories depending on whether the NESs act or not and
therefore if the instability is mitigated or not. The first
ones are mitigated regimes which group the complete sup-
pression (see. Fig. 4(a)), PR (see. Fig. 4(b)) and SMR
(see. Fig. 4(c)) regimes. The second is the no mitigation
(see. Fig. 4(d)) regime.

In the studies presented in the following sections the
QoI under consideration is the amplitude of the variables
x1 in the system with NES (Eq. (12)) and within steady-
state regime, it is denoted AwNESx1

and defined as follows

AwNES1 =

max [xSSR1 (t)] −min [xSSR1 (t)]

2
, (13)

where xSSR1 (t) is the times series of the variables x1 ob-
tained from the numerical integration of the coupled sys-
tem (Eq. (12)) within the steady-state regime. For com-
parison the amplitude AwoNES1 corresponding to the sys-
tem without NES (see Eq. (11)) is also defined.

In practice, the time integration of the system ((12)
resp. (11)) is done between tb = 0 and te = 4 seconds and
the amplitude AwNES1 (resp. AwoNES1 ) is computed in the
interval [0.9te te] in which we assume that the system has
reached its steady-state regime.

The amplitudes AwNES1 and AwoNES1 are plotted as
a function of the friction coefficient µ in Fig. 5 for the

following set of parameters

ω1 = 2π100 (rad⋅s−1), (14a)

ω2 = 2π85 (rad⋅s−1), (14b)
η1 = 0.02, (14c)
η2 = 0.06, (14d)

ϕ1 = 105 (N⋅kg−1⋅m−3), (14e)

ϕ2 = 0 (N⋅kg−1⋅m−3), (14f)
ε = 0.05, (14g)

ξh = 0.001 (N⋅kg−1⋅m−1), (14h)
ηh = 0.02, (14i)

ϕh = 1.4 ⋅ 105 (N⋅kg−1⋅m−3). (14j)

The figure shows clearly the four steady-state regimes
described in the last section and highlight a jump (or dis-
continuity) in the amplitude profile AwNES1 . This discon-
tinuity corresponds, when µ increases, to the transition
from SMR to no suppression regime and separates miti-
gated regimes and unmitigated regimes. The mitigation
limit of the friction parameter is denoted by µml, this is
the value of µ at the jump.

The following section is devoted to the determination
of the mitigation limit considering that two parameters
of the model can be uncertain : µ the friction coefficient
and η1 the damping coefficient in the direction x1. To
achieve that, AwNES1 is described using ME-gPC and then,
because AwNES1 can have a discontinuity in its profile, the
method described in Sect. 3 is used.
6. Application and results

In this section, the method presented in Sect. 3 is ap-
plied to locate the discontinuity in the steady-state ampli-
tude profile AwNES1 (see Eq. (13) and Fig. 5) of the system
under study Eq. (12). Then the Propensity of the system
to undergo a Harmless Steady-State Regime (PHSSR), de-
fined below, is computed. Finally, for validation purposes,
the method is compared to a reference method.

The uncertain parameters are supposed to be driven by
a uniform distribution law. Two parameters are assumed
to be uncertain: the friction coefficient µ and the damping
coefficient η1. First only µ is considered uncertain and
then both of the parameters are supposed to be uncertain.

6.1. Propensity to undergo Harmless Steady-State Regimes
The discontinuity in the AwNES1 profile is located in

the uncertain parameters space V and then the part of V
in which the steady-state regimes are harmless is denoted
VH . The system is in a harmless steady-state regime if it
is not in a no suppression regime (see Sect. 5), i.e.

• it would be stable even without the NESs, or

• it is in complete suppression regime, or

• it is in mitigated regime (PR or SMR).
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(a) (b)

(c) (d)

Figure 4: Comparison between time serie x1(t) resulting from the numerical integration of the friction system with and without NESs. (a)
Complete suppression, µ = 0.16; (b) Mitigation: PR, µ = 0.18; (c) Mitigation: SMR, µ = 0.2; (d) No mitigation, µ = 0.22. The set of parameters
Eq. (14) is used.

Figure 5: Amplitudes AwNES1 and AwoNES1 as a function of the
friction coefficient µ. The set of parameters Eq. (14) is used.

In Fig. 5, all the steady-state regimes situated on the
left of the mitigation limit µml are harmless.

Generally, if β = (β1, ..., βr) is the vector of r uncertain
physical parameters under consideration and f(β) the as-
sociated probability density function. Then, the PHSSR
is defined as follows

PHSSR = ∫
VH

f(β)dβ, (15)

which becomes for uniformly distributed parameters within
the space ∏ri=1[ai, bi]

PHSSR = ∫
VH

1

∏
r
i=1 (bi − ai)

dβ. (16)

In the next sections, the results are presented in terms
of computational cost on the one hand and in terms of
accuracy compared to the reference method on the other
hand. To this end, some quantities are introduced for each
simulation:
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• the ratio θ1/(MaxRef −MinRef) to know how much
the variance criterion θ1 varies compared to the refer-
ence (MaxRef and MinRef represent respectively the
maximum and the minimum of the amplitude found
by the reference method).

• the number of simulations to estimate the computa-
tional cost of the method.

• the PHSSR value from the method estimated using
the upper bounds of the last intervals find by the
algorithm presented in Fig. 1.

• the relative error EPHSSR of the PHSSR obtained
with the presented ME-gPC based method (PHSSRME-gPC)
and the PHSSR obtained with the reference method
(PHSSRRef), it is defined as follows

EPHSSR =

∣PHSSRME-gPC −PHSSRRef∣

PHSSRRef
× 100. (17)

In the case with one uncertain parameter, the last in-
terval found the algorithm of the method is denoted Iml =
[µ1, µ2]. This interval contains the jump (i.e. µml ∈ Iml).
Then, the midpoint µmid of the interval is calculated giv-
ing two criteria. The first is the relative error E between
the midpoint of the interval and reference value of the mit-
igation limit found by the reference:

E =

∣µmid − µ
Ref
ml ∣

µRef
ml

× 100 (18)

where µRef
ml is the mitigation limit found by the reference

method. The second is the relative difference D between
the midpoint and the bounds of the interval:

D =

∣µ1 − µmid∣

µmid
× 100. (19)

In the case of two uncertain parameters, when the algo-
rithm stopped several subplanes [µ

(k)
1 , µ

(k)
2 ]×[η1

(k)
1 , η1

(k)
2 ]

(with k = 1, . . . ,K) containing the discontinuity frontier
are found (see black line in Fig. 8). The relative differ-
ences Dµ and Dη1 between the midpoints µmid and η1mid
in each direction and the corresponding bounds are com-
puted as

Dµ =

∣µ
(k)
1 − µ

(k)
mid∣

µ
(k)
mid

× 100, (k = 1, . . . ,K) (20)

and

Dη1 =

∣η1
(i)
1 − η1

(i)
mid∣

η1
(i)
mid

× 100, (k = 1, . . . ,K). (21)

Note that because in each direction for all k = 1,⋯,K,
µ
(k)
1 −µ

(k)
mid and η1

(i)
1 −η1

(i)
mid are constant, Dµ and Dη1 are

also constant.

6.2. One uncertain parameter: the friction coefficient µ
In this section only the friction coefficient µ is uncertain

and it is assumed that it lies within the interval [a, b] =
[0,0.4].

6.2.1. Reference study
As a reference, the DM is simulated forN = 100 linearly

increasing values of µ from 0 to 0.4 and considering the set
of parameters. (14). The interval of µ for which a jump in
the amplitude profile is observed is located and we define
the mitigation limit as the upper bound of the interval.
In this case, the mitigation limit is µml = 0.2061 leading,
through (16), to a PHSSR equals to 51.52%.

6.2.2. Results
Now the method presented in Sect. 3 is used to estimate

the mitigation limit and the PHSSR. The QoI (AwNES1 )
estimated by the ME-gPC based method is built through
the procedure presented in Sect. 2.2.

First, Fig. 6 shows the successive iterations of the pro-
posed algorithm (see Fig. 1), the gPC order is p = 1 and
the following criteria are used: θ1 = 0.7 ⋅ 10−3 and θ2 = 1%.
The curve in black is the amplitude obtained by the refer-
ence and the color curves are the amplitude obtained from
the gPC in each of the K elements of the considered iter-
ation. At the first iteration (Fig. 6(a)) we have only one
element and, because Eqs. (7)-(9)-(10) hold, it is divided
into two parts shown in Fig. 6(b). In the latter, Eqs. (7)-
(9)-(10) hold again in both elements and therefore they
are divided and we move to the third iteration (Fig. 6(c)).
At this iteration the variance of the leftmost element does
not satisfy Eq. (7) and it is therefore removed from the al-
gorithm and the corresponding amplitude is not depicted
on the figure. The three other elements are divided into
two parts and we move to next iteration and so on until
the algorithm stops the eighth iteration because Eq. (9)
is not satisfied anymore. We assume that the mitigation
limit µml is within the last element in which the amplitude
is depicted in orange in Fig. 6(h).

Then, in order to find the right combination between
the values of the different criteria and the computational
cost, several simulations have been made with different
value of θ1 and of the order p of the gPC. The NED is built
each time according to the method described in Sect. 3.2.

The results are presented in Tab. 1 which shows the
comparison between the reference and the proposed method
for θ2 = 1%, p = 1,2 and 3 and for different value of the
criterion θ1.

Because the algorithm of the ME-gPC based method is
always stopped due to the criterion θ2, the width of the last
interval Iml is the same whatever the value of the criterion
θ1 and of the gPC order p. The last interval found is Iml =
[0.2031,0.2063] that it can be defined also as Iml = 0.2047±
0.78%. The size of this interval represent 0.8% of the main
interval. It is well below θ2 = 1%. The midpoint value is
compared with the mitigation limit found by the reference
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6: The evolution of the decomposition algorithm. The friction coefficient µ is uncertain, θ1 = 0.7 ⋅ 10−3, θ2 = 1% and p = 1. (a)
Iteration 1; (b) Iteration 2; (c) Iteration 3; (d) Iteration 4; (e) Iteration 5; (f) Iteration 6; (g) Iteration 7; (h) Iteration 8.

method, the relative error is equal to 0.44%. The PHSSR is
equal to 51.57% which leads to a relative error compared
with the reference method equals to 0.68%. Note that
when the N ′

= 100 the algorithm is stopped because of
(10) and the mitigation limit is not located.

For all the cases, the maximum value of the variance
criterion θ1 represents the value which corresponds to a
change of criteria that stops the algorithm (i.e. after this
value, the criterion θ1 starts to stop the algorithm). This
value is the optimal because it corresponds to the smallest
possible value of the number of simulations to locate the
mitigation limit. According to these last values (θ1 = 17 ⋅
10−3 for p = 1, θ1 = 0.9 ⋅10−3 for p = 2 and θ1 = 0.4 ⋅10−3 for
p = 3), the number of simulations is lower when p = 1 than
in the case when p = 2 and p = 3 and the PHSSR remains
constant because the intervals Iml are the same for each

case.
In order to obtain a reduced calculation cost, it is pos-

sible to increase the value of the threshold for second cri-
terion θ2. For example, in the case that θ2 = 5%, the last
found interval is Iml = [0.2,0.2125]. The size of the inter-
val increases compared to the case where θ2 = 1% which
increases the relative error EPHSSR from 1.21% in the case
that θ2 = 1% to 4.25%. The number of simulations reduces
and becomes equal to 40 for θ1 = 10 ⋅ 10−3 and p = 1.

As a conclusion, the best choice for the value of the gPC
order appears to be p = 1. Indeed, because the accuracy of
the PHSSR prediction is fixed by the choice of the criterion
θ2, the prediction with p = 1 is as accurate as for larger
order (p = 2 or 3) but with a smaller number of simulations.
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Table 1: comparison of the results between the reference method and the ME-gPC based method, θ2 = 1% and the parameter µ is uncertain.

ME-gPC

Variance criterion
p = 1 0.7 2 10 15 17
p = 2 0.05 0.1 0.5 0.7 0.9

θ1(.10
−3
) p = 3 0.05 0.07 0.1 0.3 0.4

θ1
MaxRef −MinRef

(%)
p = 1 0.03 0.1 0.52 0.79 0.89
p = 2 0.002 0.005 0.02 0.03 0.04
p = 3 0.002 0.003 0.005 0.01 0.02

Number of simulations
p = 1 100 100 52 53 53
p = 2 94 79 78 78 71
p = 3 100 99 99 89 80

PHSSR (%)
p = 1
p = 2 51.57
p = 3

EPHSSR (%)
p = 1
p = 2 0.097
p = 3

Iml

p = 1
p = 2 [0.2031, 0.2063]
p = 3

µmid

p = 1
p = 2 0.2047
p = 3

E (%)
p = 1
p = 2 0.68
p = 3

D (%)
p = 1
p = 2 0.78
p = 3

6.3. Two uncertain parameters: the friction coefficient µ
and the damping coefficient η1

In this section, the parameter η1 is also assumed to
be uncertain and driven also by an uniform distribution
within [0.1 , 2.1]. η2 is fixed and it is equal to 0.09.

6.3.1. Reference study
The reference is obtained in a similar way as in Sect. 6.2.1.

The 2-dimensional parameter space is divided into N =

100 × 100 = 10000 squares between µ = 0 and µ = 0.4
and η1 = 0.1 and η1 = 2.1, again considering the param-
eters (14), except for η1 and η2. Fig. 7 shows a 3D graph
containing the N = 10000 realizations of the amplitude of
displacement AwNES1 , as a function of the two uncertain
parameters. The discontinuity in the amplitude surface is
visible and allows us to define, as previously in Sect. 6.2.1,
the mitigation limit as the projection of it in the (µ, η1)-
plane. This projection is depicted in Fig. 8 together with
lines corresponding to the Hopf bifurcation points with and
without NESs1. The four regimes described in Sect. 5 and
depicted in the case with only one uncertain parameter in
Fig. 5 are shown here.

1As usual, the bifurcation point of the system without NESs (resp.
with NESs) are found by looking the sign of the eigenvalues real parts
of the system (11) (resp. (12)).

In the (µ, η1)-plane, the mitigation limit can be defined
as the curve η1,ml as a function of µ. Then, through (16),
we obtain

PHSSR = ∫

0.4

0
∫

η1,ml(µ)

0.1

1

0.4 × 2
dµdη1

=
∫

0.4
0 [η1,ml(µ) − 0.1]dµ

0.8
. (22)

The integral in the numerator of (22) is evaluated numer-
ically and we find a PHSSR equal to 92.16%.

6.3.2. Results
The evolution of the mitigation limit is now determined

by the proposed method in the considered stochastic space.
As in the case of one uncertain parameter, the NED is built
according to the method described in Sect. 3.2. Overall,
the number of simulations needed to obtain the prediction
of the PHSSR is logically larger than in the case of a single
uncertain parameter.

Tab. 2 shows the comparison with the reference method
for p = 1, 2 and 3 and for θ2 = 1%. The relative differences
Dµ and Dη1 are equal to 1.2% and 12.45% respectively.
As previously, increase the value of θ1 reduces the number
of simulations to reach 2122 simulations when θ1 = 29 ⋅
10−3 and p = 1, 4195 simulations when θ1 = 5 ⋅ 10−3 and
p = 2 and 7293 simulations where θ1 = 1 ⋅ 10−3 and p = 3.
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Figure 7: Amplitude AwNES1 as a function of the friction coefficient
µ and the damping coefficient η1. ω1 = 2π100, ω2 = 2π85, ϕ1 =10
0000, ϕ2 = 0, ε = 0.05, ξh = 0.001, ηh = 0.02 and ϕh = 140000.

Whatever the value of p, the PHSSR, calculated from the
lower bounds (the red line in Fig. 9), is equal to 92.39%
with a relative error EPHSSR equals to 0.24%.

As an example of the effect of increasing θ2, results
for θ2 = 5% were obtained. Only the main conlculions are
here given. The relative error EPHSSR increases compared
to the value obtained for θ2 = 1% and it reaches EPHSSR =

1.31%. The number of simulations decreases and becomes
equal to 448 for θ1 = 20 ⋅ 10−3 and p = 1.

As a conclusion, p = 1 is again the best choice for the
gPC order in terms of accuracy and computational cost.
The difficulty of the method is to find the value of θ1 which
allows to identify the jump and at the same time to get
the number of simulations as low as possible.

7. Conclusion

In the present work, mitigation of friction-induced vi-
brations in a 2-DOF friction system with uncertain pa-
rameters by means of Nonlinear Energy Sinks (NESs) has
been considered. In this kind of unstable systems coupled
to NESs, a discontinuity is often observed in the evolu-
tion of the Limit Cycle Oscillation (LCO) amplitude with
respect to a chosen bifurcation parameter. This discon-
tinuity represents the transition from mitigated regimes
(called harmless steady-state regimes because having small
amplitudes) to unmitigated regimes (with large LCO am-
plitudes).

The aim was to develop an original method which al-
lows to predict these discontinuities and therefore to esti-
mate the Propensity of the system to undergo a Harmless
Steady-State Regime (PHSSR) in taking into account the
probability distribution of uncertain bifurcation parame-
ters.

The method is an algorithm based on the Multi-Element
generalized Polynomial Chaos (ME-gPC) and consists of

3

4

2
1

Figure 8: Evolution of the mitigation limit and Hopf bifuraction
points with and without NESs using the 10000 simulations of the
reference. (blue line) Hopf Bifurcation point without NES (η1wob );
(red line) Hopf Bifurcation point with NES (η1wb ); (black line) Mit-
igation limit (η1ml). 1: Linear stability without NESs; 2: Linear
stability with NESs; 3: Mitigated regimes (PR or SMR); 4: No mit-
igated regimes.

Figure 9: The mitigation limit in the (µ, η1)-plane. The reference
is the black line. The last K′ elements which remain at the end of
the algorithm presented in Fig. 1 are depicted by gray squares. The
left side of the squares (the red line) constitutes the mitigation limit.
The parameters µ and η1 are uncertain , θ1 = 1 ⋅ 10−3, θ2 = 1% and
p = 1.

dividing, at each iteration, the stochastic parameters space
and building a metamodel of the LCO amplitude in each
subspace. A variance threshold and an subspace size cri-
terion are used to know in which subspace is the discon-
tinuity and to stop the algorithm respectively. When the
algorithm is stopped the discontinuities are localized in the
last small subspaces of the stochastic parameters space.

The results can be summarized as follows: firstly, be-
cause the objective of this study is to predict the disconti-
nuity and not to obtain an accurate representation of the
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Table 2: Comparison of the results between the reference method and the ME-gPC based method, θ2 = 1% and the parameters µ and η1 are
uncertain.

ME-gPC

Variance criterion
p = 1 1 10 20 26 29
p = 2 0.8 1 2 4 5

θ1(.10
−3
) p = 3 0.6 0.7 0.8 0.9 1

θ1
MaxRef −MinRef

(%)
p = 1 0.03 0.34 0.69 0.9 1.01
p = 2 0.02 0.03 0.06 0.13 0.20
p = 3 0.02 0.02 0.02 0.03 0.03

Number of simulations
p = 1 3723 2188 2183 2144 2122
p = 2 4198 4236 4181 4172 4195
p = 3 7168 7214 7239 7164 7293

PHSSR (%)
p = 1
p = 2 92.39
p = 3

EPHSSR (%)
p = 1
p = 2 0.24
p = 3

Dµ

p = 1
p = 2 0.61
p = 3

Dη1

p = 1
p = 2 6.62
p = 3

LCO amplitude, a polynomial chaos expansion with an
order p = 1 must be chosen. Indeed, the prediction with
p = 1 is as accurate as for larger order (p = 2 or 3) but
with a smaller number of simulations needed to obtain
the prediction (i.e. the computational cost). Secondly,
for given value of the subspace size criterion, the variance
threshold must be chosen as large as possible to ensure
en accurate prediction of the PHSSR with a minimum of
computational cost. Finally, decreasing the criterion of
the subspace size reduces the relative error of the PHSSR
compared to the reference but increase the number of sim-
ulations.

As a conclusion, the proposed ME-gPC based method
proved its capacity to predict the PHSSR and it is less time
consuming than the reference method. There is a good
compromise between computational cost and accuracy.

As a perspective of this work, the method could be used
associated with optimization tools in a strategy of robust
design of dry-friction system attached to several NESs by
increasing in parallel the number of uncertain parameters.
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