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Abstract

The numerical optimization of a mechanical part requires a balance between
computation time and model accuracy. The work presented herein aims at accel-
erate global optimization problem by using the framework of Bayesian optimiza-
tion on a quantity of interest with multiple levels of fidelity. These multi-fidelity
data are generated from a quality-driven model-order reduction framework: the
LATIN Proper Generalized Decomposition. Within this framework, a reduced-
order basis is generated on-the-fly and re-exploited to reduce the computational
cost of observations. This strategy is tested on two elasto-viscoplastic test cases:
a rocket damper and an aircraft blade and gives significant speedups.

Keywords: Bayesian optimization, Multi-fidelity kriging, Reduced-order
models

Introduction

Structural optimization with high-fidelity computer experiments has a long
tradition [1, 2, 3], using solver responses to build and optimize a quantity of
interest (QoI) y for a given design space D. There has been a growing interest
in recent years in Bayesian optimization [4], which has proven to be effective5

on a number of difficult reference functions [5]. Bayesian optimization typi-
cally works by modeling the costly objective function y by a cheaper surrogate
one ŷ build as a Gaussian process regressor [6, 7, 8]. The uncertainly of the
approximation is used to construct an acquisition function which estimates the
probability of improving the global optimum obtained and quantify the exploita-10

tion–exploration trade-off. This acquisition function is maximized to determine
the next query point. This approch try to reduce the number of calculated
points.

This technique is commonly used in machine learning to optimize parameters
of the model [9, 10] but, in a mechanical case, each resolution of the linked partial15
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differential equations (PDE) requires several hours of computation to obtain
the converged value of the QoI. If the point is far from the accurate optimum
zone, the QoI might have been computed with an unnecessary accuracy. A
solution to reduce the duration of the optimization process is to use further
data sources and generate a multi-fidelity metamodel. Low-fidelity but low-cost20

calculations are initially performed to estimate the optimal area. After a certain
number of points, low-fidelity and high-fidelity information are both requested
for the next query points to ensure the optimum obtained, and to estimate
the optimal additive correction on the low-fidelity data previously computed.
Further developments have already made on this subject [11, 12, 13] and have25

already been applied on structural optimization [14, 15].
Model reduction techniques constitute an efficient way to generate low-

fidelity data by seeking the solution of the problem in a reduced-order basis
(ROB), whose dimension is much lower than the original vector space. Using
a model-order reduction database as a low-fidelity data is quite recent [16] and30

uses a posteriori approch which usually consists of defining this ROB by the
decomposition of the solution of a surrogate model relevant to the initial model.
A priori methods like Proper Generalized Decomposition (PGD) [17, 18] follow
a different path by building progressively an approximation of the solution in a
separated-variable form, without assuming any basis. This approch seems more35

appropriate without a priori information on the design space and was hitherto
not tested in this multi-fidelity process.

The purpose of this paper is to show how to couple multi-fidelity kriging
and model-order reduction to speedup the global optimization of the QoI. This
strategy has already been performed for virtual charts generation [19]. Opti-40

mization is made here by calculating the QoI from the PGD modes generated
on-the-fly with the LATIN-PGD framework [20] to deal with nonlinear prob-
lems. This framework generates the solution s from an initial solution s0 by
computing at each step a spatio-temporal correction in a separated variable
form. Since the method characterizes the solution over its entire domain at45

each iteration, it is possible to compute an approximation of the QoI before
convergence. This property is particularly suitable for a global optimization
process requiring an exploration phase in the design space. Low-fidelity fields
are obtained by stopping the solver before convergence, and high-fidelity infor-
mation is obtained with converged fields. In addition, the solver ability to reuse50

information from previously calculated PGD modes is exploited on a what we
called ”multiparametric strategy” [21, 22] and accelerate more and more com-
putation as the process is moving forward. The coupling of these methods is
done on viscoplastic test cases and an 8.4× speedup is obtained, allowing a first
demonstration of this approach.55

The bayesian optimization strategy for multi-fidelity data is described on
Section 1, with a focus on multi-fidelity kriging methods, a modified Evofusion
method and a non-usual acquisition function which take into account multi-
fidelity data. Observations used in this optimization process are computed
thanks to the LATIN-PGD framework presented in Section 2. This framework60

is used in the context of viscoplastic problems and exploit the multiparametric
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strategy to start computation from fields interpolated from previously calculated
solutions. This multi-fidelity bayesian optimization process using the LATIN-
PGD framework gives significant speedup and results of this strategy is visible
on Section 3 with a presentation of the test cases.65

1. Bayesian optimization strategy for multi-fidelity data

1.1. Bayesian optimization

Let us consider here a spatio-temporal mechanical problem defined by some
input parameters x in a design space D. For each value x ∈ D, the solution
of the problem allows to compute a given quantity of interest (QoI), denoted70

y(x) ∈ R, which is assumed to be scalar. The associated objective function
x 7→ y(x) is considered as a black-box function without analytical expression of
y nor its derivatives.

In the case of minimization, this problem is formulated concisely as follows:
75

Find (x∗, y∗) ∈ D × R, solution of x∗ = argmin
x∈D

y(x) and y∗ = y(x∗) (1)

Global optimisation are without constraints here, but they can be taken into
account with some adjustments on the strategy.

A non-exhaustive list of global optimization methods are presented in [23].
Standard gradient-based optimizers and heuristics are are particularly appreci-
ated for their convergence properties but needs many observed points. Among80

them, Bayesian optimization is commonly used in the case of black-box expen-
sive optimization [24, 5, 25]. The black-box function y is modeled herein as
a Gaussian process ŷ conditioned on observations, using gaussian process re-
gression [8, 6, 7]. Initial observations are chosen from near-random sampling
method like Latin Hypercube Sampling (LHS) [26] to prevent large areas with-85

out points. If needed, training set is sequentially enriched by the global max-
imum of an acquisition function which estimates the probability of improving
the global optimum. This function is build from the posterior distribution of ŷ
and is a cheap function which can be globally optimized unlike y.

1.2. Gaussian Process Regression (Kriging)90

N points xi are observed with ∀i ∈ [[1,N]], yi = y(xi). The set of observed
points is noted as X and their responses y. They are used to create the training
set (X, y). The objective is to build a regressor from this training set. In the
case of linear regression methods, the output y(x) can be mapped by a linear
combination of the input ŷ:

ŷ(x) = xTβ + Z(x) (2)

∀i ∈ [[1,N]] , yi = xTi β + Zi (3)

The term xTβ represents the scalar product between the input vector and the
weights associated β. The term Z is the estimated residual error between the
linear prediction and the true response.
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Figure 1: Classical bayesian optimization

Kriging [6, 7], also called Gaussian process regression [8], can be presented
as an extension to linear regression and can also be understood as a form of95

Bayesian inference [27] by considering Z as a Gaussian process:

ŷ(x) = f(x)Tβ + Z(x) (4)

The covariance between any two samples is defined by the covariance function
(or kernel) k(x, x′; θ), (hyper)parametrized by θ. The Gaussian process ŷ is
conditional on observations, which means that by assuming the responses yi are
random variables, a joint distribution between the prediction and the observa-100

tions is defined by the equation (5):(
ŷ(x)
y

)
∼ N

((
f(x)Tβ
FTβ

)
,

(
1 kT(x)

k(x) C

))
(5)

With F regression matrix such as Fij = f
i
(xj), C covarience matrix between

observed data such as C = k(xi, xj ; θ) and k(x) covarience vector between
observed and predicted data such as kj(x) = k(xj , x; θ).

The predictive distribution is defined by
[
ŷ(x)|ŷ(X) = y, β, θ

]
where the105

notation [A|B] stands for the distribution of A conditionally to B. So, condi-
tionally to β and θ, the distribution x −→

[
ŷ(x)|ŷ(X) = y, β, θ

]
is Gaussian

N
(
µ(x), σ2(x)

)
with:{

µ(x) = f(x)Tβ+k(x)TC−1(y− Fβ)

σ2(x) =
(
k(x, x)2−k(x)TC−1k(x)

) (6)

The kriging mean x 7→ µ(x) is the surrogate model that is used to approxi-
mate the objective function y and the kriging variance x 7→ σ2(x) represents the110

model mean squared error. The great interest of using kriging is the definition
of the kriging variance as an error indicator of the metamodel on the whole
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design space. A 95% confidence interval can be thus computed corresponding
to µ(x)± 3σ(x) as shown in figure 2.

Parameters β and hyperparameters θ can be obtained by integrating the115

parameter posterior distributions, or by maximizing the likelihood function as-
sociated with the Gaussian process. Here, the Leave-One-Out cross-validation
method is used. The idea behind is to generate n sub-training sets by extract-
ing the observation (xi, yi), i ∈ [|1, n|] and using this one as a validation set to
monitor performance. Hyperparameters are used to build metamodel liked with120

each sub-training sets and the LOO predictive log probability when leaving the
training case i is computed :

log p(yi|X, y−i, θ) =
1

2
log(σ2

i ) +
(yi − µi)

σ2
i

. (7)

where notation y−i means all targets except number i, and µi and σ2
i are respec-

tively the mean and the variance of the metamodel build without the training
case i on xi. Accordingly, the LOO log predictive probability is :125

LLOO =

n∑
i=1

log p(yi|X, y−i, θ) (8)

Objective is to minimize this mesure to obtain the optimal hyperparameters. It
can be done by using bayesian optimization on hyperparameters [9].
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Figure 2: Kriging based on observations of the Ackley function

(x, y) 7→ −20 exp
(
−0.2

√
0.5(x2 + y2)

)
− exp (0.5 (cos 2πx+ cos 2πy)) + 20

1.3. Data fusion with enhanced multi-fidelity kriging

A way to reduce the design step is to reuse this process for kriging by con-
sidering multiple solvers from the coarse one to the finest one and merge data130

observations. The reader can refer to [28] for a review of surrogate modeling
and multi-fidelity approach.

5



Coming back to Equation (5), a possibility is to build joint distribution
with multiple random observation vectors which include low-fidelity observa-
tions (X1, y1

) and high-fidelity one (X2, y2
). This approach is called ”cokrig-135

ing”. Some hypotheses are needed for defining interactions between observations
and can be found in [13, 29, 30, 31]. All these methods modify covariance matrix
to take into account solver quality. So they allow expert judgement, but they
are intrusive.

Other methods based on recursive metamodeling exist: Hierarchical Kriging140

[32] which replaces regression function f by a Gaussian process conditioned to
low-fidelity data ŷ1, and Evofusion [11]. Evofusion method is an simple one and
has given good results in a multi-fidelity benchmark [33]. Details of Evofusion
algorithm can be seen in Algorithm 1.

Algorithm 1: Evofusion Algorithm

Input: low-fidelity and high-fidelity observations (X1, y1
), (X2, y2

)
Build a low-fidelity metamodel with only low-fidelity data
(X1, y1

) −→ ŷ1

Compute the gap between the low-fidelity metamodel ŷ1 and
high-fidelity observations y

2
on high-fidelity points X2:

ycorr = y2 − ŷ1(X2)
Build a correction metamodel with correction data (X2, ycorr

) −→ ŷcorr
Modify low-fidelity observations with the correction metamodel:
y

1c
= y

1
+ ŷcorr(X1)

Build the fused metamodel with corrected data and high-fidelity data:
(X1, y1c

)
⋃

(X2, y2
) −→ ŷ

Output: Fused metamodel: ŷ

A modified version will be used here. Corrected low-fidelity points were145

interpolated on the classical method. The correction made by the ŷcorr error
metamodel can be somewhat inaccurate due to a lack of information. Adding
variance on these points will release the exploration component of the acquisition
function (detailed in the next section) around LF points which are far away from
a high-fidelity observation (and therefore the correction is potentially false in150

this area).
So the improvement is to consider an estimated variance σε on low-fidelity

data. This noise can be quantified by the variance associated with the error
metamodel. Indeed, the sum of the random variables ỹ

1
and ŷc(X1) gives an

associated variance σε(X1) such that155

σε(X1)2 = σ(ỹ
1
)2 + σ(ŷc(X1))2 + 2 Cov(ỹ

1
, ŷc(X1)) (9)

The independence of the random variables is assumed: Cov(ỹ
1
, ŷc(X1)) = 0. In

addition, no measurement noise is considered on the LF observations initially:
σ(ỹ

1
) = 0. We will therefore consider in the following σε(X1) = σ(ŷc(X1)).

This analysis is also appropriate for HF data with σ(ŷc(X2)) = 0 at these
points.160
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Figure 3 presents the method through the next functions [11]:

y1 : x 7→ 0.5(6x− 2)2 + sin(12x− 4) + 10(x− 0.5)− 5

y2 : x 7→ 2y1(x)− 20x+ 20
(10)
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Figure 3: Illustration of the Evofusion method

1.4. Adapted acquisition function for multi-fidelity kriging

The role of the acquisition function is to guide the search for the optimum
by considers a good exploitation–exploration trade-off. The new point will be
around already known optimum zones (exploitation), or in wide unobserved165

areas (exploration). To do that, the expected improvement function [4] is the
most widely used in the literature. It consists in calculating not the probability
but the average of the improvement function by integrating the density function
of the improvement function I:

I(x) = 〈ŷ(x)− y∗〉+ (11)

with ŷ the Gaussian process N (µ(x), σ(x)) which modelizes y and y∗ the max-170

imum of observed values.
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The new query point is found by maximizing the expected improvement:

x = argmax E[I(x)] (12)

The likelihood of improvement E[I(x)] can be computed by integrating the
density function of I:

E[I(x)] =

∫ I=∞

I=0

I
1√

2πσ(x)
exp

(
− (µ(x)− y∗ − I)2

2σ2(x)

)
dI (13)

and can be evaluated analytically:175

E[I(x)] = (µ(x)− y∗)Φ
(
µ(x)− y∗
σ(x)

)
+ σ(x)φ

(
µ(x)− y∗
σ(x)

)
(14)

where Φ and φ denote respectively the probability density function and the
cumulative distribution function of the standard normal distribution. There are
two terms in the analytical expression (14). The first one is the exploration
term whose contributions will be significant in the unobserved areas of D. The
second one is the exploitation term whose contributions will be significant in180

area around the observed optimum.
In the case of kriging without variance associated with observations, EI(x) =

0. As the function is positive, the points already sampled will never be recom-
puted. For this reason, it is essential that the low-fidelity data have an associated
variance. In addition, the observed minimum is not necessarily accurate if it is185

derived from low-fidelity data. To address this last point, it is possible to not
consider the observed minimum y? but the minimum of the mean or a specific
quantile of the Gaussian process at the observed points, noted µ? [34]. This
method is called ”Expected improvement with plug-in”:

PI(x) = (µ(x)− µ?)Φ

(
µ(x)− µ?

σ(x)

)
+ σ(x)φ

(
µ(x)− µ?

σ(x)

)
(15)

This method does not take into account the noise of the future observation: the190

improvement is defined and its expectation is calculated as if the next evaluation
would be deterministic. Nevertheless, it already gives better results than EI [34].

2. Fast quality-driven QoI computations using the LATIN-PGD frame-
work

2.1. Reference problem195

For the sake of simplicity, let us consider the quasi-static and iso-thermal
evolution of a viscoelastic structure defined over the time–space domain I ×Ω,
under the assumption of small perturbations. The continuum body is submitted
to surface forces Fd on a portion of its boundary ∂2Ω and to body forces fd in its
interior Ω. The continuum body is also submitted to prescribed displacements200

Ud over ∂1Ω with ∂1Ω ∩ ∂2Ω = ∅.
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Movement within the structure results in a displacement field with respect
to the initial configuration U : I × Ω 7→ R3. Infinitesimal strain theory is
assumed and allows the linearization of the strain tensor ε : I × Ω 7→ R3 with
ε = 1

2

[
∇U +∇T U

]
. Internal forces are expressed by the stress tensor σ :205

I × Ω 7→ R3 verifying the following boundary value problem:

div(σ) + fd = 0 on Ω, σ.n = Fd on ∂2Ω, U = Ud on ∂1Ω (16)

The nonlinear behavior laws are taken into account with the equation (17)
and will be in details on the following section, but formelly, one has:

∀(M, t) ∈ Ω× I,σ(M, t) = B(ε(M, τ), τ ∈ [0, t]) (17)

In the context of elasto-viscoplasticity, solving the boundary value problem
given by (16) is equivalent to minimizing the energy functional E : U 7→ R210

defined as:

E(U) =

∫
Ω

B(ε) : εdΩ−
∫

Ω

fd ·U dΩ−
∫
∂2Ω

Fd ·U dS (18)

where U is a functional space of the form:

U =
{

U ∈ H1,p(Ω) / E(U) < +∞, U = Ud sur ∂1Ω
}

with p ≥ 1 and H1,p(Ω) the Sobolev space of functions in Lp(Ω,R3) with partial
derivatives in Lp(Ω,R3).

A weak formulation of the boundary value problem given by (18) can be
written i.e. find U ∈ U × I such that215

∀t ∈ I, ∀U∗ ∈ U∗, R (U(M, t); U∗) = 0 (19)

with U∗ the space of functions in U that vanish on the boundary ∂1Ω with
Ud = 0, and the residual function R is define by:∫

I×Ω

B(ε[U]) : ε(U∗) dΩdt−
∫
I×Ω

f
d
·U∗ dΩdt−

∫
I×∂2Ω

F d ·U∗ dsdt (20)

The resolution of this nonlinear problem will be done using the LATIN
method explained on section 2.2.

2.2. The Chaboche elasto-viscoplasticity behavior law220

Unified viscoplastic framework previously presented in [35] is considered.
In this constitutive law, strain ε is splited between elastic reversible strain εe
and plastic strain εp with ε = εp + εe. Stress is driven by σ = Cεe where
C is the Hooke matrix. Plastic behavior zone appears when stress goes over
an elastic limit f . This limit is usually represented by an ellipsis in deviatoric225

stress principal component space also called yield surface. Size and origin of
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the ellipsis are driven respectively by isotropic hardening R (drag effect) and a
unique linear kinematic hardening X:

f = (σ −R)eq − σ0 (21)

where J2 = (σ − R)eq is the Von Mises equivalent stress and σ0 = σy − R is
the yield surface size. We define the plastic strain p and the primal field linked230

with X, α. Primal fields (p,α) are associated with (R,X).
The Norton-Hoff law drives the plastic strain p:

ṗ =

〈
f

k

〉N

+

(22)

where k, N are material dependant scalars, 〈· 〉+ are Macaulay brackets.
State laws are:

σ = Cεe (23)

X =
2

3
Cα (24)

R = R∞(1− e−bp) (25)

where C,R∞, b are material dependant scalars.235

By the definition of a pseudo-dissipation potential F , the evolution equations
can be expressed:

d

dt

 εp−α
−p

 =

〈
f

k

〉N

+


√

3

2
N

−
√

3

2
N +

3γ

2C
X

−1

 (26)

with N the unitary normal vector defined as

N =

√
3

2

σD −X
(σD −X)eq

, (N)eq = 1 (27)

2.3. LATIN algorithm for nonlinear quality-driven resolution240

The LATIN framework [20] is a powerful method to obtain the linear equi-
librium of the structure with the respect of nonlinear behavior laws. Here we
recall the main principles of the method, the details of which can be found in
[36].

Equations are separated into two sub-problem which defines the two mani-245

folds Ad and Γ. In this case, Ad contains solutions which satisfy kinematic and
static admissibility and state laws. These linear equations are global in time
and space. On the other hand, the variety Γ contains the nonlinear behaviour

10
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Figure 4: Schematic representation of nonlinear problem solving from iterative solvers

equations. Ad,0 is similar to Ad with boundary conditions set equal to zero. Un-
like Newton-like techniques, this approach provides a complete solution at each250

iteration of the algorithm. The schematic representation in Figure 4 illustrates
differences between the two solvers.

Lets denote s = (ε,σ) and ŝ = (ε̂, σ̂) set of fields respectively describing
the state of the structure in Ad and in Γ. The solution is alternately searched
in each manifold using search directions E+ and E− which link the two sub-255

problems. The physical quantities involved are written in the form of primary
mechanical fields and dual mechanical fields associated with the problem. The
solution is obtained at convergence and is in Ad ∩ Γ. The method can be also
apply to multiscale problems [37], for which micro and macro problems are
solved alternately; domain decomposition [38], for which separation operates on260

subdomains on the one hand and interfaces on the other hand; or multi-physics
[39]. This strategy has also been applied to other applications such as composite
damage [40], rapid dynamic [41] or contact problems [42].

Steps of the method are briefly described below and figure 5 gives a schematic
representation.265

• Elastic initialization: The algorithm is classically initialized by comput-
ing the elastic solution of the problem, such that s0 ∈ Ad but s0 can be
enriched by adding Ad,0 fields interpolated from previous computations.

• Local stage: Knowing a solution s in Ad, local stage consists in finding
a local solution ŝ in Γ using search direction (ŝ− s) ∈ E+.270

E+(σ̂ − σ) + (ε̂− ε) = 0 (28)

The local problem can be solved at each time steps and at each Gauss
point. Here, the search direction is chosen to have ε̂ = ε.

• Global stage: The linear stage consists in finding s ∈ Ad knowing ŝ ∈ Γ
and using the search direction E− (29).

E−(σ − σ̂)− (ε− ε̂) = 0 (29)
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The corresponding sub-problem is linear but global in space and time.275

This problem is equivalent to the search of a correction δs ∈ Ad,0 of the
solution s̃ ∈ Ad calculated at the previous convergence iteration. Equation
29 can be written as:

E−((σ̃ + δσ)− σ̂)− ((ε̃+ δε)− ε̂) = 0 (30)

The chosen error indicator is a stagnation criterion on consecutive solutions
s and ŝ:280

νi+1 =
||si+1 − ŝi+ 1

2
||C

1
2 ||si+1 + ŝi+ 1

2
||C

, ||s||C =

∫
Ω×I

1

2

(
ε : C ε+ σ : C−1σ

)
dΩdt (31)

where ||s||C is the norm associated to the Hooke operator.
This method is particulary adapted to our process:

• An interrupted Newton-Raphson resolution gives the converged solution
up to the time step it. In the case of the LATIN method, an approximation
of the complete spatio-temporal solution is available. This property allows285

the solver to be considered as a quality-driven one and will be used to
generate multi-fidelity QoI data.

• It is possible to approximate the resolution at the global stage by searching
fields correction δs like separated variable functions. The computational
cost of the global stage is reduced and the set of fields s can be written290

as a PGD reduced-order model. This aspect will be explained on section
2.4.

• The initialization of the Newton-Raphson method by an already computed
spatio-temporal approximation is complex. By its structure, the LATIN

12



method naturally allows the initialization of the calculation by a complete295

pre-calculated spatio-temporal solution. This property allows a enhanced
multiparametric strategy detailled on section 2.5.

2.4. On-the-fly model-order reduction with the PGD method

The Proper Generalized Decomposition is a ROM method. Initiated un-
der the name of radial approximation [43] as part of the LATIN framework300

for space-time decomposition, it is also used for rheology problems [44], for an
approximate resolution of the Navier-Stokes equation [45] or in image correla-
tion [46]. The method has been generalized with multiparametric use [47] — or
even in large dimensions [48] — with possible use of hyper-reduction methods
[49]. The method is also particularly suitable for application cases such as opti-305

mization [50], uncertainty quantification [51] in dynamic data-driven application
systems (DDDAS) [52] or in haptics [53].

The objective is to compute the best correction of an approximation of the
solution in a separated variable form. Modes database is no longer imposed as
in Proper Orthogonal Decomposition and the solution of the problem is sought310

at the same time as the best basis for its representation. The approximation
performed is enriched until a given error criterion is reached.

We assume that a PGD approximation of order m− 1 has already been
computed:

U(t,M) ≈ U0(t,M) +

m−1∑
i=1

λi(t) · Λi(M)︸ ︷︷ ︸
Uc(t,M)

(32)

with U0 the elastic solution such as U0 ∈ Ad and ∀i, (Λi, λi) ∈ U∗ × I. In the315

PGD approach, neither functions Λk nor functions λk are given initially, and
both families are computed on-the-fly. At the global linear stage of the LATIN
method, the correction of fields δU, δε, δσ can be find with a separated-variable
form:

δU = Λ · λ (33)

And can be obtained by minimizing the global search direction (19). It can be320

expressed as [18],

Find δU(t,M) ∈ U∗ such that ∀U∗ ∈ U∗, a(δU,U∗) = `(U∗) (34)

with I = L2(I,R) the space of the sumable square functions in I, a is a con-
tinuous coercive bilinear operator according to H1

0 (Ω)⊗I and ` is a continuous
linear operator according to H1

0 (Ω)⊗ I.
The new pair (Λ, λ) ∈ U∗×I is defined as the one that verifies the following325

double Galerkin orthogonality criterion:

a(ũm−1 + Λλ,Λλ∗ + Λ∗λ) = `(Λλ∗ + Λ∗λ), ∀λ∗ ∈ I∗,∀Λ∗ ∈ I (35)

We can thus define the two following applications:
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• Sm : I 7→ U is the application that maps a time function λ into a space
function Λ = Sm(λ) defined as:

a(ũm−1 + Λλ,+Λ∗λ) = `(Λ∗λ), ∀Λ∗ ∈ U∗ (36)

It is associated to a space problem.330

• Tm : U 7→ I is the application that maps a space function Λ into a time
function λ = Tm(Λ) defined as:

a(ũm−1 + Λλ,+λ∗Λ) = `(λ∗Λ), ∀λ∗ ∈ I (37)

It is associated to a time problem (Scalar ODE).

A pair (Λ, λ) verifies (35) if and only if Λ = Sm(λ) and λ = Tm(Λ), which is
a nonlinear problem which could be solved with a fixed-point algorithm. The335

interested reader can refer to [54] for a review of the different algorithms to solve
a linear problem with the PGD and [55] for the special case of the viscoplastic
LATIN algorithm.

So with the LATIN-PGD framework, at each convergence step, a reduced-
order approximation of the complete spatio-temporal solution is obtained and340

allow us to compute an approximation of the QoI firstly. By this aspect, a space
and time basis can also be used to start future computations.

2.5. Fast computation of multiple solutions with LATIN multiparametric strat-
egy and PGD interpolation

For surrogate modelling, the computation of a quantity of interest yi is done345

sequentially on certain points xi in the design space D. The computation of
multiple solutions is fully compatible with a major feature of the LATIN frame-
work: its multiparametric strategy [56] which allows to start a new calculation
with fields created from previous computations. Its objective is to provide very
quickly the solution of nonlinear evolution problem for several parameter values350

of the model and reduce the number of iterations to reach the required error
estimator level.

We assume that for i ∈ [[1, j−1]], displacement solution Ui linked with the
problem parametred by xi has already been computed. Each solution are ex-
pressed from its space and time basis generated at the same time as the solution.355

For the calculation of the query parameter xj , an approximation of s ∈ Ad

from previous computations is considered by interpolate the displacement field
Uj . Inverse distance weighting is considered, using euclidian distance in the
design space D:

Uj(t,M) ≈ Uj,0(t,M) +

j−1∑
k=0

ωk Uk,c(t,M) (38)

with ∀k ∈ [[1, j−1]], ωk = φ(||xj − xk||D), || • ||D the euclidian norm of D and360

φ : d 7→ 1

dp
.
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Figure 6: Schematic representation of the multiparametric strategy [57]. For computing
solution parametred by xj , the solution of a similar problem parametred by xj−1 can be used
to reduce the iteration number.

Furthermore, a global space basis U = [Λ1,Λ2, . . . ,Λms] ∈ Rds×ms can
be considered by orthonormalizing the concatenation of space bases previously
obtained, such as ∀k ∈ [[1, j−1]]:

Uk,c(t,M) =

ms∑
i=0

λ
(k)
i (t)Λi(M) (39)

So, by considering (38) and (39),365

Uj(t,M) ≈ Uj,0(t,M) +

ms∑
i=0

λ̃i(t)Λi(M) (40)

with ∀i ∈ [[1,ms]] λ̃i =
∑j−1

k=0 ωkλ
(k)
i . Algorithm 2 summarizes the different steps

of the multiparametric strategy implemented.

This strategy is tested on the turbine blade test case (see section 3.4). A 3D
solver implementation was developed for the test using MATLAB. To reach fast
and parallel computation, LATIN operators are organized as nd-arrays and a370

parallel implementation of Einstein summation exploits variable broadcasting to
deal with time- and spatial-dependent operators. This computational paradigm
allows to be as fast as commercial softwares. 200 equidistant points of the design
space [α, T ] = [81◦, 100◦] × [881◦C, 900◦C] are computed without the strategy,
and with the strategy by an ordered path, and 15 random paths:375

With this LATIN-PGD framework, multi-fidelity QoI values can be obtained
easily. Furthermore, the multiparametric strategy allows good speedups. The
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Algorithm 2: Multiparametric strategy

Input: n points µ1, . . . , µn ∈ D
For each point µj

For each previous point µk

Calculation of the contribution: ωk = φ(d(µj , µk))

Field interpolation: Uj(t,M)←∑j−1
k=1 ωkUk(t,M)

Generation of the common spatial base
Concatenation of spatial modes:

[Ξ,Σ,V]
Thin SVD←−−−−−− [Ξ1, . . . ,Ξj−1]

Calculation of the associated elastic field: Uj,0(t,M)

For each spatial mode Λ
(Ξ)
i

Compute correction of time functions λ̄i ←
〈

Λ
(Ξ)
i , Ũj −Uj,0

〉
S

LATIN Correction: Uj ∈ Adj ∩ Γj

Output: Mechanical solution for the n points

Points computed 2 5 10 20 50 100 200

Ordered path 4.25× 4.24× 4.46× 4.86× 4.95× 4.87× 5.05×
Random path 2.09× 2.13× 2.22× 2.56× 3.13× 3.51× 3.78×

Table 1: Speedup provided by the multiparametric strategy on the turbine blade test case

aim here is to see if using multi-fidelity bayesian optimisation with the multi-
parametric strategy is adapted and reduces time computation to obtain a good
estimation of the global optimum.380

3. Global optimization by coupling multi-fidelity kriging and reduced-
order models

3.1. Coupling algorithm

The different algorithmic bricks presented in the previous sections are as-
sembled in algorithm 7. This algorithm have some parameters that influence385

the calculation time and the quality of the optimum obtained. There are two
of them: The number of low-fidelity observations nBF before enrichment with
high-fidelity data, and the quality of low-fidelity observations which will be
driven by the LATIN indicator νBF which will be the stopping criterion of the
solver. To obtain the optimal pair of parameters, an important testing campaign390

was carried out. Results are presented on two test cases on following sections.

3.2. Presentation of the damper test case

This second test case is freely inspired from a damper part of the Vulcain
engine of the Ariane 5 launcher [18]. The typical dimensions in (x,y,z) are395
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Figure 7: Enriched bayesian optimization

45× 70× 50 mm. The mechanical part is clamped on the upper, left and right
sides (Blue parts on figure 8). The turbine nose is visible on the bottom left
of the figure 8. This one is loaded on the front and rear sides (on green and
red on the figure). The two loading pressures have the same intensity P (t)
described by figure 9 with Pmax = 80 MPa, but their direction are different.400

Each loading direction is driven by two angles (θ, φ) which could go between
[0◦, 90◦]. The description of the angle-driven loading conditions is shown on
figure 8. The material is a 316 Steel at 600◦K. Material behavior is described
by the Chaboche constitutive law (see Section 2.2) and Table 3 for the material
coefficients.405

The aim here is to obtain the worse loading case for the structure by dealing
with the maximum of the Von Mises stress during one loading cycle. All the
loading options describe a 4D design space D = [0◦, 90◦]4.

3.3. Strategy parameters estimation on the damper test case

For each of the (n1, ν1) pairs tested, 100 optimizations are performed with410

different initial points. A budget of 100 high-fidelity points is set. The op-
timization success criterion corresponds to the case where the exact solution
calculated at least estimated is greater than 113 MPa:

y2(x?) > 113MPa (41)

Table 4 shows the percentage of test cases that converged to the global min-
imum area. Table 5 give computation time to obtain the success criterion and415
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Figure 8: Damper test case

Objective function y(x) = maxI×Ω σV onMises

Parameters x = (θ1, φ1, θ2, φ2) ∈ D = [0◦, 90◦]4

Space element type Linear triangular (30k DOFs)

Loading cycles One cycle (10s — 41 time steps)

Boundary conditions Clamped on blue side faces

P 1(t) = P (t) e1 on green

P 2(t) = P (t) e2 on red

Table 2: Second test case characteristics

E ν N k σ0 C γ R∞ b

137.6 GPa 0.3 14 150 MPa.s1/n 20 MPa 37.2 GPa 300 80 MPa 10

Table 3: Elastic-viscoplastic constitutive coefficients for the second test case
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Table 6 gives the impact of the random choice of initial points on computation
time.

n1

ν1
10−3 10−2 10−1

6/dim 56% 83% 75%

10/dim 58% 84% 74%

12/dim 63% 87% 74%

14/dim 59% 87% 77%

Table 4: Percentage of cases where the global minimum area was found

n1

ν1

10−3 10−2 10−1

6/dim 27’40 9’48 3’14

10/dim 36’02 10’09 3’23

12/dim 42’38 10’27 3’26

14/dim 43’22 11’14 3’38

Table 5: Average calculation time — Only
high-fidelity data: 1h01

n1

ν1

10−3 10−2 10−1

6/dim 47% 87% 14%

10/dim 72% 73% 28%

12/dim 106% 78% 30%

14/dim 107% 91% 42%

Table 6: Normalized variance of computa-
tion time — Only HF: 34%

For reducing computation time, the best strategy is to consider firstly the
computation of 4 × 6 low-fidelity points, obtained by considering ν1 = 10−1 as
the solver stopping criterion. This result is hardly surprising when looking at420

curve 10.
This figure is the empirical cumulative distribution function obtained by

computing 20,000 QoI values from the 4D design space. The curve obtained for
ν1 = 10−1 allows to identify more easily the optimum area than informations
given by high-fidelity values ν2. With this choice, the gain brought by multi-425

fidelity is 19×. The gain provided by the multiparametric method is estimated
by testing multiple random paths of 30 points in the design space. The contri-
bution of the multiparametric strategy allows fields to be calculated 2.5× faster,
which allows to estimate that the gain provided by coupling methods is around
47.5×. Nevertheless, using ν1 = 10−2 seems to be a good compromise between430
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Figure 10: Empirical QoI cumulative distribution function

calculation time and success and this gain needs to be validated a posteriori
by performing the calculation without the contribution of the multiparametric
strategy, with only high-fidelity data. The next test case overcomes this last
issue.

3.4. Presentation of the turbine blade test case435

The second test-case is an aircraft turbine blade. The mesh comes from [58].
This blade is considered as clamped on its base, with blocked movement along
the y-axis on some bottom sides (on purple in the figure 11). This one has a cen-
trifugal load and a uniform load on the upper surface (on red in the figure 11).
The direction load is in the surface plane and is driven by angle α ∈ [0◦, 180◦]440

as seen in the figure 11c. The intensity of loads are shown on figure 12. The
material of this test case is an Inconel 601 at temperature T ∈ [800◦C, 900◦C].
Operating temperature will influence material parameters. Three sets of ma-
terial parameters are given in table 7 and other values will interpolated from
them.445

The aim here is to obtain maxI×Ω σV onMises = 180 MPa. To do that, a mini-
mization is done on the 2D-design space with (α, T ) ∈ [0◦, 180◦]×[800◦C, 900◦C].

T n K σ0 C γ R∞ b

800◦C 14 630 MPa.s1/n 80 MPa 615 GPa 1.53.106 s−1 80 MPa 300

850◦C 11 560 MPa.s1/n 71 MPa 497 GPa 1.36.106 s−1 70 MPa 250

900◦C 9 490 MPa.s1/n 60 MPa 362 GPa 1.2.106s−1 60 MPa 200

Table 7: Elastic-viscoplastic constitutive coefficients for the first test case (with E = 210 GPa
and ν = 0.28)
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Figure 11: Different views of the structure

Objective function y(x) = |maxI×Ω σV onMises − 180|
Parameters x = (α, T ) ∈ [0◦, 180◦]× [850◦C, 950◦C]

Space element type Quadratric triangular (330kDOFs)

Boundary conditions Angle-driven load & Centrifugal load

Clamping on bottom part

Y-Block on bottom sides

Table 8: First test case characteristics

Time (s)

15000 tr/min

1kN

0 1200 2400 3600

Takeoff Flight Landing

Centrifugal

Upper loading

Figure 12: Loadings time evolution

181 loading cases are tested with T = 900◦C and α ∈ [0◦, 180◦] to quantify
the influence of the error indicator explained in 2.3 on the computation time,
on the number of PGD modes generated, and the error on the quantity of450

interest. Results are presented in Figure 13 with an overkill solution computed
with LATIN indicator equal to 10−8. Theses results allow us to consider LATIN
Indicator 10−4 as the stopping criterion for converged field.

Figure 13a shows that even with low-fidelity data like ν1 = 10−1, the QoI
curves gives good trend and a good localization of the optimum area. A balance455

between QoI error and computation time can be found : if we consider low-
fidelity data with ν1 = 10−2, the figure 13b shows that the mean of the QoI error
is around 8%, but computation time is 4.6× faster than with data obtained with
ν2 = 10−4. So 4 observations can be obtained faster than obtaining a single high-
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Figure 13: Influence of the value of the LATIN error indicator as stopping solver criterion

fidelity observation, which allows to find faster the optimum zone. Nevertheless,460

high-fidelity informations are still mandatory to verify the obtained optimum.

3.5. Results of the optimization test on the turbine blade test case

To distinguish the performance gain provided by the multi-fidelity data fu-
sion and the multiparametric strategy, three computation batchs are performed.465

Each batch considers 20 optimisations made with different initial sampling to
estimate the average time savings. The first batch φ0 is performed with only
exact data without the multiparametric strategy. The second one φ1 is made
with only exact data and the multiparametric strategy, and the last one φ2 is
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obtained by coupling methods. Each optimisation are made by initially compute470

10 points per dimension with an LF stopping criterion ν1 = 10−2.
The success criterion corresponds to the case where the exact solution cal-

culated at least estimated is less than 180 MPa:

y2(x?) < 180 MPa (42)

In this case, the success criterion is met each time. The φ0 phase is performed
in 6h05, the φ1 phase in 2h51 and finally the φ2 phase in 44 minutes. The475

multiparametric strategy provides a gain of 2.1× and the multi-fidelity strategy
a gain of 3.9× for a total gain of 8.4×. 17 high-fidelity points were requested on
average by the algorithm to pass the objective (In the worst case, 24 high-fidelity
points were requested).

Figure 14a shows one of the 20 initial sampling used to start the bayesian480

optimisation. Every low-fidelity observations are interpolated since we don’t
have information about QoI error on these points. Figure 14b shows the last
metamodel generated by the bayesian optimisation. Low-fidelity observations
were corrected by high-fidelity information and the correction metamodel. The
low-fidelity corrected point in (180◦, 900◦C) is not interpolant as we consider485

the lack of information on the correction metamodel and so its variance. High-
fidelity points are filled on the figure. On the same position in the design space,
low-fidelity points are also visible to understand the gap between low-fidelity
and high-fidelity data.

(a) The initial one (with only low-fidelity
data)

(b) The final one (High-fidelity data are filled
diamonds)

Figure 14: Metamodels generated during the optimization process

This figure can be compared to Figure 15a which is the QoI reference function490

to give Figure 15b. The QoI error between the final metamodel generated by the
optimization and the reference shows that the QoI error is almost zero around
the optimum, but quite important far from the optimum zone.
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(a) Reference (b) QoI error

Figure 15: Comparaison between the final metamodel generated by the optimization and the
reference

Conclusion

The aim of this work is to accelerate the global optimization of mechanical495

structures to allow the use of more complex and accurate models within the
design offices. To achieve this goal, the bayesian optimization process has been
improved to the use of multi-fidelity data by considering an adapted acquisition
function. The surrogate model generation step also uses an improved version of
the multi-fidelity kriging method Evofusion which adding an estimated variance500

on low-fidelity data.
The multi-fidelity data are not obtained by calling a given quality model, but

by using a solver allowing the computation of mechanical fields with an adapted
level of fidelity. The proposed solver is based on the LATIN-PGD framework,
which has the triple advantage of a fast computation of the spatio-temporal fields505

in the PGD separated-variable form, giving an approximation of the complete
solution and the amount of interest at each iteration, and allowing to start
computation from an approximation interpolated from previous computations
with the multiparametric strategy.

The two families of methods presented will thus work together to bring510

significant time savings on the global optimization of a quantity of interest.
The generalization of the enrichment strategy requires the determination of the
number of calculated low-fidelity points, and the solver stopping criterion in this
low-fidelity case. A parametric study campaign estimate these two parameters.
10 low-fidelity points per dimension with a LATIN stopping criterion ν1 =515

10−2 will be firstly considered before adding high-fidelity points. With these
parameters, the airplane blade optimization was obtained in 44 minutes instead
of 6 hours for a gain of 8.4×.

In the short term, the strategy is needed to be applied for geometric opti-
mization problems. The main difficulty concerns the multiparametric strategy520

and the interpolation of fields for different geometries. This difficulty can be
overcome by morphing around a single mesh [59], by using XFEM methods
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[60], or by isoeometric parameterization of the structure (Isoeometrical Analy-
sis — IGA) [61]. In this last case, tools already developed can be used using an
IGA-FEM coupling method [62].525

Thereupon, the strategy can also be improved by a better choice of the
acquisition function. A comparison of the different acquisition functions should
be made in the same way as [34] in the case of mechanical problems. Several
enrichment criteria, including the AKG criterion, were not compared to the
others. However, it appears that the AKG function can help to obtain the530

optimum faster.
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[37] P. Ladevèze, A. Nouy, O. Loiseau, A multiscale computational approach for
contact problems, Computer Methods in Applied Mechanics and Engineer-
ing 191 (43) (2002) 4869–4891 (Sep. 2002). doi:10.1016/S0045-7825(02)
00406-1.

[38] L. Champaney, J. Y. Cognard, D. Dureisseix, P. Ladevèze, Large scale650
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