
HAL Id: hal-02396091
https://hal.science/hal-02396091

Preprint submitted on 5 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning to approximate industrial problems by
operations research classic problems

Axel Parmentier

To cite this version:
Axel Parmentier. Learning to approximate industrial problems by operations research classic problems.
2019. �hal-02396091�

https://hal.science/hal-02396091
https://hal.archives-ouvertes.fr

Learning to approximate industrial problems by operations

research classic problems

Axel Parmentier∗

December 5, 2019

Abstract

Practitioners of operations research often consider difficult variants of well-known opti-
mization problems, and struggle to find a good algorithm for their variants while decades
of research have produced highly efficient algorithms for the well-known problems. We in-
troduce a “machine learning for operations research” paradigm to build efficient heuristics
for such variants of well-known problems. If we call the difficult problem of interest the
hard problem, and the well known one the easy problem, we can describe our paradigm as
follows. First, use a machine learning predictor to turn an instance of the hard problem into
an instance of the easy one, then solve the instance of the easy problem, and finally retrieve
a solution of the hard problem from the solution of the easy one.

Using this paradigm requires to learn the predictor that transforms an instance of the
hard problem into an instance of the easy one. We show that the problem of learning such
a predictor from a training set containing instances of the hard problem and their optimal
solutions can be reformulated as a structured learning problem, whose structured prediction
problem is the easy problem. This provides algorithms to learn our predictor if the easy
problem has been considered as a structured prediction problem in the literature, and a
methodology to build the learning algorithm if not.

We illustrate our paradigm and learning methodology on path problems. To that pur-
pose, we introduce a maximum likelihood technique to train a structured prediction model
which uses a shortest path problem as prediction problem. Using our paradigm, this enables
to approximate an arbitrary path problem on an acyclic digraph (the hard problem) by a
usual shortest path problem (the easy problem). Since path problems play an important
role as pricing subproblems of column generation approaches, we also introduce matheuris-
tics that leverage our approximations in that context. Numerical experiments show their
efficiency on two stochastic vehicle scheduling problems.

Keywords: Machine Learning for Operations Research, Structured Learning, Path problem,
Column Generation, Matheuristic, Stochastic Vehicle Scheduling Problem

1 Introduction

1.1 A novel “ML for OR” paradigm

In the past few years, machine learning (ML) techniques have become increasingly popular to
speed-up the resolution of operations research (OR) problems. Consider a generic optimization
problem

min
x∈X (Γ)

f(x; Γ),

∗Ecole des Ponts Paristech, axel.parmentier@enpc.fr

1

axel.parmentier@enpc.fr

a.

Instance
Γ

Information
ϕθ(Γ)

Solution x ∈ X (Γ)
x = A(ϕθ(Γ),Γ)

ϕθ

ML predictor

A
Algorithm

b.

Instance
Γh ∈ ℵh

Instance Γe ∈ ℵe

Γe = ϕθ(Γ
h)

X (Γe) ⊆ X (Γh)

Solution x ∈ X (Γh)
x = Ae(ϕθ(Γ

h))

ϕθ

ML

Ae

Alg.

Figure 1: a. General scheme of ML approaches to OR problems. b. The paradigm we propose.

where Γ is an instance of the problem, X (Γ) is the set of feasible solutions of Γ, and x 7→
f(x; Γ) the objective function of Γ. In contrast with the common use, we mention the instance
Γ explicitely. This will be handy because ML schemes typically consider a set of instances
simultaneously to extract information that is relevant for any instance of the problem and
not just one instance. Figure 1.a illustrates the general scheme of algorithms that exploit ML
techniques to solve OR problems: First, an ML predictor ϕθ extracts relevant information
ϕθ(Γ) on instance Γ, and second an optimization algorithm A uses this information to solve the
problem. The ML predictor ϕθ belongs to a family (ϕθ)θ∈Θ, and the objective of the learning
algorithm is to find the parameter θ in Θ that leads to the best performance of the algorithm
A on the set of instances of interest. The methodologies identified by Bengio et al. [5] in their
survey differ by the kind of ML predictor ϕθ and algorithm A they use. For instance, end-to-end
learning approaches use a deep neural network as ϕθ and a simple greedy heuristic as A, while
other approaches use a simple feature based ML predictor ϕθ to find a good parametrization
ϕθ(Γ) of an advanced combinatorial optimization solver A.

In this work, we consider the following situation, which we have frequently encountered in
the practice of OR. We want to solve large instances of a “hard” problem

min
x∈Xh(Γh)

fh(x; Γh), (h)

and we have an algorithm Ah that can solve only moderate size instances of our problem. But
our hard problem is a variant of an “easy” problem

min
x∈X e(Γe)

f e(x; Γe), (e)

that is, a problem for which we know an efficient solution algorithm Ae that can handle large
instances. Again, we denote by Γh and Γe instances of the hard and the easy problem, re-
spectively, by X h(Γh) and X e(Γe) their feasible solutions, and by fh(·; Γh) and f e(·; Γe) their
objective functions. Let ℵh and ℵe be the set of instances of the hard and the easy problems,
respectively.

To address that situation, we propose a novel “ML for OR” paradigm that uses the mod-
erately efficient algorithm Ah to learn a practically efficient heuristic for the hard problem of
interest (h). It is illustrated on Figure 1.b and could be summarized as follows.

Learn to approximate instances Γh of the hard problem (h) by instances of the easy
problem (e).

More precisely, we suggest to use a ML predictor ϕθ : ℵh → ℵe to turn an instance Γh of the
hard problem into an instance Γe of the easy problem (e) such that the set of feasible solutions
X e(Γe) is contained in the set of feasible solutions X h(Γh) of Γh. Then, we suggest to use the
efficient algorithm Ae to find the optimal solution of Γe, and to return it as the solution of the

2

instance Γh of the hard problem. Of course, if we want this paradigm to work in practice on a
hard problem (h), we must choose an easy problem (e) such that it is possible to approximate
well an instance of (h) by an instance of (e).

The main question that must be answered to make this approach work is the following one:
How to choose θ in such a way that Ae applied on ϕθ(Γ

h) provides a good solution of Γh?
We propose a general methodology which addresses the question of choosing θ by refor-

mulating it as a structured learning problem. Structured learning is a branch of supervised
learning where predictions are done by solving a structured prediction problem. In our case,
the structured prediction problem corresponds to the easy problem (e). Structured learning the-
ory provides two approaches to formulate the structured learning problem as an optimization
problem: one based on the maximum likelihood principle, and the other one on loss minimiza-
tion. In both case, the structure of the optimization problem obtained highly depends on the
structured prediction problem used. Ad-hoc algorithms must therefore be developed for each
type of easy problem used. Structured prediction problems for which structured learning algo-
rithms exist notably include MAP problems in probabilistic graphical models, minimum weight
matching in bipartite graphs, and some clustering problems [21]. In this paper, we illustrate
our methodology and propose structured learning algorithms in the case of path problems.

1.2 Easy and hard problems considered in the paper

Path problems Let D = (V,A) be an acyclic digraph with vertices v in V and arcs a in
A. Let o and d be origin and destination vertices, respectively, and Pod the set of o-d paths in
D. Finally let c be a mapping from Pod to R ∪ {+∞}. We will consider as hard problem the
following generic path problem on an acyclic digraph

min
P∈Pod

c(P). (1)

This generic path problem notably encompasses difficult problems such as resource constrained
shortest path problems or stochastic path problems as special cases. We introduce algorithms
to approximate it by a usual shortest path problem

min
P∈Pod

ĉa, (2)

which can efficiently be solved by dynamic programming along a topological order.

Path partition problems Many vehicle scheduling problems (VSP) can be modeled using
the set partitioning formulation

min
z

∑
P∈Pod

c(P)zP , (3a)

s.t.
∑
P3v

zP = 1, ∀v ∈ V \{o, d}, (3b)

zP ∈ {0, 1}, ∀P ∈ Pod, (3c)

where D = (V,A) is an acyclic directed graph, V is its set of vertices, and A its set of arcs. o
is an origin vertex, d a destination vertex, and Pod is the set of o-d paths. Given an o-d path
P , we denote by c(P) its cost in R ∪ {+∞}. Typically, V \{o, d} is a set of tasks v with fixed
begin and end times that must be operated. The set A contains all pairs (u, v) such that a
vehicle can operate v after u. An o-v path P = o, v1, . . . , vk, d in Pod models a sequence of tasks
v1, . . . , vk that can be operated by a vehicle. Note that the sequence of tasks corresponding to

3

some paths P may not be feasible. For instance, the number of hours a driver can work on a
given day may be limited. We model this with a cost c(P) equal to +∞. The binary variable
zP is equal to 1 if and only if a vehicle operates the sequence of tasks encoded by P .

Since the number of o-d paths is exponentially large, the mixed integer linear program
(MILP) (3) contains too many variables to be solved directly using a MILP solver. It is therefore
solved using a column generation approach. Such approaches alternate the resolution of the
linear relaxation of (3) restricted to a subset of paths or columns P ′ ⊂ Pod of tractable size, and
the resolution of the pricing subproblem, which generates column(s) that should be added to P ′.
Typically, if we denote by ν = (νv)v∈V \{o,d} the dual variables1 associated with Constraint (3b)
and relax Constraint (3c), we obtain the pricing subproblem

min
{
c(P)−

∑
v∈P

νv : P ∈ Pod
}
. (4)

A column generation approach works well only if we can solve the pricing subproblem efficiently.
Since the column generation algorithm only requires to find a column P of negative reduced cost
c(P) −

∑
v∈P νv, the pricing subproblem can be solved approximately. We propose to address

the case where we can solve only instances of (4) of moderate size using our paradigm. We
consider the pricing subproblem as the hard path problem (1) and approximate it by a usual
shortest path problem (2). We also assume that, given a path P in Pod, we can efficiently
compute its cost c(P).

1.3 Running examples on which the numerical experiments are performed

We now introduce two problems on which we will illustrate our methodology: the stochastic
vehicle scheduling problem (stochastic VSP), and the chance constrained capacitated vehicle
scheduling problem (chance constrained CVSP).

Using our formalism, we only need to define the digraph D and the cost c(P) for each o-d
path P to define a problem. Our two problems are on the same digraph. For each task v in V ,
we suppose to have a scheduled begin time tbv in Z+ and a scheduled end time tev in Z+. We
suppose tev > tbv for each task v in V . For each pair of task (u, v), the travel time to reach task
v from task u is ttr(u,v). Task v can be scheduled after task u on a path only if

tbv ≥ teu + ttr(u,v). (5)

There is an arc between u and v only if (5) is satisfied. There is also an o-v arc and a v-d arc
for each v in V \{o, d}. The fact that tev > tbv ensures that D is acyclic. We now explain how
c(P) is defined in each problem.

Stochastic VSP. In the stochastic VSP, we consider tasks that may be delayed. When a
vehicle is delayed on a given task, it propagates delay to the next task it is supposed to operate.
The objective is to minimize the total cost of delay. A typical application of the problem is
aircraft routing, which aims at building the sequences of flight legs operated by the airplanes of
an airline. Tasks correspond to flight legs, vehicles to airplanes, and the objective is to build
the sequences operated by airplanes so as to minimize the total cost of delay.

More formally, we define the stochastic VSP as follows. Let Ω be a set of scenarios. For each
task v, we have a random begin time ξb

v and a random end time ξe
v, and for each arc (u, v), we

have a random travel time ξtr
(u,v). Hence, ξb

v (ω), ξe
v(ω), and ξtr

(u,v)(ω) are respectively the begin

1Duals νv are defined only for v ∈ V \{o, d}. For ease of notations, we complete ν with νo and νd, which are
both defined to be equal to 0.

4

time of v, end time of v, and travel time between u and v under scenario ω. We define ξe
o = 0

and ξb
d = +∞.

Given an o-v path P , we define recursively the end-time τP of P as follows.

τP =

{
0, if P is the empty path in o,
ξe
v + max(τQ + ξtr

a − ξb
v , 0), if P = Q+ a for some path Q and arc a.

(6)

Equation (6) models that fact that a task can be operated by a vehicle only when the vehicle
has finished the previous task: The vehicle finishes Q at τQ, and arrives in v at τQ + ξtr

a with
delay max(τQ + ξtr

a − ξb
v , 0). The total delay ∆P along a path P is therefore defined recursively

by

∆P =

{
0, if P is the empty path in o,
∆Q + max(τQ + ξtr

a − ξb
v , 0), if P = Q+ a for some path Q and arc a.

(7)

Finally, we define the cost of an o-d path P as

c(P) = cveh + cdelE(τP) (8)

where cveh in Z+ is the cost of a vehicle and cdel in Z+ is the cost of a unit delay. Practically,
we use a finite set of scenarios Ω, and compute the expectation as the average on this set.

Chance constrained CVSP. The chance constrained CVSP consists in picking-up goods of
size ρv with vehicles of capacity R in Z+. If the capacity of the vehicle remains constant, the
goods size ρv is random. The cost of an o-d path P is

c(P) =

 cveh, if P
(∑
v∈P

ρv ≤ R
)
≥ 1− α,

+∞, otherwise,

(9)

where again cveh is the cost of a vehicle. In other words, a path is feasible if the vehicle has
enough capacity to pick-up all the goods on the path with probability 1−α. A typical application
of this problem is garbage collection. A task corresponds to a client. The vehicles collecting
garbage visit the same sequence of clients every day, but the volume of garbage loaded by each
client varies from one day to another.

Why these problems. We have chosen these problems for two reasons. First, they are
difficult. State of the art algorithms for the pricing subproblems of the stochastic VSP and the
chance constrained CVSP are label algorithms. These algorithms rely on a smart enumeration
of all the solutions using dominance relations and bounds to discard partial solutions. The
dimension of the label strongly impacts the performance of the algorithms due to the curse of
dimensionality, and only instances of moderate size can be solve when the dimension is larger
than 20. In our case, the dimension of the label is 1 + |Ω| where Ω is the set of scenarios. For
the sample average approximation to be relevant, the number of scenarios |Ω| must be large,
typically a few hundred. Hence, only small instances of our problems can be solved using exact
solvers.

Second, we have chosen these problems because we expect our paradigm to perform well on
the first one, and not well on the second one. Indeed, our paradigm makes sense only if the hard
problem can be well approximated by the easy problem. At first sight, it seems reasonable to
approximate the pricing subproblem of the stochastic VSP by a usual shortest path problem.
Indeed, delay propagates on arcs, and it would not seem to surprising that the cost P of a path

5

might be approximated by
∑

a∈P ĉa. On the contrary, in the chance constrained CVSP, there
is a threshold effect: the path remains feasible until the size of the goods collected reaches the
capacity. This threshold effect cannot be captured by a usual shortest path problem. We will
see that these intuitions are confirmed by the numerical experiments.

1.4 Organization of the paper

The paper is organized as follows. Section 2 provides a literature review and details our contri-
butions. Section 3 starts with a brief introduction to structured learning and then introduces
our structured learning methodology to find the best approximation of the hard problem (h)
by the easy one (e). The section then provides a step-by-step description of how to apply this
methodology to a new problem, and details these steps on the case of path problems and path
partition problems, with examples on the applications of Section 1.3. The two next sections
introduce the new algorithms required to apply the methodology to path problems and partition
problems. More specifically, Section 4 explains how to perform structured learning when using
a usual shortest path problem as structured prediction problem, and Section 5 explains how to
derive practically efficient algorithms for the path partition problem (3) from an approximation
of its pricing subproblem by a usual shortest path problem. Section 6 then provides numeri-
cal results showing the efficiency of the approach on our running examples. Finally, Section 7
concludes and provides research directions.

2 Literature review and contributions

2.1 Literature review

Leveraging ML to solve combinatorial optimization problems. Bengio et al. [5] survey
the recent attempts at leveraging ML to solve combinatorial optimization problems. They
identify three main methodologies. First, “end-to-end learning methods” [4, 9, 12, 13, 16, 18, 23]
train the ML model to directly output a solution. Using our terminology of Figure 1.a, φθ is
a ML predictor, generally based on deep learning, that outputs a vector from which a solution
can immediately be reconstructed using a simple heuristic. These approaches focus mainly
but not only on the traveling salesman problem. Second, “learning meaningful properties of
optimization problems” [6, 14, 17] approaches use the ML predictor φθ to predict information
that will be exploited by an advanced optimization algorithm designed to solve the problem of
interest. Finally, in “ML alongside optimization algorithms” approaches [3, 12], a ML predictor
is regularly called to take heuristic decisions within an optimization algorithm. Our work
is somewhere inbetween the three methodologies. When the hard problem is the problem
of interest, our work can be compared to the end-to-end learning methods and the learning
meaningful properties approaches. Indeed, the algorithm that we use to reconstruct the optimal
solution, i.e., the solution algorithm Ae that we use to solve the easy instance Γe exploits much
more the structure of the problem than the greedy heuristics of end-to-end learning approaches,
but has not been conceived to find solutions of our problem of interest, as is the case in “learning
meaningful properties of optimization problems” approaches. Finally, when used to approach
the pricing subproblem of a column generation, our approach can be considered as a “ML
alongside optimization algorithms approach”.

Bengio et al. [5] identify three main challenges that must be addressed to improve ML
approaches to combinatorial optimization problems. The first challenge is to develop approaches
that work when finding feasible solutions is difficult. In its current version, our work does not
address well that challenge, in the sense that, if our approach scales very well on the stochastic
VSP, where finding a good solution is easy, it does not scale well on the chance constrained

6

CVSP due to the feasibility constraint. We believe that this comes from our choice of the usual
shortest path problem as easy problem (e), which is not adapted to model capacity constraints,
and that our paradigm could potentially address such feasibility problems by choosing an easy
problem (e) that can better model feasibility constraints. The second challenge is to find neural
network architectures that suit to combinatorial optimization problems. In this work, we bypass
this challenge by using a feature based ML approach. Developing a feature free version of our
approach would require to address this challenge, and we let it to future work. Finally, the
third challenge is to develop models that scale to instances larger than those on which the ML
approach has been trained. We claim that our approach is one way of meeting that challenge:
As we will see in the numerical experiments section, our approach scales very well on instances
order of magnitude larger that those on which our ML predictor was trained.

Structured learning. Nowozin et al. [19] provide an introduction to structured learning.
Taskar et al. [21] detail many different combinatorial optimization problems that can be used
as structured prediction problems within structured learning approaches, but do not consider
shortest path problems. To the best of our knowledge, no structured learning approach has been
proposed with a usual shortest path problem as structured prediction problem. However, paths
have already been used by Joulin et al. [11] to encode the solution of a prediction problem in
the context of image and video co-localization. They propose a Franck-Wolfe algorithm on the
flow polytope to solve the learning problem. However, the objective function of their learning
problem is specific to their application and does not suit to a generic structured learning setting.

Stochastic and chance constrained VSP. The chance constrained CVRP and stochastic
VRP have been well studied and remain especially challenging. We refer the reader to the sur-
veys of [10] and Vidal et al. [22, Section 2.6] for a review of the seminal and recent contributions,
respectively. To the best of our knowledge, the chance constrained CVSP and stochastic VSP
have been considered mainly in the context of airline problems. In their seminal work on delay
in the aircraft routing problem, Lan et al. [15] considered a stochastic VSP where flight legs
delay are independent. The successive contributions either use this independence assumptions
or heuristic approaches based on simulation [1, 7, 8, 24]. Scenario approaches enable to better
take into account the dependence between tasks delays, and remain challenging.

2.2 Contributions

Our contributions are as follows.

1. We introduce a new ML for OR paradigm: “If a hard combinatorial optimization problem
is a variant of an easy one, then use a ML predictor to approximate the hard problem
by the easy one”. This paradigm enables to exploit the combinatorial structure of the
problem considered.

2. We provide a structured learning methodology that enables to learn the ML predictor
required by our paradigm.

3. We introduce a maximum likelihood approach for structured learning problems that use
a usual shortest path problem on an acyclic digraph as structured prediction problem.

4. We provide algorithms that implement our methodology and enable to approximate arbi-
trary path problems on an acyclic digraph by a usual shortest path problem, and arbitrary
path partition problems on an acyclic digraph by a flow problem.

7

5. We also introduce an approach to scale-up column generation approaches with difficult
path problems as pricing subproblems. It takes the form of a column generation matheuris-
tic that, instead of solving the true pricing subproblem, solves the approximation by a
usual shortest path problem obtained using our ML for OR approach.

6. We provide numerical experiments that test the efficiency of the approach on the stochastic
VSP and on the chance constrained CVSP. They notably show that our approach leads to
efficient algorithms to solve the stochastic VSP. Such algorithms are practically relevant
in the context of the aircraft routing problem.

3 Our structured learning methodology

3.1 Background on structured learning

Structured learning is a branch of supervised learning, which aims at learning a function

h : S → T
s 7→ t

from a training set (s1, t1), . . . , (sn, tn) where ti is a noisy observation of h(si). Structured
learning deals with supervised learning problems where, for any s in S, we know that h(s) takes
its value in a set T (s) that is finite, combinatorially large, and structured. To predict the value
h(s) on a new instance s, we solve the optimization problem

t∗ = ĥg(x) := arg min
t∈T (s)

g(s, t)

where the statistical model ĥg is defined through an auxiliary evaluation function g. In this
paper, we restrict ourselves to generalized linear models {gθ : θ ∈ Θ} of the form gθ(s, t) =
〈θ|φ(s, t)〉, where φ : X → Rd is a features vector. This gives predictions of the form

t∗ = ĥθ(s) := arg min
t∈T (s)

〈θ|φ(s, t)〉. (10)

Problem (10) is referred as the structured prediction problem. Given a training set (si, ti)i∈[n],

the objective of the structured learning problem is to learn a parameter θ such that ĥθ is a good
approximation of h.

Approximate problems using structured learning. We can now reformulate the problem
of finding parameter θ such that ϕθ(Γh) is the “best” approximation of Γh by an instance of
(e) as a structured learning problem. The mapping h : S → T that we want to approximate
is the mapping that associates to each instance Γh of the hard problem an optimal solution
x∗ ∈ X h(Γh). The structured prediction problem we use is

min
x∈X e(ϕθ(Γh))

f e(x;ϕθ(Γh)). (11)

and the corresponding structured prediction problem enables to find the parameter θ such
that an optimal solution of (11) is the “best prediction” of x∗. In other words, the structured
prediction problem coincides with the problem we want to solve.

This leads to the following methodology to learn θ. First, generate a set of moderate size
instances Γh

1 , . . . ,Γ
h
n of the hard problem (h). Second, use algorithm Ah to find optimal solutions

x∗1, . . . , x
∗
n. Finally, use a structured learning algorithm to solve the structured learning problem

and find the θ that gives the best approximation.

8

3.2 How to apply our ML for OR paradigm on your problem

Suppose that you want to apply our ML for OR paradigm on your hard problem of interest (h).
This means that you already have the prerequisites of the method, i.e.,

1. an easy problem (e) that you want to use to approximate (h),

2. and a set of training instances from the family of instances of (h) that you want to solve
with their solutions.

The solutions of the training instances are typically computed with an algorithm Ah that can
solve moderately large instances of (h). Applying our methodology will then require to define

3. a parametrized family of mapping (ϕθ)θ∈Θ from the set of instances of (h) to the set of
instances of (e),

4. and an algorithm for the resulting structured learning problem.

If your easy problem (e) has already been considered as structured prediction problem in the
structured learning literature, then you can directly use the corresponding structured learning
algorithm, Otherwise, you will have to develop your own structured learning algorithm.

You might want to apply this approach to a problem (h) that is a subproblem of your
problem of interest. Typically, this subproblem could be the separation problem of a family of
cuts in a branch and cut algorithm, or the pricing subproblem of a column generation approach.
In that case, one last step would be to design

5. an algorithm for your problem of interest that can exploit your heuristic algorithm for the
subproblem (h).

In the rest of this section, we detail these different steps on path problems and partition prob-
lems.

3.3 Application to path problems

We now explain how to approximate hard path problems by a usual shortest path problem using
our methodology, and take the pricing subproblems of the stochastic VSP and of the chance
constrained CVSP as examples.

Step 1: identify easy and hard problem In order to address a wide range of path problems,
we use as hard problem h the following generic path problem

min
{
c(P ;D) : P ∈ PDod

}
with D = (D, o, d, b) and b ∈ B(D, o, d). (12)

An instance D of the problem is a tuple (D, o, d, b), where D = (V,A) is an acyclic directed
graph (V,A), o and d are respectively an origin and a destination vertex in V , and the mapping
B : (D, o, d) 7→ B(D, o, d) defines the set of possible parameterizations b of digraph (D, o, d).
We denote by PDod the set of o-d paths in D. Parameter b provides additional information on
the instance that may not be contained in digraph D alone. We denote by D the set of possible
instances {(D, o, d, v) : D a digraph, o, d ∈ V 2, b ∈ B(D, o, d)}. The mapping c associates to
each instance D a cost function

c(·;D) : Pod(D) → R ∪ {+∞},
P 7→ c(P ;D),

(13)

9

which assigns a cost c(P ;D) to each o-d path P . A path P is feasible if c(P ;D) < +∞.
This rather abstract setting enables to model a wide range of path problems. For instance,

the usual shortest path problem is obtained by choosing B(D, o, d) = RA, and

c :
(
P ; (D, o, d, (ba)a∈A)

)
7→
∑
a∈P

ba.

The pricing subproblem of the stochastic VSP defined in Section 1.3 is obtained by using((
ξb
v (ω))v∈V ,

(
ξe
v(ω)

)
v∈V ,

(
ξtr

(u,v)(ω)
)

(u,v)∈A

)
ω∈Ω

as parameter b, and the mapping c defined in

Equation (8).
We propose to approximate our generic path problem (12) by the usual shortest path problem

min
{∑
a∈P

ĉ(a;D) : P ∈ PDod
}
. (14)

Step 2, training set. We suppose to have a training set (D1), . . . , (Dn), where Di is an
instance of Problem (12), and we compute the solution Pi of each instance Di using a path
algorithm.

In the case of the pricing subproblems of the stochastic VSP and the chance constrained
CVSP, we explain in Section 6.1 how we generate instances of these problems. We solve these
pricing subproblems using the monoid resource constrained shortest path framework and algo-
rithms we recently introduced [20].

Step 3, define mapping ϕθ. The structured learning problem leverages the training sample
to choose the mapping ĉ in such a way that (14) “approximates well” Problem (12). Practically,
for a given problem, we define a feature map

φ : A → Rd
(a,D) 7→ φ(a,D)

where A =

{
(a,D) :

∣∣∣∣ D ∈ D, D = (D, o, d, b)
D = (V,A), a ∈ A

}
(15)

that associates to each arc a of an instance D a vector of features φ(a,D). We restrict ourselves
to approximate cost functions ĉ(a,D) in the family (cθ)θ∈Rd of functions

cθ(a,D) = 〈θ|φ(a,D)〉 (16)

where 〈·|·〉 is the usual scalar product on Rd.
Remark that the approximate cost functions in the family (cθ)θ∈Rd have access to infor-

mation on arc a and instance D only through φ(a,D). The feature map φ must therefore
be chosen in such a way that φ(a,D) contains the information on (a,D) that is relevant to
approximate (12).

For instance, on the stochastic VSP, for an arc a = (u, v) we use the reduced cost −νu, the
travel time ttra , the deciles of the distribution of the slack max(ξe

u + ξtr
a − ξb

v , 0) between u and
v, as well as the value of its cumulative distribution function in -100, -50, -20, -10, 0, 10, 50,
100, 200, and 500 – time is expressed in minutes. For the chance constrained CVSP, we use
quantiles of the distributions of ρu and ρu + ρv. Quantiles of ρu + ρv provide information on
the correlation between ρu and ρv that is not available in the quantiles of ρu alone.

Step 4 structured learning algorithm Our structured learning problem therefore consists
in finding a parameter θ in Rd such that the shortest path problem

min
{
〈θ|φ(a,D)〉 : P ∈ PDod

}
. (17)

10

approximates problem (12) as well as possible. To the best of our knowledge, Problem (17) has
not been considered as a structured prediction problem in the literature. Section 4 develops a
structured learning approach to that problem.

Step 5 does not apply since we directly approximate the path problem of interest and not
one of its subproblems

3.4 Application to path partition problems

We now explain how to apply our methodology to path partition problems (3). On these
problems, we do not use our methodology directly on the master problem (3), but apply it
instead to the pricing subproblem (4), which we consider as our hard problem (h). Since
this pricing subproblem is a path problem (12), we approximate it by a usual shortest path
problem (14). Steps 1 to 4 are therefore identical to those considered in Section 3.3. After
performing these steps, we obtain an approximation of the pricing subproblem by a usual
shortest path problem. We then have to perform Step 5 to use this approximation to design
efficient algorithms for the master problem (3). Section 5 introduces two approaches: one
which retrieves from the approximation of the pricing subproblem by a shortest path problem
an approximation of the master problem by a flow problem, and one which performs a heuristic
column generation.

4 Structured learning for path problems

In this section, we provide a maximum likelihood algorithm for the structured learning prob-
lem corresponding to the structured prediction problem (17). We start by introducing some
background on maximum likelihood approaches in structured learning.

4.1 Background on probabilistic structured learning

Recall that structured learning aims at learning a function

h : S 7→ T
s → t

from a training set (s1, t1), . . . , (sn, tn) where ti is a noisy observation of h(si). Given a new s,
the prediction of h(s) is done by solving the structured prediction problem

t∗ = ĥθ(x) := arg max
t∈T (s)

〈θ|φ(s, t)〉.

The objective of the structured learning problem is to learn a parameter θ such that ĥθ is a
good approximation of h.

We now describe the maximum likelihood approach to structured learning. Given s in S
and θ in Rd, we endow T with the probability distribution

p(t|s,θ) =

{
1

Z(s,θ)e
−〈θ|φ(s,t)〉, if t ∈ T (s),

0, otherwise,
where Z(s,θ) =

∑
t′∈T (s)

e−〈θ|φ(s,t′)〉. (18)

The collection of distributions (P(·|s,θ))θ is the exponential family on T defined by the features
mapping φ(s, ·), and Z(s,θ) is the associated partition function.

11

The regularized maximum conditional likelihood learning consists in choosing the parameter

θ∗ = arg min
θ

L(θ) with L(θ) := λ‖θ‖2 +
n∑
i=1

〈θ|φ(si, ti)〉+
n∑
i=1

logZ(si,θ), (19)

where λ > 0 is the regularization parameter. When λ = 0, we obtain the maximum conditional
likelihood learning.

The rationale behind this learning problem is the following. We recall that the Kullback-
Leibler divergence

KL(p‖q) =
∑
x

p(x) log
(p(X)

q(X)

)
.

between two distributions p and q on a finite space S evaluates how different p and q are. The
more different the two distributions, the larger the Kullback-Leibler divergence. If we denote
by q(s) and q(s, t) the empirical distribution on S and S × T induced by our training sample
(s1, t1), . . . , (sn, tn), the optimal solution θ∗ of the maximum conditional likelihood learning
problem is the parameter that minimizes the Kullback-Leibler divergence between the empirical
distribution q(s, t) and the learned distribution q(s)p(t|s,θ) on S × T .

λ = 0 implies θ∗ = arg min
θ

KL
(
q(s, t)

∥∥∥q(s)p(t|s,θ)
)
.

The regularization term λ‖θ‖2 enables to prevent overfitting.
To solve the learning problem (19) numerically, we use a BFGS algorithm. To that purpose,

we need to compute the gradient of L with respect to θ.

Proposition 1. [19, Section 5.2] L(θ) is a smooth convex function with gradient

∇θL(θ) = 2λθ +
n∑
i=1

(
φ(si, ti)− Et∼p(t|si,θ)φ(si, t)

)
, (20)

where Et∼p(t|si,θ)φ(si, t) = 1
Z(s,θ)

∑
t∈T (s)φ(s, t)e−〈θ|φ(s,t)〉.

4.2 Probabilistic structured learning using shortest path problems

We now introduce our structured learning approach to the structured prediction problem (17)
using shortest paths. In that case, S = D, and given an instance s = D = (D, o, d, b), we have
T (s) = PDod. The approximate cost function (16) leads to the exponential family

p(P |D,θ) =
1

Z(D,θ)
exp

(
−
〈
θ
∣∣∣∑
a∈P

φ(a,D)
〉)

on PDod, (21)

where
Z(D,θ) =

∑
P∈PD

od

e−〈θ|
∑

a∈P φ(a,D)〉. (22)

We therefore obtain the regularized conditional likelihood

L(θ) = λ‖θ‖2 +

n∑
i=1

〈
θ|
∑
a∈Pi

φ(a,D)
〉

+

n∑
i=1

logZ(Di,θ), (23)

12

and gradient

∇θL(θ) = 2λθ +
n∑
i=1

(∑
a∈Pi

φ(a,D)− EP∼p(P |Di,θ)

∑
a∈P

φ(a,Di)
)
. (24)

Given the number of o-d paths, we cannot enumerate them explicitely when computing Z(D,θ),
L(θ) and ∇θL(θ). In the rest of the section, we show that these quantities can easily be
computed by dynamic programming.

An exponential family of o-d paths. Let D = (V,A) be an acyclic directed graph, and
(ra) and ϕa be vectors in Rd for each arc a in A. For any path P in D, let

rP =
∑
a∈P

ra and ϕP =
∑
a∈P

ϕa.

Given two vertices u and v, we define Puv to be the set of u-v paths in D. We consider the
distribution on Puv

puv(P) =
1

Zuv
exp

(
−
∑
a∈P

ra

)
=

1

Zuv
e−rP where Zuv =

∑
P∈Puv

e−rP . (25)

If u = v, then Puv = {Pu} where Pu is the path with no arcs in u,

Zuu = 1, and EP∼puvϕP = 0. (26)

If there is no u-v paths, then Zuv = 0 and EP∼puvϕP = 0. For any vertex v, we denote by δ−(v)
the set of arcs incoming to v.

Proposition 2. Let u and v be two distinct vertices in V such that there exists a u-v path. We
have

Zuv =
∑

a=(s,v)∈δ−(v)

Zuse
−ra , and EP∼puvϕP =

∑
a=(s,v)∈δ−(v)

Zuse
−ra

Zuv

(
ϕa + EQ∼pusϕQ

)
.

Remark that using Equation (26) and Proposition (2), we can compute Zuv and EP by
dynamic programming along a topological ordering.

Proof. The first part of the proof comes from the fact that any u-v path P can be decomposed
into a path Q followed by an arc a with a in δ−(v).

Zuv =
∑

P∈Puv

e−
∑

a∈P ra =
∑

a=(s,v)∈δ−(u)

e−ra
∑
Q∈Pus

e−
∑

a′∈Q ra′ =
∑

a=(s,v)∈δ−(u)

e−raZus.

Furthermore

EP∼puvϕP =
1

Zuv

∑
P∈Puv

e−
∑

a∈P ra
∑
a∈P

ϕa

=
1

Zuv

∑
a=(s,v)∈δ−(v)

∑
Q∈Pus

e−rae−
∑

a′∈Q ra′

(
ϕa +

∑
a′∈Q

ϕa′

)

=
1

Zuv

∑
a=(s,v)∈δ−(v)

e−ra
(
ϕa

∑
Q∈Pus

e−rQ +
∑
Q∈Pus

e−rQϕQ

)
=

1

Zuv

∑
a=(s,v)∈δ−(v)

e−ra
(
Zusϕa + ZusEQ∼pusϕQ

)
,

which gives the result.

13

Computing L(θ) and ∇θL(θ), and solving the learning problem. Consider now a
fixed θ and a fixed training sample (Di, Pi). Then, defining ra = 〈θ|φ(a,D)〉, the distribution
p(P |Di,θ) of Equation (21) and pod(P) of Equation (25) coincide. Hence, Z(Di,θ) can be
computed by dynamic programming along a topological ordering using Equation (26) and the

first part of Proposition (2). And each component of the vector EP∼p(P |Di,θ)

∑
a∈P φ(a,Di)

)
can be computed by dynamic programming using Equation (26) and the second part of Propo-
sition (2). Hence, using these algorithms, we can compute L(θ) and ∇θL(θ) and solve the
learning problem (19) using a BFGS algorithm.

Remark 1. Depending on θ, the value of the partition function Z(D,θ) can be tiny or huge.
We therefore store its logarithm to avoid numerical errors in implementations. 4

5 Heuristics for path partition problems leveraging the pricing
subproblem approximation

In this section, we focus on Step 5 of our methodology, and explain how to exploit our ap-
proximation of path problems by usual shortest path problems to derive matheuristics for the
path partition problem (3). We denote by M be an instance of the master problem (3). Given
a vector of duals ν = (νv)v∈V \{o,d} associated with the cover constraint (3b), we denote by
D(M,ν) = (D, o, d, b(ν)) the corresponding instance of the pricing subproblem (4). Following
Step 1 to 4 of our structured learning methodology, we suppose to have learned a parameter
θ leading to a good approximation of the pricing subproblem (4) by the usual shortest path
problem

min
P∈Pod

〈
θ
∣∣∣∑
a∈P

φ
(
a,D(M,ν)

)〉
. (28)

We start by showing that we can derive from (28) an approximate master problem. To that
purpose, we restrict ourselves to vector of features of the form

φ(a,D(M,ν)) = (φd(a,D(M,ν)),φ0(a,D)) where a = (u, v) and φd(a,D(M,ν)) = −νu,

with the convention that νo = 0. We also split the vector of parameters θ in (θd,θ0), with
θd the parameter corresponding the feature −ν. We assume that θd > 0. The assumption is
without loss of generality. We obtained θ satisfying θd > 0 in all our numerical experiments.
Indeed, given the objective of the pricing subproblem (4), it would be very surprising to obtain
a structured learning approximation with θd ≤ 0. Consider now the following approximate
master problem.

min
∑
P∈P

(
1

θd

∑
a∈P

〈
θ
∣∣∣φ(a,D(M,0)

)〉)
zP , (29a)

s.t.
∑
P3v

zP = 1, ∀v ∈ V \{o, d}, (29b)

zP ∈ {0, 1}, ∀ ∈ Pod, (29c)

Proposition 3. The pricing subproblem of a column generation approach to the approximate
master problem (29) is the usual shortest path problem (28), where ν corresponds to the vector
of duals associated to (29b).

Proof of Proposition 3. The pricing subproblem corresponding to a dual solution ν of (29) is

min
P∈Pod

(
1

θd

∑
a∈P

〈
θ
∣∣∣φ(a,D(M,0)

)〉)
−
∑
v∈P

νv.

14

The equality(
1

θd

∑
a∈P

〈
θ
∣∣∣φ(a,D(M,0)

)〉)
−
∑
v∈P

νv =
1

θd

(∑
a∈P

〈
θ
∣∣∣φ(a,D(M,ν)

)〉)
then gives the result.

We introduce two kinds of algorithms: algorithms solving the initial master problem (3),
and algorithms solving the approximate master problem (29). Since the solution set of the
two problems coincide only if all the o-d paths are feasible, the second kind of algorithms are
relevant only for problems such that cP < +∞ for all P in Pod. On our example, they will
provide solutions of the stochastic VSP, but not of the chance constrained CVSP.

5.1 Flow approach to solve the approximate master problem

It is well-known that the set partitioning formulation (29) is the Dantzig-Wolfe reformulation
of the following flow formulation.

min
∑
a∈A

〈
θ
∣∣∣φ(a,D(M,0)

)〉
ta, (30a)

s.t.
∑

a∈δ−(v)

ta =
∑

a∈δ+(v)

ta = 1, ∀v ∈ V \{o, d}, (30b)

ta ∈ {0, 1}, ∀a ∈ A. (30c)

Since flow matrices are totally unimodular, the formulation (30) is very well solved by off-the-
shelf MILP solvers, which provides a way to solve efficiently large instances of the approximate
problem (29) to optimality.

5.2 Column generation approaches to solve the initial master problem

Algorithm 1 describes the usual column generation algorithm, that enables to solve the linear
relaxation of the master problem (3). Column generation theory ensures that, when the pric-

Algorithm 1 Generic column generation algorithm

1: Input: an instance M of (3), P ′
2: if P ′ = ∅ then P ′ ←

{
paths o, v, d for v ∈ V \{o, d}

}
;

3: solve the linear relaxation of the master problem (4) restricted to P ′ using an LP solver;
4: z,ν ← optimal solutions of the primal and the dual of the restricted master problem;
5: solve the pricing subproblem instance D(M,ν);
6: L ← negative reduced cost paths found at Step 5;
7: P ′ ← P ′ ∪ L;
8: if L 6= ∅ then go to Step 3;
9: return z.

ing subproblem is solved to optimality, Algorithm 1 return an optimal solution z of the linear
relaxation of the master problem (3). This is not the case in this paper, where the pricing sub-
problem considered is intractable. However, we still leverage Algorithm 1 to get a matheuristic
that compute a (hopefully good) solution of the master problem (3). Two elements must be
specified to define such a matheuristic: First, how the pricing subproblem is approximately
solved, and second, how an integer solution of the master problem (3) is retrieved from the
fractional solution returned by Algorithm 1.

15

Approximate resolution of the pricing subproblem. Let ν be a vector of duals, D(M,ν)
be the corresponding instance of the pricing subproblem, and D̂(M,ν) its approximation by a
usual shortest path problem. Given an o-d path P , we denote by c̃P its reduced cost c(P) −∑

v∈P νv. Since D̂(M,ν) is an approximation of D(M,ν), the reduced cost c̃P̂ of the optimal

solution of P̂ of D̂(M,ν) may be positive even if there exists paths P with negative reduced
cost c̃(P). In order to increase our chances to find a negative reduced cost path P if such a path
exist, we suggest to compute the k best solutions of the usual shortest path problem D̂(M,ν).
These k best solutions can be computed using K∗ algorithm [2], which is a natural generalization
of the usual A∗ algorithm to find the k shortest paths. However, even if K∗ algorithm is quite
efficient, it is order of magnitudes slower than the usual dynamic programming algorithm on
acyclic digraphs (which we denote by ADP). And furthermore, the larger k, the slower K∗. To
get the best of the two algorithms, we therefore suggest to solve the pricing subproblem using
Algorithm (2).

Algorithm 2 Structured learning heuristic to find negative reduced cost solutions of (4)

1: input: an instance D of the pricing subproblem (4), an integer K;
2: solve (28) for D with Algorithm ADP;
3: S ← {P} ∩ P where P is the optimal solution computed at Step (2);
4: L ←

{
P ∈ S ∩ P : c(P)−

∑
v∈P νv < 0

}
;

5: k ← 1
6: while k < K and L = ∅ do
7: k ← min(5k,K);
8: S ← solution of K∗ on the k-shortest path problem on D with ra = ĉ(a,D);
9: L ←

{
P ∈ S ∩ P : c(P)−

∑
v∈P νv < 0

}
;

10: end while
11: return L;

Heuristic to get an integer solution Since we do not solve the linear relaxation to opti-
mality, we do not have a lower bound on the best integer solution that can be reached from the
current node. Hence, we cannot use a branch-and-bound algorithm to find an optimal solution.
Instead, we use a heuristic branching only to find a feasible integer solution. We branch on the
arc variables ta of the flow formulation (30). Since our objective is to find a feasible solution,
we run a depth-first search branching algorithm where we branch on the most integer variable
ta and stop as soon as we find an integer solution. A node u of the branch-and-bound tree is a
pair (du, Cu) where du is the depth of u, and Cu a set of additional branching constraints of the
form ∑

P3a
zP = ba with a in A and ba in {0, 1}. (31)

The algorithm maintains a list L of active nodes until it finds an integer solution. Algorithm 3
states our heuristic branching algorithm. At step 9, the depths d + 1 and d + 1

2 enables to
prioritize the first node over the second one. Practically, when initializing Algorithm 1 with P ′,
we do not add all the columns P for which we can deduce that zP = 0 from the constraints in
Cu.

It only remains to explain how to handle the additional constraints of the form (31) in the
pricing subproblem of the column generation algorithm. In Approximation (28), we keep the
same parameter θ, and only modify the feature φd

(
a,D(M,ν)

)
corresponding to the dual. Let

a = (u, v) be an arc in A. Note that there is at most one constraint of the form (31) in Cu. If

16

Algorithm 3 Heuristic branching algorithm

1: input: an instance of (3), a set of columns P ′
2: L←

{
(0, ∅)

}
;

3: while L is not empty do
4: extract from L a node u = (du, Cu) with maximum depth du;
5: z ← solution returned by Algorithm 1 on (3) and P ′ with additional constraints Cu;
6: add to P ′ the columns generated by Algorithm 1;
7: if z is integer return z; stop;
8: choose an arc a such that

∑
P3a zP is maximal and there is no constraint (31) for a in

Cu;
9: add

(
d+ 1, Cu ∪ {

∑
P3a zP = 1}

)
and

(
d+ 1

2 , Cu ∪ {
∑

P3a zP = 0}
)

to L;
10: end while
11: return “no integer solution”;

there is one such constraint, we denote by νa the corresponding dual variable, and replace νu
by νu + νa in the feature φ(a,D(M,ν)). Otherwise, we keep νu.

6 Numerical results

6.1 Instances generator

We generate instances of our example problems as follows. Tasks correspond to trips in a city
on a given day. Time and distances are expressed in minutes. The city corresponds to a square
measuring 50 minutes on each side. The origin and the destination of a trip are identified by
their coordinates. The beginning time of each trip is randomly drawn between 6 am and 8 pm.
The duration of the trips and the travel time between trips are computed as follows. The city
is partitioned into districts, which are squares of width 10 minutes. The duration tev − tbv of a
task v is αvl, where l is the distance between the origin and the destination of the task, and
αv is randomly drawn between 1.2 and 1.6. The duration ttra of a trip between two tasks is
the distance l between the destination of the first task and the origin of the second task. This
enables to build the digraph D of both problems. Vehicle cost cveh is chosen equal to 1000 for
both problems.

Delay for the stochastic VSP are generated as follows. For each district d and time h of the
day we have a random variable ζdis

d,h modeling the congestion of d at time h. ζdis
d,0 = εd,0, and

ζdis
d,h+1 = ζdis

d,h/2 + εd,h, where the εd,h are independent and distributed according to a lognormal

distribution. We also have a random variable ζ i
h modeling congestion on freeways between

districts, whose distribution is defined similarly. The parameters of the lognormal distributions
ζd,h are chosen to model a morning peak and an evening peak of congestion, as well as a city
center that it more congested than peripheral areas. Since the time discretization we use is finer
than hours, we introduced the notation h(t) for the hour of a time instant t. Consider a task v
corresponding to a trip between district d1 and district d2. ξb

v = tbv + εv where εv is distributed
according to a lognormal distribution. We have

ξe
v = ξb

v + tev − tbv + ζdis
d1,h(ξ1) + ζ i

h(ξ2) + ζdis
d1,h(ξ3),

where ξ1 = ξb
v , ξ2 = ξ1 + ζdis

d1,h(ξ1), and ξ3 = ξ2 + tev − tbv + ζ i
h(ξ2). The random travel time ξtr

a

on arc (u, v) is computed similarly, the only differences being that ξ1 is replaced by ξe
u and

tev − tbv by ttra . This choice of distributions ensures that the random variables ξb, ξe, and ξtr are
correlated. The cost of each minute of delay is cdel = 2.

17

Instances of the chance constrained CVSP are generated as follows. The task set V is
partitioned into 10 job clusters Vi. The volume ρv of goods of a task v is composed of a part ρcl

i

common to all the tasks of the cluster its cluster i and a part ρta
v that is specific to this task.

ρv = max
(

0,min
(
50, ρta

v + ρcl
i

))
where ρta

v and ρcl
i are distributed according to normal distributions whose means and standard

deviations are randomly chosen in the interval [5, 25]. Clusters correspond to clients whose
levels of activity are correlated. Vehicles capacity is 150, and α is chosen equal to 5% in (9).

For both problems, we generate an instance by choosing the number of tasks |V |, the number
of scenarios |Ω|, and the seed of the random number generator.

6.2 Experimental setting

For our numerical experiments, on each problem, we proceed as follows. First, we generate two
sets of instances with the generator described in Section 6.1, one which will be our training set
and the other one our test set. The training set contains only instances of moderate size, since
we need to be able to solve the pricing subproblem (4) to optimality on these instances.

Second, we solve the linear relaxation of (3) of all instances of moderate size using our exact
column generation solver. At each iteration of the column generation, we store the duals ν and
the optimal solution P of the pricing subproblem. This gives us our pricing subproblem (4)
training set (resp. pricing subproblem (4) test set), which is composed instances D(M,ν) for
all pairs (M, ν), whereM is an instance of the master problem (3) in the training set (resp. test
set), and ν is a dual vector encountered along the column generation to solve M.

Third, we use the pricing subproblem training set to learn the parameter θ using the BFGS
algorithm of Section (4.2).

Fourth, we generate our results on the pricing subproblem (4) test set. We solve each
instance with the usual acyclic dynamic programing algorithm.

Fifth, we run the exact column generation algorithm on moderate size instances of our test
set, and our MILP solver on the flow MILP (30) and Algorithm 3 on all instances of the test set.
This time, we do not store duals and optimal paths in the exact column generation algorithm
to ensure a fair comparison. In the heuristic column generation algorithm, we use K = 50, 000
for both the stochastic VSP and the chance constrained CVSP.

Master problem instances. Table 1 summarizes the instances and numerical experiments
carried out on the master problem (3). The first line of the table indicates which columns of
the table correspond to the training and to the test set. We split the test set into groups of
moderate, medium, large, and very large instances. The training set contains only a group of
moderate size instances. The second line of the table indicates the group of instances. A family
of instances is a collection of instances with identical (|V |,Ω). Each group of instances contains
several family of instances. One line in the part “Instance family” of the table corresponds to a
family of instances. Column |V | indicates the number of tasks in the instance, column |Ω| the
number of scenarios, and column # the number of instances with |V | tasks and |Ω| scenarios in
the family. The last four lines of the table indicates which algorithms are run on the instances
of the family. A tick Xindicates that the algorithm can solve the instances of both problems on
that family, while an S indicates than only the instance of the stochastic VSP can be solved.

Experimental settings. All the numerical experiments are run on a linux computer with
16 Gb of RAM and four cores at 2.60 GHz. Algorithms are implemented in C++, and LPs are
solved using CPLEX 12.5. We use the BFGS algorithm of the CppOptimizationLibrary [25].

18

Training set Test set
Moderate Moderate Medium Large Very Large
|V | |Ω| # |V | |Ω| # |V | |Ω| # |V | |Ω| # |V | |Ω| #

Instance 10 50 2 10 50 8 100 50 10 500 50 1 1000 50 1
family 100 2 100 8 100 10 100 1 100 1

200 2 200 8 200 10 200 1 200 1
50 50 2 50 50 8 200 50 10 750 50 1 2000 50 1

100 2 100 8 100 10 100 1 100 1
200 2 200 8 200 10 200 1 200 1

5000 200 1

Exact CG X X
Flow MIP (30) S S S S
Heuristic CG X X S

Table 1: Summary of the numeric experiments performed on the stochastic VSP and on the
chance constrained CVSP – Flow MIP (30) is run only on the stochastic VSP.

6.3 Stochastic VSP

6.3.1 Structured learning for path problems

Table 2 describes our training and test sets instances as well as the prediction results we obtain
on these instances.

Pricing subproblem instances. As we already mentioned, our training and test sets for
the pricing subproblems are composed of the pricing subproblem instances encountered along
the column generation with exact pricing we launched on our instances of the master problem
of moderate size. The two first columns of Table 2 provide the characteristics of the family of
master problem instances, where |V | is the number of tasks and |Ω| the number of scenarios. For
the training set and the test set, the column “Pr. #” provides the number of pricing subproblem
instances. Remark that there are roughly 4 times more instances in the test set than in the
training set. This is simply because, as we indicated in Table 1, for each pair (|V |,Ω), there are
2 instances in the master problem training set and 8 instances in the master problem test set.
The column “CG iter.” provides the average number of iterations of the column generation.
We have a larger number of instance with 50 tasks simply because the column generation needs
more iterations to converge on instance with 50 tasks that on instance with 10 tasks. This
makes a total of 440 instances in the training set, among which 75 instances with 10 tasks and
365 instances with 50 tasks.

It took a total of 1 hour and 52 minutes of CPU time to generate the training set, and 8
hour and 53 minutes to generate of test set, which gives a total of 10 hours and 46 minutes.

Learning results. Table 3 provides the result we obtained when the structured learning
problem (19) using the BFGS algorithm of [25] and our algorithms of Section 4.2 to compute
the objective function and its gradient. These results are given for different regularization
parameters λ. The first column provides the regularization parameter λ, the second the number
of iterations of the BFGS algorithm, the third the total CPU time of the BFGS algorithm in
seconds, and the fourth the value of the regularized log-likelihood L(θ∗) on the optimal solution.

We first underline the fact that it takes only a few seconds to find an optimal θ, a time
negligible with respect to the time needed to generate the learning dataset. Unless otherwise

19

Mast. pb Training set Test set
inst. fam. Pr. CG Gap Pr. CG Gap
|V | |Ω| # iter tot 50% 90% 100% # iter tot 50% 90% 100%

10 50 21 10.5 7% 2% 7% 30% 85 10.6 528% 6% 434% 3782%
100 20 10.0 9% 3% 9% 35% 82 10.2 31% 7% 34% 144%
200 22 11.0 9% 5% 6% 46% 80 10.0 21% 6% 32% 57%

50 50 128 64.0 24% 13% 31% 55% 493 61.6 73% 16% 43% 513%
100 112 56.0 217% 16% 73% 2014% 507 63.4 711% 14% 51% 7214%
200 113 56.5 31% 17% 29% 123% 492 61.5 145% 17% 53% 1256%

Table 2: Prediction results on the training set and test set on the pricing subproblem (4)
regularization parameter λ = 0.001.

Regularization λ BFGS iterations BFGS CPU time (s) L(θ∗)

0 47 4.9 6.11361
1e-4 46 5.1 6.12167
1e-3 44 4.2 6.16037
1e-2 40 3.7 6.31977
1e-1 28 2.8 6.83834

1 25 2.5 7.5175

Table 3: Performance of the BFGS algorithm on the structured learning problem.

stated, we always use the θ obtained with λ = 0.001, because it is the one that leads to the best
results.

Prediction results. Given an instance D of the pricing subproblem, we measure the predic-
tion power of our structured prediction problem using the gap

c(P̂ ;D)− c(P ∗;D)

|c(P ∗;D)|

between the cost of the solution P̂ returned by the structured prediction problem and the cost of
the optimal solution P ∗ of the pricing subproblem. Since the denominator of the last iteration
is generally equal to 0, we compute averages of the gap on all iterations but the last. A very
important aspect when using our structured predictor within a column generation is its ability
to find a negative cost path when such a path exists. Observe that this is the case if the gap is
smaller than 100%

Table 2 provides the value of this gap on for the different families of instances. The column
“Gap tot” provides the average gap on all the instances of the family. Since the accuracy
of this prediction may vary across a column generation, the three next columns provide the
average gap corresponding to a subset of the instances: “Gap 50%” corresponds to iterations
in the 50% of iterations at the beginning of the column generation, “Gap 90%”to iterations
between 50% and 90% of the total, and “Gap 100%” to iterations in the last 10%. We can see
that our approximate pricing algorithm performs very well during the first half of the column
generation, slightly less well at the beginning of the second half, and poorly during the last
iterations. This fact is made clearer on Figure 2, which gives, on the instances of the test
set, the average reduced cost c(P̂ ;D) and c(P ∗;D) of the path generated by the approximate

20

0 20 40 60 80 100
Column generation iterations (%)

5000

4000

3000

2000

1000

0

Re
du

ce
d

co
st

 v
al

ue

P *

P

65 70 75 80 85 90 95 100
Column generation iterations (%)

120

100

80

60

40

20

0

Re
du

ce
d

co
st

 v
al

ue

P *

P

Figure 2: Average reduced cost of the solutions returned by the pricing algorithm as a function
of the rank of the iteration among the total number of iterations in the column generation on
instances of the test set with 50 tasks. Left hand side: all iterations. Right hand side: last
iterations.

and exact algorithms as a function of the rank iteration number
total number of iterations of the iteration in the

column generation. The right hand side is a zoom on the last iterations. We can see that the
approximate pricing algorithm is able to find good quality paths for 80% of the iterations, and
is no more able to find negative reduced columns for the last iterations. However, since the
last iterations do not have much impact on the objective value of the column generation, and
since the approximate pricing algorithm is several order of magnitudes faster than the exact
one, using the approximate pricing algorithm looks like a good idea.

6.3.2 Column generation matheuristics to solve the master problem

Table 4 provides the performance of our algorithms on the master problem (3). The first
column provides the algorithm. “CG ex” corresponds to the exact column generation for the
linear relaxation. It thus returns a lower bound on the cost of the optimal solution. “CG
heur” corresponds Algorithm 3, which uses Algorithm 2 as a subroutine to solve the pricing
subproblem. “Flow” corresponds to the direction resolution of the flow MILP (30). And finally,
“No Prop.” is a natural heuristic obtained by supposing that the delay does not propagate.
This problem is easily solved using a flow approach similar to 5.1. Its value provides a poor
lower bound on the value of an optimal solution, and its solution is feasible and hence provides
an upper bound on the value of the problem we are interested in. The columns |V | and |Ω|
provide the parameters of the family of master problems instances. Then for each family of
problem instances in the training set or in the test set, we provide four statistics averaged on
the family of instances. Column “CPU (s)” provides the average CPU time needed to solve an
instance. Column “speed-up” provides the average speed-up given by the algorithm considered
with respect to the exact column generation. Column “value / |V |” provides the average cost per

task

∑
P∈Pod

zP

|V | in the solution returned. And finally column “gap (%)” provides the average gap
between the value of the solution returned and the lower bound on the cost of an optimal solution
given by the value of the linear relaxation of (3) computed by the exact column generation.

We underline that our algorithms provide much better solutions than the no propagation
heuristic. Our two heuristics have their respective advantages. The flow approach enables to
compute extremely fast solutions with an optimality gap non-greater than 5%, while Algorithm 3

21

Mast. pb Training set Test set
inst. fam. CPU speed value gap CPU speed value gap

alg. |V | |Ω| (s) up (×) /|V | (%) (s) up (×) /|V | (%)

CG ex 10 50 0.44 – 380.9 – 0.41 – 380.0 –
100 0.73 – 383.1 – 0.96 – 381.1 –
200 1.66 – 380.0 – 1.49 – 381.7 –

50 50 417.94 – 282.3 – 442.70 – 281.2 –
100 804.32 – 282.3 – 946.08 – 280.8 –
200 1846.72 – 282.0 – 2279.81 – 281.2 –

CG heur 10 50 0.08 7 380.9 0.0% 0.09 4.5 380.0 0.0%
100 0.17 4.2 383.1 0.0% 0.17 5.8 381.1 0.0%
200 0.30 5.5 380.0 0.0% 0.33 4.6 381.7 0.0%

50 50 0.72 5.9e+02 283.1 0.3% 0.59 8.4e+02 284.0 1.0%
100 0.61 1.3e+03 283.3 0.3% 0.98 1e+03 284.9 1.4%
200 1.19 1.6e+03 283.0 0.3% 2.21 1e+03 284.9 1.3%

Flow 10 50 0.01 49 432.2 13.5% 0.01 50 428.6 12.8%
100 0.01 80 434.2 13.3% 0.01 1.1e+02 434.7 14.1%
200 0.01 1.7e+02 432.9 13.9% 0.01 1.8e+02 434.8 13.9%

50 50 0.02 2e+04 295.1 4.5% 0.02 2.1e+04 293.5 4.4%
100 0.02 4.9e+04 296.9 5.1% 0.02 5.6e+04 292.7 4.2%
200 0.02 1.2e+05 295.2 4.7% 0.02 1.4e+05 294.0 4.6%

No prop. 10 50 0.01 46 392.4 3.0% 0.01 54 392.2 3.2%
100 0.01 92 395.2 3.2% 0.01 1.3e+02 393.6 3.3%
200 0.01 2.4e+02 392.3 3.3% 0.01 2e+02 394.0 3.2%

50 50 0.02 1.9e+04 337.3 19.5% 0.02 2.2e+04 325.1 15.6%
100 0.02 3.9e+04 335.6 18.9% 0.02 4.8e+04 328.0 16.8%
200 0.02 9.2e+04 320.3 13.6% 0.02 1.1e+05 330.3 17.5%

Table 4: Performance of our heuristics on instances whose relaxation is solved to optimality by
our exact column generation.

22

102 103

|V|

200

220

240

260

280

300

320

St
oc

ha
st

ic
VS

P
 va

lu
e

|V
|

CG ex, | | = 50
flow, = 0.001, | | = 50
CG heur, = 0.001, | | = 50
ub, | | = 50

102 103

|V|

10 1

100

101

102

St
oc

ha
st

ic
VS

P
CP

U
tim

e
(s

)

CG ex, | | = 50
flow, = 0.001, | | = 50
CG heur, = 0.001, | | = 50
ub, | | = 50

Figure 3: Average CPU time of and cost by task returned by our algorithms on the large
instance of our test set with 50 scenarios.

is slightly slower but enables to compute solution with a 1.5% optimality gap. We underline
that Algorithm 3 is still 3 to 4 order of magnitude faster than the exact column generation.

Figure 3 provides the average computing time and value by task

∑
P∈Pod

zP

|V | on our instances.
Larger instances offer more flexibility in the construction of the sequences of tasks. Hence,
we expect the average cost by task to decrease with the size of the instance. We say that an
algorithm scales if it indeed finds solutions with smaller average cost by task on larger instances.
Indeed, finding solutions of large instances that have the same cost by task as the solution of
small instances is easy: It suffices to arbitrarily partition the large instance into small instances,
and compute the solution on the small instances. We can see that both of our algorithms scale
very well to instances of large size: For both algorithms, the average cost by task decreases
with the size of the instance, and is much smaller on large instances than the average cost by
task found by the exact algorithm on the instances it can solve.

We advocate that our two algorithms correspond to different usecases. The flow approxi-
mation provides good solution on instances with one thousand of tasks in a few seconds. Such
an algorithm would be extremely useful in an online version of the stochastic VSP, where an
instance must be solved extremely fast to adapt the planning after an event – such problems are
routinely solved by airlines to adapt in real-time airplane schedules after a disruption. The ap-
proximate column generation gives an excellent solution in less than an hour. Such an algorithm
is very useful for day-ahead planning.

6.4 Chance constrained CVSP

Figure 4 provides the equivalent of Table 3 and Figure 3 for the chance constrained CVSP. We
first remark the the value of the log-partition function L(θ∗) is larger than for the stochastic
VSP. The structured learning algorithm does not fit as well the learning set of the chance
constrained CVSP as it fits the learning database of the stochastic VSP. In terms of results on
the path prediction problem, the predictor learned performs poorly: The optimal solution of
the structured prediction problem is never feasible on our test set. However, there are feasible
paths among the K = 50, 000 best solutions of the usual shortest path problem computed
by Algorithm 2, which enables to run our column generation matheuristic 3. The results on
Figure 4 show that this matheuristic does not scale: Even on instances with 200 tasks, the
average cost by task of the solution returned by our heuristic is larger than the average cost by

23

λ iter CPU(s) L(θ∗)

0 159 53.062 10.6
1e-4 63 19.86 10.8
1e-3 36 10.945 10.9
1e-2 23 6.881 11.0
1e-1 14 4.092 11.0

1 11 3.447 11.3

101 102

|V|

180

200

220

240

260

280

300

Ch
an

ce
 c

on
st

ra
in

ed
 C

VS
P

va
lu

e
|V

|

CG heur = 0.001, = 50
CG ex, | = 50|

Figure 4: Learning algorithm results, and average cost by task on the test set using the exact
column generation and our column generation matheuristic on the chance constrained CVSP.

task on instances with 50 tasks returned by the exact algorithm.
We spent a significant amount of time trying to improve our heuristic, without much success.

The lesson we retain from this attempt is that our paradigm can work only if the hard problem
can be well approximated by the easy problem. One conclusion of our numerical results is that
the pricing subproblem of the stochastic VSP can be well approximated by the usual shortest
path problem, while this is not the case of the pricing subproblem of the chance constrained
CVSP.

7 Conclusion

We have proposed the following “ML for OR” paradigm: Use ML to approximate instances of
a hard combinatorial optimization problem by instances of a simpler problem. More precisely,
suppose that a hard problem of interest is a variant of an easier one. Then our paradigm leads
to the following heuristic for the hard problem. Given an instance of the hard problem, use an
ML predictor to approximate it by an instance of the easy problem, solve the easy problem, and
retrieve a solution of the hard problem from the solution of the instance of the easy problem.
And we have introduced a structured learning methodology to learn the ML predictor.

We illustrate our methodology on path problems and path partition problems. To that
purpose, we have introduced a structured learning approach to approximate path problems by
the usual shortest path problem. And we have proposed a flow based approximation and a
column generation matheuristic for path partition problems.

We illustrate our paradigm on the stochastic VSP. Our flow based heuristic is 4 order of
magnitudes faster than the original algorithm and gives solution within a 5% optimality gap,
while our column generation based matheuristic is 3 order of magnitude faster and provides
solutions within a 1.5% optimality gap. Both heuristics scale well on instances with one thousand
of tasks, when the initial algorithm could only handle instances with 50 tasks.

Of course, our paradigm can work only if instances of the hard problem can be well approx-
imated by instances of the easy problem. The main reason for the success of our algorithm on
the stochastic VSP is that its pricing subproblem is well approximated by the usual shortest
path problem. On the chance constrained CVSP, whose pricing subproblem is not well approxi-
mated by a usual shortest path problem, our heuristics perform poorly. Applying our paradigm

24

to a new hard problem therefore requires to find an easy problem that approximates well the
hard problem. And our methodology to learn this approximation requires a moderately efficient
solver for the hard problems, and an algorithm for the structured learning problem obtained
when the easy problem is used as structured prediction problem.

We have shown that, when applied to the stochastic VSP, our paradigm addresses (at least
partially) one of the challenges identified by Bengio et al. [5] in they survey on “ML for OR”
methods: Our heuristics scale to instances much larger than those used in the training set.
Future works may explore if methods using this paradigm can be developed to address the
two remaining challenges. That is, what would be the right ML predictor to use within this
framework? In particular, we use a feature based predictor, and it would be handy to use
feature free methods. And second, how to apply the paradigm when it is hard to find a feasible
solution of the hard problem?

Acknowledgments. I am grateful to Guillaume Obozinski for his suggestion to look at the
structured learning literature.

References

[1] Shervin Ahmadbeygi, Amy Cohn, and Marcial Lapp. Decreasing airline delay propagation
by re-allocating scheduled slack. IIE transactions, 42(7):478–489, 2010.

[2] Husain Aljazzar and Stefan Leue. K*: A heuristic search algorithm for finding the k
shortest paths. Artificial Intelligence, 175(18):2129–2154, 2011.

[3] Radu Baltean-Lugojan, Pierre Bonami, Ruth Misener, and Andrea Tramontani. Selecting
cutting planes for quadratic semidefinite outer-approximation via trained neural networks.
2018.

[4] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural
combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940,
2016.

[5] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon. arXiv preprint arXiv:1811.06128, 2018.

[6] Pierre Bonami, Andrea Lodi, and Giulia Zarpellon. Learning a classification of mixed-
integer quadratic programming problems. In International Conference on the Integration
of Constraint Programming, Artificial Intelligence, and Operations Research, pages 595–
604. Springer, 2018.

[7] Michelle Dunbar, Gary Froyland, and Cheng-Lung Wu. Robust airline schedule planning:
Minimizing propagated delay in an integrated routing and crewing framework. Transporta-
tion Science, 46(2):204–216, 2012.

[8] Michelle Dunbar, Gary Froyland, and Cheng-Lung Wu. An integrated scenario-based ap-
proach for robust aircraft routing, crew pairing and re-timing. Computers & Operations
Research, 45:68–86, 2014.

[9] Patrick Emami and Sanjay Ranka. Learning permutations with sinkhorn policy gradient.
arXiv preprint arXiv:1805.07010, 2018.

25

[10] Michel Gendreau, Gilbert Laporte, and René Séguin. Stochastic vehicle routing. European
Journal of Operational Research, 88(1):3–12, 1996.

[11] Armand Joulin, Kevin Tang, and Li Fei-Fei. Efficient image and video co-localization
with frank-wolfe algorithm. In European Conference on Computer Vision, pages 253–268.
Springer, 2014.

[12] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combina-
torial optimization algorithms over graphs. In Advances in Neural Information Processing
Systems, pages 6348–6358, 2017.

[13] Wouter Kool, Herke van Hoof, and Max Welling. Attention solves your tsp, approximately.
stat, 1050:22, 2018.

[14] Markus Kruber, Marco E Lübbecke, and Axel Parmentier. Learning when to use a decom-
position. In International Conference on AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, pages 202–210. Springer, 2017.

[15] Shan Lan, John-Paul Clarke, and Cynthia Barnhart. Planning for robust airline operations:
Optimizing aircraft routings and flight departure times to minimize passenger disruptions.
Transportation Science, 40(1):15–28, 2006.

[16] Eric Larsen, Sébastien Lachapelle, Yoshua Bengio, Emma Frejinger, Simon Lacoste-Julien,
and Andrea Lodi. Predicting solution summaries to integer linear programs under imperfect
information with machine learning. arXiv preprint arXiv:1807.11876, 2018.

[17] Rafid Mahmood, Aaron Babier, Andrea McNiven, Adam Diamant, and Timothy CY Chan.
Automated treatment planning in radiation therapy using generative adversarial networks.
arXiv preprint arXiv:1807.06489, 2018.

[18] Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan Bruna. A note on learning
algorithms for quadratic assignment with graph neural networks. stat, 1050:22, 2017.

[19] Sebastian Nowozin, Christoph H Lampert, et al. Structured learning and prediction in
computer vision. Foundations and Trends R© in Computer Graphics and Vision, 6(3–4):
185–365, 2011.

[20] Axel Parmentier. Algorithms for non-linear and stochastic resource constrained shortest
path. Mathematical Methods of Operations Research, 89(2):281–317, 2019.

[21] Ben Taskar, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin. Learning structured
prediction models: A large margin approach. In Proceedings of the 22nd international
conference on Machine learning, pages 896–903. ACM, 2005.

[22] T. Vidal, G. Laporte, and P. Matl. A concise guide to existing and emerging vehicle routing
problem variants. Technical report, Pontifical Catholic University of Rio de Janeiro, 2019.
URL http://arxiv.org/abs/1906.06750.

[23] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in
Neural Information Processing Systems, pages 2692–2700, 2015.

[24] Oliver Weide, David Ryan, and Matthias Ehrgott. An iterative approach to robust and
integrated aircraft routing and crew scheduling. Computers & Operations Research, 37(5):
833–844, 2010.

26

http://arxiv.org/abs/1906.06750

[25] Patrick Wieschollek. Cppoptimizationlibrary. https://github.com/PatWie/

CppNumericalSolvers, 2016.

27

https://github.com/PatWie/CppNumericalSolvers
https://github.com/PatWie/CppNumericalSolvers

	Introduction
	A novel ``ML for OR'' paradigm
	Easy and hard problems considered in the paper
	Running examples on which the numerical experiments are performed
	Organization of the paper

	Literature review and contributions
	Literature review
	Contributions

	Our structured learning methodology
	Background on structured learning
	How to apply our ML for OR paradigm on your problem
	Application to path problems
	Application to path partition problems

	Structured learning for path problems
	Background on probabilistic structured learning
	Probabilistic structured learning using shortest path problems

	Heuristics for path partition problems leveraging the pricing subproblem approximation
	Flow approach to solve the approximate master problem
	Column generation approaches to solve the initial master problem

	Numerical results
	Instances generator
	Experimental setting
	Stochastic VSP
	Structured learning for path problems
	Column generation matheuristics to solve the master problem

	Chance constrained CVSP

	Conclusion

