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Abstract A theory of Ruelle-Pollicott (RP) resonances for stochastic differential systems is presented. These
resonances are defined as the eigenvalues of the generator (Kolmogorov operator) of a given stochastic system. By
relying on the theory of Markov semigroups, decomposition formulas of correlation functions and power spectral
densities (PSDs) in terms of RP resonances are then derived. These formulas describe, for a broad class of stochastic
differential equations (SDEs), how the RP resonances characterize the decay of correlations as well as the signal’s
oscillatory components manifested by peaks in the PSD.

It is then shown that a notion reduced RP resonances can be rigorously defined, as soon as the dynamics is
partially observed within a reduced state space V . These reduced resonances are obtained from the spectral elements
of reducedMarkov operators acting on functions of the state space V , and can be estimated from series. They inform
us about the spectral elements of some coarse-grained version of the SDE generator. When the time-lag at which
the transitions are collected from partial observations in V , is either sufficiently small or large, it is shown that the
reduced RP resonances approximate the (weak) RP resonances of the generator of the conditional expectation in V ,
i.e. the optimal reduced system in V obtained by averaging out the contribution of the unobserved variables. The
approach is illustrated on a stochastic slow-fast system for which it is shown that the reduced RP resonances allow
for a good reconstruction of the correlation functions and PSDs, even when the time-scale separation is weak.

The companions articles, Part II [TCND20] and Part III [TCND19], deal with further practical aspects of the
theory presented in this contribution. One important byproduct consists of the diagnosis usefulness of stochastic
dynamics that RP resonances provide. This is illustrated in the case of a stochastic Hopf bifurcation in Part II.
There, it is shown that such a bifurcation has a clear manifestation in terms of a geometric organization of the
RP resonances along discrete parabolas in the left half plane. Such geometric features formed by (reduced) RP
resonances are extractable from time series and allow thus for providing an unambiguous “signature” of nonlinear
oscillations embedded within a stochastic background. By relying then on the theory of reduced RP resonances
presented in this contribution, Part III addresses the question of detection and characterization of such oscillations
in a high-dimensional stochastic system, namely the Cane-Zebiak model of El Niño-Southern Oscillation subject
to noise modeling fast atmospheric fluctuations.
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1 Introduction

The determination of reduced equations that aims at mimicking in a reduced state space the dynamics (reduced
systems for short) issued from a system of stochastic differential equations (SDEs) posed in a higher-dimensional
state space has become a central question in several disciplines ranging from molecular dynamics [SFHD99,SH99,
SHD01,ZHS17,DLP+18] to epidemic models [FS09,FBS09] and climate dynamics over the past decades; see
e.g. [PS95,MTVE01,GKS04,CLW15b,GCF17,BAB+17] and references therein. Various approaches have been
proposed, and inmost of the cases, differentmetrics associatedwithmoment estimates, probability density functions
or time marginals are used to compare the reduced dynamics obtained from the surrogate system to that of the
original system of stochastic differential equations (SDEs); see e.g. [LL10,LLO17,ZHS17,DLP+18,CLM19].

Here, we adopt a completely different approach which consists of using correlation functions and power
spectral densities as “metrics” of comparison. In that respect, we frame hereafter a theory of Ruelle-Pollicott (RP)
resonances for stochastic differential systems. Initially introduced for discrete and continuous chaotic deterministic
systems [Rue86,Pol86], these resonances are known to provide rigorous decomposition formulas of correlation
functions and power spectra; see e.g. [BER89,Fro97,Bal00,MG07,GLP13,NZ15] and references therein. However,
the rigorous derivation of such formulas in the deterministic context is made difficult by the singular character of
the underlying invariant measures. In presence of noise, smoothing effects are known to occur for a broad class of
SDEs (see Appendix A.2), and the derivation of such formulas is thus facilitated. Section 2 presents an extension
of such decomposition formulas to the stochastic context.

The RP resonances are then defined naturally as the eigenvalues of the generator (Kolmogorov operator) of
a given stochastic system. As shown in Sec. 2, these resonances allow for decomposition formulas of correlation
functions and power spectral densities (PSDs) in terms of these resonances; see Corollary 1 and formula (2.23)
below. The resulting formulas describe how the RP resonances characterize the decay of correlations as well as the
signal’s oscillatory components manifested by peaks in the PSD. The obtention of these formulas relies on tools and
concepts from stochastic analysis, based on the theory of Markov semigroups on one hand, and the spectral theory
of semigroups, on the other. These tools are briefly surveyed in Appendix A, having in mind a wider audience in
the geosciences and macroscopic physics.

From a practical viewpoint, our decomposition formulas benefit furthermore from a natural dynamical inter-
pretation as they relate to the spectral elements of the Kolmogorov operator and thus to the SDE’s coefficients
themselves. Such dynamical interpretations (and thus decompositions) are potentially useful for identifying physical
processes responsible for power excess bumps or other broad band peaks in the PSD of noisy observations, a topic
of active research in various areas of physics such as asteroseismology [KMH+10,GKWG09], supersonic flows
[Tam95], or climate dynamics [GAD+02].

In Section 3, we present the main contribution of this article, by inquiring whether one can extract useful
resonances from partial observations in a reduced state space, that still relate to the correlation functions and PSDs.
First, we show that a notion reduced RP resonances can be indeed rigorously framed, as soon as the (stochastic)
dynamics is partially observed within a reduced state space V . These reduced resonances are obtained from the
spectral elements of reduced Markov operators acting on functions of the state space V , and can be estimated from
series; see Sec. 3.3. The reduced Markov operators are ensured by Theorem 2 that extends [CNK+14, Theorem A]
within the stochastic context of this article. Mutatis mutandis, Theorem 2 as [CNK+14, Theorem A], shows that
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— given a reduced state space V , a mapping h from the full state X space onto V , and a Markov semigroup Pt
possessing an invariant measure on X — a family of reduced Markov operators (acting on functions of V ) can be
naturally associated with Pt, V and h. This family characterizes a coarse-graining in the reduced state space V —
such as induced by the map h— of the actual transition probabilities associated with Pt that take place within the
full state spaceX . Theorem 2 can be viewed as providing the analogue, in the SDE context dealt with in this article,
of coarse-grained Markov representations used for describing coarse-grained dynamics of Hamiltonian systems
[SFHD99] or more general Markov state models [SS13]. We emphasize that, in the context of homogenization of
SDEs [PS08], a notion of reduced RP resonances was also considered in [CVE11] as eigenvalues of a coarse-grained
diffusion processes obtained from multiscale data.

In a second step, under ergodicity (or mixing) assumptions satisfied for a broad class of SDEs, we show that
the reduced RP resonances relate to the RP resonances of the generator of the conditional expectation in V , i.e. the
optimal reduced system in V obtained by averaging out the contribution of the unobserved variables; see Theorem
3 and Corollary 2. Thus, reduced RP resonances inform us about the spectral elements of some coarse-grained
version of the SDE generator. By relying on Theorems 2 and 3, these resonances can be estimated from time series
by estimation of transition probabilities at a time-lag τ ; see Sec. 3.3. Corollary 2 shows that an approximation
relationship between the reduced RP resonances and those of the conditional expectation generator is ensured when
the time-lag τ at which the transitions are collected from partial observations in V , is either sufficiently small or
large.1 In the context of homogenization of SDEs, the reduced RP resonances approximate even the RP resonances
of the full SDE system; see [CVE11] and Remark 4-(i). The facts that the reduced RP resonances can be estimated
from time series and relate to the conditional expectation, provide useful insights for the investigation of whether
non-Markovian effects à laMori-Zwanzig should be included or not for the derivation of efficient reduced systems;
see e.g. [GKS04,CH06,WL12,WL13,KCG15,CLM17,CLM19].

In that perspective, we analyze in Sec. 4 correlation functions and PSDs as reconstructed from reduced RP
resonances of a stochastic slow-fast system, by using the formulas of Sec. 2 in which the reduced RP resonances
replace the genuine eponymous resonances. In the case of a strong time-scale separation, without any surprise these
reduced RP resonances, as associated with the conditional expectation — well-approximated by a slow manifold
reduction for the example of Sec. 4—, provide excellent reproduction of correlation functions and PSDs obtained by
standard sample estimates. The surprise arises when the system is placed in a regime without time-scale separation.
In this case, the reduced RP resonances allow still for reconstructing to a very good accuracy level the correlation
functions and PSDs. Thus here the conditional expectation is sufficient to close the system (at least for reconstructing
correlations) and the inclusion of non-Markovian effects for model reduction can be neglected. Such a diagnosis
regarding the conditional expectation drawn from RP resonance analysis offers thus promising perspectives in terms
of reduced-order modeling, and provide useful insights to reduction approaches of SDEs exploiting conditional
expectations such as in e.g. [WVE04,LL10,LVE14,ZHS17,DLP+18].

The usefulness of reducedRP resonance analysis is not limited to providing useful diagnosis formodel reduction.
The companions articles, Part II [TCND20] and Part III [TCND19], deal with further practical aspects of the theory
presented in this article. One important byproduct consists of the diagnosis usefulness of stochastic dynamics that
RP resonances themselves, offer. This is illustrated in the case of a stochastic Hopf bifurcation in Part II. There, it
is shown that such a bifurcation has a clear “signature” in terms of the geometric organization of the RP resonances
in the left half plane, these resonances forming in particular discrete parabolas whose characteristics describe the
frequency of the underlying oscillations and whose associated modes inform about the interactions between the
noise and nonlinear effects; see [TCND20].

As pointed out in Sec. 3.3 and substantiated in Part III, such features are furthermore useful to identify and
qualify from time series, the presence of nonlinear oscillations embedded within a stochastic background. Indeed
by relying on the theory of reduced RP resonances presented in this contribution, Part III addresses the question
of detection and characterization of such oscillations in a high-dimensional stochastic system, namely a system
obtained from a semispectral approximation of the Cane-Zebiak model of El Niño-Southern Oscillation2, with the
addition of noise modeling fast atmospheric fluctuations. Finally, we mention that the characterization of nonlinear
oscillations in terms of (reduced) RP resonances has already demonstrated its usefulness for data-driven modeling

1 In practice however it is often observed that the reduced RP resonances still provide useful information for “intermediate" time-lags; see
Part III [TCND19].
2 We refer to [CCHT19] for a mathematical analysis of the related Jin-Neelin model.
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purposes of multiscale datasets arising in climate dynamics. Indeed by leveraging on the understanding gained here
and in Part II [TCND20] as well as by exploiting the framework of [CK17] to decompose the multiscale variability,
successful applications to the emulation of wind-driven ocean gyres dynamics have been reported in [KCB18]
by means of frequency-ranked networks of stochastic Stuart-Landau oscillators. The modeling of Arctic sea ice
concentration and extent has been also addressed within this framework; see [KCYG18,KCG18]. We envision a
further program of using reduced RP resonances for the stochastic inverse modeling of climate datasets along with
the analysis of the nearing to tipping points [TLLD18] from such datasets, in the context of climate change.

2 Ruelle-Pollicott resonances and decay of correlations from stochastic differential equations

The authors in [CNK+14] have introduced a new mathematical framework to (i) understand and diagnose —
through partial observations — the variability of chaotic flows, and (ii) to analyze parameter sensitivity that may
occur in the modeling of such observations. The framework relied on the theory of Ruelle-Pollicott (RP) resonances
introduced in the mid-80’s [Rue86,Pol86] and that, at the time of the publication of [CNK+14], was known only
by a group of experts working in the field of dynamical system theory [Bal00] and the mathematical study of
scattering resonances [Zwo17]. Initially introduced for discrete and continuous chaotic deterministic systems (see
also [GLP13] for the case of Anosov flows), the RP resonances extend to stochastic differential systems. This section
presents such an extension by relying on tools from stochastic analysis, based on the theory of Markov semigroups
on one hand, and the spectral theory of semigroups, on the other; see also [Gas02,DZ15] for complementary
approaches.

As we will see, the RP resonances characterize important features of the solution’s variability (e.g. its oscillatory
behavior), such as typically reflected in power spectra or correlation functions, in terms of the spectrum of the
underlying Liouville operator for deterministic systems or the Fokker-Planck operator for stochastic systems, but
are in general difficult to estimate especially if the dimension of the state space is large. Section 3 below addresses
the implication of estimating resonances from partial observations in a reduced state space, and how these reduced
resonances relate to the full RP resonances.

2.1 Generalities

We consider Stochastic Differential Equations (SDEs) of the form:

dX = F (X) dt+D(X) dWt, X ∈ Rd. (2.1)

HereWt = (W 1
t , · · · ,W

q
t ) denotes anRq-valuedWiener process (q not necessarily equal to d) whose components

are mutually independent Brownian motions.
In Eq. (2.1), the drift part is provided by a (possibly nonlinear) vector field F of Rd, and the (also possibly

nonlinear) stochastic diffusion in its Itô version, given by D(X) dWt, has its ith-component (1 ≤ i ≤ d) given by[
D(X) dWt

]
i

=

q∑
j=1

Dij(X) dW j
t , q ≥ 1. (2.2)

Throughout this article, we assume that the vector field F and the (non-zero rank) matrix-valued function

D : Rd → MatR(d× q),

satisfy regularity conditions that guarantee the existence and the uniqueness of mild solutions, as well as the
continuity of the trajectories; see, e.g. [Cer01,FGP10] for such conditions in the case of locally Lipschitz coefficients.
Sometimes the resulting stochastic process solving Eq. (2.1) emanating from x at t = 0, will be denoted by Xx

t ,
when dependence on the initial datum would be stressed, otherwise simply Xt.

It is well-known that the evolution of the probability density of the stochastic process, Xt, solving Eq. (2.1), is
governed by the Fokker-Planck equation

∂tρ(X, t) = Aρ(X, t) = −div(ρ(X, t)F (X)) +
1

2
div∇(Σ(X)ρ(X, t)), X ∈ Rd, (2.3)
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with Σ(X) = D(X)D(X)T denoting the diffusion tensor. In practice, one is interested in stationary solutions µ
to Eq. (2.3) that provide a statistical description of the asymptotic behavior of the solutions to Eq. (2.1), and thus
of probability density functions (PDFs), typically obtained as marginal distributions of µ.

What is less-known however is that the spectral properties of the 2nd-order differential operator, A, inform
about fundamental objects such as the power spectra or correlation functions computed typically along a stochastic
path of Eq. (2.1). To understand these relationships, we derive in the next subsection, decomposition formulas of
correlations and power spectra in terms of the spectral elements of an operator closely related to A, namely the
generatorK of the associated Markov semigroup.

2.2 Ruelle-Pollicott (RP) resonances and the spectral decomposition of correlation functions

As recalled in Appendix A.3 (Theorem 4), the existence of an invariant measure µ ensures that the Markov
semigroup Pt (see Appendix A.1) associated with Eq. (2.1), is a strongly continuous semigroup in Lpµ(Rd), for any
p ≥ 1. This property alone allows us to get useful decomposition formulas of correlation functions Cf,g(t) given
by

Cf,g(t) =

∫
f · Ptg dµ−

∫
f dµ

∫
g dµ. (2.4)

This is the content of Corollary 1 below. It makes use of elements of the spectral theory of strongly continuous
semigroups that we recall below and apply to Markov semigroups.

In that respect, recall that the essential growth bound of a semigroup T = (T (t))t≥0 is defined as

ωess(T ) = inf
t>0

1

t
log ‖T (t)‖ess, (2.5)

where
‖T (t)‖ess = inf

{
‖T (t)− C‖L(E) : C is a linear and compact operator of E = Lpµ(Rd)

}
. (2.6)

In other words, ‖T (t)‖ess measures the distance of T (t) to the set of linear and compact operators of Lpµ(Rd).
In the case this distance approaches zero as t → ∞, the strongly continuous semigroup T is called quasi-
compact. The theory of quasi-compact strongly continuous semigroups shows that the latter property is equivalent
to −∞ < ωess(T ) < 0; see [EN00, Prop. V.3.5].

A semigroup is eventually compact if there exists t0 > 0 such that T (t0) is compact. A semigroup that is
eventually compact satisfies thus ωess(T ) = −∞. At the same time, the definition of (2.5) allows for semigroups
that are not eventually compact while their essential growth bound is negative infinity3.

In all cases, we have the following decomposition theorem of strongly continuous semigroups [EN00, Theorem
V.3.1] that we apply to the case of Markov semigroups possessing an invariant measure.

Theorem 1 Let µ be an invariant measure of a Markov semigroup P = (Pt)t≥0 and let K be the corresponding
generator in L2

µ(Rd). Let λ1, · · · , λN be in σ(K) satisfying Reλ1, · · · ,ReλN > ωess(P). Then the following
properties hold:

(i) The λj are isolated spectral values ofK with finite algebraic multiplicity.
(ii) If Π1, · · · , ΠN denote the corresponding spectral projections and m1, · · · ,mN the corresponding orders of

poles of the resolvent ofK, then

Pt =

N∑
j=1

Tj(t) +RN (t) (2.7)

where

Tj(t) =
[mj−1∑
k=0

tk

k!
(K − λjId)k

]
eλjtΠj , (2.8)

3 For instance any semigroup T such that ‖T (t)‖ess ≤M exp (−εtα), with ε > 0 and 0 < α,M < 1.
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and where for every ε > 0, there existsM > 0 such that

‖RN (t)‖L(L2
µ(Rd)) ≤Me(ω

∗
N+ε)t, ∀ t ≥ 0, (2.9)

with
ω∗N = sup{ωess(P)} ∪ {Reλ : λ ∈ σ(K)\{λ1, · · · , λN}}. (2.10)

In what follows we denote by 〈·, ·〉µ the inner product in L2
µ. We have then the following corollary regarding the

decomposition of correlation functions.

Corollary 1 Let µ be an invariant measure of a Markov semigroup P = (Pt)t≥0 and let K be the corresponding
generator in L2

µ. Let f and g in L2
µ such that 〈f〉µ = 〈g〉µ = 0, then given the λjs and the Πjs as defined in

Theorem 1, the correlation function Cf,g(t) associated with the observables f and g has the following expansion

Cf,g(t) =

N∑
j=1

mj−1∑
k=0

tk

k!
eλjt

(∫
f(x)(K − λjId)k(Πjg)(x) dµ(x)

)
+QN (t), (2.11)

with
|QN (t)| ≤M‖f‖L2

µ
‖g‖L2

µ
e(ω
∗
N+ε)t, ∀ t ≥ 0. (2.12)

In the particular case of a discrete spectrum, σ(K) = {λ1, λ2, · · · }, with Reλj+1 ≤ Reλj for all j ∈ N∗, and
Reλj → −∞, ifmj = 1 for all j ≥ 1, then the expansion (2.11) takes the form:

Cf,g(t) =

∞∑
j=1

eλjt〈f, ψj〉µ〈ψ∗j , g〉µ, (2.13)

where ψj denotes the L2
µ-eigenfunction associated with λj and ψ∗j , the associated L2

µ-eigenfunction of the adjoint
operatorK∗ ofK.

Proof The decomposition (2.11) is a direct consequence of the definition of Cf,g in (2.4) and of (2.7)-(2.9). The
proof of (2.13) consists of noting that whenmj = 1 in (2.11), the integrals therein reduce to∫

f(x)(Πjg)(x) dµ(x) =

∫
f(x)〈ψ∗j , g〉µψj(x) dµ(x),

= 〈f, ψj〉µ〈ψ∗j , g〉µ,
(2.14)

and that QN (t) −→
N→∞

0 in virtue of our assumptions about σ(K) and the reminder estimate (2.9). ut

The λj such that Reλj > ωess(P), are called the RP resonances. In other words they correspond to the point
spectrum ofK. Note that there exist stochastic processes for whichRN = 0 (i.e. no essential spectrum), for instance
Ornstein-Uhlenbeck processes [MPP02]. Remarks 2-(ii)/(iii) point out other (nonlinear) stochastic processes that
do not have an essential spectrum. Panel (a) of Fig. 1 shows a schematic of a general case, where the RP resonances
are contained within a strip of the complex plane, away from the imaginary axis and the essential spectrum of K.
The rate of decay of correlations is controlled by the spectral gap, τ = gap(K) defined in (A.27). Appendix A.5
reports on a broad class of Markov semigroups (and thus SDEs) whose generator possesses a spectral gap; see also
e.g. [Fro97,Bal00,GLP13,CNK+14] and references therein for results in the deterministic context.

Remark 1
(i) Decay of correlations. Under the conditions of Corollary 1, one obtains that Cf,g(t) −→

t→∞
0, for any f, g in

L2
µ such that

∫
f dµ =

∫
g dµ = 0, and without assuming Pt to be strong Feller and irreducible.
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(ii) Transfer operator. By working in the Hilbert space L2
µ allows us to define the transfer operator Lt acting on

functions in L2
µ, by the duality formula:∫

f · Ptg dµ =

∫
Ltf · g dµ, f, g ∈ L2

µ, t ≥ 0. (2.15)

In a similar fashion that Pt is related to the Kolmogorov operator K via its generator (see (iii) below), the
transfer operator Lt is related to the Fokker-Planck operator A defined in (2.3).

(iii) RP resonances and Kolmogorov operator. There are relationships between the abstract operator K and the
concrete Kolmogorov operator K defined in (A.4). In that respect, a theorem of Dynkin ensures (e.g. [RW00,
p. 258]) that if (Pt)t≥0 is a Feller semigroup of a Markov process with continuous paths such that C∞0 (Rd)
is contained in the domain D(K) of the generator K, then there exist functions aij , bi, and c in C(Rd)
(1 ≤ i, j ≤ d) such that for any x, the matrix

(
aij(x)

)
1≤i,j≤d is non-negative definite, c(x) ≤ 0,4 and

Kf(x) =

d∑
i,j=1

aij(x)∂
2
ijf +

d∑
i=1

bi(x)∂if + c(x)f, f ∈ C∞0 (Rd). (2.16)

Furthermore,

bi(x) = Fi(x), aij(x) =
1

2

(
D(x)D(x)T

)
ij
. (2.17)

For such reasons we sometimes refer to the RP resonances as the RP resonances of the Kolmogorov operatorK,
or the Fokker-Planck operatorA (by duality). This language is often adopted in Part III, more oriented towards
applications than the present Part I.
We mention that the spectral analysis of general 2nd-order operators, typically non-self adjoint such as given
in (2.16), is not an easy task in practice, especially when p is large; see [Dav96,Dav07]. Instead, the notion of
reduced RP resonances based on Corollary 2 below (see also Sec. 3) informs us about the spectral elements of
some coarse-grained version of K; see Theorem 3 and Remark 4-(iii). We refer nevertheless to [EH03,HN04]
for a detailed (and enlightening) study of the “shape” of the spectrum (in L2

µ for [HN04] and Sobolev spaces
for [EH03]) of a broad class of hypoelliptic operators such as arising in the theory of Langevin dynamics; see
also [OPPS12].

Remark 2
(i) Note that the sum in (2.13) starts actually at j = 2 since ψ1 = 1Rd (since 1 ∈ σ(Pt)) and 〈f〉µ = 0, by

assumption.
(ii) When σ(K) = {λ1, λ2, · · · } with Reλj+1 ≤ Reλj for all j ∈ N∗, and Reλj → −∞, is only assumed

(without requiringmj = 1) then (2.11) holds withN =∞ andQN = 0. Such an hypothesis on the spectrum of
K is systematically satisfied for the Markov semigroups that are eventually compact and possess an invariant
measure µ; see [EN00, Cor. V.3.2]. A large subclass of such Markov semigroups are the compact ones. It
includes a broad class of SDEs such as the following gradient dynamics on Rd subject to noise:

dx = −∇V (x) dt+
√
2β−1 dWt, β > 0, (2.18)

where Wt is a d-dimensional Wiener process. The diffusion is in that case elliptic, so it is straightforward
that the assumptions of Hörmander’s theorem are satisfied, and the corresponding transition probabilities are
smooth, provided that V is smooth. In fact for a broad class of smooth potentials V that satisfy appropriate
growth conditions, the compactness of Pt is ensured; e.g. [LB06, Theorem 8.5.3] and [GRS99, Lem. 1.2].
See also [MPW02] for conditions ensuring the compactness of Markov semigroups that are not necessarily
associated with gradient dynamics.

4 Furthermore if the process is non-explosive then c ≡ 0. This excludes the cases for which the underlying Markov process leaving at time
0 from x in Rd escapes to infinity at some finite time t > 0. This article is not concerned with explosive stochastic processes.
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(a) Spectrum of Markov semigroup generator,K. (b) Correspondence between the PSD and RP resonances according
to (2.21).

Fig. 1: Panel (a): The Ruelle-Pollicott (RP) resonances are shown here in the left half plane. The isolated eigenvalues of the Markov semigroup
generator, K; they are represented by red dots in Panel (b) and by black dots here. The rightmost vertical line represents the imaginary axis
above which the power spectrum lies; see Panel (a) for another perspective. The rate of decay of correlations is controlled by the spectral gap
τ ; see Appendix A.5. Panel (b): [Courtesy of Maciej Zworski] The imaginary part of the RP resonances corresponds to the location of a peak
in the PSD (black curve lying above the imaginary axis) and the real part to its width. In blue is represented a reconstruction of the PSD based
on RPs; a discrepancy is shown here to emphasize that in practice the RPs are very often only estimated/approximated; see [CNK+14].

(iii) Note that if Pt is eventually compact and possesses a unique ergodic invariant measure µ, then there exists
α > 0 andM ≥ 1 and

‖Ptϕ− 〈ϕ〉µ‖L2
µ
≤Me−αt‖ϕ− 〈ϕ〉µ‖L2

µ
. (2.19)

Note that if Pt has a regularizing effect sending L2
µ into the Sobolev space W 1,2

µ in finite time and W 1,2
µ

is compactly embedded into L2
µ then the Poincaré inequality holds [LB06, Prop. 8.6.1] and Pt is eventually

compact. The proof of (2.19) is then a consequence of the theory of eventually compact semigroups [EN00,
Cor. V.3.3] and the existence of a unique ergodic measure which ensures that 1Rd is the uniqueL2

µ-eigenfunction
of Pt (up to a multiplication factor) associated with the eigenvalue 1.

2.3 Decomposition of the power spectrum

Given an observable h : Rd → R for the system (2.1), we recall that the correlation spectrum Sh(f) is obtained by
taking the Fourier transform of the correlation function Ch(t), namely

Sh(f) = Ĉh(f), (2.20)

where Ch given by (2.4) (for a given invariant measure µ) with f = g = h, therein.
For a broad class of SDEs that possess an ergodic probability distribution µ, the spectrum in L2

µ, σ(K), of the
Markov semigroup generator, is typically contained in the left-half complex plane, {z ∈ C : Re (z) ≤ 0} and its
resolvent R(z) = (zId−K)−1, is a well-defined linear operator that satisfies

Sh(f) =

∫
Rd
h(X)

[
R(if)h

]
(X) dµ. (2.21)

In (2.21), the frequency f lies in the complex planeC, and the poles of the resolventR(if)—which correspond
to the RP resonances —introduce singularities into Sh(f). Once the power spectral density (PSD) is calculated,
i.e. once |Sh(f)| is computed with f taken to be real, these poles manifest themselves as peaks that stand out over
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a continuous background at the frequency f if the corresponding RP resonances with imaginary part f (or nearby)
are close enough to the imaginary axis. The continuous background may have different origins. In the case of a
pure point spectrum, it is due to RP resonances located far from the imaginary axis. In the presence of a continuous
spectrum and RP resonances (such as shown in Panel (a) of Fig. 1), if the latter are close to the imaginary axis,
then the continuous background of the PSD is mainly due to the contribution of the continuous part of σ(K) lying
typically in a sector {z ∈ C : Re (z) ≤ −γ}, for some γ > 0.5

Formula (2.21) establishes furthermore a useful correspondence between PSD and RP resonances. Indeed, from
(2.21) we infer that the imaginary part of the RP resonances corresponds to the location of a peak in the PSD and
the absolute value of the real part to its width; see Panel (b) of Fig. 1.

Let us take f = g = h in (2.11). By denoting by αkj (h) the coefficients resulting as integration with respect to
µ in (2.11), the latter decomposition formula writes

Ch(t) =

N∑
j=1

(mj−1∑
k=0

tk

k!
αkj (h)

)
eλjt +QN (t), (2.22)

where QN (t) exhibits typically a decay property associated with properties of the essential spectrum of A. Note
that the λj do not depend on the observable h, but that the αkj (h) do.

If we assume that Re (λj) < 0 for j > 0, that each λj is simple (mj = 1) and the absence of an essential
spectrum for K, then the correlation Ch(t) in (2.11) takes the simpler form of a weighted sum of complex
exponentials (i.e. (2.13)), where αkj = αj as given by (2.14), and the corresponding correlation spectrum Sh(f)
possesses itself a similar decomposition in terms of Lorentzian functions, namely:

Sh(f) = −
1

π

∞∑
j=1

αj(h)
Re (λj)

(f − Im (λj))2 +Re (λj)2
, f ∈ C. (2.23)

It is noteworthy that such Lorentzian decompositions of the PSD are frequently encountered in applications such
as for instance in spectroscopy due to the presence of resonances; e.g. [GKWG09,KMH+10,NZ15]. Note that RP
resonances appear also in the decomposition of the susceptibility function arising in linear response theory [Luc18,
Eq. (5)]; see [Rue05,Ces07,Rue09].

In summary, the decompositions (2.11) and (2.23) inform us about the following features:

(i) Each RP resonance is associated with an exponential contribution to the decay of correlation.
(ii) The closer an eigenvalue to imaginary axis, the slower the decay.
(iii) In the limit of purely imaginary eigenvalues, the associated contributions to the correlation functions are purely

oscillatory and prevent the decay of correlations.
(iv) The angular frequency at which each contribution oscillates is given by the imaginary part of the associated

eigenvalue.
(v) Eigenvalues close to the imaginary axis are associated with resonances (i.e. peaks) in the power spectrum.

The spectral peak is located at the frequency given by the imaginary part of the eigenvalue and its width is
proportional to the absolute value of the real part.

(vi) The contribution of each eigenvalue to a correlation function or a power spectrum is weighted as in (2.14),
corresponding to the projection of the observables h onto the eigenfunctions ofK and its adjoint.

3 Reduced Ruelle-Pollicott resonances

We present in this section the main results that serve us as a foundational basis for the applications discussed
hereafter and in Part III [TCND19]. The goal is to characterize the resonances that can be extracted from low-
dimensional observations in a reduced state space and how these resonances relate to the RP resonances introduced
in Sec. 2.2 above.

5 While we recall that in such a case, the RP resonances are the isolated eigenvalues of finite multiplicity, lying within a strip−γ < Re (z) ≤
0; see Panel (a) of Fig. 1.
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The results of this section rely substantially on the general disintegration theorem of probability measures6; see
e.g. [DM78, p. 78]. See also [AGS08, Theorem 5.3.1] and [CP97]. The disintegration theorem states that given
a probability measure µ on Rd, a finite-dimensional Euclidean space V for which 1 ≤ dim(V ) < d, and a map
h : Rd → V (Borel-measurable), then there exists a uniquely determined family of probability measures {µv}v∈V
such that, form-almost all 7 v inV ,µv is concentrated on the pre-imageh−1({v}) of v, i.e.µv

(
Rd \ h−1({v})

)
= 0,

and such that for every Borel-measurable function φ : Rd → R,∫
Rd
φ(x) dµ(x) =

∫
V

(∫
x∈h−1({v})

φ(x) dµv(x)
)
dm(v). (3.1)

Here m denotes the push-forward in V of the measure µ in Rd, by the map h.
Hereafter, we apply this result for the proof of Theorem 3 when the reduced state space, V , is a subspace of

Rd, and the mapping h is the projector ΠV onto V . In this case, a decomposition analogous to (3.1) holds for the
measure µ itself, namely

µ(B × F ) =
∫
F

µv(F ) dm(ξ), B × F ∈ B(V )⊗ B(W ), (3.2)

withW being the subspace such that V ⊕W = Rd. For later notation convenience, we denote by Xv the pre-image
h−1({v}) (for any h surjective), namely

Xv = h−1({v}), ∀ v ∈ V. (3.3)

3.1 Reduced Markov operators from partial observations of stochastic systems

We start with Theorem 2 below that extends [CNK+14, Theorem A] within the stochastic context of this article.
Mutatis mutandis, Theorem 2 as [CNK+14, Theorem A], shows that— given a reduced state space V , a continuous
map h from Rd to V , and a Markov semigroup (Pt)t≥0 possessing an invariant measure on Rd — a family of
reduced Markov operators (acting on functions of V ) can be naturally associated with (Pt)t≥0, V and h. This
family characterizes a coarse-graining in the reduced state space V — such as induced by the map h — of the
actual transition probabilities associated with (Pt)t≥0 that take place within the full state space Rd. Theorem 2
can be viewed as providing the analogue, in the SDE context dealt with in this article, of coarse-grained Markov
representations used for describing coarse-grained dynamics of Hamiltonian systems [SFHD99] or more general
Markov state models [SS13]. We emphasize that, as for these contexts, empirical estimates of the transition
probabilities appearing in (3.4) of Theorem 2 are important for applications, as briefly discussed in Section 3.3
below and in more details in Part III [TCND19].

Theorem 2 Let (Pt)t≥0 be a Markov semigroup that possesses an invariant measure µ, and let V be a reduced
state space for which 1 ≤ dim(V ) < p. Let h : Rd → V be a continuous surjective function and let us denote by
m = h∗µ, the push-forward of the measure µ by h.

Then there exists a time-dependent family of Markov operators Tt acting on L1
m(V ) such that, for any Borel

sets B and C of V , and any t > 0,

〈Tt1B ,1C〉1,∞
m(B)

= Prob(S(t, ·)x ∈ h−1(C)|x ∈ h−1(B)), (3.4)

where S(t, ω) denotes the stochastic flow associated with Pt, and 1E denotes the characteristic function of a Borel
set E.

Furthermore, if µ is ergodic then for any f in L2
m(V ), it holds

1

t

∫ t

0

∫
V

Tsf(v) dm(v) ds −→
t→∞

∫
V

f(v) dm(v). (3.5)

6 Variation of this theorem is used in the study of spectral gaps for deterministic maps and is known as Rokhlin’s disintegration theorem; see
[GL20].

7 i.e. up to an exceptional set of null measure with respect to m.
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Proof. Let us introduce for any t > 0 the operator Tt which maps f in L1
m(V ) to Ttf given by

Ttf(v) =

∫
x∈Xv

Pt[f ◦ h](x) dµv(x), (3.6)

where Xv denotes the pre-image (in Rd) of v by h, and µv denotes the disintegrated probability measure associated
with h, such as given by the disintegration theorem recalled above. The bracket-notation, [·], is used here in (3.6) to
emphasize that the formula should be read as follows: Pt is first applied on f ◦ h, then the integration with respect
to µv , is undertaken. Note that Tt acts on observables of V , i.e. on functions φ(v), with v lying within the reduced
state space.

By integrating (3.6) with respect to the measure m, and applying (3.1) with φ = Pt[f ◦ h], one notes that∫
V

Ttf(v) dm(v) =

∫
Rd
Pt[f ◦ h](x) dµ(x). (3.7)

This last identity allows us to get the following estimates∣∣∣ ∫
V

Ttf(v) dm(v)
∣∣∣ ≤ ∫

Rd
|Pt[f ◦ h](x)|dµ(x)

≤
∫
Rd
|f ◦ h(x)|dµ(x),

(3.8)

the last inequality resulting from (A.10) applied with p = 1 and the invariance of µ. We have thus the estimate

‖Ttf‖L1
m(V ) ≤

∫
V

|f(v)|
∫
Xv

1V dµv dm(v) = ‖f‖L1
m(V ), (3.9)

which shows that Tt maps L1
m(V ) into itself, i.e. Tt is a Markov operator.

The rest of the proof is also straightforward, and consists of noting that for any Borel sets B and C in V , one
has

〈Tt1B ,1C〉L1
m,L

∞
m

=

∫
V

1C(v)
[ ∫
Xv
Pt[1B ◦ h](y) dµv(y)

]
dm(v)

=

∫
Rd
1h−1(C)(x)Pt[1B ◦ h](x) dµ(x)

=

∫
Rd

Lt1h−1(C) · 1B ◦ h dµ

=

∫
Rd

Lt1h−1(C) · 1h−1(B) dµ

(3.10)

Since m = h∗µ, we deduce that m(B) = µ(h−1(B)), and thus by dividing by m(B), one obtains that

〈Tt1B ,1C〉1,∞
m(B)

= Prob(S(t, ·)x ∈ h−1(C)|x ∈ h−1(B)). B, C ∈ B(V ). (3.11)

Finally the proof of (3.5) consists of applying again (3.1) the characterization (iii) of the ergodicity recalled in
Definition 1. ut

Remark 3 For any f and g inL2
m(V ), one can define correlation functions (in the reduced state spaceV ) associated

with the family of Markov operators Tt by

C̃f,g(t) =

∫
V

f · Ttg dm−
∫
V

f dm

∫
V

g dm. (3.12)

These correlations inherit a nice property resulting from the disintegration formula (3.1), namely

C̃f,g(t) = Cf◦h,g◦h(t), (3.13)



12 Mickaël D. Chekroun et al.

where Cf◦h,g◦h(t) is given by (2.4) in which f (resp. g) is replaced by f ◦ h (resp. g ◦ h). In particular, the
decomposition formulas of Corollary 1 apply to the observables f ◦ h and g ◦ h, and provide in turn a spectral
decomposition of correlation functions in the reduced state space V , in terms of the spectral elements of the
generatorK of the Markov semigroup (Pt)t≥0.

The issue, however, is that such a decomposition involves a spectral analysis ofK that is typically out of reach
numerically when the dimension of the state space is large, and is difficult analytically in the general case. One
would like instead to have at our disposal a decomposition in terms of the spectral elements associated with the
reduced Markov operators (Tt)t≥0 rather than with the full Markov semigroup (Pt)t≥0. The stumbling block is that
(Tt)t≥0 does not form a semigroup in general i.e.

Tt+s 6= TtTs, (3.14)

(see [TvdBD15]) and one cannot rely on the spectral theory of semigroups such as used in Section 2.2, to reach
this goal. The next sections analyzes what type of useful spectral information may still be extracted from Tt.

3.2 Pseudo generators of the family of reduced Markov operators and asymptotic behavior

We begin with the following Lemma that characterizes the pseudo-generators Gt that can be associated with the
family of reduced Markov operators (Tt)t≥0, although the latter family does not form a semigroup in general.
For related material, we refer to the recent works [BKJ15,BHJK15] concerned with the metastability analysis
of Langevin dynamics. In a certain sense, Theorem 3 along with the notion of reduced RP resonances based on
Corollary 2 below (see also Sec. 3.3), provide a complementary approach for the analysis of reduced Markov
operators for situations not necessarily limited to Langevin dynamics. Theorem 3 shows in particular that the
asymptotic behavior of Gt as t → ∞ (in a weak sense) is governed by the generator of a reduced SDE in which
the dependence on the unobserved variables (lying outside of the reduced state space V ) has been averaged out;
see (3.23) below. In other words, Theorem 3 provides a useful relationship between the reduced non-Markovian
process associated with the family (Tt)t≥0 and the Markov process associated with the conditional expectation
induced by the observable h.

Lemma 3.1 LetK denote the generator of Pt in L2
µ(Rd) with domainD(K) as defined in (A.13). Let h : Rd → V

be a continuous surjective observable. Then, the Markov operator Tt of Theorem 2 possesses for each time t, a
pseudo-generator, i.e. for any f in L2

m(V ) for which f ◦ h lies in D(K), lim
s→0

(Tt+sf − Ttf)/s exists and is given
by

Gtf(v) =

∫
Xv
PtK[f ◦ h](x) dµv(x), (3.15)

whose domain is thus
D(Gt) = {f ∈ L2

m(V ) : f ◦ h ∈ D(K)}. (3.16)

Proof. The proof is elementary and consists of noting that for any f in L2
m(V ) for which f ◦ h lies in D(K), we

have
Tt+sf − Ttf

s
=

∫
Xv

Pt+s − Pt
s

[f ◦ h](x) dµv(x) −→
s→0

∫
Xv
PtK[f ◦ h](x) dµv(x), (3.17)

from the basic properties of a strongly continuous semigroup such as applied to Pt (e.g. [EN00, Lem. II.1.3]) and
the dominated convergence theorem. ut

Theorem 3 Assume that the assumptions of Theorem 2 hold. If µ is ergodic, then there exists a closed linear
operator G acting on L2

m(V ) such that for any f in L2
m(V )

1

t

∫ t

0

∫
V

Gtf(v) dm(v) −→
t→∞

∫
V

Gf(v) dm(v), (3.18)

and for which G is dissipative in the sense that

Re 〈Gf, f〉L2
m(V ) ≤ 0, ∀ f ∈ D(G). (3.19)
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Furthermore, if µ is strongly mixing then

lim
t→∞

∫
V

Gtf(v) dm(v) =

∫
V

Gf(v) dm(v). (3.20)

Recall that the Markov semigroup Pt from which Gt is defined, is associated to Eq. (2.1). If h is a projector,
the operator G is densely defined, and if Pt is a Feller semigroup for which C∞0 (Rd) ⊂ D(K), then G possesses
the following differential expression

Gf(v) = 1

2

dim(V )∑
i,j=1

Σij(v)∂
2
ijf +

dim(V )∑
i=1

F i(v)∂if, v ∈ V, f ∈ C2
0 (V ). (3.21)

where
Σij(v) =

∫
Xv

Σij(x) dµv(x), F i(v) =

∫
Xv
Fi(x) dµv(x), x ∈ Rd, v ∈ V, (3.22)

where F and Σ denote respectively the drift part and the diffusion tensor associated with Eq. (2.1).
In other words, G is the generator of the Markov process associated with the conditional expectation induced

by h, namely with a reduced (“effective”) SDE in V of the form:

dv = F (v) dt+ σ(v) dWV
t , v ∈ V, (3.23)

withWV
t denoting a Brownian motion in V and for 1 ≤ i, j ≤ dim(V ),

Σij(v) = (σ(v)σ(v)T)ij =

q∑
k=1

Dik(x)Djk(x), x ∈ Rd, v ∈ V, (3.24)

where the D`k are the diffusion coefficients of the original SDE (2.1), and (·) denotes the averaging over the
disintegrated measure µv .

Proof. Step 1: Proof of (3.18) and (3.19). Let f be in D(Gt) given in (3.16). Then∫
V

Gtf(v) dm(v) =

∫
V

∫
Xv
PtK[f ◦ h](x) dµv(x) dm(v),

=

∫
Rd
PtK[f ◦ h](x) dµ(x),

(3.25)

by application of the disintegration formula (3.1).
Assuming the measure µ to be ergodic, the characterization (iii) of Definition 1 allows us to infer (3.18) with G

given by

Gf(v) =
∫
Xv
K[f ◦ h](x) dµv(x), (3.26)

by application once more of the disintegration formula.
The same formula ensures furthermore that∫

V

Gf · f dm =

∫
Rd
K[f ◦ h] · [f ◦ h] dµ (3.27)

and by taking the real part, (3.19) follows from (A.14).
Step 2: G is closed. Let {fn} be a sequence in D(G) converging to f in L2

m(V ) such that Gfn → g in L2
m(V ) as

n→∞.
Then from (3.26), one has∫

V

|Gfn − g|2 dm = −2
∫
Rd
K[fn ◦ h](x) · (g ◦ h(x)) dµ+∫

Rd
|K[fn ◦ h](x)|2 dµ+

∫
Rd
|g ◦ h(x)|2 dµ(x).

(3.28)
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Now since K is closed in L2
µ(Rd), K[fn ◦ h] −→

n→∞
K[f ◦ h] and f ◦ h ∈ D(K), namely f ∈ D(G). This shows

furthermore that one can pass to the limit in (3.28), which gives

2

∫
Rd
K[f ◦ h](x) · (g ◦ h(x)) dµ =

∫
Rd
|K[f ◦ h](x)|2 dµ+

∫
Rd
|g ◦ h(x)|2 dµ(x), (3.29)

The identity (3.29) says nothing else than

‖K[f ◦ h]− g ◦ h‖2L2
µ
= 0, (3.30)

i.e.K[f ◦ h] = g ◦ h, µ-almost everywhere, which gives∫
Xv
K[f ◦ h](x) dµv(x) =

∫
Xv
g ◦ h(x) dµv(x) = g(v), for m-almost every v in V. (3.31)

We have thus proved Gf = g, with f in D(K), i.e. that G is closed.
Step 3: G is densely defined if h is a projector. The purpose is to prove that D(G) is dense in L2

m(V ). Assume
by contradiction that there exist g in L2

m(V ) for which any sequence in D(G) would stay at a certain distance (in
L2
m(V )) from g or would have g as a point of accumulation, but not unique.
Let us take V = Rq with 1 ≤ q < d (since h is a projector) and define G the mapping from V to V such that

ΠjG = g, for all 1 ≤ j ≤ q. SinceD(K) is dense in L2
µ(Rd) ([Paz83, Cor. 2.5 p. 5]) there exists a sequence {ϕn}

in (D(K))d that converges toG ◦ h in (L2
µ(Rd))d, such that in particular ‖ϕn −G ◦ h‖ (norm in Rd) converges to

zero in L2
µ. Let us define, almost everywhere (a.e.), a sequence {fn} in (D(G))q from the semiconjugacy relation8

fn ◦ h = h ◦ ϕn, (3.32)

i.e. such that the following diagram is commutative a.e.

Rd ϕn∈(D(K))d−−−−−−−−→ Rdyh yh
V

fn∈(D(G))q−−−−−−−−→ V

Furthermore, since h is a projector∫
‖h(ϕn(x))− h(G ◦ h(x))‖2 dµ(x) ≤

∫
‖ϕn(x)−G ◦ h(x)‖2 dµ(x) (3.33)

which, thanks to (3.32), is equivalent to∫
‖fn ◦ h(x)−G ◦ h(x)‖2 dµ(x) ≤

∫
‖ϕn(x)−G ◦ h(x)‖2 dµ(x). (3.34)

On the other hand, by application of the disintegration formula∫ ∣∣∣∣Πj

(
fn ◦ h(x)−G ◦ h(x)

)∣∣∣∣2 dµ(x) = ∫
V

|Πjfn(v)− g(v)|2 dm(v), 1 ≤ j ≤ q. (3.35)

We have thus proved, thanks to (3.34) that for any 1 ≤ j ≤ q,∫
V

|Πjfn(v)− g(v)|2 dm(v) ≤
∫
‖ϕn(x)−G ◦ h(x)‖2 dµ(x). (3.36)

Now since ‖ϕn −G ◦ h‖ converges to zero in L2
µ by construction, we conclude thatΠjfn, which belongs toD(G)

(also by construction), converges to g in L2
m(V ), leading thus to a contradiction.

Step 4: G provides the conditional expectation. This step is a straightforward consequence of the Dynkin theorem
(see Remark 1-(iii)) and the representation formula (3.26) which leads to the expression (3.21) of G, by integration
with respect to µv . ut

8 Note that fn defined by (3.32) implies that Πjfn ◦ h = Πjϕn belongs to D(K) by construction, and thus Πjfn belongs to D(G) for
every 1 ≤ j ≤ q, since the RHS of (3.16) is also the domain of G as (3.16) is independent on t.
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We have then the immediate corollary.
Corollary 2 Under the assumptions of Theorem 3, if µ is strongly mixing, the eigenvalues of Gt provide approxi-
mations of the weak eigenvalues of G in the sense that if (λtk, ψtk) denotes an eigenpair of Gt, then∫

V

Gψtk dm = λtk

∫
V

ψtk dm+ ε(t), (3.37)

with ε(t)→ 0, as t→∞.
Due to the definition of Gt in (3.15) and of G in (3.26), we have also that (3.37) holds with ε(t)→ 0, as t→ 0.
The eigenvalues of Gt in Corollary 2 are called that the reduced RP resonances for the time-lag t.

Remark 4
(i) Approximation ofRP resonances. In the context of homogenization of SDEs, explicit formulas for the generator
G of the conditional expectation are available; see e.g. [PS08, Chaps. 11& 18].Within this context and adopting
the language of this article, the estimates [CVE11, Eqns. (5.12)-(5.13)] show that the RP resonances (resp. the
eigenfunctions in L2

µ) of the full generator K are approximated by the eigenvalues (resp. the eigenfunctions
in L2

m after multiplication by the µx-density) of G, when the time-scale separation between the observed and
unobserved variables is sufficiently large. Thus, for such situations, the reduced RP resonances provide (weak)
approximations to the actual RP resonances, due to Corollary 2.
In the general case, error estimates between the RP resonances and the reduced RP resonances are difficult
to derive. We refer though to Sec. 4 for an example for which the reduced RP resonances allow for very
good approximation of correlation functions, even when the time-scale separation is weak. There, it is the
decomposition (2.13) that is approximated when the RP resonances (and corresponding modes) therein are
replaced by the spectral elements of Gt.

(ii) G describes long- and short-time behaviors in V . Due to (3.14), the stochastic process associated with Tt in
the reduced state space V is in general non-Markovian. Theorem 3 shows however that G plays an important
role in the description of the asymptotic behavior of this stochastic process. As pointed out in Corollary 2, the
operator G as defined in (3.26) is exactly the pseudo-generator Gt of Tt, as t→ 0.
The operator G relates thus the long time assymptotics (t → ∞) of the reduced stochastic process to its
infinitesimal characteristics which describe the short-time behavior (t→ 0), as for time homogeneous Markov
processes.We refer to [LL10,LLO17,ZHS17,DLP+18] for error estimates between the coarse-grained dynamics
and the effective dynamics involving conditional expectation, in the context of Langevin or overdamped Langevin
dynamics.

(iii) Coarse-grained Kolmogorov operator. Given a projector h = ΠV onto V , another useful object related to
the conditional expectation (3.23) is the following coarse-grained Kolmogorov operator:

Kf(v) =
∫
Xv
K[f ◦ h](x) dµv(x), v ∈ V, f ∈ C2

0 (V ), (3.38)

where K is the Kolmogorov operator defined in Appendix A.3 for the full SDE.
This operator has an interesting interpretation. Although it is not the “generator” of the non-Markovian
stochastic process vt associated with the family (Tt)t≥0, it provides the generator of the Markov process
describing the average behavior of vt, when the averaging is taken over the unobserved variables, i.e. over the
variables lying outside of V .

(iv) For the sake of clarity, the formulas (3.21)-(3.22) and (3.23)-(3.24) in Theorem 3 have been articulated for the
case where h is a projection. Of course such formulas can be generalized to more general mappings h, and
for V that is not necessarily a subspace of Rd. In such cases, the corresponding coarse-grained Kolmogorov
operator, K, becomes typically a non-local operator. Such considerations about the choice of reduced state
space has its importance in practice. Indeed non-local features of K can intuitively help keep a “trace” in
the reduced state space of certain interactions between the observed and unobserved variables that would be
otherwise averaged out by the conditional expectation by using standard projections. At the same time, a “bad”
choice of the observable h can lead to a very poor domain D(Gt) in Lemma 3.1. We refer to [BKL17] for an
illuminating discussion regarding the impact of the choice of observable (and their regularity) in the context of
linear response theory for (deterministic) Axiom A diffeomorphisms.
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3.3 Empirical reduced RP resonances and reconstruction of correlations

As pointed out above, RP resonances although useful to describe power spectra and correlation functions, are difficult
to estimate in practice when the dimension of the state space gets large. In practice, only partial observations of the
solutions to Eq. (2.1) are available, e.g. few solution’s components. Theorem 2 shows that from partial observations
of a system that lie within a reduced state space V and whose transitions are collected at a time-lag τ (t = τ in
(3.4)), a (reduced) Markov operator Tτ with state space V can be inferred from these observations. Theorem 2
shows then that this operator Tτ characterizes the coarse-graining in V of the transition probabilities in the full state
space. At an intuitive level if a dominant recurrent behavior occurs within an irregular background, then Tτ must
still “feel” this recurrent behavior within V , in case this dominant behavior is reflected in V . As pointed out already
in [CNK+14] such a recurrent behavior is manifested by eigenvalues of Tτ distributed evenly along an inner circle
typically close to the unit circle, or by forming a parabola in the complex plane depending on the representation
adopted; see Part II [TCND20] and Part III [TCND19] .

An issue though is that in generalTτ does not come from aMarkov semigroup (acting on functions of the reduced
state space V ), and thus one cannot per se rely on the theory of RP resonances presented in Sec. 2.2 to decompose
e.g. correlation functions of V ; see Remark 3. Theorem 3 on the other hand, shows, roughly speaking, that Tτ has a
pseudo-generator Gτ that is close (in a weak sense) to the generator G of the conditional expectation (3.23), when
either τ is sufficiently small or large; see Remarks 4-(ii). Thus, in such cases, the resonances estimated from data
whose transitions are collected at a time-lag τ in the reduced state space have an interesting interpretation. They
approximate the (weak) RP resonances associated with the generator G of the reduced system (3.23) (Corollary 2),
and are called the empirical reduced RP resonances. Two factors play an important role in this approximation: (a)
the partition of V used to approximate the Markov operator Tτ by a transition matrix Γτ , and (b) the amount of data
used for the estimation of the entries of Γτ (see (3.39) below); see [CVE06,CVE09]. When the latter is sufficiently
large we may infer that the dominant part of the spectrum of Γτ provides a good approximation of that of Tτ , for
a sufficiently fine partition of V .9 Another important factor in this approximation is, as mentioned above, related
to the time-lag τ as it impacts whether the pseudo-generator Gτ is a good (weak) approximation of the generator
G of the conditional expectation. If all these factors are favorable, the empirical reduced RP resonances, as good
approximation of the generator G’s RP resonances, describe the solution’s variability captured by the conditional
expectation (3.23); Corollary 1 applied to the Markov semigroup generated by Eq. (3.23). These estimated reduced
RP resonances inform us thus about the spectral elements of some coarse-grained version of the original SDE
generator, but does not provide in general a sharp approximation of the RP resonances of the full generator K.
We refer though to [CVE11] for estimates in the context of homogenized diffusion processes. Translated in the
language of this article, it is shown there that the reduced RP resonances (associated with the homogenized diffusion
operator) are asymptotically close to the RP resonances of the underlying multiscale diffusion operator, when the
time-scale separation is sufficiently large.

In practice, the dimension of V is kept low so that Tτ can be efficiently estimated via a maximum likelihood
estimator (MLE). Note that the reduced state space V and h should be also chosen such that the observed dynamics
in V via h carry relevant information on e.g. the variability of interest contained in the original system’s solutions.

We detail below our estimation procedure of reduced RP resonances. First a bounded domain D of V should
be chosen large enough so that “most realizations” of the stochastic processXt solving Eq. (2.1) fall inside D after
application of the observable h : Rd → V , i.e. D must be chosen so that h(Xt) belongs to D for many realizations
of the noise in Eq. (2.1). This domain is then discretized as the union of M disjoint boxes Bj , forming thus a
partition.

We assume that our observations in V are made out of the stochastic process Xt (solving Eq. (2.1) in Rd) at
discrete time instants t = tn, given as multiple of a sampling time δt, i.e. tn = nδt with 1 ≤ n ≤ N , with N
assumed to be large. We also assume the time-lag τ to be equal to a multiple of δt, i.e. τ = `δt. These observations
made in the observation space V are denoted by Yn = h(Xtn). By adapting the material contained in e.g. the
Supporting Information of [CNK+14] (see also [TvdBD15]), the Markov operator Tτ is approximated by the

9 We refer to [SS13] for useful error bounds regarding the dominant eigenvalues for certain types of coarse-graining maps.
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M ×M transition matrix Γτ whose entries are given

(Γτ )ij =

#

{(
Yn ∈ Bj

)
∧
(
Yn+` ∈ Bi

)}
#
{
Yn ∈ Bj

} , (3.39)

where the Bj form a partition (composed of M disjoint boxes) of the aforementioned domain D in V ; see also
[CVE06,SS13] and references therein. In (3.39), the notation#{(Yn ∈ Bk)} gives the number of observations Yn
visiting the box Bk, and the logical symbol “∧” means “and." The leading eigenvalues of the transition matrix Γτ
can then be computed with an iterative algorithm such as ARPACK [LSY97]. We mention that the Markov operator
Tτ can be also approximated — following the route paved by Ulam [Ula64] — from many short simulations
instead of using long time series like here; see [Fro01,DFJ01]. Similarly, the Ulam’s method can be adapted for the
generator itself to estimate, when the dimension of the problem permits, the generator’s spectral elements without
trajectory integration, see [FJK13].

The empirical reduced RP resonances are then obtained as the eigenvalues λk(τ) obtained from the eigenvalues
ζk(τ) of the Markov matrix Tτ , according to

λk(τ) =
log
(
|ζk(τ)|

)
τ

+ i
arg
(
ζk(τ)

)
τ

, 1 ≤ k ≤M, (3.40)

where arg(z) (resp. log(z)) denotes the principal value of the argument (that we adopt to lie in [−π, π) in this article)
(resp. logarithm) of the complex number z. At a basic level, the motivation behind (3.40) is that the eigenvalues of
Γτ as the eigenvalues of a Markov matrix, lie within the unit circle (representation that was adopted in [CNK+14])
whereas we want here to relate these eigenvalues with the RP resonances associated with the generator K of the
original Eq. (2.1). This way, the λk(τ) given by (3.40) lie naturally within the left-half complex plane.

For τ sufficiently small or large, i.e. when the generator of the conditional expectation is reasonably well
approximated by the pseudo-generator of Tτ (in a weak sense, see Theorem 3 and Remark 4-(ii)), one can thus
proceed as follows to measure the amount of solution’s variability captured by the conditional expectation:

(C1) Given an observable and a reduced state space V , one forms the right-hand side (RHS) of (2.13) in which the
λj are replaced by the empirical reduced RPs, i.e. λj(τ) given by(3.40), and the eigenfunctions by those of the
Markov operator Tτ . This way, one forms what we call the “reduced" correlation function.

(C2) One compares the resulting reduced correlation function obtained in step (C1), to the correlation function
as estimated from standard techniques. If the correlations are close, one can conclude that the conditional
expectation provides actually a good reduced system and that the non-Markovian effects are negligible to obtain
an efficient closure in V , for this observable.

Note that by replacing the RP resonances by the (empirical) reduced RP resonances in (2.23), power spectral
densities can also be approximated in the same fashion. One should however emphasize that such an analysis
depends on the good choice of the time-lag τ at which the data are collected [TLLD18], and one should keep in
mind this important aspect before drawing any conclusion.

When τ is neither small or large, the precise relationships between the λk(τ) and the actual RP resonances are
non-trivial to characterize in general. Nevertheless, in certain cases, as shown in Part III [TCND19], the reduced RP
resonances are very useful to diagnose and characterize important dynamical features such as nonlinear oscillations
embedded within a stochastic background. The next section provides an example for which the non-Markovian
effects are negligible to capture the slow variable’s variability (in terms of correlation functions), whereas the
time-scale separation between the “slow” and “fast” variables is not large.
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4 Applications to a stochastic slow-fast system

4.1 The model

We consider the following stochastic system


dx = (λx− fy − γxz) dt+ σ dW 1

t (4.1a)
dy = (fx+ λy − γyz) dt+ σ dW 2

t (4.1b)

dz = −1

ε
(z − x2 − y2) dt+ σ√

ε
dW 3

t . (4.1c)

The stochastic processes W 1
t ,W

2
t ,W

3
t are independent Brownian motions. The parameters λ, f, γ and ε are

specified below. In the case σ = 0, system (4.1) arises in fluid dynamics and is investigated in [NAM+03] as
low-dimensional reduced model for a flow past a circular cylinder. Hereafter, we deal exclusively with the stochastic
case, i.e. when σ > 0. The reduction problem of this system is analyzed rigorously in [CLPR19] using a different
approach inspired from [CLW15b]. In particular it is proved in [CLPR19] that this system generates a Markov
semigroup which is strong Feller and irreducible that possesses a unique ergodic invariant measure µ and thus the
theory of RP resonances presented in this article applies.

System (4.1) is a slow-fast system driven by additive noise. The theory of slow-fast systems in the deterministic
case, i.e. when σ = 0 in system (4.1), is well established when the time-scale separation is strong; see for instance
[Jon95,NS13] or the recent monograph [Kue15] and references therein. Indeed, a typical behavior of such systems
is characterized by a separation of time scales between the so-called “slow" and “fast" variables,as controlled by
the parameter ε. For our present system, as ε gets small, the z-variable exhibits fast fluctuations on timescales over
which the x- and y-variables vary more and more slowly.

Central to the study of such systems in the deterministic context, is the existence of a slow manifold which
expresses often a (possibly approximate) slaving relationships between the slow- and fast-variables; the latter lying
typically in an “ε-neighborhood” (for ε sufficiently small) to the graph of a function h of the slow variables. In the
case of system (4.1) the slow manifold is explicitly given, for σ = 0, by

Φ :R× R −→ R,
(x, y) 7→ x2 + y2.

(4.2)

More precisely, for σ = 0, any solution (x(t), y(t), z(t)) to (4.1) is attracted exponentially fast to the manifold
given byMε = graph(Φ)+O(ε), and in particular the near to slaving relationship z(t) = h(x2(t)+y2(t))+O(ε)
holds for t sufficiently large. Foundations of such a dynamical behavior are found in [Fen79,FM71] for much more
general systems than (4.1), and we refer to [NS13, Chap. 10] for an introduction to the theory of invariant manifolds
(IMs) for singularly perturbed ordinary differential equations (ODEs); see also [Kue15].

In what follows we determine the empirical reduced RP resonances as described in Sec. 3.3 not only for the
system (4.1), but also for the reduced system based on the slow manifold Φ, namely by integrating

du =
(
λu− fv − γu(u2 + v2)

)
dt+ σ dW 1

t

dv =
(
fv + λv − γv(u2 + v2)

)
dt+ σ dW 2

t .
(4.3)

The RP resonances of this system, a Hopf normal form subject to an additive white noise, are analyzed in details
in Part II [TCND20]. This system is a “paragon” of nonlinear oscillations in presence of noise.

The reduced state space V is taken to be the (x, y)-plane, being thus only a reduced state space for the original
system. As shown below, the estimation of (reduced) RP resonances allow also for comparing the original system
with its slow manifold reduction (4.3).
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4.2 Numerical results

Both systems are numerically integrated via an Euler-Maruyama scheme with a time step of size δt = 10−5. In
each experiment, the systems are simulated up to T = 8 × 104 after removal of a transient dynamics of length
Ts = 103. With tn = nδt, the variables collected are Yn = (xn, yn) where xn = x(tn) and yn = y(tn) for system
(4.1), on one hand, and Yn = (un, vn) where un = u(tn) and vn = v(tn) for system (4.3), on the other. The
domain D used for estimating the Markov matrix Γτ in (3.39), is taken to be D = [−6, 6] × [−6, 6], decomposed
into a uniform grid constituted of 300× 300 cells.

Three parameter regimes are considered hereafter: two regimes with a strong time-scale separation (Cases I
and II), and one with no apparent time-scale separation (Case III); see Tables 1 and 2. The time-lag τ to estimate
the transitions is chosen depending on these regimes as follows: τ = 10−3 for Case I, and τ = 10−2 for Cases II
and III.

Table 1: Parameter regimes: Case I and Case II

λ f γ ε σ

Case I 10−3 102 5.6× 10−2 10−2 0.55
Case II 10−3 10 1 10−2 0.2

Table 2: Parameter regime: Case III

λ f γ ε σ

Case IV 10−3 10 1 10 0.3

Within this experimental protocol, we first estimate the reduced RP resonances. To do so, we first estimate
the Markov matrix entries of Γτ according to (3.39), and then determine the reduced RP resonances according
to (3.40). For the three parameter regimes considered here, these resonances are shown by blue ’+’ signs in each
Panel (a) of Figures 2, 3, and 4. The resonances for the slow manifold system (4.3) are estimated according the
same procedure. They are no longer reduced but genuine RP resonances since the system is two-dimensional. Thus,
the RP resonances associated with system (4.3) are shown by orange ’x’ signs in each Panel (a) of Figures 2, 3,
and 4. In each of these Panels (a), the rightmost narrow panel shows the spectral reconstructions of the PSD of
u(t) (resp. x(t)) based on RP resonances (resp. reduced RP resonances) according to procedure (C1) described in
Sec. 3.3, by a dashed orange (resp. blue) curve, while the black curve shows its standard PSD sample estimate. In
each Panel (b) of Figures 2, 3, and 4 are shown the autocorrelation function (ACF) of u(t) (resp. x(t)) based on RP
resonances (resp. reduced RP resonances) based on the procedure (C1), and here again the black curve its standard
ACF sample estimate.

The conclusions of these numerical experiments are without ambiguity. First, in the case of a strong time-scale
separation between the observed variables (x,y) and the unobserved variable (z), i.e. in Cases I and II, the reduced
RP resonances allow for an almost exact reconstruction of the ACF and PSD of x(t) (as for y(t), not shown). This
is explained from the theoretical understanding provided by Secns. 3.2 and 3.3. Indeed, as explained therein, since
the time-lag τ is small here, it is expected that the reduced RP resonances provide a good approximation of the
resonances associated with the generator of the conditional expectation (3.23). On the other hand, the conditional
expectation is known to provide a (very) good approximation of the dynamics of the slow variables when ε is
small, and that it coincides with the slow manifold reduced system (4.3) as ε → 0; see [CLPR19]. Thus without
any surprise the RP resonances of system (4.3) coincide with the reduced RP resonances of (4.1) (associated with
the oberved variables (x, y)) for a strong time-scale separation. The fact that these resonance are organized along
parabolas in the left half plane, is thoroughly analyzed in Part II [TCND20].

The conclusion for the case of no time-scale separation (Case III) is more subtle, but reveals an interesting
usefulness of the RP resonance analysis. For this case, the RP resonances of the slow manifold reduced system (4.3)
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differ from the reduced RP resonances (see Panel (a) in Fig. 4) which come here with a noticeable mismatch at the
level of ACFs although not revealed at the level of PSDs. On the contrary, the reduced RP resonances allow for an
almost perfect reconstruction of the ACF. As a consequence, one can conclude that the slow manifold is no longer
a valid parameterization of the z-variable in terms of the x- and y-variables (also observed in [CLPR19] for this
regime) but that still, the conditional expectation (3.23) provides a valid approximation for the reduced dynamics.

Such a diagnosis regarding the conditional expectation drawn from RP resonance analysis offers promising
perspectives in terms of reduced-order modeling. As illustrated here, the latter resonances could indeed serve
to determine whether efforts on non-Markovian effects must be invested or not. In that respect, we mention the
recent variational approach relying on optimal manifolds minimizing a parameterization defect [CLM19] which
offers new perspectives to approximate analytically from the original equations the conditional expectation; see
also [CLM17]. Applied to Case III, this approach based on optimal parameterizing manifolds (OPMs) provides
an analytical substitute to the slow manifold which allows in turn for the derivation of an efficient 2D reduced
system of SDEs (without non-Markovian terms), confirming the conclusions drawn from the RP resonance analysis
conducted here.
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Fig. 2: Leftmost frame in Panel (a): RP resonances of (4.3) (orange ’x’ sign) and reduced RP resonances of (4.1) (blue ’+’ sign) in the
(x, y)-plane. Rightmost frame in Panel (a): Power spectral densities (PSDs). Panel (b): Autocorrelation function (ACF) of x(t) (resp. u(t)).
The spectral reconstructions of the PSD and ACF of u(t) (resp. x(t)) based on RP resonances (resp. reduced RP resonances) according to
procedure (C1) described in Sec. 3.3, are shown by a dashed orange (resp. blue) curve, while the black curves show their standard sample
estimates.
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Fig. 3: Same as in Fig. 2 but for Case II.
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Fig. 4: Same as in Fig. 2 but for Case III.

A Elements of stochastic analysis

In this appendix we present a short survey of elements of stochastic analysis used in the Main Text. The main objective is to introduce the key
concepts and tools of stochastic analysis for stochastic differential equations (SDEs), to a wider audience in the geosciences and macroscopic
physics.

A.1 Markov semigroups

Two approaches dominate the analysis of stochastic dynamics. We are here concerned with the approach rooted in Stochastic Analysis which,
contrary to the random dynamical system (RDS) approach [Arn98,CSG11,CLW15a], does not substitute a deterministic (nonlinear) flow S(t)
by a stochastic flow S(t, ω) acting10 on the state space X but rather by a family of linear operators Pt, acting on a space of observables of the
state space, i.e. on functions of X . A typical choice of observables is given by Cb(X ), the space of bounded and continuous functions on X . In
what follows X is a finite-dimensional Polish space.

More precisely, this family Pt reflects the (averaged) action of the stochastic flow at the level of functions and is given as the mapping
which to each function φ in Cb(X ) associates the function:

Ptφ(x) = E(φ(S(t, ·)x)) =
∫
Ω
φ(S(t, ω)x) dP(ω), t ≥ 0, x ∈ X . (A.1)

In (A.1), the function φ is the aforementioned observable. Its physical meaning could be, for instance, the potential vorticity or the temperature
of a fluid at a given location or averaged over a volume. The RHS of (A.1) involves averaging over the realizations ω, i.e. expectation. For
deterministic flow it reduces to Ptφ(x) = φ(S(t)x) and is known as the Koopman operator. Note that Pt such as defined in (A.1) is not limited

10 ω labelling the noise realization.
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to stochastic flow, more generally Ptφ(x) = E(φ(Xx
t )) where Xx

t denotes a stochastic process that solves Eq. (2.1) (as associated with Pt)
and emanates from x in X .

Under general assumptions on F andD, the stochastic processXt solving Eq. (2.1) is Markovian (i.e. the future is determined only by the
present value of the process) which translates at the level of Pt into the following semigroup property

P0 = Id, PtPs = Pt+s, t, s ≥ 0. (A.2)

A breakdown of (A.2) indicates thus that the underlying stochastic process is non-Markovian.
It is noteworthy to mention that even when Pt satisfies (A.2), it does not ensure that Pt is a strongly continuous semigroup [Paz83] on

Cb(X ). Nevertheless, (Pt)t≥0 is extendable to a strongly continuous semigroup in L2
µ as soon as µ is an invariant measure of the Markov

semigroup; see Theorem 4 below. The spectral theory of such semigroups [EN00] is at the core of the description of mixing properties in L2
µ,

such as presented in Sec. 2.2 in the Main Text.

A.2 Ergodic invariant measures and the strong Feller-Irreducibility approach

The Fokker-Planck equation (2.3) may support several weak stationary solutions. An important question, is thus the identification of stationary
measures that describe the asymptotic statistical behavior of the solutions of Eq. (2.1), in a typical fashion. The notion of ergodic invariant
measures plays a central role in that respect, and relies on the following important characterization of ergodic measures for (stochastically
continuous) Markov semigroups [DPZ96, Theorem 3.2.4].

Definition 1 An invariant measure is ergodic if one of the following three equivalent statements holds:
i) For any f ∈ L2

µ(X ), if Ptf = f , almost surely w.r.t µ (µ-a.s.) for all t ≥ 0, then f is constant µ-a.s.
ii) For any Borel set Γ of X , if Pt1Γ = 1Γ µ-a.s. for all t ≥ 0, then µ(Γ ) = 0 or 1.
iii) For any f ∈ L2

µ(X ), 1
T

∫ T
0 Psf ds −→

T→∞

∫
f dµ in L2

µ(X ).

In practice, an efficient approach to show the existence of an ergodic measure consists of showing the existence of a unique invariant
measure, since in this case such an invariant measure is necessarily ergodic [DPZ96, Theorem 3.2.6]. Various powerful approaches exist to deal
with the existence of a unique invariant measure. The next section discusses the classical approach based on the theory of strong Feller Markov
semigroups and irreducibility.

The main interest of the strong Feller-Irreducibility approach lies in its usefulness for checking the conditions of the Doob-Khasminskii
Theorem [Doo48,Kha60,DPZ96], the latter ensuring the existence of at most one ergodic invariant measure. This strategy requires the proof of
certain smoothing properties of the associated Markov semigroup, and to show that any point can be (in probability) reached at any time instant
by the process regardless of initial data. This property is known as irreducibility. It means that Pt1U (x) > 0 for all x in X , every t > 0, and
all non-empty open sets U of X , which is equivalent to say that

P(‖S(t, ·)x− z‖ < ε) > 0, (A.3)

for any z in X , ε > 0 and t > 0; see [Cer01, p. 67]. In other words the irreducibility condition expresses the idea that any neighborhood of any
point z in X , is reachable at each time, with a positive probability.

Remarkably, the irreducibility is usually inferred from the controllability of the associated control system ẋ = F (x) + D(X)u(t); see
[CLPR19] for a simple illustration. This approach is well-known and based on the support theorem of Stroock and Varadhan [SV72] (see also
[IW14, Theorem 8.1]) that shows that several properties of the SDEs can be studied and expressed in terms of the control theory of ordinary
differential equations (ODEs); see [DPZ96, Secns. 7.3 and 7.4] for the case of additive (non-degenerate) noise and [AK87,Kli87] for the
more general case of nonlinear degenerate noise, i.e. in the case where the noise acts only on part of the system’s equations, corresponding to
ker(Q) 6= {0}.

The strong Feller property means that the Markov semigroup maps bounded measurable functions into bounded continuous functions. This
property, related to a regularizing effect of the Markov semigroup (Pt)t≥0, is a consequence of the hypoellipticity of the Kolmogrorov operator
K defined on smooth functions ψ (of class C2) as follows when X = Rd:

Kψ(x) =
1

2
Tr(Σ∇2ψ(x)) + 〈F (x),∇ψ〉, (A.4)

where

Tr(Σ∇2ψ(·)) =
d∑

i,j=1

[
D(x)D(x)T

]
ij
∂2ijψ. (A.5)

Here Tr denotes the trace of a matrix. Note that hypoelliptic operators include those that are uniformly elliptic for which the Weyl’s smoothing
lemma applies; e.g. [Dac04, Theorem 4.7]. Hypoellipticity allows nevertheless for dealing with the case of degenerate noise, which is important
in applications.

A very efficient criteria for hypoellipticity is given by Hörmander’s theorem [Hör67,Nor86]; see also [CSG11, Appendix C1] for a
discussion on the related Hörmander’s bracket condition and its implications to the existence of other types of meaningful measures for SDEs,
namely the Sinaï-Ruelle-Bowen (SRB) random measures. We refer also to Part II [TCND20], for an instructive verification of the Hörmander’s
condition in the case of the Hopf normal form subject to additive noise.

From a geophysical perspective, it is noteworthy to mention that the strong Feller-Irreducibility approach allows for dealing with a broad
class of truncations of fluid dynamics models that would be perturbed by noise, possibly degenerate. For instance, in the case of truncations
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of 2D or 3D Navier-Stokes equations, the strong Feller-Irreducibility approach has been shown to be applicable even for an additive noise that
forces only very few modes [AS05,Rom04]. The delicate point of the analysis is the verification of the controllability (and thus irreducibility)
of the associated control system, by techniques typically adapted from [JK85] or rooted in chronological calculus as in [AS05]. Whatever
the approach, the analysis requires the appropriate translation into geometrical terms of the cascade of energy in which the nonlinear terms
transmit the forcing from the few modes to all the others [Rom05]. We mentioned however [MT16] for an example of a stochastic dynamical
system which has the square of the Euclidean norm as the Lyapunov function, is hypoelliptic with nonzero noise forcing, and that yet fails to be
reachable or ergodic.

A.3 Markov semigroups and mixing

We recall here standard results about Markov semigroups. It states that any Markov semigroup that is strong Feller and irreducible and for which
an invariant measure exists (which is thus unique) is not only ergodic but also strongly mixing for the total variation norm of measures. Given
two probability measures µ1 and µ2 on X , we recall that the latter is defined as [Hai09, Eq. (3.1)]

TV (µ1, µ2) = sup
g∈Bb(X )
‖g‖∞≤1

∣∣∣∣ ∫ g dµ1 −
∫
X
g dµ2

∣∣∣∣, (A.6)

where Bb(X ) denotes the set of Borel measurable and bounded functions on X .

Theorem 4 Let µ be an invariant measure of a Markov semigroup (Pt)t≥0. For any p ≥ 1 and t ≥ 0, Pt is extendable to a linear bounded
operator on Lpµ(X ) still denoted by Pt. Moreover

(i) ‖Pt‖L(Lpµ(X )) ≤ 1

(ii) Pt is strongly continuous semigroup in Lpµ(X ).

If furthermore (Pt)t≥0 is strong Feller and irreducible, then µ is ergodic (and unique) and for any x in X and g in L1
µ

lim
T→∞

1

T

∫ T

0
g(Xx

τ ) dτ =

∫
X
g(x) dµ, P-a.s., (A.7)

whereXx
t denotes the stochastic process solving the SDE associated with Pt.

In this case, the invariant measure µ is also strongly mixing in the sense that for any measure ν on X , we have:

TV (Ltν, µ) −→
t→∞

0. (A.8)

For the definition of a strongly continuous semigroup also known as C0-semigroup we refer to [EN00, p. 36]. For an introduction to
semigroup theory we refer to [vN12,EN06].

Proof. We prove first (i). The proof is standard and can be found e.g. in [GZ03, Prop. 1.14] but is reproduced here for the reader’s convenience.
Let g be in Cb(X ). By the Hölder inequality, we have

|Ptg(x)|p ≤ Pt(|g|p)(x). (A.9)

If we now integrate both sides of this inequality with respect to µ, we obtain∫
X
|Ptg(x)|pµ( dx) ≤

∫
X
Pt(|g|p)(x)µ( dx) =

∫
X
|g|p(x)µ( dx), (A.10)

the latter equality resulting from the invariance of µ. Since Cb(X ) is dense in Lpµ(X ), the inequality (A.10) can be extended to any function in
Lpµ(X ), and thus (Pt)t≥0 can be uniquely extended to a contraction semigroup in Lpµ(X ), and property (i) is proved.

Let us show now that (Pt)t≥0 is strongly continuous in Lpµ(X ). Since (Pt)t≥0 is a Markov semigroup, for any g in Cb(X ) and x in X ,
we have that the mapping t 7→ Ptg(x) is continuous. Therefore by the dominated convergence theorem

lim
t→0

Ptg = g in Lpµ(X ). (A.11)

The density of Cb(X ) in Lpµ(X ) allows us to conclude that this convergence holds when g is in Lpµ(X ).
The ergodicity of µ results from the aforementioned Doob’s theorem. The time-average property (A.7) and the mixing property (A.8) can

be obtained as a consequence of e.g. [Sei97, Cor. 2.3]; see also [Ste94, Cor. 1]. ut
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A.4 Generator of a Markov semigroup

Recall that the generator A of any strongly continuous semigroup (T (t))t≥0 on a Hilbert space H is defined as the operator A : D(A) ⊂
H → H, such that

Aϕ = lim
t→0+

1

t

(
T (t)ϕ− ϕ

)
, (A.12)

defined for every ϕ in the domain

D(A) = {ϕ ∈ H | lim
t→0+

1

t

(
T (t)ϕ− ϕ

)
exists}. (A.13)

As any generator of a contraction semigroup, given an invariant measure µ, the generatorK of the contraction semigroup (Pt)t≥0 in L2
µ

(Theorem 4-(i)) is dissipative, which is equivalent to say, since L2
µ is a Hilbert space, that

Re 〈Kf, f〉L2
µ
≤ 0, ∀ f ∈ D(K), (A.14)

where D(K) denotes the domain of K; see e.g. [EN00, Prop. II.3.23]. The domain D(K) is furthermore dense in L2
µ and K is a closed

operator; see [Paz83, Cor. 2.5 p. 5]. The isolated part of the spectrum ofK provides the Ruelle-Pollicott resonances; see Sec. 2.2.

A.5 Return to equilibrium and spectral gap

We present here some useful results concerning (i) the exponential return to equilibrium for strong Feller and irreducible Markov semigroups,
and (ii) spectral gap in the spectrum of the Markov semigroup generatorK; see Theorems 5 and 6 below. Theorem 5 deals with semigroups that
become quasi-compact after a finite time, and Theorem 6 addresses the exponential L2-convergence and lower bound of the spectral gap. For
Theorem 5, the approach is based on Lyapunov functions such as formulated in [RB06]. We propose a slightly different presentation for which
we provide the main elements of the proof. We refer to [DFG09] for an efficient (and beautiful) generalization of such Lyapunov-type criteria
allowing for sub-exponential convergence towards the equilibrium.

Recall that the essential spectral radius ress(T ) of a linear bounded operator T on a Banach space E satisfies [EN00, p. 249] the Hadamard
formula

ress(T ) = lim
n→∞

‖Tn‖1/ness , (A.15)

where
‖T‖ess = inf

{
‖T − C‖L(E) : C is a linear and compact operator of E

}
. (A.16)

We have then the following convergence result.

Theorem 5 Let P = (Pt)t≥0 be a strong Feller and irreducible Markov semigroup in L2
µ(Rd) (X = Rd) generated by an SDE given by

Eq. (2.1) for which F and G are locally Lipschitz. Assume that there exists a Lyapunov function11 U and a compact set A for which there exist
a > 0, 0 < κ < 1 and b <∞, such that

KU ≤ aU, (A.17a)
Pt0U ≤ κU + b1A, for some t0 > 0, (A.17b)

where K is the Kolmogorov differential operator generating the Markov process associated with P . Then for all t > t0, Pt becomes
quasi-compact, i.e.

ress(Pt) ≤ κ, (A.18)

where the essential spectral radius is taken for Pt as acting on E = FU given by

FU = {f : Rd → R | f Borel measurable and ‖f‖U <∞}, (A.19)

and endowed with the norm

‖f‖U = sup
x∈Rd

|f(x)|
U(x)

. (A.20)

Furthermore (Pt)t≥0 has a unique invariant measure µ, and the inequality (A.18) ensures that there exist C > 0 and λ > 0 such that for
all f in FU , ∣∣∣∣Ptf(x)− ∫ f dµ

∣∣∣∣ ≤ Ce−λtU(x), t > t0, ∀x ∈ Rd. (A.21)

The proof of this result is found in Appendix A.6.

11 Recall that aC2 functionU is called a Lyapunov functionU(x) ≥ 1 and lim|x|→∞ U(x) =∞, ensuring thus that the level sets {U ≤ α}
are compact.
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Remark 5 The assumption (A.17b) is sometimes verified from moment estimates in practice. For instance if there exist k0 > 0 and k1 > 0
such that

E|Xx
t | ≤ k0e−k1t|x|+ c, t ≥ 0, (A.22)

then for any t ≥ − 1
k1

log( 1
4k0

), we have E(|Xx
t |+ 1) ≤ 1

2
(|x|+ 1)− 1

4
|x|+ c+ 1

2
, which leads to

E(|Xx
t |+ 1) ≤

1

2

(
|x|+ 1

)
+
(
c+

1

2

)
1Br , (A.23)

for all r > 4(c+ 1
2
), and thus (A.17b) holds with U(x) = |x|+ 1.

More generally, if
KU ≤ −αU + β, with α > 0, and 0 ≤ β <∞, (A.24)

then d
dt
PtU(x) = PtKU(x) ≤ −αPtU(x) + β, leading to

E
[
U(Xx

t )
]
≤ U(x)e−βt +

β

α

(
1− e−αt

)
, t > 0, (A.25)

and similarly (A.17b) holds. In addition, (A.24) implies (A.17a). Note that (A.24) and (A.25) are quite standard; see e.g. [DKZ12, Lemma
2.11].

Finally, note also that finding a Lyapunov function may be easier than proving inequalities of the form (A.22). For instance, if there is a
Lyapunov function which grows polynomially like ‖p‖q , then one knows that the process has moments of order q; see [MT93a,MT93b].

Finally, lower bounds of the spectral gap in L2
µ may be derived for a broad class of SDEs. Recall that the generatorK has a spectral gap in

L2
µ if there exists δ > 0 such that

σ(K) ∩ {λ : Re(λ) > −δ} = {0}. (A.26)

The largest δ > 0 with this property is denoted by gap(K), namely

gap(K) = sup{δ > 0 s.t. (A.26) holds}. (A.27)

The following result is a consequence in finite dimension of more general convergence results [GM05, Theorems 2.5 and 2.6]. Since
(Pt)t≥0 is a C0-semigroup in L2

µ, the theory of asymptotic behavior of a semigroup with a strictly dominant, algebraically simple eigenvalue
(e.g. [vN12, Theorem. 3.6.2]) implies the spectral gap property stated in the following.

Theorem 6 Assume that (Pt)t≥0 is strong Feller and irreducible. Assume furthermore that the following ultimate bound holds for the associated
stochastic processXx

t , i.e. there exist c, k, α > 0 such that

E |Xx
t |2 < k|x|2e−αt + c, t ≥ 0, x ∈ Rd. (A.28)

Then there exists a unique invariant measure µ for which the U -uniform ergodicity (A.21) holds with U(x) = 1+ |x|2, as well as the following
exponential L2-convergence

‖Ptϕ−
∫
ϕdµ‖L2

µ
≤ Ce−λt‖ϕ‖L2

µ
, t ≥ 0, ϕ ∈ L2

µ, (A.29)

with C and λ positive constants independent of ϕ; the latter rate of convergence being the same as that of (A.21). Furthermore, one has the
following lower bound for the L2

µ-spectrum of the generatorK:

0 < λ ≤ gap(K). (A.30)

We will see in Part II [TCND20] of this three-part article that Theorem 6 has important practical consequences. In particular it shows for
a broad class of controllable ODEs, perturbed by a white noise process for which the Kolmogorov operator is hypoelliptic, that an L2

µ-spectral
gap is naturally induced by the noise whereas in absence of the latter the gap may be zero, leading thus to a form of mixing enhancement by
the noise. We finally mention [HSV14] for other conditions, ensuring an L2

µ-gap based on spectral gaps in Wasserstein distances, verifiable in
practice by following the approach of [HMS11].

A.6 Proof of Theorem 5

Proof. It is standard from the theory of Lyapunov functions that the existence of a unique invariant measure µ is ensured by the condition
(A.17a) together with the irreducibility and strong Feller properties. The rest of the proof is thus concerned with (A.18) and the exponential
convergence (A.21).

Step 1. First, note that the Itô formula gives
dU = KU dt+ “Martingale”, (A.31)

which leads (since KU ≤ aU ) to
E(U(x(t;x))) = PtU(x) ≤ eatU(x), (A.32)

and therefore Pt is extendable to a linear operator on FU (defined in (A.19)) with norm ‖Pt‖ ≤ eat.
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The second inequality in (A.17) ensures that for any t > t0,

PtU(x) ≤ κU(x) + b, ∀ x ∈ Rd. (A.33)

By definition, a Markov semigroup is monotone, thus one may iterate (A.33) to obtain (by using Pt1Rd = 1Rd ),

PntU(x) ≤ κnU(x) +
b

1− κ
, n ≥ 1. (A.34)

Consider now an arbitrary compact set B in Rd and f in FU , we have the bound

|Pntf(x)− 1B(x)Pnt1Bf(x)| ≤ U(x) sup
y∈Rd\B

|Pntf(y)|
U(y)

,

≤ U(x)‖f‖U sup
|PntU(y)|
U(y)

,

(A.35)

where we have used the basic inequality (A.9) (with p = 1). This last inequality with (A.34) leads to

|Pntf(x)− 1B(x)Pnt1Bf(x)| ≤ U(x)‖f‖U

(
κn +

b

1− κ
sup

y∈H\B

1

U(y)

)
. (A.36)

Since lim|x|→∞ U(x) =∞, given ε > 0 and n > 1 one may thus choose a compact set Bn such that

‖Pntf − 1Bn Pnt1Bnf‖U ≤ ‖f‖U (κ+ ε)n, (A.37)

which leads to
‖Pnt − 1Bn Pnt1Bn‖L(FU ) ≤ (κ+ ε)n. (A.38)

Step 2.We show now that the linear operator

Λ = 1B Pt1B : FU −→ FU , (A.39)

is compact for any compact setB of Rd. This is equivalent to showing that for any sequence gk in FU such that ‖gk‖U ≤ 1, one can extract a
subsequence such that Λgk is convergent in FU . Since Pt is strongly Feller and 1Bgk is bounded for each k, then Pt1Bgk belongs to Cb(B),
by definition. Thus the sequence (Λgk) lies in C(B).

We have
|Λgk(x)| ≤ ‖gk‖UPtU(x) ≤ κU(x) + b ≤ κ sup

y∈B
U(y) + b, x ∈ B, (A.40)

which shows that {Λgk} is equibounded.
Furthermore, since Pt is strong Feller, it has a smooth kernel12 and we have for all x and x′ inB

|Λgk(x)− Λgk(x′)| ≤
∫
y∈B

|pt(x, y)− pt(x
′, y)||f(y)| dy,

≤ |x− x′| sup
u,v∈B

|∂upt(u, v)|‖gk‖U
∫
B
U(y) dy,

(A.41)

which shows that {Λgk} is equicontinuous.
Thus, the Ascoli-Arzelà theorem [Yos95, p. 85] applies and guarantees that a subsequence from Λgk converges in C(B) to g. Now since

U ≥ 1, the same extraction from Λgk converges to g1B in FU . We conclude that 1B Pt1B is a compact mapping for any compact set B of
Rd.

Step 3. Let Bn be a sequence of compact sets satisfying (A.37), and let us consider the compact operators (from Step 2) Cn defined by
1Bn Pnt1Bn . We have then

‖Pnt‖ess = inf
{
‖Pnt − C‖L(FU ) : C is a linear and compact operator of FU

}
≤ ‖Pnt − Cn‖

≤ (κ+ ε)n.
(A.42)

By applying to Pt the Hadamard formula recalled in (A.15), we have thus for t > t0

ress(Pt) = lim
n→∞

‖Pnt‖1/ness ≤ κ+ ε, (A.43)

for all ε > 0, and we deduce (A.18).
The exponential convergence is then ensured by showing that there is no other eigenvalue than 1 on the unit disk (or outside the unit disk)

and that 1 is a simple eigenvalue; see [RB06]. ut

12 A probability kernel Tt allows for representing the Markov semigroup Pt as Ptf(x) =
∫
Tt(x, dy)f(y); e.g. [BGL13, Prop. 1.2.3].

Having a smooth kernel means that Tt(x, dy) = pt(x, y) dy with pt infinitely differentiable, i.e. smooth.
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