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Abstract A theory of Ruelle-Pollicott (RP) resonances for stochastic systems is introduced. These reso-
nances are defined as the eigenvalues of the generator (Kolmogorov operator) of a given stochastic system.
By relying on the theory of Markov semigroups, decomposition formulas of correlation functions and power
spectral densities (PSDs) in terms of RP resonances are then derived. These formulas describe, for a broad
class of stochastic differential equations (SDEs), how the RP resonances characterize the decay of correla-
tions as well as the signal’s oscillatory components manifested by peaks in the PSD.

It is then shown that a notion reduced RP resonances can be rigorously defined, as soon as the dynamics
is partially observed within a reduced state space V . These reduced resonances are obtained from the spectral
elements of reduced Markov operators acting on functions of the state space V , and can be estimated from
series. When the sampling rate (in time) at which the observations are collected is either sufficiently small
or large, it is shown that the reduced RP resonances approximate the RP resonances of the generator
of the conditional expectation in V , i.e. the optimal reduced system in V obtained by averaging out the
contribution of the unobserved variables. The approach is illustrated on a stochastic slow-fast system for
which it is shown that the reduced RP resonances allow for a good reconstruction of the correlation functions
and PSDs, even when the time-scale separation is weak.

The companions articles, Part II[TCND19a] and Part III [TCND19b], deal with further practical aspects
of the theory presented in this contribution. One important byproduct consists of the diagnosis usefulness of
stochastic dynamics that RP resonances offer. This is illustrated in the case of a stochastic Hopf bifurcation
in Part II. There, it is shown that such a bifurcation has a clear signature in terms of the geometric
organization of the RP resonances in the left half plane. This analysis provides thus an unambiguous
signature of nonlinear oscillations contained in a noisy signal and that can be extracted from time series. By
relying then on the theory of reduced RP resonances presented in this contribution, Part III addresses then
the question of detection and characterization of such oscillations in a high-dimensional stochastic system,
namely the Cane-Zebiak model of El Niño-Southern Oscillation subject to noise modeling fast atmospheric
fluctuations.
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1 Introduction

The determination of reduced equations that aims at mimicking in a reduced state space the dynamics
issued from a system of stochastic differential equations (SDEs) has become a central question in several
disciplines ranging from molecular dynamics [SFHD99,SH99,SHD01] to epidemic models [FS09,FBS09] and
climate dynamics over the past decades; see e.g. [MTVE01,CLW15b,GCF17] and references therein. Various
approaches have been proposed, and in most of the cases, different metrics associated with moment estimates,
probability density functions or time marginals are used to compare the reduced dynamics obtained from
the surrogate system to that of the original system of stochastic differential equations (SDEs).

Here, we adopt a completely different approach which consists of using correlation functions and power
spectral densities as “metrics” of comparison. In that respect, we frame hereafter a theory of Ruelle-Pollicott
(RP) resonances for stochastic systems. Initially introduced for discrete and continuous chaotic deterministic
systems [Rue86,Pol86], these resonances are known to provide rigorous decomposition formulas of correlation
functions; see e.g. [Bal00,BL07]. However, the derivation of such formulas in the deterministic context is
made difficult by the singular character of the underlying invariant measures. In presence of noise, smoothing
effects are known to occur for a broad class of SDEs (see Appendix A.2), and the derivation of such formulas
is thus facilitated. Section 2 presents an extension of such decomposition formulas to the stochastic context.

The RP resonances are then defined naturally as the eigenvalues of the generator (Kolmogorov operator)
of a given stochastic system. As shown in Sec. 2, these resonances allow for decomposition formulas of
correlation functions and PSDs in terms of these resonances; see Corollary 1 and formula (2.23) below.
The resulting formulas describe how the RP resonances characterize the decay of correlations as well as the
signal’s oscillatory components manifested by peaks in the PSD. The obtention of these formulas relies on
tools and concepts from stochastic analysis, based on the theory of Markov semigroups on one hand, and
the spectral theory of semigroups, on the other. These tools are briefly surveyed in Appendix A, having in
mind a wider audience in the geosciences and macroscopic physics.

From a practical viewpoint, our decomposition formulas benefit furthermore from a natural dynamical
interpretation as they relate to the spectral elements of the Kolmogorov operator and thus to the SDE’s
coefficients themselves. Such dynamical interpretations (and thus decompositions) are potentially useful for
identifying physical processes responsible for power excess bumps or other broad band peaks in the PSD of
noisy observations, a topic of active research in various areas of physics such as asteroseismology [KMH+10,
GKWG09], supersonic flows [Tam95], or climate dynamics [GAD+02].

In Section 3, we present the main contribution of this article, by inquiring whether one can extract
useful resonances from partial observations in a reduced state space, that still relate to the correlation
functions and PSDs. First, we show that a notion reduced RP resonances can be indeed rigorously framed,
as soon as the (stochastic) dynamics is partially observed within a reduced state space V . These reduced
resonances are obtained from the spectral elements of reduced Markov operators acting on functions of the
state space V , and can be estimated from series; see Sec. 3.3. The reduced Markov operators are ensured
by Theorem 2 that extends [CNK+14, Theorem A] within the stochastic context of this article. Mutatis
mutandis, Theorem 2 as [CNK+14, Theorem A], shows that — given a reduced state space V , a mapping
h from the full state X space onto V , and a Markov semigroup Pt possessing an invariant measure on X
— a family of reduced Markov operators (acting on functions of V ) can be naturally associated with Pt,
V and h. This family characterizes a coarse-graining in the reduced state space V — such as induced by
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the map h — of the actual transition probabilities associated with Pt and taking place within the full state
space X . As a result, Theorem 2 provides, for instance, an extension to the stochastic context of Markov
representations used in [SFHD99] for the description of coarse-grained dynamical features of Hamiltonian
systems arising in molecular dynamics.

In a second step, we show, under ergodicity (or mixing) assumptions satisfied for a broad class of SDEs,
that the reduced RP resonances approximate the RP resonances of the generator of the conditional expecta-
tion in V , i.e. the optimal reduced system in V obtained by averaging out the contribution of the unobserved
variables; see Theorem 3. These resonances can be estimated from time series; see Sec. 3.3. Theorem 3 shows
then that the relationship between the reduced RP resonances and the conditional expectation is ensured
when the sampling rate (in time) at which the observations are collected, is either sufficiently small or
large.1 The fact that the reduced RP resonances relate to the conditional expectation offers useful insights
for the investigation of whether non-Markovian effects à la Mori-Zwanzig should be included or not for the
derivation of efficient reduced systems [WL12,WL13].

In that perspective, we analyze in Sec. 4 correlation functions and PSDs as reconstructed from reduced
RP resonances of a stochastic slow-fast system, by using the formulas of Sec. 2 in which the reduced
RP resonances replace the genuine eponymous resonances. In the case of a strong time-scale separation,
without any surprise these reduced RP resonances, as associated with the conditional expectation — well-
approximated by a slow manifold reduction for the example of Sec. 4 —, provide excellent reproduction of
correlation functions and PSDs obtained by standard sample estimates. The surprise arises when the system
is placed in a regime without time-scale separation. In this case, the reduced RP resonances allow still to
reconstruct to a very good accuracy level the correlation functions and PSDs providing thus an unambiguous
diagnosis that the conditional expectation is sufficient to close the system and that the inclusion of non-
Markovian effects is here useless. Such a diagnosis regarding the conditional expectation drawn from RP
resonance analysis offers thus promising perspectives in terms of reduced order modeling, and may add
insights to reduction approaches exploiting conditional expectations such as in e.g. [WVE04,LL10,LVE14].

The usefulness of reduced RP resonance analysis is not limited to providing useful diagnosis for model
reduction. The companions articles, Part II[TCND19a] and Part III [TCND19b], deal with further practical
aspects of the theory presented in this article. One important byproduct consists of the diagnosis usefulness
of stochastic dynamics that RP resonances themselves, offer. This is illustrated in the case of a stochastic
Hopf bifurcation in Part II. There, it is shown that such a bifurcation has a clear signature in terms of
the geometric organization of the RP resonances in the left half plane. This analysis provides thus an
unambiguous signature of nonlinear oscillations contained in a noisy signal and that can be extracted from
time series. By relying then on the theory of reduced RP resonances presented in this contribution, Part
III addresses then the question of detection and characterization of such oscillations in a high-dimensional
stochastic system, namely a system obtained from a semispectral approximation of the Cane-Zebiak model
of El Niño-Southern Oscillation, with the addition of noise modeling fast atmospheric fluctuations.

2 Ruelle-Pollicott resonances and decay of correlations from stochastic differential equations

The authors in [CNK+14] have introduced a new mathematical framework to (i) understand and diagnose —
through partial observations — the variability of chaotic flows, and (ii) to analyze parameter sensitivity that
may occur in the modeling of such observations. The framework relied on the theory of Ruelle-Pollicott (RP)
resonances introduced in the mid-80’s [Rue86,Pol86] and that, at the time of the publication of [CNK+14],
was known only by a little group of experts working in the field dynamical system theory and the math-
ematical study of scattering resonances [Zwo17]. Initially introduced for discrete and continuous chaotic
deterministic systems (see also [BL07] for the case of Anosov flows), the RP resonances extend to stochastic
systems. This section presents such an extension by relying on tools from stochastic analysis, based on the
theory of Markov semigroups on one hand, and the spectral theory of semigroups, on the other; see also
[Gas02,DZ15] for complementary approaches.

As we will see, the RP resonances characterize important features of the solution’s variability (e.g. its
oscillatory behavior), such as typically reflected in power spectra or correlation functions, in terms of the

1 In practice however it is often observed that the reduced RP resonances still provide useful information for “intermediate”
sampling rates; see Part III[TCND19b].
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spectrum of the underlying Liouville operator for deterministic systems or the Fokker-Planck operator for
stochastic systems, but are in general difficult to estimate especially if the dimension of the state space
is large. Section 3 below addresses the implication of estimating resonances from partial observations in a
reduced state space, and how these reduced resonances relate to the full RP resonances.

2.1 Generalities

We consider Stochastic Differential Equations (SDEs) of the form:

dX = F (X) dt+D(X) dWt, X ∈ Rp. (2.1)

Here Wt = (W 1
t , · · · ,W q

t ) denotes an Rq-valued Wiener process (q not necessarly equal to p) whose com-
ponents are mutually independent Brownian motions.

In Eq. (2.1), the drift part is provided by a (possibly nonlinear) vector field F of Rp, and the (also possibly
nonlinear) stochastic diffusion in its Itô version, given by D(X) dWt, has its ith-component (1 ≤ i ≤ p)
given by [

D(X) dWt

]
i

=

q∑
j=1

Dij(X) dW j
t , q ≥ 1. (2.2)

Throughout this article, we assume that the vector field F and the matrix-valued function

D : Rp → MatR(p× q),

satisfy regularity conditions that guarantee the existence and the uniqueness of mild solutions, as well as
the continuity of the trajectories; see, e.g. [Cer01,FGP10] for such conditions in the case of locally Lipschitz
coefficients. Sometimes the resulting stochastic process solving Eq. (2.1) emanating from x at t = 0, will be
denoted by Xx

t , when dependence on the initial datum would be stressed, otherwise simply Xt.
It is well-known that the evolution of the probability density of the stochastic process, Xt, solving

Eq. (2.1), is governed by the Fokker-Planck equation

∂tρ(X, t) = Aρ(X, t) = −div(ρ(X, t)F (X)) +
1

2
div∇(Σ(X)ρ(X, t)), X ∈ Rp, (2.3)

with Σ(X) = D(X)D(X)T denoting the diffusion tensor. In practice, one is interested in stationary solutions
µ to Eq. (2.3) that provide a statistical description of the asymptotic behavior of the solutions to Eq. (2.1),
and thus of probability density functions (PDFs), typically obtained as marginal distributions of µ.

What is less-known however is that the spectral properties of the 2nd-order differential operator, A,
informs about fundamental objects such as the power spectra or correlation functions computed typically
along a stochastic path of Eq. (2.1). To understand these relationships, we derive in the next subsection,
decomposition formulas of correlations and power spectra in terms of the spectral elements of an operator
closely related to A, namely the generator K of the associated Markov semigroup.

2.2 Ruelle-Pollicott (RP) resonances and the spectral decomposition of correlation functions

As recalled in Appendix A.3 (Theorem 4), the existence of an invariant measure µ ensures that the Markov
semigroup Pt (see Appendix A.1) associated with Eq. (2.1), is a strongly continuous semigroup in Lpµ(X ),
for any p ≥ 1. This property alone allows us to get useful decomposition formulas of correlation functions
Cf,g(t) given by

Cf,g(t) =

∫
f · Ptg dµ−

∫
f dµ

∫
g dµ. (2.4)

This is the content of Corollary 1 below. It makes use of elements of the spectral theory of strongly
continuous semigroups that we recall below and apply to Markov semigroups.
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In that respect, recall that the essential growth bound of a semigroup T = (T (t))t≥0 is defined as

ωess(T ) = inf
t>0

1

t
log ‖T (t)‖ess, (2.5)

where

‖T (t)‖ess = inf
{
‖T (t)− C‖L(E) : C is a linear and compact operator of E = Lpµ(H)

}
. (2.6)

In other words, ‖T (t)‖ess measures the distance of T (t) to the set of linear and compact operators of Lpµ(X ).
In the case this distance approaches zero as t → ∞, the strongly continuous semigroup T is called quasi-
compact. The theory of quasi-compact strongly continuous semigroups shows that the latter property is
equivalent to −∞ < ωess(T ) < 0; see [EN00, Prop. V.3.5].

A semigroup is eventually compact if there exists t0 > 0 such that T (t0) is compact. A semigroup that
is eventually compact satisfies thus ωess(T ) = −∞. At the same time, the definition of (2.5) allows for
semigroups that are not eventually compact while their essential growth bound is negative infinity2.

In all cases, we have the following decomposition theorem of strongly continuous semigroups [EN00,
Thm. V.3.1] that we apply to the case of Markov semigroups possessing an invariant measure.

Theorem 1 Let µ be an invariant measure of a Markov semigroup P = (Pt)t≥0 and let K be the cor-
responding generator in L2

µ. Let λ1, · · · , λN be in σ(K) satisfying Reλ1, · · · ,ReλN > ωess(P). Then the
following properties hold:

(i) The λj’s are isolated spectral values of K with finite algebraic multiplicity.
(ii) If Π1, · · · , ΠN denote the corresponding spectral projections and m1, · · · ,mN the corresponding orders

of poles of the resolvent of K, then

Pt =
N∑
j=1

Tj(t) +RN (t) (2.7)

where

Tj(t) =
[mj−1∑
k=0

tk

k!
(K − λjId)k

]
eλjtΠj , (2.8)

and where for every ε > 0, there exists M > 0 such that

‖RN (t)‖L(L2
µ(X )) ≤Me(ω

∗
N+ε)t, ∀ t ≥ 0, (2.9)

with

ω∗N = sup{ωess(P)} ∪ {Reλ : λ ∈ σ(K)\{λ1, · · · , λN}}. (2.10)

In what follows we denote by 〈·, ·〉µ the inner product in L2
µ. We have then the following corollary regarding

the decomposition of correlation functions.

Corollary 1 Let µ be an invariant measure of a Markov semigroup P = (Pt)t≥0 and let K be the corre-
sponding generator in L2

µ. Let f and g in L2
µ such that 〈f〉µ = 〈g〉µ = 0, then given the λjs and the Πjs

as defined in Theorem 1, the correlation function Cf,g(t) associated with the observables f and g has the
following expansion

Cf,g(t) =
N∑
j=1

[mj−1∑
k=0

tk

k!
(K − λjId)k

]
eλjt

∫
f(x)(Πjg)(x) dµ(x) +QN (t), (2.11)

with

|QN (t)| ≤M‖f‖L2
µ
‖g‖L2

µ
e(ω

∗
N+ε)t, ∀ t ≥ 0. (2.12)

2 For instance any semigroup T such that ‖T (t)‖ess ≤M exp (−εtα), with ε > 0 and 0 < α,M < 1.
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In the particular case of a discrete spectrum, σ(K) = {λ1, λ2, · · · }, with Reλj+1 ≤ Reλj for all j ∈ N∗,
and Reλj → −∞, if mj = 1 for all j ≥ 1, then the expansion (2.11) takes the form:

Cf,g(t) =
∞∑
j=1

eλjt〈f, ψj〉µ〈ψ∗j , g〉µ, (2.13)

where ψj denotes the L2
µ-eigenfunction associated with λj and ψ∗j , the associated L2

µ-eigenfunction of the
adjoint operator K∗ of K.

Proof The decomposition (2.11) is a direct consequence of (2.7)-(2.9). The proof of (2.13) consists of noting
for all j ≥ 1 ∫

f(x)(Πjg)(x) dµ(x) =

∫
f(x)〈ψ∗j , g〉µψj(x) dµ(x),

= 〈f, ψj〉µ〈ψ∗j , g〉µ,
(2.14)

and that QN (t) −→
N→∞

0 in virtue of our assumptions about σ(K) and of (2.9) and (2.10).

The λj ’s such that Reλj > ωess(P), are called the RP resonances. In other words they correspond
to the point spectrum of K. Note that there exist stochastic processes for which RN = 0 (i.e. no essential
spectrum), for instance Ornstein-Uhlenbeck processes [MPP02]. Remark 4-(ii) points out other (nonlinear)
stochastic processes that do not have an essential spectrum. Panel (a) of Fig. 1 shows a schematic of a
general case, where the RP resonances are contained within a strip of the complex plane, away from the
imaginary axis and the essential spectrum of K. The rate of decay of correlations is controlled by the spectral
gap, τ = gap(K) defined in (A.27). Appendix A.5 reports on a broad class of Markov semigroups (and thus
SDEs) whose generator possesses a spectral gap; see also [Fro97,Bal00,BL07,CNK+14] for results in the
deterministic context.

Remark 1

(i) Decay of correlations. Under the conditions of Corollary 1, one obtains that Cf,g(t) −→
t→∞

0, for any

f, g in L2
µ such that

∫
f dµ =

∫
g dµ = 0, and without assuming Pt to be strong Feller and irreducible.

(ii) Transfer operator. By working in the Hilbert space L2
µ allows us to define the transfer operator Lt

acting on functions in L2
µ, by the duality formula:∫

f · Ptg dµ =

∫
Ltf · g dµ, f, g ∈ L2

µ, t ≥ 0. (2.15)

In a similar fashion that Pt is related to the Kolmogorov operator K via its generator (see (iii) below),
the transfer operator Lt is related to the Fokker-Planck operator A defined in (2.3).

(iii) RP resonances and Kolmogorov operator. There are relationships between the abstract operator K
and the concrete Kolmogorov operator K defined in (A.4). In that respect, a theorem of Dynkin ensures
(e.g. [RW00, p. 258]) that if (Pt)t≥0 is a Feller semigroup of a Markov process with continuous paths
such that C∞0 (RN ) is contained in the domain D(K) of the generator, then there exist functions aij, bi,
and c in C(RN ) (i, j = 1, ..., N) such that for any x, the matrix

(
aij(x)

)
1≤i,j≤N is non-negative definite,

c(x) ≤ 0,3 and

Kf(x) =
N∑

i,j=1

aij(x)∂2ijf +
N∑
i=1

bi(x)∂if + c(x)f, f ∈ C∞0 (RN ). (2.16)

Furthermore,

bi(x) = Fi(x), aij(x) =
1

2

(
D(x)D(x)T

)
ij
. (2.17)

3 Furthermore if the process is non-explosive then c ≡ 0. This excludes the cases for which the underlying Markov process
leaving at time 0 from x in RN escapes to infinity at some finite time t > 0. This article is not concerned with explosive
stochastic processes.
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For such reasons we will sometimes refer to the RP resonances as the RP resonances of the Kolmogorov
operator K, or the Fokker-Planck operator A (by duality). This language is often adopted in Part III,
more oriented towards applications than the present Part I.
However, the spectral analysis of general 2nd-order operators, typically non-self adjoint such as given
in (2.16), is not an easy task in practice, especially when N is large; see [Dav96,Dav07]. We refer
nevertheless to [EH03,HN04] for a detailed (and enlightening) study of the “shape” of the spectrum (in
L2
µ for [HN04] and Sobolev spaces for [EH03]) of a broad class of hypoelliptic operators such as arising

in the theory of Langevin dynamics; see also [OPPS12].

Remark 2

(i) Note that the sum in (2.13) starts actually at j = 2 since ψ1 = 1X (since 1 ∈ σ(Pt)) and 〈f〉µ = 0, by
assumption.

(ii) When σ(K) = {λ1, λ2, · · · } with Reλj+1 ≤ Reλj for all j ∈ N∗, and Reλj → −∞, is only assumed
(without requiring mj = 1) then (2.11) holds with N = ∞ and QN = 0. Such an hypothesis on the
spectrum of K is systematically satisfied for the Markov semigroups that are eventually compact and
possess an invariant measure µ; see [EN00, Cor. V.3.2]. A large subclass of such Markov semigroups
are the compact ones. It includes a broad class of SDEs such as the following gradient dynamics on Rd
subject to noise:

dx = −∇V (x) dt+
√

2β−1 dWt, β > 0, (2.18)

where Wt is a d-dimensional Wiener process. The diffusion is in that case elliptic, so it is straightforward
that the assumptions of Hörmander’s theorem are satisfied, and the corresponding transition probabilities
are smooth, provided that V is smooth. In fact for a broad class of smooth potentials V that satisfy
appropriate growth conditions, the compactness of Pt is ensured; e.g. [LB06, Thm. 8.5.3] and [GRS99,
Lem. 1.2]. See also [MPW02] for conditions ensuring the compactness of Markov semigroups that are
not necessarily associated with gradient dynamics.

(iii) Note that if Pt is eventually compact and possesses a unique ergodic invariant measure µ, then there
exists α > 0 and M ≥ 1 and

‖Ptϕ− 〈ϕ〉µ‖L2
µ
≤Me−αt‖ϕ− 〈ϕ〉µ‖L2

µ
. (2.19)

Note that if Pt has a regularizing effect sending L2
µ into the Sobolev space W 1,2

µ in finite time and W 1,2
µ is

compactly embedded into L2
µ then the Poincaré inequality holds [LB06, Prop. 8.6.1] and Pt is eventually

compact. The proof of (2.19) is then a consequence of the theory of eventually compact semigroups
[EN00, Cor. V.3.3] and the existence of a unique ergodic measure which ensures that 1X is the unique
L2
µ-eigenfunction of Pt (up to a multiplication factor) associated with the eigenvalue 1.

2.3 Decomposition of the power spectrum

Given an observable h : Rp → R for the system (2.1), we recall that the correlation spectrum Sh(f) is
obtained by taking the Fourier transform of the correlation function Ch(t), namely

Sh(f) = Ĉh(f), (2.20)

where Ch given by (2.4) (for a given invariant measure µ) with f = g = h, therein.
For a broad class of SDEs that possess an ergodic probability distribution µ, the spectrum in L2

µ, σ(K), of
the Markov semigroup generator, is typically contained in the left-half complex plane, {z ∈ C : Re (z) ≤ 0}
and its resolvent R(z) = (zId−K)−1, is a well-defined linear operator that satisfies

Sh(f) =

∫
Rp
h(X)

[
R(if)h

]
(X) dµ. (2.21)

In (2.21), the frequency f lies in the complex plane C, and the poles of the resolvent R(if) —which
correspond to the RP resonances —introduce singularities into Sh(f). Once the power spectral density
(PSD) is calculated, i.e. once |Sh(f)| is computed with f taken to be real, these poles manifest themselves
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(a) Spectrum of Markov semigroup generator, K. (b) Correspondence between the PSD and RP resonances
according to (2.21).

Fig. 1: Panel (a): The Ruelle-Pollicott (RP) resonances are the isolated eigenvalues of the Markov semigroup generator,

K; they are represented by red dots in Panel (b) and by black dots here. The rightmost vertical line represents the imaginary

axis above which the power spectrum lies; see Panel (a) for another perspective. The rate of decay of correlations is controlled

by the spectral gap τ ; see Appendix A.5. Panel (b): [Courtesy of Maciej Zworski] The imaginary part of the RP resonances

corresponds to the location of a peak in the PSD (black curve lying above the imaginary axis) and the real part to its width.

In blue is represented a reconstruction of the PSD based on RPs; a discrepancy is shown here to emphasize that in practice

the RPs are very often only estimated/approximated; see [CNK+14].

as peaks that stand out over a continuous background at the frequency f if the corresponding RP resonances
with imaginary part f (or nearby) are close enough to the imaginary axis. The continuous background may
have different origins. In the case of a pure point spectrum, it is due to RP resonances located far from the
imaginary axis. In the presence of a continuous spectrum and RP resonances (such as shown in Panel (a) of
Fig. 1), if the latter are close to the imaginary axis, then the continuous background of the PSD is mainly
due to the contribution of the continuous part of σ(K) lying typically in a sector {z ∈ C : Re (z) ≤ −γ},
for some γ > 0.4

Formula (2.21) establishes furthermore a useful correspondence between PSD and RP resonances. Indeed,
from (2.21) we see that the imaginary part of the RP resonances corresponds to the location of a peak in
the PSD and the absolute value of the real part to its width; see Panel (b) of Fig. 1.

Let us take f = g = h in (2.11). By denoting by aj(h)’s the coefficients (2.14) arising in (2.11), the latter
decomposition formula writes

Ch(t) =

Np∑
j=1

[mj−1∑
k=0

tk

k!
(K − λjId)k

]
aj(h)eλjt +QN (t), (2.22)

where QN (t) exhibits typically a decay property associated with properties of the essential spectrum of A.
Note that the λj ’s do not depend on the observable h, but that the aj(h)’s do.

If we assume that Re (λj) < 0 for j > 0, each λj is simple and the absence of an essential spectrum for
K, then the correlation Ch(t) in (2.11) takes the simpler form of a weighted sum of complex exponentials
(i.e. (2.13)), and the corresponding correlation spectrum Sh(f) possesses itself a similar decomposition in
terms of Lorentzian functions, namely:

Sh(f) = − 1

π

∞∑
j=1

aj(h)
Re (λj)

(f − Im (λj))2 + Re (λj)2
, f ∈ C. (2.23)

4 While we recall that in such a case, the RP resonances are the isolated eigenvalues of finite multiplicity, lying within a
strip −γ < Re (z) ≤ 0; see Panel (a) of Fig. 1.
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It is noteworthy that such Lorentzian decompositions of the PSD are frequently encountered in applications
such as for instance in spectroscopy due to the presence of resonances; e.g. [GKWG09,KMH+10].

In summary, the decompositions (2.11) and (2.23) inform us about the following features:

(i) Each RP resonance is associated with an exponential contribution to the decay of correlation.
(ii) The closer an eigenvalue to imaginary axis, the slower the decay.
(iii) In the limit of purely imaginary eigenvalues, the associated contributions to the correlation functions

are purely oscillatory and prevent the decay of correlations.
(iv) The angular frequency at which each contribution oscillates is given by the imaginary part of the

associated eigenvalue.
(v) Eigenvalues close to the imaginary axis are associated with resonances (i.e. peaks) in the power spectrum.

The spectral peak is located at the frequency given by the imaginary part of the eigenvalue and its width
is proportional to the absolute value of the real part.

(vi) The contribution of each eigenvalue to a correlation function or a power spectrum is weighted as in
(2.14), corresponding to the projection of the observables h onto the eigenfunctions of K and its adjoint.

3 Reduced Ruelle-Pollicott resonances

We present in this section the main results that serve us as a foundational basis for the applications discussed
hereafter and in Part III [TCND19b]. The goal is to characterize the resonances that can be extracted from
low-dimensional observations in a reduced state space and how these resonances relate to the RP resonances
introduced in Sec. 2.2 above.

The results of this section rely substantially on the general disintegration theorem of probability mea-
sures; see e.g. [DM78, p. 78]. The disintegration theorem states that given a probability measure µ on
RN , a finite-dimensional Euclidean space V for which 1 ≤dim(V ) < N , and a map h : RN → V (Borel-
measurable), then there exists a uniquely determined family of probability measures {µv}v∈V such that,
for m-almost all 5 v in V , µv is concentrated on the pre-image h−1({v}) of v, i.e. µv

(
RN \ h−1({v})

)
= 0,

and such that for every Borel-measurable function φ : RN → R,∫
RN

φ(x) dµ(x) =

∫
V

(∫
x∈h−1({v})

φ(x) dµv(x)
)

dm(v). (3.1)

Here m denotes the push-forward in V of the measure µ in RN , by the map h.
Hereafter, we apply this result for the proof of Theorem 3 when the reduced state space, V , is a subspace

of RN , and the mapping h is the projector ΠV onto V . In this case, a decomposition analogous to (3.1)
holds for the measure µ itself, namely

µ(B × F ) =

∫
F

µv(F ) dm(ξ), B × F ∈ B(V )⊗ B(W ), (3.2)

with W being the subspace such that V ⊕W = RN . For later notation convenience, we denote by Xv the
pre-image h−1({v}).

3.1 Reduced Markov operators from partial observations of stochastic systems

We start with Theorem 2 below that extends [CNK+14, Theorem A] within the stochastic context of this
article. Mutatis mutandis, Theorem 2 as [CNK+14, Theorem A], shows that — given a reduced state space
V , a continuous map h from RN to V , and a Markov semigroup (Pt)t≥0 possessing an invariant measure
on RN — a family of reduced Markov operators (acting on functions of V ) can be naturally associated
with (Pt)t≥0, V and h. This family characterizes a coarse-graining in the reduced state space V — such
as induced by the map h — of the actual transition probabilities associated with (Pt)t≥0 and taking place
within the full state space RN . As a result, Theorem 2 provides, for instance, an extension to the stochastic

5 i.e. up to an exceptional set of null measure with respect to m.
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context of Markov representations used in [SFHD99] for the description of coarse-grained dynamical features
of Hamiltonian systems arising in molecular dynamics. Furthermore, empirical estimates of the transition
probabilities appearing in (3.3) of Theorem 2 are important for applications, as briefly discussed in Section
3.3 below and in more details in Part III [TCND19b].

Theorem 2 Let (Pt)t≥0 be a Markov semigroup that possesses an invariant measure µ, and let V be a
reduced state space for which 1 ≤ dim(V ) < dim(RN ). Let h : RN → V be a continuous surjective function
and let us denote by m = h∗µ, the push-forward of the measure µ by h.

Then there exists a time-dependent family of Markov operators Tt acting on L1
m(V ) such that, for any

Borel sets B and C of V , and any t > 0,

〈Tt1B ,1C〉1,∞
m(B)

= Prob(S(t, ·)x ∈ h−1(C)|x ∈ h−1(B)), (3.3)

where S(t, ω) denotes the stochastic flow associated with Pt.
Furthermore, if µ is ergodic then for any f in L2

m(V ), it holds

1

t

∫ t

0

∫
V

Tsf(v) dm(v) ds −→
t→∞

∫
V

f(v) dm(v). (3.4)

Proof Let us introduce for any t > 0 the operator Tt which maps f in L1
m(V ) to Ttf given by

Ttf(v) =

∫
x∈Xv

Pt[f ◦ h](x) dµv(x), (3.5)

where Xv denotes the pre-image (in RN ) of v by h, and µv denotes the disintegrated probability measure
associated with h, such as given by the disintegration theorem recalled above. The bracket-notation, [·], is
used here in (3.5) to emphasize that the formula should be read as follows: Pt is first applied on f ◦ h, then
the integration with respect to µv, is undertaken. Note that Tt acts on observables of V , i.e. on functions
φ(v), with v lying within the reduced state space.

By integrating (3.5) with respect to the measure m, and applying (3.1) with φ = Pt[f ◦ h], one notes
that ∫

V

Ttf(v) dm(v) =

∫
RN

Pt[f ◦ h](x) dµ(x). (3.6)

This last identity allows us to get the following estimates∣∣∣ ∫
V

Ttf(v) dm(v)
∣∣∣ ≤ ∫

RN
|Pt[f ◦ h](x)| dµ(x)

≤
∫
RN
|f ◦ h(x)|dµ(x),

(3.7)

the last inequality resulting from (A.10) applied with p = 1 and the invariance of µ. We have thus the
estimate

‖Ttf‖L1
m(V ) ≤

∫
V

|f(v)|
∫
Xv

1V dµv dm(v) = ‖f‖L1
m(V ), (3.8)

which shows that Tt maps L1
m(V ) into itself, i.e. Tt is a Markov operator.

The rest of the proof is also straightforward, and consists of noting that for any Borel sets B and C in
V , one has

〈Tt1B ,1C〉L1
m,L

∞
m

=

∫
V

1C(v)
[ ∫
Xv
Pt[1B ◦ h](y) dµv(y)

]
dm(v)

=

∫
RN

1h−1(C)(x)Pt[1B ◦ h](x) dµ(x)

=

∫
RN

Lt1h−1(C) · 1B ◦ h dµ

=

∫
RN

Lt1h−1(C) · 1h−1(B) dµ

(3.9)
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Since m = h∗µ, we deduce that m(B) = µ(h−1(B)), and thus by dividing by m(B), one obtains that

〈Tt1B ,1C〉1,∞
m(B)

= Prob(S(t, ·)x ∈ h−1(C)|x ∈ h−1(B)). B,C ∈ B(V ). (3.10)

Finally the proof of (3.4) consists of applying again (3.1) the characterization (iii) of the ergodicity
recalled in Definition 1.

Remark 3 For any f and g in L2
m(V ), one can define correlation functions (in the reduced state space V )

associated with the family of Markov operators Tt by

C̃f,g(t) =

∫
V

f · Ttg dm−
∫
V

f dm

∫
V

g dm. (3.11)

These correlations inherit a nice property resulting from the disintegration formula (3.1), namely

C̃f,g(t) = Cf◦h,g◦h(t), (3.12)

where Cf◦h,g◦h(t) is given by (2.4) in which f (resp. g) is replaced by f ◦ h (resp. g ◦ h). In particular the
decomposition formulas of Corollary 1 apply to the observables f ◦h and g ◦h, and provide in turn a spectral
decomposition of correlation functions in the reduced state space V , in terms of the spectral elements of the
generator K of the Markov semigroup (Pt)t≥0.

The issue, however, is that such a decomposition involves a spectral analysis of K that is typically out of
reach numerically when the dimension of state space is large, and is difficult analytically in the general case.
One would like instead to have at our disposal a decomposition in terms of the spectral elements associated
with the reduced Markov operators (Tt)t≥0 rather than with full Markov semigroup (Pt)t≥0. The stumbling
block is that (Tt)t≥0 does not form a semigroup in general i.e.

Tt+s 6= TtTs, (3.13)

(see [TvdBD15]) and one cannot rely on the spectral theory of semigroups such as used in Section 2.2, to
reach this goal. The next sections analyzes what type of useful information that may still be extracted from
Tt.

3.2 Pseudo generators of the family of reduced Markov operators and asymptotic behavior

We begin with the following Lemma that characterizes the pseudo-generators Gt that can be associated with
the family of reduced Markov operators (Tt)t≥0, although the latter family does not form a semigroup in
general. For related material, we refer to the recent works [BKJ15,BHJK15] concerned with the metastability
analysis of Langevin dynamics. In a certain sense, Theorem 3 below along with the notion of reduced RP
resonances proposed in Sec. 2.2, provide a complementary approach for the analysis of reduced Markov
operators for situations not necessarily limited to Langevin dynamics. Theorem 3 shows in particular that
the asymptotic behavior of Gt as t → ∞ (in a weak sense) is governed by the generator of a reduced
SDE in which the dependence on the unobserved variables (lying outside of the reduced state space V )
has been averaged out; see (3.22) below. In other words, Theorem 3 provides a useful relationship between
the reduced non-Markovian process associated with (Tt)t≥0 and the Markov process associated with the
conditional expectation induced by the observable h.

Lemma 1 Let K denote the generator of Pt in L2
µ(RN ). Then, the Markov operator Tt of Theorem 2

possesses for each time t, a pseudo-generator, i.e. for any f in L2
m(V ) for which f ◦ h lies in D(K),

lim
s→0

(Tt+sf − Ttf)/s exists and is given by

Gtf(v) =

∫
Xv
PtK[f ◦ h](x) dµv(x), (3.14)

whose domain is thus
D(Gt) = {f ∈ L2

m(V ) : f ◦ h ∈ D(K)}. (3.15)
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Proof The proof is elementary and consists of noting that for any f in L2
m(V ) for which f ◦ h lies in D(K),

we have
Tt+sf − Ttf

s
=

∫
Xv

Pt+s − Pt
s

[f ◦ h](x) dµv(x) −→
s→0

∫
Xv
PtK[f ◦ h](x) dµv(x), (3.16)

from the basic properties of a strongly continuous semigroup such as applied to Pt (e.g. [EN00, Lem. II.1.3])
and the dominated convergence theorem.

Theorem 3 Assume that the assumptions of Theorem 2 hold. If µ is ergodic, then there exists a closed
linear operator G acting on L2

m(V ) such that for any f in L2
m(V )

1

t

∫ t

0

∫
V

Gtf(v) dm(v) −→
t→∞

∫
V

Gf(v) dm(v), (3.17)

and for which G is dissipative in the sense that

Re 〈Gf, f〉L2
m(V ) ≤ 0, ∀ f ∈ D(G). (3.18)

Furthermore, if µ is strongly mixing then

lim
t→∞

∫
V

Gtf(v) dm(v) =

∫
V

Gf(v) dm(v). (3.19)

Recall that the Markov semigroup Pt from which Gt is defined, is associated to Eq. (2.1). If h is a
projector, the operator G is densely defined, and if Pt is a Feller semigroup for which C∞0 (RN ) ⊂ D(K),
then G possesses the following differential expression

Gf(v) =
1

2

dim(V )∑
i,j=1

Σij(v)∂2ijf +

dim(V )∑
i=1

F i(v)∂if, v ∈ V, f ∈ C2
0 (V ). (3.20)

where

Σij(v) =

∫
Xv

Σij(x) dµv(x), F i(v) =

∫
Xv
Fi(x) dµv(x), x ∈ RN , v ∈ V, (3.21)

where F and Σ denote respectively the drift part and the diffusion tensor associated with Eq. (2.1).
In other words, G is the generator of the Markov process associated with the conditional expectation

induced by h, namely with the following reduced SDE in V :

dv = F (v) dt+ σ(v) dWV
t , v ∈ V, (3.22)

with WV
t denoting a Brownian motion in V and for 1 ≤ i, j ≤ dim(V ),

Σij(v) = (σ(v)σ(v)T )ij =
M∑
k=1

Dik(x)Djk(x), for some M ≥ 1, (3.23)

where the D`k’s are the diffusion coefficients of the SDE (2.1).

Proof Step 1: Proof of (3.17) and (3.18). Let f be in X given in (3.15). Then∫
V

Gtf(v) dm(v) =

∫
V

∫
Xv
PtK[f ◦ h](x) dµv(x) dm(v),

=

∫
RN

PtK[f ◦ h](x) dµ(x),

(3.24)

by application of the disintegration formula (3.1).
Assuming the measure µ to be ergodic, the characterization (iii) of Definition 1 allows us to infer (3.17)

with G given by

Gf(v) =

∫
Xv
K[f ◦ h](x) dµv(x), (3.25)
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by application once more of the disintegration formula.
The same formula ensures furthermore that∫

V

Gf · f dm =

∫
RN

K[f ◦ h] · [f ◦ h] dµ (3.26)

and by taking the real part, (3.18) follows from (A.14).

Step 2: G is closed. Let {fn} be a sequence in D(G) converging to f in L2
m(V ) such that Gfn → g in

L2
m(V ) as n→∞.

Then from (3.25), one has∫
V

|Gfn − g|2 dm = −2

∫
RN
K[fn ◦ h](x) · (g ◦ h(x)) dµ+∫

RN
|K[fn ◦ h](x)|2 dµ+

∫
RN
|g ◦ h(x)|2 dµ(x).

(3.27)

Now since K is closed in L2
µ(RN ), K[fn ◦h] −→

n→∞
K[f ◦h] and f ◦h ∈ D(K), namely f ∈ D(G). This shows

furthermore that one can pass to the limit in (3.27), which gives

2

∫
RN

K[f ◦ h](x) · (g ◦ h(x)) dµ =

∫
RN
|K[f ◦ h](x)|2 dµ+

∫
RN
|g ◦ h(x)|2 dµ(x), (3.28)

The identity (3.28) says nothing else than

‖K[f ◦ h]− g ◦ h‖2L2
µ

= 0, (3.29)

i.e. K[f ◦ h] = g ◦ h, µ-almost everywhere, which gives∫
Xv
K[f ◦ h](x) dµv(x) =

∫
Xv
g ◦ h(x) dµv(x) = g(v), for m-almost every v in V. (3.30)

We have thus proved Gf = g, with f in D(K), i.e. that G is closed.

Step 3: G is densely defined if h is a projector. The purpose is to prove that D(G) is dense in L2
m(V ).

Assume by contradiction that there exist g in L2
m(V ) for which any sequence in D(G) would stay at a certain

distance (in L2
m(V )) from g or would have g as a point of accumulation, but not unique.

On the other hand, since D(K) is dense in L2
µ(RN ) here exists a sequence {ϕn} in D(K) that converges

to g ◦ h in L2
µ(RN ). Let us define a sequence {fn} (in D(G)) from the semiconjugacy relation

fn ◦ h = h ◦ ϕn, (3.31)

i.e. such that the following diagram is commutative

RN ϕn∈D(K)−−−−−−−→ RNyh yh
V

fn∈D(G)−−−−−−→ V

Now let us note that h ◦ ϕn −→
n→∞

h ◦ g ◦ h = g ◦ h if h is a projector, and therefore∫
RN
|(fn ◦ h)(x)− (g ◦ h)(x)|2 dµ(x) =

∫
V

|fn(v)− g(v)|2 dm(v) −→
n→∞

0, (3.32)

by application of the disintegration formula, leading thus to a contradiction.

Step 4: G provides the conditional expectation. This step is a straightforward consequence of the
Dynkin theorem (see Remark 1-(iii)) and the representation formula (3.25) which leads to the expression
(3.20) of G, by integration with respect to µv.

Remark 4
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(i) G describes long- and short-time behaviors in V . Due to (3.13), the stochastic process associated
with Tt in the reduced state space V is in general non-Markovian. Theorem 3 shows however that G plays
an important role in the description of the asymptotic behavior of this stochastic process. Noteworthy is
that G as defined in (3.25) is exactly the pseudo-generator Gt of Tt, as t→ 0.
The operator G relates thus the long time assymptotics (t → ∞) of the reduced stochastic process to its
infinitesimal characteristics which describe the short-time behavior (t → 0), as for time homogeneous
Markov processes.

(ii) Reduced Kolmogorov operator. Given a projector h = ΠV onto V , another useful object related to
the conditional expectation (3.22) is the following reduced Kolmogorov operator:

Kf(v) =

∫
Xv
K[f ◦ h](x) dµv(x), v ∈ V, f ∈ C2

0 (V ), (3.33)

where K is the Kolmogorov operator defined in Appendix A.3 for the full SDE.
This operator has an interesting interpretation: although it is not the “generator” of the non-Markovian
stochastic process vt associated with Tt, it provides the generator of the Markov stochastic process de-
scribing the average behavior of vt, when the averaging is taken over the unobserved variables (i.e. those
lying outside of V ).

(iii) For the sake of clarity, Theorem 3 has been articulated (in part) for the case where h is a projection.
Of course Theorem 3 can be proved for more general mappings h, and for V that is not necessarily a
subspace of RN . In such cases, the corresponding reduced Kolmogorov operator, K, becomes typically
a non-local operator. Such considerations about the choice of reduced state space has its importance in
practice. Indeed non-local features of K can intuitively help keep a “trace” in the reduced state space of
certain interactions between the observed and unobserved variables that would be otherwise averaged out
by the conditional expectation by using standard projections.

3.3 Reduced RP resonances and conditional expectation

As pointed out earlier, RP resonances although useful to describe power spectra and correlation functions,
are difficult to estimate in practice when the dimension of the state space gets large. In practice, only
partial observations of the solutions to Eq. (2.1) are available, e.g. few solution’s components. Theorem 2
shows that from partial observations of a complex system that lie within a reduced state space V and are
collected at a sampling rate τ , a (reduced) Markov operator Tτ with state space V can be inferred from
these observations. Theorem 2 shows then that this operator Tτ characterizes the coarse-graining in V of
the transition probabilities in the full state space. At an intuitive level if a dominant recurrent behavior
occurs within an irregular background, then Tτ must still “feel” this recurrent behavior within V , in case
this dominant behavior is reflected in V . As pointed out already in [CNK+14] such a recurrent behavior is
manifested by eigenvalues of Tτ distributed evenly along an inner circle typically close to the unit circle, or
by forming a parabola in the complex plane depending on the representation adopted; see Part II [TCND19a]
and Part III [TCND19b] .

An issue though, is that in general Tτ does not come from a Markov semigroup (acting on functions of
the reduced state space V ), and thus one cannot per se rely on the theory of RP resonances presented in
Sec. 2.2 to decompose e.g. correlation functions of V ; see Remark 3. Theorem 3 on the other hand, shows
that Tτ has a pseudo-generator Gτ that is close to the generator of the conditional expectation (3.22),
when either τ is sufficiently small or large; see Remark 4-(ii). Thus, in such cases, the resonances that can
be estimated from data collected at the sampling rate τ in the reduced state space have an interesting
interpretation. They approximate the RP resonances associated with the reduced system (3.22), and are
called the reduced RP resonances. As such, these resonances describe the solution’s variability captured
by the conditional expectation (3.22).

In practice, the dimension of V is kept low so that Tτ can be efficiently estimated via a maximum
likelihood estimator (MLE). Note that the reduced state space V should be also chosen such that the
observed dynamics in V carry relevant information on e.g. the variability of interest contained in the original
system’s solutions.



Ruelle-Pollicott Resonances of Stochastic Systems in Reduced State Space. Part I: Theory 15

We detail below our estimation procedure of reduced RP resonances. First a bounded domain D of V
should be chosen large enough so that “most realizations” of the stochastic process Xt solving Eq. (2.1) fall
inside D after application of the observable h : Rp → V , i.e. D must be chosen so that h(Xt) belongs to D
for many realizations of the noise in Eq. (2.1). This domain is then discretized as the union of M disjoint
boxes Bj , forming thus a partition.

We assume that our observations are made out of the stochastic process Xt (solving Eq. (2.1)) at discrete
time instants t = tn, given as multiple of a sampling time τ , i.e. tn = nτ with 1 ≤ n ≤ N , with N assumed to
be large. These observations made in the observation space V are denoted by Yn = h(Xtn). By adapting the
material contained in the Supporting Information of [CNK+14] (see also [TvdBD15]), the Markov operator
Tτ is approximated by the M ×M transition matrix Γτ whose entries are given

(Γτ )ij =

#

{(
Yn ∈ Bj

)
∧
(
Yn+1 ∈ Bi

)}
#
{
Yn ∈ Bj

} , (3.34)

where the Bj ’s form a partition (composed of M disjoint boxes) of the aforementioned domain D in V ;
see e.g. [SFHD99,CVE06,CNK+14,TvdBD15]. In (3.34), the notation #{(Yn ∈ Bk)} gives the number of
observations Yn visiting the box Bk, and the logical symbol “∧” means “and.” The leading eigenvalues of
the transition matrix Γτ can then be computed with an iterative algorithm such as ARPACK [LSY97].

The reduced RP resonances are then obtained as the eigenvalues λk(τ) obtained from the eigenvalues
ζk(τ) of the Markov matrix Tτ , according to

λk(τ) =
log
(
|ζk(τ)|

)
τ

+ i
arg

(
ζk(τ)

)
τ

, 1 ≤ k ≤M, (3.35)

where arg(z) (resp. log(z)) denotes the principal value of the argument (that we adopt to lie in [−π, π) in
this article) (resp. logarithm) of the complex number z. At a basic level, the motivation behind (3.35) is
that the eigenvalues of Γτ as the eigenvalues of a Markov matrix, lie within the unit circle (representation
that was adopted in [CNK+14]) whereas we want here to relate these eigenvalues with the RP resonances
associated with the generator K of the original Eq. (2.1). This way, the λk(τ)’s given by (3.35) lie naturally
within the left-half complex plane.

For τ sufficiently small or large, i.e. when the generator of the conditional expectation is well approx-
imated by pseudo-generator of Tτ , one can thus proceed as follows to measure the amount of solution’s
variability captured by the conditional expectation:

(C1)Given an observable and a reduced state space V , one forms the right-hand side (RHS) of (2.13) in
which the λj ’s are replaced by the λj(τ)’s given by (3.35), and the eigenfunctions by those of the
Markov operator Tτ .

(C2)One compares the resulting “reduced” correlation function obtained in step 1, to the correlation function
as estimated from standard techniques. If the correlations are close, one can conclude that the conditional
expectation provides actually a good reduced system and that the non-Markovian effects are negligible
to obtain an efficient closure in V , for this observable.

The next section illustrates such situations. Note that by replacing the RP resonances by the reduced RP
resonances in (2.23), power spectral densities can also be approximated in the same fashion.

When τ is neither small or large, the precise relationships between the λk(τ)’s and the actual RP
resonances are non-trivial to characterize in general. Nevertheless, in certain cases, as shown in Part III,
the reduced RP resonances are very useful to diagnose and characterize important dynamical features such
as nonlinear oscillations embedded within a stochastic background.
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4 Applications to a stochastic slow-fast system

4.1 The model

We consider the following stochastic system
dx = (λx− fy − γxz) dt+ σ dW 1

t (4.1a)

dy = (fx+ λy − γyz) dt+ σ dW 2
t (4.1b)

dz = −1

ε
(z − x2 − y2) dt+

σ√
ε

dW 3
t . (4.1c)

The stochastic processes W 1
t ,W

2
t ,W

3
t are independent Brownian motions. The parameters λ, f, γ and ε

are specified below. In the case σ = 0, system (4.1) arises in fluid dynamics and is investigated in [NAM+03]
as low-dimensional reduced model for a flow past a circular cylinder. Hereafter, we deal exclusively with the
stochastic case, i.e. when σ > 0. The reduction problem of this system is analyzed rigorously in [CLPR19]
using a different approach inspired from [CLW15b]. In particular it is proved that this system generates a
Markov semigroup which is strong Feller and irreducible that possesses a unique ergodic invariant measure
µ and thus the theory of RP resonances presented in this article applies.

System (4.1) is a slow-fast system driven by additive noise. The theory of slow-fast systems in the
deterministic case, i.e. when σ = 0 in system (4.1), is well established when the time-scale separation is
strong; see for instance [Jon95,NS13] or the recent monograph [Kue15] and references therein. Indeed, a
typical behavior of such systems is characterized by a separation of time scales between the so-called ”slow”
and ”fast” variables,as controlled by the parameter ε. For our present system, as ε gets small, the z-variable
exhibits fast fluctuations on timescales over which the x- and y-variables vary more and more slowly.

Central to the study of such systems in the deterministic context, is the existence of a slow manifold
which expresses often a (possibly approximate) slaving relationships between the slow- and fast-variables;
the latter lying typically in an “ε-neighborhood” (for ε sufficiently small) to the graph of a function h of the
slow variables. In the case of system (4.1) the slow manifold is explicitly given, for σ = 0, by

Φ :R× R −→ R,

(x, y) 7→ x2 + y2.
(4.2)

More precisely, for σ = 0, any solution (x(t), y(t), z(t)) to (4.1) is attracted exponentially fast to the manifold
given byMε = graph(Φ) +O(ε), and in particular the near to slaving relationship z(t) = h(x2(t) + y2(t)) +
O(ε) holds for t sufficiently large. Foundations of such a dynamical behavior are found in [Fen79,FM71] for
much more general systems than (4.1), and we refer to [NS13, Chap. 10] for an introduction to the theory of
invariant manifolds (IMs) for singularly perturbed ordinary differential equations (ODEs); see also [Kue15].

In what follows we determine the reduced RP resonances as described in Sec. 3.3 not only for the system
(4.1), but also for the reduced system based on the slow manifold Φ, namely by integrating

du =
(
λu− fv − γu(u2 + v2)

)
dt+ σ dW 1

t

dv =
(
fv + λv − γv(u2 + v2)

)
dt+ σ dW 2

t .
(4.3)

The RP resonances of this system, a Hopf normal form subject to an additive white noise, are analyzed in
details in Part II [TCND19a]. This system is a paragon of nonlinear oscillations in presence of noise.

The reduced state space V is taken to be the (x, y)-plane, being thus only a reduced state space for the
original system. As shown below, the estimation of (reduced) RP resonances allow also for comparing the
original system with its slow manifold reduction (4.3).

4.2 Numerical results

Both systems are numerically integrated via an Euler-Maruyama scheme with a time step of size δt = 10−5.
In each experiment, the systems are simulated up to T = 8 × 104 after removal of a transient dynamics
of length Ts = 103. For a given sampling rate τ (specified below) and tn = nτ , the variables collected are
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Yn = (xn, yn) where xn = x(tn) and yn = y(tn) for system (4.1), on one hand, and Yn = (un, vn) where
un = u(tn) and vn = v(tn) for system (4.3), on the other. The domain D used for estimating the Markov
matrix Γτ in (3.34), is taken to be D = [−6, 6] × [−6, 6], decomposed into a uniform grid constituted of
300× 300 cells.

Three parameter regimes are considered hereafter: two regimes with a strong time-scale separation (Cases
I and II), and one with no apparent time-scale separation (Case III); see Tables 1 and 2. The sampling rate
τ is chosen depending on these regimes as follows: τ = 10−3 for Case I, and τ = 10−2 for Cases II and III.

Within this experimental protocol, we first estimate the reduced RP resonances. To do so, we first
estimate the Markov matrix entries of Γτ according to (3.34), and then determine the reduced RP resonances
according to (3.35). For the three parameter regimes considered here, these resonances are shown by blue
’+’ signs in each Panel (a) of Figures 2, 3, and 4. The resonances for the slow manifold system (4.3) are
estimated according the same procedure. They are no longer reduced but genuine RP resonances since the
system is two-dimensional. Thus, the RP resonances associated with system (4.3) are shown by orange ’x’
signs in each Panel (a) of Figures 2, 3, and 4. In each of these Panels (a), the rightmost narrow panel
shows the spectral reconstructions of the PSD of u(t) (resp. x(t)) based on RP resonances (resp. reduced
RP resonances) according to procedure (C1) described in Sec. 3.3, by a dashed orange (resp. blue) curve,
while the black curve shows its standard PSD sample estimate. In each Panel (b) of Figures 2, 3, and 4
are shown the autocorrelation function (ACF) of u(t) (resp. x(t)) based on RP resonances (resp. reduced
RP resonances) based on the procedure (C1), and here again the black curve its standard ACF sample
estimate.

The conclusions of these numerical experiments are without ambiguity. First, in the case of a strong
time-scale separation between the observed variables (x,y) and the unobserved variable (z), i.e. in Cases I
and II, the reduced RP resonances allow for an almost exact reconstruction of the ACF and PSD of x(t)
(as for y(t), not shown). This is explained from the theoretical understanding provided by Secns. 3.2 and
3.3. Indeed, as explained therein, since the sampling rate τ is small here, it is expected that the reduced RP
resonances provide a good approximation of the resonances associated with the generator of the conditional
expectation (3.22). On the other hand, the conditional expectation is known to provide a (very) good
approximation of the dynamics of the slow variables when ε is small, and that it coincides with the slow
manifold reduced system (4.3) as ε → 0; see [CLPR19]. Thus without any surprise the RP resonances
of system (4.3) coincide with the reduced RP resonances of (4.1) for a strong time-scale separation. The
fact that these resonance are organized are organized along parabolas in the left half plane, is thoroughly
analyzed in Part II [TCND19a].

The conclusion for the case of no time-scale separation (Case III) is more subtle, but reveals an interesting
usefulness of the RP resonance analysis. For this case, the RP resonances of the slow manifold reduced system
(4.3) differ from the reduced RP resonances (see Panel (a) in Fig. 4) which comes here with a noticeable
mismatch at the level of ACFs although not revealed at the level of PSDs. On the contrary, the reduced RP
resonances allow for an almost perfect reconstruction of the ACF. As a consequence, one can conclude that
the slow manifold is no longer a valid parameterization of the z-variable in terms of the x- and y-variables
(also observed in [CLPR19] for this regime) but that still, the conditional expectation (3.22) provides a
valid approximation for the reduced dynamics.

Such a diagnosis regarding the conditional expectation drawn from RP resonance analysis offers promis-
ing perspectives in terms of reduced order modeling. As illustrated here, the latter resonances could indeed
serve to determine whether efforts on non-Markovian effects must be invested or not. In that respect, we
mention the recent variational approach relying on optimal manifolds minimizing a parameterization defect
[CLM19] which offers new perspectives to approximate analytically the conditional expectation; see also
[CLM17]. Applied to Case III, this approach provides an analytical substitute to the slow manifold which
allows in turn for the derivation of an efficient 2D reduced system of SDEs (without non-Markovian terms),
confirming the conclusions drawn from RP resonance analysis.
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Fig. 2: Leftmost frame in Panel (a): RP resonances of (4.3) (orange ’x’ sign) and reduced RP resonances of (4.1) (blue

’+’ sign) in the (x, y)-plane. Rightmost frame in Panel (a): Power spectral densities (PSDs). Panel (b): Autocorrelation

function (ACF) of x(t) (resp. u(t)). The spectral reconstructions of the PSD and ACF of u(t) (resp. x(t)) based on RP

resonances (resp. reduced RP resonances) according to procedure (C1) described in Sec. 3.3, are shown by a dashed orange

(resp. blue) curve, while the black curves show their standard sample estimates.
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Fig. 3: Same as in Fig. 2 but for Case II.

−10 −8 −6 −4 −2 0
ℜ(λk)

−80

−60

−40

−20

00

20

40

60

80

ℑ(
λ k
)

10−5 10−3 10−2 100

Sx, x(ω)
(a) Reduced RP resonances and PSD for Case III

0.0 0.2 0.4 0.6 0.8 1.0
t

−0.60

−0.48

−0.36

−0.24

−0.12

0.00

0.12

0.24

0.36

0.48

0.60

C x
,x

(t)

(b) ACF for Case III
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Table 1: Parameter regimes: Case I and Case II

λ f γ ε σ

Case I 10−3 102 5.6× 10−2 10−2 0.55
Case II 10−3 10 1 10−2 0.2

Table 2: Parameter regime: Case III

λ f γ ε σ

Case IV 10−3 10 1 10 0.3

A Elements of stochastic analysis

In this appendix we present a short survey of elements of stochastic analysis used in the Main Text. The main objective is to
introduce the key concepts and tools of stochastic analysis for stochastic differential equations (SDEs), to a wider audience
in the geosciences and macroscopic physics.

A.1 Markov semigroups

Two approaches dominate the analysis of stochastic dynamics. We are here concerned with the approach rooted in Stochastic
Analysis which, contrary to the random dynamical system (RDS) approach [Arn98,CSG11,CLW15a], does not substitute a
deterministic (nonlinear) flow S(t) by a stochastic flow S(t, ω) acting6 on the state space X but rather by a family of linear
operators Pt, acting on a space of observables of the state space, i.e. on functions of X . A typical choice of observables is
given by Cb(X ), the space of bounded and continuous functions on X .

More precisely, this family Pt reflects the (averaged) action of the stochastic flow at the level of functions and is given
as the mapping which to each function φ in Cb(X ) associates the function:

Ptφ(x) = E(φ(S(t, ·)x)) =

∫
Ω
φ(S(t, ω)x) dP(ω), t ≥ 0, x ∈ X. (A.1)

In (A.1), the function φ is the aforementioned observable. Its physical meaning could be, for instance, the potential vorticity
or the temperature of a fluid at a given location or averaged over a volume. The RHS of (A.1) involves averaging over
the realizations ω, i.e. expectation. For deterministic flow it reduces to Ptφ(x) = φ(S(t)x) and is known as the Koopman
operator. Note that Pt such as defined in (A.1) is not limited to stochastic flow, more generally Ptφ(x) = E(φ(Xx

t )) where
Xx
t denotes a stochastic process that solves Eq. (2.1) (as associated with Pt) and emanates from x in X .

Under general assumptions on F and D, the stochastic process Xt solving Eq. (2.1) is Markovian (i.e. the future is
determined only by the present value of the process) which translates at the level of Pt into the following semigroup property

P0 = Id, PtPs = Pt+s, t, s ≥ 0. (A.2)

A breakdown of (A.2) indicates thus that the underlying stochastic process is non-Markovian.
It is noteworthy to mention that even when Pt satisfies (A.2), it does not ensure that Pt is a strongly continuous

semigroup [Paz83] on Cb(X ). Nevertheless, (Pt)t≥0 is extendable to a strongly continuous semigroup in L2
µ as soon as µ is

an invariant measure of the Markov semigroup; see Theorem 4 below. The spectral theory of such semigroups [EN00] is at
the core of the description of mixing properties in L2

µ, such as presented in Sec. 2.2 in the Main Text.

A.2 Ergodic invariant measures and the strong Feller-Irreducibility approach

The Fokker-Planck equation (2.3) may support several weak stationary solutions. An important question, is thus the
identification of stationary measures that describe the asymptotic statistical behavior of the solutions of Eq. (2.1), in a
typical fashion. The notion of ergodic invariant measures plays a central role in that respect, and relies on the following
important characterization of ergodic measures for (stochastically continuous) Markov semigroups [DPZ96, Theorem 3.2.4].

Definition 1 An invariant measure is ergodic if one of the following three equivalent statements holds:

i) For any f ∈ L2
µ(X ), if Ptf = f , almost surely w.r.t µ (µ-a.s.) for all t ≥ 0, then f is constant µ-a.s.

ii) For any Borel set Γ of X , if Pt1Γ = 1Γ µ-a.s. for all t ≥ 0, then µ(Γ ) = 0 or 1.

iii) For any f ∈ L2
µ(X ), 1

T

∫ T
0 Psf ds −→

T→∞

∫
f dµ in L2

µ(X ).

6 ω labelling the noise realization.
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In practice, an efficient approach to show the existence of an ergodic measure consists of showing the existence of a
unique invariant measure, since in this case such an invariant measure is necessarily ergodic [DPZ96, Theorem 3.2.6]. Various
powerful approaches exist to deal with the existence of a unique invariant measure. The next section discusses the classical
approach based on the theory of strong Feller Markov semigroups and irreducibility.

The main interest of the strong Feller-Irreducibility approach lies in its usefulness for checking the conditions of the
Doob-Khasminskii Theorem [Doo48,Kha60,DPZ96], the latter ensuring the existence of at most one ergodic invariant
measure. This strategy requires the proof of certain smoothing properties of the associated Markov semigroup, and to show
that any point can be (in probability) reached at any time instant by the process regardless of initial data. This property is
known as irreducibility. It means that Pt1U (x) > 0 for all x in X , every t > 0, and all non-empty open sets U of X , which
is equivalent to say that

P(‖S(t, ·)x− z‖ < ε) > 0, (A.3)

for any z in X , ε > 0 and t > 0; see [Cer01, p. 67]. In other words the irreducibility condition expresses the idea that any
neighborhood of any point z in X , is reachable at each time, with a positive probability.

Remarkably, the irreducibility is usually inferred from the controllability of the associated control system ẋ = F (x) +
D(X)u(t); see [CLPR19] for a simple illustration. This approach is well-known and based on the support theorem of Stroock
and Varadhan [SV71] (see also [IW14, Theorem 8.1]) that shows that several properties of the SDEs can be studied and
expressed in terms of the control theory of ordinary differential equations (ODEs); see [DPZ96, Secns. 7.3 and 7.4] for the
case of additive (non-degenerate) noise and [AK87,Kli87] for the more general case of nonlinear degenerate noise, i.e. in the
case where the noise acts only on part of the system’s equations, corresponding to ker(Q) 6= {0}.

The strong Feller property means that the semigroup maps bounded measurable functions into bounded continuous
functions. This property, related to a regularizing effect of the Markov semigroup (Pt)t≥0, is a consequence of the hypoel-

lipticity of the Kolmogrorov operator K defined on smooth functions ψ (of class C2):

Kψ(x) =
1

2
Tr(Σ∇2ψ(x)) + 〈F (x),∇ψ〉, (A.4)

where

Tr(Σ∇2ψ(·)) =

N∑
i,j=1

[
D(X)D(X)T

]
ij
∂2ijψ. (A.5)

Note that hypoelliptic operators include those that are uniformly elliptic for which the Weyl’s smoothing lemma applies;
e.g. [Dac04, Theorem 4.7]. Hypypoellipticity allows nevertheless for dealing with the case of degenerate noise, which is
important in applications.

A very efficient criteria for hypoellipticity is given by Hörmander’s theorem [Hör67,Nor86]; see also [CSG11, Appendix
C1] for a discussion on the related Hörmander’s bracket condition and its implications to the existence of other types of
meaningful measures for SDEs, namely the Sinäı-Ruelle-Bowen (SRB) random measures. We refer also to Part II [TCND19a],
for an instructive verification of the Hörmander’s condition in the case of the Hopf normal form subject to additive noise.

From a geophysical perspective, it is noteworthy to mention that the strong Feller-Irreducibility approach allows for
dealing with a broad class of truncations of fluid dynamics models that would be perturbed by noise, possibly degenerate.
For instance, in the case of truncations of 2D or 3D Navier-Stokes equations, the strong Feller-Irreducibility approach has
been shown to be applicable even for an additive noise that forces only very few modes [AS05,Rom04]. The delicate point of
the analysis is the verification of the controllability (and thus irreducibility) of the associated control system, by techniques
typically adapted from [JK85] or rooted in chronological calculus as in [AS05]. Whatever the approach, the analysis requires
the appropriate translation into geometrical terms of the cascade of energy in which the nonlinear terms transmit the forcing
from the few modes to all the others [Rom05].

A.3 Markov semigroups and mixing

We recall here standard results about Markov semigroups. It states that any Markov semigroup that is strong Feller and
irreducible and for which an invariant measure exists (which is thus unique) is not only ergodic but also strongly mixing for
the total variation norm of measures. Given two probability measures µ1 and µ2 on X , we recall that the latter is defined
as [Hai09, Eq. (3.1)]

TV (µ1, µ2) = sup
g∈Bb(X )
‖g‖∞≤1

∣∣∣ ∫ g dµ1 −
∫
X
g dµ2

∣∣∣, (A.6)

where Bb(X ) denotes the set of Borel measurable and bounded functions on X .

Theorem 4 Let µ be an invariant measure of a Markov semigroup (Pt)t≥0. For any p ≥ 1 and t ≥ 0, Pt is extendable to
a linear bounded operator on Lpµ(X ) still denoted by Pt. Moreover

(i) ‖Pt‖L(Lpµ(X )) ≤ 1

(ii) Pt is strongly continuous semigroup in Lpµ(X ).
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If furthermore (Pt)t≥0 is strong Feller and irreducible, then µ is ergodic and for any x in X and g in L1
µ

lim
T→∞

1

T

∫ T

0
g(Xx

τ ) dτ =

∫
X
g(x) dµ, P-a.s., (A.7)

where Xx
t denotes the stochastic process solving the SDE associated with Pt.

In this case, the invariant measure µ is also strongly mixing in the sense that for any measure ν on X , we have:

TV (Ltν, µ) −→
t→∞

0. (A.8)

For the definition of a strongly continuous semigroup also known as C0-semigroup we refer to [EN00, p. 36]; see also
[CK17]. For an introduction to semigroup theory we refer to [vN12,EN06].

Proof We prove first (i). The proof is standard and can be found e.g. in [GZ03, Prop. 1.14] but is reproduced here for the
reader’s convenience. Let g be in Cb(X ). By the Hölder inequality, we have

|Ptg(x)|p ≤ Pt(|g|p)(x). (A.9)

If we now integrate both sides of this inequality with respect to µ, we obtain∫
X
|Ptg(x)|pµ( dx) ≤

∫
X
Pt(|g|p)(x)µ( dx) =

∫
X
|g|p(x)µ( dx), (A.10)

the latter equality resulting from the invariance of µ. Since Cb(X ) is dense in Lpµ(X ), the inequality (A.10) can be extended
to any function in Lpµ(X ), and thus (Pt)t≥0 can be uniquely extended to a contraction semigroup in Lpµ(X ), and property
(i) is proved.

Let us show now that (Pt)t≥0 is strongly continuous in Lpµ(X ). Since (Pt)t≥0 is a Markov semigroup, for any g in Cb(X )
and x in X , we have that the mapping t 7→ Ptg(x) is continuous. Therefore by the dominated convergence theorem

lim
t→0

Ptg = g in Lpµ(X ). (A.11)

The density of Cb(X ) in Lpµ(X ) allows us to conclude that this convergence holds when g is in Lpµ(X ).
The ergodicity of µ results from the aforementioned Doob’s theorem. The time-average property (A.7) and the mixing

property (A.8) can be obtained as a consequence of e.g. [Sei97, Cor. 2.3]; see also [Ste94, Cor. 1].

A.4 Generator of a Markov semigroup

Recall that the generator A of any strongly continuous semigroup (T (t))t≥0 on a Hilbert space H is defined as the operator
A : D(A) ⊂ H → H, such that

Aϕ = lim
t→0+

1

t

(
T (t)ϕ− ϕ

)
, (A.12)

defined for every ϕ in the domain

D(A) = {ϕ ∈ H | lim
t→0+

1

t

(
T (t)ϕ− ϕ

)
exists}. (A.13)

As any generator of a contraction semigroup, given an invariant measure µ, the generator K of the contraction semigroup
(Pt)t≥0 in L2

µ (Theorem 4-(i)) is dissipative, which is equivalent to say, since L2
µ is a Hilbert space, that

Re 〈Kf, f〉L2
µ
≤ 0, ∀ f ∈ D(K), (A.14)

where D(K) denotes the domain of K; see e.g. [EN00, Prop. II.3.23]. The domain D(K) is furthermore dense in L2
µ and

K is a closed operator; see [Paz83, Cor. 2.5 p. 5]. The isolated part of the spectrum of K provides the Ruelle-Pollicott
resonances; see Sec. 2.2.

A.5 Return to equilibrium and spectral gap

We present here some useful results concerning (i) the exponential return to equilibrium for strong Feller and irreducible
Markov semigroups, and (ii) spectral gap in the spectrum of the Markov semigroup generator K; see Theorems 5 and
6 below. Theorem 5 deals with semigroups that become quasi-compact after a finite time, and Theorem 6 addresses the
exponential L2-convergence and lower bound of the spectral gap. For Theorem 5, the approach is based on Lyapunov
functions such as formulated in [RB06]. We propose a slightly different presentation for which we provide the main elements
of the proof. We refer to [DFG09] for an efficient (and beautiful) generalization of such Lyapunov-type criteria allowing for
sub-exponential convergence towards the equilibrium.
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Recall that the essential spectral radius ress(T ) of a linear bounded operator T on a Banach space X satisfies [EN00,
p. 249] the Hadamard formula

ress(T ) = lim
n→∞

‖Tn‖1/ness , (A.15)

where
‖T‖ess = inf

{
‖T − C‖L(X ) : C is a linear and compact operator of X

}
. (A.16)

We have then the following convergence result.

Theorem 5 Let P = (Pt)t≥0 be a strong Feller and irreducible Markov semigroup generated by an SDE given by Eq. (2.1)

for which F and G are locally Lipschitz. Assume that there exists a Lyapunov function7 U and a compact set A for which
there exist a > 0, 0 < κ < 1 and b <∞, such that

KU ≤ aU, (A.17a)

Pt0U ≤ κU + b1A, for some t0 > 0, (A.17b)

where K is the Kolmogorov differential operator generating the Markov process associated with P. Then for all t > t0, Pt
becomes quasi-compact, i.e.

ress(Pt) ≤ κ, (A.18)

where the essential spectral radius is taken for Pt as acting on X = FU given by

FU = {f : RN → R | f Borel measurable and ‖f‖U <∞}, (A.19)

and endowed with the norm

‖f‖U = sup
x∈RN

|f(x)|
U(x)

. (A.20)

Furthermore (Pt)t≥0 has a unique invariant measure µ, and the inequality (A.18) ensures that there exist C > 0 and
λ > 0 such that for all f in FU , ∣∣∣∣Ptf(x)−

∫
f dµ

∣∣∣∣ ≤ Ce−λtU(x), t > t0, ∀x ∈ RN . (A.21)

The proof of this result is found in Appendix A.6.

Remark 5 The assumption (A.17b) is sometimes verified from moment estimates in practice. For instance if there exist
k0 > 0 and k1 > 0 such that

E|Xx
t | ≤ k0e−k1t|x|+ c, t ≥ 0, (A.22)

then for any t ≥ − 1
k1

log( 1
4k0

), we have E(|Xx
t |+ 1) ≤ 1

2
(|x|+ 1)− 1

4
|x|+ c+ 1

2
, which leads to

E(|Xx
t |+ 1) ≤

1

2

(
|x|+ 1

)
+
(
c+

1

2

)
1Br , (A.23)

for all r > 4(c+ 1
2

), and thus (A.17b) holds with U(x) = |x|+ 1.
More generally, if

KU ≤ −αU + β, with α > 0, and 0 ≤ β <∞, (A.24)

then d
dt
PtU(x) = PtKU(x) ≤ −αPtU(x) + β, leading to

E
[
U(Xx

t )
]
≤ U(x)e−βt +

β

α

(
1− e−αt

)
, t > 0, (A.25)

and similarly (A.17b) holds. In addition, (A.24) implies (A.17a). Note that (A.24) and (A.25) are quite standard; see
e.g. [DKZ12, Lemma 2.11].

Finally, note also that finding a Lyapunov function may be easier than proving inequalities of the form (A.22). For
instance, if there is a Lyapunov function which grows polynomially like ‖p‖q, then one knows that the process has moments
of order q; see [MT93a,MT93b].

Finally, lower bounds of the spectral gap in L2
µ may be derived for a broad class of SDEs. Recall that the generator K

has a spectral gap in L2
µ if there exists δ > 0 such that

σ(K) ∩ {λ : Re(λ) > −δ} = {0}. (A.26)

The largest δ > 0 with this property is denoted by gap(K), namely

gap(K) = sup{δ > 0 s.t. (A.26) holds}. (A.27)

The following result is a consequence in finite dimension of more general convergence results [GM05, Theorems 2.5 and
2.6]. Since (Pt)t≥0 is a C0-semigroup in L2

µ, the theory of asymptotic behavior of a semigroup with a strictly dominant,
algebraically simple eigenvalue (e.g. [vN12, Thm. 3.6.2]) implies the spectral gap property stated in the following.

7 Recall that a C2 function U is called a Lyapunov function U(x) ≥ 1 and lim|x|→∞ U(x) = ∞, ensuring thus that the
level sets {U ≤ α} are compact.
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Theorem 6 Assume that (Pt)t≥0 is strong Feller and irreducible. Assume furthermore that the following ultimate bound
holds for the associated stochastic process Xx

t , i.e. there exist c, k, α > 0 such that

E |Xx
t |2 < k|x|2e−αt + c, t ≥ 0, x ∈ RN . (A.28)

Then there exists a unique invariant measure µ for which the U-uniform ergodicity (A.21) holds with U(x) = 1 + |x|2, as
well as the following exponential L2-convergence

‖Ptϕ−
∫
ϕ dµ‖L2

µ
≤ Ce−λt‖ϕ‖L2

µ
, t ≥ 0, ϕ ∈ L2

µ, (A.29)

with C and λ positive constants independent of ϕ; the latter rate of convergence being the same as that of (A.21). Fur-
thermore, one has the following lower bound for the L2

µ-spectrum of the generator K:

0 < λ ≤ gap(K). (A.30)

We will see in Part II [TCND19a] of this three-part article that Theorem 6 has important practical consequences. In
particular it shows for a broad class of controllable ODEs, perturbed by a white noise process for which the Kolmogorov
operator is hypoelliptic, that an L2

µ-spectral gap is naturally induced by the noise whereas in absence of the latter the gap
may be zero, leading thus to a form of mixing enhancement by the noise. We finally mention [HSV14] for other conditions,
ensuring an L2

µ-gap based on spectral gaps in Wasserstein distances, verifiable in practice by following the approach of
[HMS11]. We show in the next section that Wasserstein distances are also suitable to measure the decay of correlations.

A.6 Proof of Theorem 5

Proof It is standard from the theory of Lyapunov functions that the existence of a unique invariant measure µ is ensured by
the condition (A.17a) together with the irreducibility and strong Feller properties. The rest of the proof is thus concerned
with (A.18) and the exponential convergence (A.21).

Step 1. First, note that the Itô formula gives

dU = KU dt+ “Martingale”, (A.31)

which leads (since KU ≤ aU) to
E(U(x(t;x))) = PtU(x) ≤ eatU(x), (A.32)

and therefore Pt is extendable to a linear operator on FU (defined in (A.19)) with norm ‖Pt‖ ≤ eat.
The second inequality in (A.17) ensures that for any t > t0,

PtU(x) ≤ κU(x) + b, ∀ x ∈ RN . (A.33)

By definition, a Markov semigroup is monotone, thus one may iterate (A.33) to obtain (by using Pt1RN = 1RN ),

PntU(x) ≤ κnU(x) +
b

1− κ
, n ≥ 1. (A.34)

Consider now an arbitrary compact set B in RN and f in FU , we have the bound

|Pntf(x)− 1B(x)Pnt1Bf(x)| ≤ U(x) sup
y∈H\B

|Pntf(y)|
U(y)

,

≤ U(x)‖f‖U sup
|PntU(y)|
U(y)

,

(A.35)

where we have used the basic inequality (A.9) (with p = 1). This last inequality with (A.34) leads to

|Pntf(x)− 1B(x)Pnt1Bf(x)| ≤ U(x)‖f‖U

(
κn +

b

1− κ
sup

y∈H\B

1

U(y)

)
. (A.36)

Since lim|x|→∞ U(x) =∞, given ε > 0 and n > 1 one may thus choose a compact set Bn such that

‖Pntf − 1Bn Pnt1Bnf‖U ≤ ‖f‖U (κ+ ε)n, (A.37)

which leads to
‖Pnt − 1Bn Pnt1Bn‖L(FU ) ≤ (κ+ ε)n. (A.38)

Step 2. Let us show that the linear operator

Λ = 1B Pt1B : FU −→ FU , (A.39)
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is compact for any compact set B of RN . This is equivalent to showing that for any sequence gk in FU such that ‖gk‖U ≤ 1,
one can extract a subsequence such that Λgk is convergent in FU . Since Pt is strongly Feller and 1Bgk is bounded for each
k, then Pt1Bgk belongs to Cb(B), by definition. Thus the sequence (Λgk) lives in C(B).

We have
|Λgk(x)| ≤ ‖gk‖UPtU(x) ≤ κU(x) + b ≤ κ sup

y∈B
U(y) + b, x ∈ B, (A.40)

which shows that {Λgk} is equibounded.
Furthermore, since Pt is strong Feller, it has a smooth kernel8 and we have for all x, x′ ∈ B

|Λgk(x)− Λgk(x′)| ≤
∫
y∈B

|pt(x, y)− pt(x
′, y)||f(y)| dy,

≤ |x− x′| sup
u,v∈B

|∂upt(u, v)|‖gk‖U
∫
B
U(y) dy,

(A.41)

which shows that {Λgk} is equicontinuous.
Thus, the Ascoli-Arzelà theorem [Yos95, p. 85] applies and guarantees that a subsequence from Λgk converges in C(B)

to g. Now since U ≥ 1, the same extraction from Λgk converges to g1B in FU . We conclude that 1B Pt1B is a compact
mapping for any compact set B of RN .

Step 3. Let Bn be a sequence of compact sets satisfying (A.37), and let us consider the compact operators (from Step
2) Cn defined by 1Bn Pnt1Bn . We have then

‖Pnt‖ess = inf
{
‖Pnt − C‖L(FU ) : C is a linear and compact operator of FU

}
≤ ‖Pnt − Cn‖

≤ (κ+ ε)n.
(A.42)

By applying to Pt the Hadamard formula recalled in (A.15), we have thus for t > t0

ress(Pt) = lim
n→∞

‖Pnt‖1/ness ≤ κ+ ε, (A.43)

for all ε > 0, and we deduce (A.18).
The exponential convergence is then ensured by showing that there is no other eigenvalue than 1 on the unit disk (or

outside the unit disk) and that 1 is a simple eigenvalue; see [RB06].
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SH99. Ch. Schütte and W. Huisinga, On conformational dynamics induced by Langevin processes, Proceedings of the

International Conference on Differential Equations, vol. 1, World Scientific, 1999, p. 7.
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