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ABSTRACT

The ice multiplication by fragmentation associated with collision–freezing

of supercooled drops is investigated. A zero–dimensional dynamical system

describing the time evolution of the number density of the supercooled drops

and the ice crystals in a mixed–phase cloud is developed. The analytical so-

lutions of this system are derived for various asymptotic limits. Especially,

when the ice fragmentation by freezing supercooled drops is considered in

its isolation, a complete analytical solution is available, which shows that

the originally–existed supercooled drops are simply all converted into the ice

crystals multiplied by a fragmentation number per freezing. When constant

generation of both supercooled drops and ice crystals is considered, the ice–

crystal number tends to linearly increase with time with the rate given by the

sum of the primary–ice and the the supercooled–drop sources with the latter

multiplied by the fragmentation number per freezing. The study concludes

that the ice multiplication by fragmentation of freezing drops can be a cru-

cial process in certain situations. Yet its multiplication tendency is limited by

availability of supercooled rain or drizzle and by whether the freezing tem-

perature allows more than one fragment to be emitted per frozen drop so as

to allow a positive feedback with collisional raindrop-freezing. When there

is no more rain or drizzle, the multiplication stops. When there is copious

supercooled rain initially and temperatures are optimal, then this fragmenta-

tion can be more prolific than the other multiplication processes such as the

Hallett–Mossop process and the ice–ice collision process.
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1. Introduction33

Coincident measurements of concentrations ice particles in clouds and of active ice nucleus (IN)34

aerosols in the environment have shown a discrepancy by orders of magnitude, in clouds too warm35

for homogeneous freezing (Hobbs 1969, Auer et al. 1969). This has been explained in terms of36

fragmentation of ice. Several pathways of fragmentation have been observed in the laboratory, but37

their relative importance has been unclear.38

One possible type of fragmentation is shattering during collision–freezing of supercooled drops.39

Generally the rate of freezing of a drop is limited by the rate of dissipation of latent heat. Initially,40

the latent heat from freezing is converted to thermal energy of the drop, raising its temperature41

close to 0◦C almost instantaneously. In this first stage, needles of ice permeate the drop. In the42

subsequent stage, the latent heat flows down the gradient of temperature to the surroundings, once43

a steady state has been reached. The rate of dissipation to the air governs the freezing rate. The44

fastest rate of freezing occurs for freezing as near as possible to the drop surface. Hence, the45

freezing occurs from the outside inwards, with a shell of ice encasing the liquid core.46

It is experimentally observed that as the ice shell thickens, the expansion on freezing can some-47

times cause the shell to shatter (Wildeman et al. 2017). Splinters of ice can then be emitted into the48

air. Many ealier laboratory experiments (Latham and Mason 1961, Brownscombe and Thorndike49

1968, Dye and Hobbs 1968, Hobbs and Alkezweeny 1968, Takahashi and Yalashita 1969) mea-50

sured this fragmentation for drops in free-fall: See Mossop (1970) as a review. Only a few splinters51

are typically emitted per frozen drops (usually less than about 1-10 depending on temperature and52

size). On the other hand, there is a positive feedback that can lead to all supercooled drops being53

frozen quite quickly: as ice splinters are emitted they can grow and after a minute or so are large54

enough to collide efficiently with supercooled drops, freezing them.55
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Phillips et al. (2001) quantified the effect of this multiplication mechanism by raindrop-56

splintering for a New Mexican convective cloud. It was found that it was less prolific than the57

Hallett–Mossop (1974) process of rime-splintering between -3 and -8◦C when cloud-droplets58

freeze on impact with graupel. However, Lawson et al. (2015) simulated another observed case59

with a spectral bin microphysics parcel model and found the positive feedback to account for the60

observed ice.61

Phillips et al. (2018) provided a comprehensive formulation to treat rain– or drizzle–drop freez-62

ing fragmentation by pooling published data from past laboratory studies in the literature. Two63

modes were represented:64

• Mode 1: spherical drop-freezing when incident ice particle is less massive than the drop or due65

to immersed IN activating, with an outer ice shell growing inwards and breaking;66

• Mode 2: non-spherical drop-freezing when incident ice particle is more massive than the drop67

and ice particles may be present in the splash.68

Only mode 1 has been observed in the lab comprehensively. For mode 2 a theoretical approach69

for the physics of the collision was invoked. After creating an empirical formulation for mode 170

alone, Phillips et al. (2018) applied it to a simulation of a composite case of deep convection from71

the tropical Atlantic in ICE-T (Ice in Clouds Experiment–Tropical). They found observed ice72

concentrations were predicted in a bin microphysical parcel model with the new schemes for an73

assumed probability of 50% (-10◦C) for the chance of any drop in the splash containing ice due to74

partial freezing on impact.75

The empirical scheme for numbers of secondary fragments per drop, N, from spherical drop-76

freezing of mode 1 was expressed by Phillips et al. (2018) with a 2D phase-space of drop diam-77

eter and freezing temperature. A peak of N near -15◦C was observed. Construction of a zero–78

dimensional (0D) model of monodisperse populations of crystals, graupel (from drop-freezing)79
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and supercooled drops without fallout showed that the positive feedback with exponential growth80

of ice concentrations only occurs for N > 1, which is found at diameters of 0.1 mm between about81

-13 and -17◦C, 0.2 mm (or 0.4 mm) between about -10◦C and -20◦C and 1.6 mm when colder82

than -7◦C. When mode 2 was included in the 0D model, the realm of instability was extended to a83

wider range of temperature.84

The purpose of the present paper is to extend this investigation of the efficiency of the ice frag-85

mentation by spherical drop-freezing from such a theoretical point of view. A similar 0D dynam-86

ical system is applied for this purpose, generalized to include a source of raindrops from coales-87

cence, as presented in the next section. By taking the similar methodologies, Yano and Phillips88

(2011) and Yano et al. (2016) have investigated the efficiency of the Hallett–Mossop and the ice–89

ice collision ice–multiplication processes. Yano et al. (2016) further list the various methodologies90

applicable for interpreting the behavior of a dynamical system, and in that manner, the basic nature91

of a given microphysical process described by the given dynamical system can be elucidated.92

The most basic strategy is to develop an asymptotic expansion by assuming a certain physical93

parameter to be small. We emphasize that a given physical parameter may not be necessarily small94

arithmetically, but it can still be introduced as a small parameter in order to obtain insights to the95

basic behavior of the system. This most basic strategy is systematically applied in the present96

study. After introducing a formulation of the problem in the next section, theoretical analysis97

considers first the ice fragmentation process of mode 1 in its isolation in Sec. 3 and the feedbacks98

are quantified. General analyses are presented in Sec. 4. Obtained results are further discussed in99

Sec. 5.100

2. 0D Model101

a. Basic Assumptions102
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We consider a cloud at subzero temperatures consisting of supercooled drops, ice crystals, and103

graupel. Their number densities are designated by nr, ni, and ng, respectively. Collisions between104

ice crystals and supercooled drops cause freezing to the latter leading to formation of graupel,105

associated with N (up to 10–100) secondary fragments of ice emitted by each frozen drop. The106

rate that supercooled drops freezes by collision of ice particles may be given by Knrni, where K is107

a coefficient describing the product of the collision efficiency and rate of geometric sweep-out of108

air volume per second (collection kernel, m3 sec−1).109

We further assume constant generations, c0 and ci, of supercooled rain and ice crystals, respec-110

tively. We also assume that the supercooled rain is lost by fall with a characteristic time scale of111

τ f . Some of those additional processes may be turned off in the following as required.112

Here, being consistent with our earlier studies (Yano and Phillips, 2011, Yano et al. 2016,113

Phillips et al. 2018), no spatial dimension is considered.114

b. Mathematical Formulation115

From the physical assumptions just introduced above, the mathematical description of this mi-116

crophysical system is presented by117

ṅr = c0 −Knrni −nr/τ f (2.1a)118

ṅi = ci +KN′nrni (2.1b)119

120

Note that the drop–freezing is initiated by capture (loss) of an ice particle, and leads to a gain of N121

ice particles by fragmentation so that N′ = N −1 more ice particles are found after drop–freezing122

in total per drop frozen. This means that for some conditions of drop size and freezing temperature123

(as reviewed by Pruppacher and Klett 1997), there can be N′ < 0, such as at diameters less than124

about 0.1 mm near the optimum of -15◦C and 0.5–1 mm at temperatures several degrees warmer125

or colder than this. For a monodisperse population of drops, when N′ < 0, then there is capture126
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of splinters causing a decrease with time of the crystal concentration with incomplete freezing of127

the population of drops. This corresponds to a situation in reality with a continuum of drop sizes128

in any cloudy volume but with insufficiently numerous large drops to cause any explosion of ice129

concentration (Sec. 1).130

Additionally, the time evolution of the graupel number, ng, is presented by131

ṅg = Knrni −ng/τg132

also assuming that the graupel is lost from the cloud-microphysical system by fall-out with a133

characteristic time–scale, τg. However, the graupel number, ng, does not affect the subsequent134

evolution of the remaining part of the system. Thus, in the following, the evolution of ng will not135

be considered.136

c. Nondimensionalization137

Nondimensionalization is crucial to ensure a systematic investigation of a given system, be-138

cause it reduces the parameters characterizing the system to a smaller number of nondimensional139

parameters, thus a parameter space for the investigation is much reduced.140

In the following, we add the subscript ∗ to the nondimensional variables in order to distinguish141

them from the dimensional variables. Here, we introduce an unspecified time scale, τ , for nondi-142

mensionalizing the time. Although the fall time–scale, τ f , of rain is a natural choice for the scale,143

we retain a certain freedom for the model analysis in this manner. Thus,144

d

dt
=

1

τ

d

dt∗
. (2.2)145

The particle number densities may be nondimensionalized by146

ni = ni∗/Kτ, (2.3a)147

nr = nr∗/KN′τ. (2.3b)148

149
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By substituting the expressions (2.2), (2.3a, b) into Eqs. (2.1a, b), we obtain a nondimensional-150

ized system:151

ṅr∗ = ĉ0 − K̂ni∗nr∗− εsnr∗, (2.4a)152

ṅi∗ = ĉi + K̂nr∗ni∗. (2.4b)153

154

Here, we have introduced the following nondimensional parameters:155

ĉ0 = KN′τ2c0, (2.5a)156

ĉi = Kτ2ci, (2.5b)157

εs = τ/τ f . (2.5c)158

159

Note that ĉ0 and ĉi are the nondimensional generation rates of liquid and ice; εs measures the160

magnitude of the rain sedimentation rate. Furthermore, the dimensionless tag, K̂, is introduced,161

multiplying the freezing–fragmentation terms so as to indicate a contribution of this process to the162

solutions. Formally K̂ = 1 by nondimensionalization when this process is present and may be set163

zero otherwise. Note that the time scale, τ , is defined by Eq. (3.5) below in retrospect.164

3. Basic Analysis: Freezing–Drop Fragmentation Process in Isolation165

As the simplest case, the shattering of ice particles by freezing drops is considered in isolation166

away from the other processes. We obtain this situation by setting, ĉ0 = ĉi = εs = 0 in the above167

general system (2.4):168

ṅr∗ =−K̂nr∗ni∗, (3.1a)169

ṅi∗ = K̂nr∗ni∗. (3.1a)170

171

Here, the tag, K̂, for the ice fragmentation process is still retained. Note that there is no nondi-172

mensional parameter controlling this system. Thus, even in numerical terms, the interest of the173
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investigation of this system only depends on the initial condition. As seen below, the initial con-174

dition can further be normalized, because the characteristic time–scale, τ , of the system remains175

arbitrary due to the absence of rain sedimentation.176

a. Full Solution177

We identify two equilibrium solutions in this system: either nr∗ = 0 or ni∗ = 0 and the other178

number density remains an arbitrary finite value. As suggested by Yano and Phillips (2011), as179

well as Yano et al. (2016: See especially their Sec. 6.2), the standard procedure would be to180

perform the linear perturbation analysis against these equilibrium states for inferring the tendency181

of the system away from these equilibrium states.182

However, in the present case, a full analytical solution is available for Eqs. (3.1a, b). This is183

realized by noting that the sum of the two particle number densities is conserved, as seen by184

taking the sum of Eqs. (3.1a, b):185

d

dt∗
(nr∗+ni∗) = 0. (3.2)186

In dimensional terms, the above conservation law is187

d

dt
(N′nr +ni) = 0.188

Thus, more precisely, the sum of the number densities, weighted by the ice–fragmentation number,189

N′, on the rain water number density, nr, is conserved with time.190

From Eq. (3.2), ni∗ can be written in terms of nr∗ by191

ni∗ = n0 −nr∗, (3.3)192

where n0 = nr∗(0)+ni∗(0) is the initial total particle number. By substituting the above expression193

into Eq. (3.1a), we obtain a differential equation solely in terms of nr∗. It can be readily solved to194

obtain:195

nr∗ = (nr∗(0)+ni∗(0))(1+
ni∗(0)

nr∗(0)
eK̂n0t∗)−1. (3.4a)196
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Further substitution of the above solution into Eq. (3.3) leads to a solution for ni∗:197

ni∗ = (nr∗(0)+ni∗(0))(1+
nr∗(0)

ni∗(0)
e−K̂n0t∗)−1. (3.4b)198

Note that the time–scale, τ , introduced above for non-dimensionalising the system remains ar-199

bitrary. Thus without loss of generality, we may set the initial condition to n0 = 1, which implies200

that201

τ = K−1(N′nr(0)+ni(0))
−1 (3.5)202

by referring to Eq. (2.3a, b). Note that the dimensionless characteristic time-scale for the expo-203

nentials of both nr∗ and ni∗ is just 1/n0 in Eq (3.4a, b). This characteristic time-scale becomes τ204

when dimensionalised. In other words, the initial particle number dictates the characteristic time–205

scale of the system, as shown by Phillips et al. (2018). Furthermore, the behaviour of the system206

can be investigated systematically by solely changing the initial condition for nr∗ as a result. The207

examples of time evolution for those normalizations are shown in Fig. 1.208

It may also be worthwhile to note that the solutions (3.4a, b) are given in dimensional terms by:209

nr = (nr(0)+ni(0)/N′)[1+
ni(0)

N′nr(0)
eK(N′nr(0)+ni(0))t ]−1 (3.6a)210

ni = (N′nr(0)+ni(0))[1+
N′nr(0)

ni(0)
e−K(N′nr(0)+ni(0))t ]−1 (3.6b)211

212

The result shows that regardless of the initial condition, the system exponentially approaches to a213

state only with the ice crystals, ni = N′nr(0)+ni(0) by converting all the supercooled drops into214

the ice. As a result, we also see that the state with nr 6= 0 and ni = 0 is unstable, and that with215

nr = 0 and ni 6= 0 is stable against small perturbations.216

Finally, the IE factor, f (t) = ni(t)/ni(0), evolves as217

f (t) =
1+N′nr(0)/ni(0)

1+N′nr(0)/ni(0)e−K(N′nr(0)+ni(0))t
218

and the eventual ice enhancement reaches the maximum f = 1+N′nr(0)/ni(0) as t → ∞.219
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b. Perturbation Analysis220

A particular interest here is how the ice–number evolution is modified by slightly modifying its221

value by n′i∗. As a result, the rain–water number is also perturbed by, say, n′r∗. In this isolated222

setting, the total number density is conserved, thus we may set223

n′r∗ =−n′i∗. (3.7)224

The pertubation equation for n′i∗ is given by225

ṅ′i∗ = K̂(ni∗n′r∗+nr∗n′i∗)226

or by substituting the number–concentration constraint (3.7),227

ṅ′i∗ = λn′i∗,228

where229

λ = K̂(nr∗−ni∗) (3.8)230

may be considered a feedback parameter characterizing this perturbation evolution. We see that231

at the initial stage when the rain–water is relatively abundant, nr∗− ni∗ > 0, and the feedback is232

positive (splintering feedback), whereas when the ice number has substantially multiplied, nr∗−233

ni∗ < 0, and the feedback becomes negative (drop–depletion feedback)234

For any system in general, a feedback parameter may be defined as the rate of change of a235

forcing, Q, of system evolution with respect to its response (a change in its state variable, x) with236

λ = dQ/dx. Here, λ > 0 for a net positive feedback and λ < 0 for a net negative feedback. The237

forcing may be a function of variables quantifying several processes (Q = Q(x,X1,X2, ...Xn)). By238

performing this derivative as a partial derivative with respect to only one process variable, then the239

derivative quantifies the feedback from that process (λi = (∂Q/∂Xi)(dXi/dx)). The total feedback240

parameter is the sum of partial derivatives corresponding to all the processes by the chain rule:241
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λ = ∑i λi. Thus the net feedback parameter has contributions from all the positive and negative242

feedbacks of the system.243

One can regard the above evolution equation (ṅi∗ = K̂nr∗ni∗) for ice crystal number as arising244

from two separate processes: splintering of freezing drops, controlled by nr∗, and depletion of245

drops by collision with crystals, controlled by ni∗. The evolution equation of the system (Eq. 3.8)246

may be viewed as a special case of a more general equation, ṅi∗ = Q where Q = Q(ni∗,nr∗),247

with rain and ice concentrations being hypothetically ‘independent’ contributions to the forcing Q248

causing a response in ice concentration. The feedback strength has contributions from both pro-249

cesses: λ = dQ/dni∗ = ∂Q/∂ni∗+∂Q/∂nr∗dnr∗/dni∗ = λ1 +λ2 and with dnr∗/dni∗ expressing250

the linkage between rain and ice concentrations by the evolution equation for the drop deple-251

tion process. Considering Q = K̂nr∗ni∗, the feedback parameter thus has the two contributions,252

λ1 = ∂Q/∂ni∗ = K̂nr∗ > 0 measuring the feedback from splintering (a positive feedback) and253

λ2 = ∂Q/∂nr∗dnr∗/dni∗ = K̂ni∗× (−1) < 0 measuring the feedback from drop depletion (a neg-254

ative feedback). Thus, we arrive again at the same equation as above, λ = λ1+λ2 = K̂(nr∗−ni∗).255

The identified characteristics of the system is summarized in the phase-space of (nr∗, ni∗) in256

Fig. 2. Positive and negative feedbacks (λ > 0 and λ < 0 ) are realized over the regions of insta-257

bility and stability (separated by the thick line, ni∗ = nr∗), where splintering and drop-depletion258

feedbacks prevail respectively. The system travels along the trajectory (line with arrow, in which259

nr∗+ ni∗ = n0) from one equilibrium point that is unstable (nr∗ = n0) to the other that is stable260

(ni∗ = n0). While travelling along the trajectory, the system goes from the realm of instability261

(nr∗ > ni∗) to that of stability (nr∗ < ni∗).262

4. General Analysis263

When the general case with ĉ0 6= 0, ĉi 6= 0, εs 6= 0 is considered, a full analytical solution is no264

longer available, thus various asymptotic expansion methods are called for.265
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a. Feedback Analysis266

Probably the most useful starting point is to note that both the supercooled–drop and ice–particle267

number densities, nr∗ and ni∗, can evolve independently in absence of the drop freezing and the268

subsequent ice fragmentation. We may consider this as a leading–order behaviour of the system269

(Eq 2.4) by setting K̂ = 0:270

n
(0)
r∗ = (nr∗(0)−

ĉ0

εs
)e−εst∗ +

ĉ0

εs
, (4.1a)271

n
(0)
i∗ = ni∗(0)+ ĉit∗. (4.1b)272

273

The ice–fragmentation process is introduced as a process at O(K̂). Here, taking K̂ as a per-274

turbation parameter for the asymptotic expansion is merely a device for analytically inferring the275

behavior of the system. Recall that in fact, K̂ = 1 by definition. However, in this manner, we276

can investigate how the evolution of the system is modified in the presence of ice fragmentation.277

Physically, this amounts for investigating the feedback to the system due to a presence of ice278

fragmentation.279

Thus, a full solution may be approximately obtained by adding an O(K̂)–contribution to the280

above leading–order solution:281

nr∗ = n
(0)
r∗ + K̂n

(1)
r∗ , (4.2a)282

ni∗ = n
(0)
i∗ + K̂n

(1)
i∗ . (4.2b)283

284

The O(K̂)–equations are given by285

ṅ
(1)
r∗ =−n

(0)
r∗ n

(0)
i∗ − εsn

(1)
r∗ , (4.3a)286

ṅ
(1)
i∗ = n

(0)
r∗ n

(0)
i∗ . (4.3b)287

288

Here, note that the first term, n
(0)
r∗ n

(0)
i∗ , in the left–hand side of both equations represents the feed-289

back to the system due to the ice–fragmentation process. It may also be important to note that this290
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term is nonlinear, but sicne this term is given, the above equations can readily be transformed into291

an integral form292

n
(1)
r∗ =−e−εst∗

∫ t∗

0
n
(0)
r∗ n

(0)
i∗ eεstdt∗, (4.4a)293

n
(1)
i∗ =

∫ t∗

0
n
(0)
r∗ n

(0)
i∗ dt. (4.4b)294

295

By substituting the leading–order solutions (4.1a, b) into the above, and performing the integrals,296

we obtain297

n
(1)
r∗ = [

ĉ0

ε2
s

(ni∗(0)−
ĉi

εs
)− (nr∗(0)−

ĉ0

εs
)(ni∗(0)t∗+

ĉi

2
t2
∗)]e

−εst∗
298

−
ĉ0

ε2
s

[(ni∗(0)−
ĉi

εs
)+ ĉit∗], (4.5a)299

n
(1)
i∗ = (nr∗(0)−

ĉ0

εs

)
ni∗(0)

εs

(1− e−εst∗)300

+
ĉi

εs
(nr∗(0)−

ĉ0

εs
)[

1

εs
− (

1

εs
+ t∗)e

−εst∗]+
ĉ0

εs
(ni∗(0)t∗+

ĉi

2
t2
∗). (4.5b)301

302

We see that apart from the exponentially decaying tendency associated with the sedimentation, the303

feedback is merely algebraic with no obvious destabilization tendency to the system.304

The solutions may be further simplified by setting the initial condition to nr∗(0) = ĉ0/εs and305

ni∗(0) = 0:306

n
(1)
r∗ =−

ĉ0ĉi

ε2
s

[
1

εs
(e−εst∗ −1)+ t∗], (4.6a)307

n
(1)
i∗ =

1

2

ĉiĉ0

εs
t2
∗ . (4.6b)308

309

The solution by this feedback analysis would be indicative of the evolution of the system at onset310

of ice fragmentation. Note that the solution for nr∗ may further be approximated to311

n
(1)
r∗ ≃−

1

2

ĉiĉ0

εs
t2
∗ (4.7)312

to the limit of t → 0. We see that the dimensionless concentrations of rain water and ice crystals313

decrease and increase at the same rate, initially. This is consistent with the splintering positive314
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feedback of ice multiplication (noted above for the simplest system) being boosted by the rates315

of primary generation of crystals and drops, as well as by the fall-out time of drops being long316

(compared to the characteristic time for glaciation). Fall-out of drops has a damping effect on the317

splintering positive feedback.318

b. Taylor–Expansion Solution319

The feedback analysis of the last subsection suggests that the initial tendency of the system due320

to the ice fragmentation is merely algebraic. It further suggests that an exact initial tendency of the321

system may be obtained by directly applying the Taylor expansion to the solution. Thus, we set322

nr∗ =
∞

∑
j=0

nr∗, jt
j
∗, (4.8a)323

ni∗ =
∞

∑
j=0

ni∗, jt
j
∗. (4.8b)324

325

In substitution of these Taylor expansions into the original full equations (2.4a, b) leads to a solu-326

tion. In deriving the solution, we note particularly327

nr∗ni∗ =
∞

∑
j=0

[

j

∑
l=0

nr∗,lni∗, j−l

]

t
j
∗.328

With j = 0, we obtain329

nr∗,1 = ĉ0 − K̂nr∗,0ni∗,0 − εsnr∗,0, (4.9a)330

ni∗,1 = ĉi + K̂nr∗,0ni∗,0. (4.9b)331

332

Here, nr∗,0 and ni∗,0 are defined by the initial conditions. With j = 1, we further obtain333

nr∗,2 =−K̂(nr∗,0ni∗,1 +nr∗,1ni∗,0)− εsnr∗,1, (4.10a)334

ni∗,2 = K̂(nr∗,0ni∗,1 +nr∗,1ni∗,0). (4.10b)335

336
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In order to simplify the expressions, again, we set nr∗,0 = ĉ0/εs and ni∗,0 = 0. Then we obtain337

nr∗,1 = 0,338

ni∗,1 = ĉi,339

nr∗,2 =−K̂
ĉiĉ0

εs
,340

ni∗,2 = K̂
ĉiĉ0

εs

.341

342

Putting them together, the initial tendency of the solution is given by343

nr∗ =
ĉ0

εs

(1− K̂ĉit
2
∗)+ · · · , (4.11a)344

ni∗ = ĉi(t∗+
K̂ĉ0

εs
t2
∗)+ · · · . (4.11b)345

346

This solution (4.11a, b) may be compared with (4.7) and (4.6b) obtained in the last subsection. We347

see that the feedback analysis underestimates the effect of the ice fragmentation by half due to its348

perturbation treatment.349

c. Feedback Analysis with Distorted Physics350

A variation to the feedback analysis in Sec. 4.a is to differentiate the strength of the ice freezing–351

fragmentation to the hydrometeor types. Thus, we re–write Eqs. (2.4a, b) as352

ṅr∗ = ĉ0 − K̂1ni∗nr∗− εsnr∗, (4.12a)353

ṅi∗ = ĉi + K̂2nr∗ni∗. (4.12b)354

355

Here, we may artificially assume that the freezing fragmentation is negligible for the supercooled356

drops, thus K̂1 ≪ 1, and the effect of freezing–fragmentation is only felt by the ice particles to the357

leading order, assuming K̂2 = O(1). Thus, we solve the problem with the following asymptotic358
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expansion:359

nr∗ = n
(0)
r∗ + K̂1n

(1)
r∗ + · · ·360

ni∗ = n
(0)
i∗ + K̂1n

(1)
i∗ + · · ·361

362

Though such an assumption is hardly justified from a physical basis, this procedure provides a363

useful insight into the evolution of the system during ice fragmentation. For this reason, we shall364

call this method the feedback analysis with distorted physics.365

The leading–order solution for nr∗ is, thus, given by Eq. (4.1a), whereas we solve the full prob-366

lem for ni0∗ to the leading order:367

(
d

dt∗
− K̂2n

(0)
r∗ )n

(0)
i∗ = ĉi∗368

This equation is linear in respect to n
(0)
i∗ , and its solution can easily be written in an integral form:369

n
(0)
i∗ = [ni∗(0)+

∫ t∗

0
ĉi exp(−

∫ t ′∗

0
K̂2n

(0)
r∗ dt ′′∗ )dt ′∗]exp(K̂2

∫ t∗

0
n
(0)
r∗ dt∗)370

The second integral is readily performed and we obtain371

∫ t∗

0
n
(0)
r∗ dt∗ =

1

εs
(nr∗(0)−

ĉ0

εs
)(1− e−εst∗)+

ĉ0

εs
t∗372

However, the first integral373

∫ t∗

0
exp(−K̂2

∫ t ′∗

0
n
(0)
r∗ dt ′′∗ )dt∗ =

∫ t∗

0
exp[−

K̂2

εs
(n

(0)
r∗ (0)−

ĉ0

εs
)(1− e−εst∗)−

K̂2ĉ0

εs
t∗]dt∗374

is not readily integrable, thus we focus on the two limits, t∗ ∼ 0 and t∗ → ∞.375

(i) When t∗ ∼ 0, noting 1− e−εst∗ ≃ εst∗, the integral becomes376

∫ t∗

0
exp(−K̂2

∫ t ′∗

0
n
(0)
r∗ dt ′′∗ )dt∗ ≃

1

K̂2n
(0)
r∗ (0)

(1− e−K̂2n
(0)
r∗ (0)t∗),377

and the solution is378

n
(0)
i∗ ≃ (n

(0)
i∗ (0)+

ĉi

k̂2n
(0)
r∗ (0)

)eK̂2n
(0)
r∗ (0)t −

ĉi

k̂2n
(0)
r∗ (0)

. (4.13a)379
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(ii) When t∗ → ∞, the integral asymptotically approaches to:380

∫ t∗

0
exp(−K̂2

∫ t ′∗

0
n
(0)
r∗ dt ′′∗ )dt∗ →−

εs

K̂2ĉ0

exp[−
K̂2

εs

(n
(0)
r∗ (0)−

ĉ0

εs

)−
K̂2ĉ0

εs

t∗]+
1

K̂2n
(0)
r∗ (0)

,381

thus382

n
(0)
i∗ → (n

(0)
i∗ (0)+

ĉi

K̂2n
(0)
r∗ (0)

)exp[
K̂2

εs

(n
(0)
r∗ (0)−

ĉ0

εs

)+
K̂2ĉ0

εs

t∗]−
εsĉi

K̂2ĉ0

. (4.13b)383

It is seen that in both limits, the ice–crystal number increases exponentially with time when the384

decrease of supercooled drops by freezing is neglected.385

We now turn to O(K̂1) in order to see the modifications of the both particles numbers by the386

exponential ice–fragmentational multiplication:387

(
d

dt∗
+ εs)n

(1)
r∗ =−n

(0)
r∗ n

(0)
i∗ , (4.14a)388

(
d

dt∗
−

K̂2

K̂1

n
(0)
r∗ )n

(1)
i∗ =

K̂2

K̂1

n
(1)
r∗ n

(0)
i∗ . (4.14b)389

390

Though it is possible to explicitly write down the full asymptotic solutions for the same two391

limits as considered for the leading order, the expressions are lengthy, and not particularly illu-392

minating. For this reason, we focus on the case with nr∗(0) = ĉ0/εs and ni∗(0) = 0. Note that393

coincidentally, in this case, the two leading–order solutions (4.13a, b) agree. We also focus only394

on the most dominant exponential term in the solution of Eqs. (4.14a, b), neglecting the various395

exponentially–decaying terms that follow.396

After these simplifications, the first–order modification to the supercooled rain density, nr∗, due397

to the freezing is given by:398

n
(1)
r∗ =−

εsĉi

K̂2(K̂2ĉ0 + ε2
s )

e(K̂2ĉ0/εs)t∗ + · · · (4.15a)399

The result shows that as the first–order effect, collision freezing exponentially depletes the su-400

percooled water due to the exponential multiplication of ice. If this result is taken literally, the401

supercooled water would be completely depleted over a finite time. In reality, as the supercooled402
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water begins to deplete, the ice fragmentation also slows down, thus it is more likely that super-403

cooled water will be depleted in slower rate.404

In turn, the first–order modification to the ice–particle number is:405

n
(1)
i∗ =−

ĉ0ĉi

K̂2ĉ0 + ε2
s

[
K̂2

2 ĉ2
0 + ε2

s K̂2ĉ0 + ε4
s

εsK̂2ĉ0(K̂2ĉ0 + ε2
s )

+
ĉ0ĉi

K̂2ĉ0 + ε2
s

t∗]e
K̂2n

(0)
r∗ (0)t∗ + · · · (4.15b)406

We see the exponential ice multiplication tendency is first, suppressed by the constant factor (the407

first term), and further decreases linearly with time (the second term). Thus, the dominant expo-408

nential term becomes negative over a finite term, and the only remaining positive contributions are409

neglected exponentially–decaying terms. We interpret that the result suggests that though the ice410

multiplies with time, the growth is weaker than exponential.411

d. Asymptotic Tendency towards t∗ → ∞412

The analysis of the last subsection suggests (though it does not show) that the supercooled water413

would deplete with a rate slower than exponential, and also the ice multiplies by fragmentation414

with a rate slower than exponential. The most likely case is that the supercooled water decreases,415

and the ice particles increase both algebraically with time. Thus, to the asymptotic limit towards416

t∗ → ∞, we may set417

nr∗ ∼ nr∗0t−α
∗ , (4.16a)418

ni∗ ∼ ni∗0t
β
∗ . (4.16b)419

420

Here, both α and β are expected to be positive constants, and the symbol ∼ suggests that we are421

only concerned with the asymptotic tendency toward t∗ → ∞.422

Substitution of the asymptotic expressions (4.16a, b) into Eqs. (2.4a, b) leads to423

−αnr∗0t
−(α+1)
∗ ∼ ĉ0 − K̂ni∗0nr∗0t

−α+β
∗ − εsnr∗0t−α

∗ , (4.17a)424

βni∗0t
β−1
∗ ∼ ĉi∗+ K̂nr∗0ni∗0t

−α+β
∗ . (4.17b)425

426
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In order this asymptotic expression to be valid, the most dominant terms in terms of the power in427

t∗ must balance.428

In Eq. (4.17a), we find t
−(α+1)
∗ ≪ t−α

∗ ≪ t
−α+β
∗ , thus the dominant expected asymptotic balance429

is:430

ĉ0 − K̂ni∗0nr∗0t
−α+β
∗ ∼ 0. (4.18)431

This balance is achieved when −α +β = 0, or α = β . It may be important to note that in asymp-432

totic limit of t∗ → ∞, the equation for the supercooled rain number becomes quasi–stationary (i.e.,433

the temporal tendency in the left hand side does not contribute to the leading order), and also the434

sedimentation no longer plays a leading role (i.e., the 3rd term is the right hand side does not435

contribute to the leading order).436

By substituting α = β into Eq. (4.17b), we find437

βni∗0t
β−1
∗ ∼ ĉi∗+ K̂nr∗0ni∗0.438

Since the right hand side is positive definite, it must be balanced by a constant growing tendency439

of the ice number, thus440

β = 1,441

and also α = 1 as a result.442

Constants, nr∗0 and ni∗0, may be determined in a more straightforward manner by considering443

the conservation of the total particle number, which is obtained by taking the sum of Eqs. (2.4a, b):444

d

dt∗
(nr∗+ni∗) = ĉ0 + ĉi − εnr∗.445

As t∗ → ∞, nr∗ → 0, thus the above conservation law asymptotically approaches to446

ṅi∗ ∼ ĉ0 + ĉi. (4.19)447
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Substituting Eq. (4.16a) into Eq. (4.19) with β = 1, we immediately obtain ni∗0 = ĉ0 + ĉi. By448

further substituting this result into Eq. (4.18), we find nr∗0 = ĉ0[K̂(ĉ0+ ĉi)]
−1 Thus, the asymptotic449

solution towards t → ∞ becomes450

nr∗ ∼
ĉ0

K̂(ĉ0 + ĉi)
t−1
∗ , (4.20a)451

ni∗ ∼ (ĉ0 + ĉi)t∗. (4.20b)452

453

In the limit of the long time scale, the ice crystals multiply by fragmentation linearly with time454

at a rate defined by the sum of the supercooled–drop and primary–ice sources.455

Finally, the asymptotic solution becomes when dimensions are included:456

nr ∼
c0

K̂K(N′c0 + ci)
t−1, (4.20a)457

ni ∼ (N′c0 + ci)t. (4.20b)458

459

The definition of IE ratio, f ≡ ni ∗ (t∗)/ni ∗
(0) (t∗), is the ratio of the total ice concentration to460

the primary ice concentration. Thus it is a measure of the extent of secondary ice production.461

So in the general case, if ĉi is non-zero and t → ∞:462

f = (N′c0/ci +1)/(ni(t = 0)/(tci)+1)→ 1+N′c0/ci (1)463

The maximum IE ratio is approached on a timescale of ni(t = 0)/ci.464

Otherwise without continuous primary ice nucleation, ĉi = 0 implies:465

f (t)→ N′c0t/(ni(t = 0))466

taking the dimensional expressions for the source terms. Now there is no upper limit on the IE467

ratio, and it increases with time at a constant rate of N′c0/ni(t = 0).468
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The supercooled–drop number decreases only weakly with time at a rate ∼ t−1
∗ maintaining a469

quasi–stationarity with the generation rate balancing with the collision freezing rate. The rain470

sedimentation does not play a leading role.471

e. Perturbation Analysis472

Finally, the perturbation analysis considered in Sec. 3.b may also be performed for the full473

problem. However, the procedure is more involved with the fact that the source and the sink terms474

are involved in the full system, thus the total number density is no longer conserved, and it is no475

longer possible to invoke a simple constraint as Eq. (3.7). Instead, we have to consider explicitly476

the two perturbation equations for both n′r∗ and n′i∗:477

ṅ′r∗ =−(K̂ni∗+ εs)n
′
r∗− K̂nr∗n′i∗, (4.21a)478

ṅ′i∗ = K̂(ni∗n′r∗+nr∗n′i∗). (4.21b)479

480

The analysis of this system is further involved due to the fact that the linear operator in the right–481

hand side also evolves with time. However, the problem can be simplified, as implicitly assumed482

in Sec. 3.b, when the evolution of the reference state, (nr∗,ni∗), is considered much slower than483

that of the perturbations. In this case, the time derivative in the left–hand side may be replaced by484

an eigenvalue, λ , and the above problem reduces to that of finding the eigenvalues for the linear485

operator in the right hand side, which is determined from486

λ 2 − (K̂nr∗− K̂ni∗− εs)λ + K̂2ni∗nr∗− (K̂ni∗+ εs)K̂nr∗ = 0.487

Solving it for λ , we obtain the two eigenvalues (adding the subscripts 1 and 2 for distinction):488

λ1 =
(K̂nr∗− K̂ni∗− εs)

2
[1+{1+

4εsK̂nr∗

(K̂nr∗− K̂ni∗− εs)2
}1/2],489

λ2 =
(K̂nr∗− K̂ni∗− εs)

2
[1−{1+

4εsK̂nr∗

(K̂nr∗− K̂ni∗− εs)2
}1/2].490

491
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The first eigenvalue reduces to Eq. (3.8) in the limit of εs → 0, whereas the second reduces to492

λ2 = 0. The latter is simply interpreted as a manifestation of the conservation of the total particle493

number number (3.7).494

When a finite sedimentation rate (εs 6= 0) is considered, the threshold from the positive to neg-495

ative feedback for λ1 reduces by εs (i.e., bias towards a negative “feedback”). Thus, the neutral496

line shifts from ni∗ = nr∗ to ni∗ = nr∗− εs: the critical ice number density becomes smaller in the497

presence of sedimentation. Some examples of the neutral lines are plotted in Fig. 3a for selective498

sedimentation rates, εs. In the presence of sedimentation, however, the neutral line no longer sep-499

arates between the stable and the unstable regimes, but the stable regime upper left of the neutral500

line identified in Fig. 2 also destabilizes due to the second eigenvalue, λ2. Most importantly, in501

these general situations, the perturbation evolution of the system is no longer interpreted in terms502

of a single “perturbation” parameter, but the actual perturbation evolution is determined by a linear503

combination of two exponential tendencies characterized by two eigenvalues, sensitively depend-504

ing on the initial perturbation. Trajectories in the phase-space are shown in Fig. 3a for the special505

case of εs = 0 and ĉi = 0 by numerical integration of Eq (2.4), with primary ice only implicitly506

represented by an initial nonzero value of ice concentration, ni∗(t∗= 0) = 0.001. The simulations507

are integrated until t∗= 103.508

The evolution over time of the IE ratio, f , for the same trajectories is shown in Fig. 3b. Two509

stages of the glaciation are evident. First, there is the usual exponential growth of the ice concen-510

tration by an IE ratio of up to 103 in a dimensionless time of t∗ < 1-10. During this stage, the511

rain concentration is depleted almost to zero. If the integration of the corresponding dimensional512

equations were performed, this initial stage would correspond to the time-scale of explosive frag-513

mentation noted above of τ = 1/(K(ni(0)+nr(0)N
′)). Second, there is the subsequent exponential514

relaxation to the asymptotic solution when t∗ > 1-10, coinciding with a balance between supply515
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of fresh drops (ĉ0 > 0) and their depletion by fragmentation and collisions with ice splinters. In516

this second stage, the rain concentration decreases steadily, inversely proportional with time.517

5. Discussions518

a. Efficiency of the Ice Multiplication Processes519

Our theoretical investigation reveals that the ice multiplication by fragmentation of the freezing520

drops is not always as potentially effective as the two other ice multiplication processes examined521

by Yano and Phillips (2011), and Yano et al. (2016): Hallett–Mossop and ice–ice collision pro-522

cesses. As shown in the Appendix C of Yano and Phillips (2011), the ice multiplication rate by the523

Hallett–Mossop process is linearly proportional to the existing graupel number density. This leads524

to an exponential multiplication of ice with time, assuming that the system is in quasi–equilibrium525

between the ice particles and graupel, and also the supercooled cloud–droplets are re–adjusted to526

an equilibrium number as graupel sweeps them through as the latter falls. As carefully analyzed527

in Yano et al. (2011: see the Appendix especially), the ice multiplication by ice–ice collision is528

fundamentally nonlinear, being proportional to the square of the ice–number density. In the ideal-529

ized state with infinite water–vapor supply, this leads to an explosive increase of the ice number to530

infinity within a finite time.531

Compared to those rather strong multiplication tendencies found with these two processes, the532

ice multiplication by fragmentation of freezing drops often tends to be rather modest. This stems533

from the fact that this process relies on a number of supercooled drops available in the system,534

and it essentially limits the possible number of ice fragments that can be generated. When the535

ice fragmentation by freezing drops is considered in its isolation, as in Sec. 3, this conclusion536

is especially clear: the final total number of ice fragments found is simply N′nr(0)+ ni(0) with537

N = N′+ 1 the number of secondary ice fragments generated per freezing collision, and nr(0),538

ni(0) are the initial numbers of supercooled drops and ice crystals, respectively.539
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When both supercooled–water rain and primary–ice sources are added to the system, as in Sec. 4,540

the behavior of the system becomes more involved. However, in the limit of the long time–scale,541

the ice fragmentation number simply increases linearly with time by the rate that both supercooled542

water and primary ice are supplied. We see that such a multiplication tendency is, generally, much543

weaker than any of those found in Hallett–Mossop or ice–ice collision process.544

However, in some observational situations, fragmentation of freezing drops does become a pri-545

mary process of ice multiplication, especially when there is copious supercooled rain initially and546

temperatures are optimal. A case during the ICET is such an example.547

b. Comparison with the Observation548

A quantitative observational comparison with the present theoretical results is provided by Law-549

son et al. (2015), who present the measurements during ICET over U.S. Virgin Islands in July550

2011. Their flights measuring cloud properties were performed in ascending order so that a551

Lagrangian interpretation of data following the convective updrafts can be developed. The La-552

grangian interpretation would also be further facilitated by considering the ice–fragmentation pro-553

cess in its isolation as in Sec. 3.554

In this framework, the key conserved quantity is the total particle number with the supercooled555

drops multiplied by the fragmentation number per collision freezing. It also follows that the total556

water content, as a sum of liquid and ice, is also conserved. Hence, the scatter plots for liquid and557

ice values, both in terms of the number density and the water content would form a linear line with558

a negative slope. The scatter plots using the measurements for varying heights (temperature levels)559

averaged over various convective cores for both quantities in Fig. 4 clearly present a negative560

correlation both for the number density (a) and the water content (b), being consistent with the561

theory presented in Sec. 3, though the distributions are hardly aligned to any line.562
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The strong scatter may be understood by two reasons: 1) the plots are hardly form a single563

convective event, but a collection of many convective cores, though all of them are in similar564

regime; 2) the source and the loss terms for both liquid and ice, neglected in the theory, would not565

be negligible in practice. Considering those two caveats, these two scatter plots would rather be566

considered a good support for the idealized theory presented in Sec. 3.567

A rather surprising result from their data analysis is a fast glaciation process: they found that568

3–5 g m−3 supercooled liquid are almost all glaciated over 3 min time at an elevation of 1–1.5 km569

higher within an updraft core. Here, this rapid glaciation rate is easily explained by the theoretical570

analysis in Sec. 3. Note that the collision efficiency is defined by571

K = πr2
dvT572

in terms of the radius, rd , of the supercooled drops, and the differential vertical velocity, vT ,573

between the supercooled drops and ice crystals. Assuming, rd ∼ 102 µm∼ 10−4 m, vT ∼ 1 m/s,574

we obtain575

K ∼ r2
dvT ∼ 10−8 m3/s576

Also setting nr ∼ 1 cm−3 ∼ 106 m−3, N′ ∼ 1, the characteristic glaciation rate is estimated by577

N′Knr ∼ 10−1 1/s,578

and the characteristic time scale is τ ∼ 10 sec by following the definition (3.5). Noting from579

Fig. 1 that it typically takes about ten characteristic time scales for completing the glaciation, a580

time required for completing the glaciation is also only 102 sec, being fairly comparable with the581

observational estimate of 3 min.582

c. Asymptotic Expansion Approaches583

The present study has employed various asymptotic–expansion methods in order to elucidate584

the basic behavior of the system for ice fragmentation by collision freezing of supercooled drops.585
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Here, we emphasize that not all the asymptotic solutions presented herein are equally useful. Some586

of them are not precise even in asymptotic sense, but merely for providing qualitative insights.587

Nevertheless, they help to identify more rigorous methods for deriving more precise solutions.588

For example, the feedback analysis in Sec. 4.a suggests the initial tendency of the system is alge-589

braic in time, that further motivates us to determine the exact initial tendency by the Taylor expan-590

sion method (Sec. 4.b). Though the exact Taylor–expansion result demonstrates that the feedback591

analysis halves the initial parabolic tendency, at the same time, without support of the feedback592

analysis, the Taylor–expansion solution is justified only in a strong limit of t → 0, because in593

general, the presence of an exponentially growing tendency invalidates the Taylor–expansion so-594

lution very rapidly in time. Another example is an approach of distorted physics considered in595

Sec. 4.c. Again, though this analysis is not quantitatively accurate, the result suggests to consider596

an algebraic tendency of the solution in the long time–scale limit, as considered in Sec. 4.d.597

Asymptotic analyses presented herein are hardly exhaustive either, because some asymptotic598

analyses are not particularly illuminating. For example, it is possible to consider the modification599

of the solution presented in Sec. 3 by adding the sources, ĉ0 and ĉi, as perturbation terms. However,600

such an analysis hardly elucidates a rather drastic change of the system behavior by adding finite601

sources, as considered in Sec. 4.602

Some of the analyses turn out to be rather subtle. For example, an alternative feedback analysis603

by another assumption of distorted physics, K̂2 ≪ K̂1 ∼ 1, may also be considered. In this case, the604

system exponentially approaches new equilibrium states up to first order. Yet it is rather difficult605

to draw any physically meaningful conclusions from this solution.606

d. Stochasticity of the Ice Fragmentation Process607

Finally, we should keep in mind that the fragmentation number, N′, of ice per collision freezing is608

not a fixed number even when a collision between a drop and an ice particle with fixed diameters609
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is considered. One reason is that the number of fragments per spherically frozen drop (mode610

1) varies by orders of magnitude depending on temperature. Vertical motions due to sloped in-611

cloud drafts combined with sedimentation create variability of the ambient temperature. Equally,612

even for identical conditions of freezing temperature and drop size, the number of drop fragments613

varies dramatically from drop to drop. Macroscopically, it may be assumed to be probabilistic.614

Kolomeychuk et al. 1975 observed that about 10% of all drops in their experiment (1.6 mm)615

emitted about 90% of all the detected splinters. Considering only drops freezing between -15◦C616

and -18◦C, 90% of the splinters were from a third of the drops.617

Details of the collision process are complex for the most purposes of cloud microphysical mod-618

eling, and the outcome of the fragmentation number by collision freezing may simply be consid-619

ered a random number (cf., Kolomeychuk et al. 1975). As a result, the ice fragmentation may be620

considered a stochastic process. This is an aspect, where further investigation may be warranted.621

Here, we present short general theoretical observations for facilitating further studies.622

As a whole, the contribution of stochasticity would also be best understood by adding this com-623

ponent as a perturbation, say, δN′. In the general case considered in Sec. 4, under the asymptotic624

limit to the long time scale, the ice–particle number, ni, asymptotically evolves solely depend-625

ing on the strength of the two hydrometeor sources. This asymptotic tendency is not affected,626

even when the fragmentation number fluctuates randomly. The latter effect only affects the time627

evolution of the supercooled–drop number, nr. It can be shown that the resulting fluctuation, n′r,628

is dictated by a Brownian motion induced by white noise, δN′, under a linear drag with a drag629

coefficient linearly increasing with time.630

On the other hand, when the ice fragmentation process is considered in isolation, as in Sec. 3, we631

find that stochastic fluctuations, δN′, of fragmentation induce multiplicative noise. As found the632
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case for an analogous problem with ice–ice collision multiplication by Yano and Phillips (2016),633

this multiplicative noise process may contribute to the whole system in a nontrivial manner.634
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FIG. 1. Time evolution of the particle number densities with various initial conditions when the ice–

fragmentation process is considered in its isolation: for (a) supercooled drops, nr∗, and (b) ice crystals, ni∗.

All the variables are nondimensionalized as described in the text.
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FIG. 2. The stability characteristics of the system when no source and sink is considered as in Sec. 3.
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FIG. 3. The stability characteristics of the system in the general case: shown are the neutral lines with selective

choice of the sedimentation rates: εs = 0 (solid), 0.25 (long dash), 0.5 (short dash), and 0.75 (chain dash). Note

that in the general case, the system is unstable at both sides of the neutral line, with a weak instability to the

upper left of the neutral line when the sedimentation effect is small. Some examples of trajectories are also

shown based on the asymptotic solution (4.20) with ĉ0 = 10−1 (blue), 10−2 (green), and 10−3 (red): the system

evolves in the direction of decreasing nr∗ and increasing ni∗.
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FIG. 4. Scatter plots between the liquid and the ice values observed during the ICE–T campaign. The values

marked by + symbol are measurements for updraft cores: (a) particle number density (1/cm3), (b) water content

(g/m3). Data is from Table 1 of Lawson et al. (2015).
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