

A Deep Learning based Framework for UAV Trajectory Pattern Recognition

Xingyu PAN Pascal DESBARATS Serge CHAUMETTE

Context

Motivation

- **3D environment perception by autonomous system** (swarm of drones)
- Intelligent supervision of UAVs for public and military security
 - Mission recognition
 - Abnormal behaviors supervision
 - UAV & non-UAV object detection

Similar study:

Object detection & shape analysis based on CNN (Coluccia, *et al.* 2017)

BRI

UAV Trajectory pattern recognition

Convolutional neural networks

(Krizhevisky et al. 2012, Szegedy et al. 2015, Simonyan and Zisserman 2015, He et al. 2016)

Trajectory data \rightarrow Trajectory image Trajectory pattern recognition \rightarrow image classification

LaBRI

Drone?

Mission?

Normal behavior?

Context

Problems & references

Trajectory images of moving objects

Simple spatial trajectories

Migrant animals (Wang 2016)

Trajectories with grid intensity according to speed

Transportation modes (Endo et al. 2016)

Pretend game players (Singh et al. 2016)

Multi-object trajectories

Context

Problems & references

- Sketch-like data recognition
 - Sketch databases:

TU-Berlin (Elitz *et al.* 2012) *Sketchy* (Sankoly *et al.* 2016)

Sketches

Photos

Open set recognition

- 1-vs-rest SVM
- Extension of softmax (Bendale et E. Boult 2016)

*Data acquisition & preprocessing considered to be ideal

Lack of real labeled data

Synthetic data generation using *dh DRONE* HARMONY

- Synthetic 3D scenes with real GPS coordinates
- Predefined missions
- Automatic trajectory simulation

OpenStreetMap

Create target Buildings / terrains

Set mission Set parameters

Export waypoints (.csv)

Scene 1: Talence campus

LaBR

2 scenes: Talence campus, Bordeaux city center

- **5 classes** (predefined missions)
 - Façade inspection (fcd)
 - Tower inspection (hlx)
 - Orbit mapping (obm)
 - Side inspection (per)
 - Top-down mapping (tdm)

Scene 2: Bordeaux city center

3D GPS waypoints \rightarrow **2D Trajectory images**

- **1-channeled XY images** (grayscale, intensity according to altitude)
- 3-channeled XYZ images (color, superposed 3 planes)

Data of known classes

Random unknow data

Data augmentation

- Rotation
- Horizontal / vertical flip
- Background noise
- Swirl distortion
- Random erasing

Database simTrj (simulated trajectories)

- 6 classes (including random unknown trajectories)
- **3908** images
 - 1954 XY-images
 - 1954 XYZ-images

Deep learning methods

Deep network architecture

- Performant & light network
 - Small database
 - Hardware constraint (1 GPU)

AlexNet (Krizhevisky et al. 2012)

Deep learning methods

Deep framework: Caffe (GPU acceleration)

AlexNet

SkalexNet (Adaption of AlexNet to sketches)

Remove Local Response Normalization (LRN) layers

Deep learning methods

Unknown trajectories

- N+1 multiclass classification
 - Train and test unknown trajectories as a new class (rnd)

1-vs-rest classification

- N binary classifiers trained by known trajectories
- Only test data including unknown trajectories

LaBR

Experiments

- 4 subsets of simTrj database
 simTrj2gray: 1604 XY-images, 5 classes
 simTrj2color: 1604 XYZ-images, 5 classes
 simTrj3gray: 1954 XY-images, 6 classes
- *simTrj3color:* 1954 XYZ-images, 6 classes

Sketchy0

- preselection of *Sketchy* database (Sankoly et al. 2016)
- 4184 trajectory-like sketches
- Convolutional networks (AlexNet & SkalexNet)
- Training from scratch
- Classic layer settings
- Experimental hyperparameters

Sketchy0

Results

Multiclass classification

Database	N. class	N.train	N.test	AlexNet	SkalexNet
SimTrj2gray	5	1000	604	98.5%	98.8%
SimTrj2color	5	1000	604	99.2%	99.5%
SimTrj3gray	6	1200	754	97.8%	97.5%
SimTrj3color	6	1200	754	98.4%	98.6%
Sketchy0	7	3500	684	98.3%	98.9%

XYZ-images > XY-images (slightly)

SkalexNet > AlexNet (slightly)

- 1-vs-rest classification (simTrj3color)
- 200 positives vs. 200 negatives for each classifier training
- UAV vs. non-UAV detection:

Overall accuracy: 95.4%, UAV accuracy: 97,6%, Precision: 99.5%, recall: 85.6%

Confusion matrix

Multiclass classification (*simTrj3color*)

	fcd	hlx	obm	per	tdm	rnd
fcd	99,06 %	0,00 %	0,00 %	0,00 %	0,94 %	0,00 %
hlx	0,00 %	99,09 %	0,00 %	0,00 %	0,91 %	0,00 %
obm	0,87 %	0,00 %	94,78 %	2,61 %	0,87 %	0,87 %
per	0,00 %	0,00 %	0,00 %	100,00 %	0,00 %	0,00 %
tdm	2,19 %	0,00 %	0,73 %	0,00 %	97,08 %	0,00 %
rnd	1,33 %	0,00 %	0,67 %	0,00 %	0,00 %	98,00 %

1-vs-rest classification (simTrj3color)

	fcd	hlx	obm	per	tdm	rnd
fcd	98,67 %	0,00 %	0,00 %	0,00 %	0,67 %	0,67 %
hlx	0,00 %	100,00 %	0,00 %	0,00 %	0,00 %	0,00 %
obm	0,00 %	0,00 %	94,67 %	0,00 %	4,67 %	0,67 %
per	0,67 %	0,00 %	0,00 %	94,67 %	1,33 %	3,33 %
tdm	0,00 %	0,00 %	0,00 %	0,00 %	100,00 %	0,00 %
rnd	0,29 %	0,00 %	0,00 %	0,00 %	36,86 %	62,86 %

Most confusing class: top-down mapping (tdm)

Great global intraclass variability

- Class tdm featured by XY-undulation patterns
- Undulation location according to distribution of targets
- Undulation density according to relative altitude

Supplementary experiments

- **One-target inspection**
- Mission on one target
- No trajectories between targets

Databases	AlexNet	SkalexNet
simTrj2OT	100.0%	100.0%
simTrj3OT	99.5%	100.0%

**simTrj2OT:* one-target XY-trajectory images *simTrj3OT:* one-target XYZ-trajectory images

LaBR

Supplementary experiments

- One camera acquisition
 - 2D view from a fixed angle
 - Not perpendicular to XY, YZ or XZ plans

Databases	AlexNet	SkalexNet
simTrj3d1	96.7%	96.7%
simTrj3d2	98.7%	98.2%
simTrj3d3	97.6%	97.9%
simTrj3color	98.4%	98.6%

*simTrj3dx: trajectory 2D projections with a certain angle

Conclusion and future work

Contributions

First work on UAV mission recognition based on trajectories

- Synthetic UAV trajectory database
- Adapted and light deep network for sketch-like data
 - AlexNet based architecture
 - Removing LRN increases speed & accuracy

X. Pan, P. Desbarats, S. Chaumette, A Deep Learning Framework for UAV Trajectory Pattern Recognition, IPTA 2019, Istanbul

LaBR

Conclusion and future work

Future work

- Database extension
 - More simulated trajectories
 - More classes
 - New image representation
 - Real database acquisition
- More complicated deep networks
 - Deeper networks
 - Implementation of open set recognition on output layer
- Trajectory prediction
- Multi-trajectories for MAS (Multiple Agent System)

