
HAL Id: hal-02395872
https://hal.science/hal-02395872v1

Submitted on 5 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Deep Learning based Framework for UAV Trajectory
Pattern Recognition

Xingyu Pan, Pascal Desbarats, Serge Chaumette

To cite this version:
Xingyu Pan, Pascal Desbarats, Serge Chaumette. A Deep Learning based Framework for UAV Trajec-
tory Pattern Recognition. International Conference on Image Processing Theory, Tool & Applications,
Nov 2019, Istanbul, Turkey. �hal-02395872�

https://hal.science/hal-02395872v1
https://hal.archives-ouvertes.fr

A Deep Learning based Framework for UAV
Trajectory Pattern Recognition

Xingyu PAN
Univ. Bordeaux, CNRS, Bordeaux INP

LaBRI, UMR 5800
F-33400, Talence, France

xingyu.pan@labri.fr

Pascal Desbarats
Univ. Bordeaux, CNRS, Bordeaux INP

LaBRI, UMR 5800
F-33400, Talence, France
pascal.desbarats@labri.fr

Serge Chaumette
Univ. Bordeaux, CNRS, Bordeaux INP

LaBRI, UMR 5800
F-33400, Talence, France
serge.chaumette@labri.fr

Abstract—Recognizing the trajectory patterns of Unmanned
Aerial Vehicles (UAV) allows to identify their missions also to
detect abnormalities for intelligent supervision. To take advantage
of the developments of deep learning on image classification,
we proposed a method that converts 3D trajectory data into
2D images and trains a deep network adapted to sketch-like
images. We achieved a promising recognition rate of 99.5% on
the database of simulated UAV trajectory images.

Keywords—pattern recognition, Unmanned Aerial Vehicles
(UAV), trajectory, deep learning

I. INTRODUCTION

Unmanned Aerial Vehicles (UAV), also known as drones,
are widely used in a variety of civil and military missions.
Meanwhile, increasing misuses of UAVs challenge public
and military security. It is therefore important to develop
an intelligent system to detect and supervise UAV missions
since a similar human process has multiple limitations such as
cost, tiredness and accuracy. To address this problem, several
solutions were proposed in 2017 in ShafeShore ”bird-vs-drone
challenge” to distinguish UAVs from birds in video records.
Most approaches using deep learning for object detection are
based on the assumption that UAVs and birds have different
shapes [1]. However, this assumption is not always true.
Furthermore, simply detecting the shape of a UAV is not
enough to analyze its behavior, which is required for intelligent
supervision. In this paper, instead of detecting UAV by its
shape, we recognize UAV missions by using trajectory data
with a deep learning framework. Notice that in real life the
end-to-end pipeline contains trajectory acquisition, reconstruc-
tion and recognition. Here we mainly focus on the recognition
phase.

Our contributions can be summarized as follows:
- It is the first study to recognize UAV mission patterns

based on trajectory data.
- We proposed methods to represent 3D-space trajectory

data in 2D images so as to reduce data and to transfer the
problem into image recognition; we also build a database of
simulated trajectory images.

- We proposed an adapted and light deep learning method
to recognize sketch-like trajectory images resulting from the

above 3D to 2D conversion with very promising and interest-
ing results.

A. Related work

Trajectory data mining has been a hot topic for many
years. Object movement trajectories are often considered as
sequential or spatio-sequential patterns [2]. Therefore, Recur-
rent Neural Networks (RNN) and Long Short-Term Memory
(LSTM) models are widely studied in various applications for
tracking and prediction [3] [4]. However, in our context we
focus on spatial patterns of trajectory data because: first, a
UAV mission (exploitation, delivery, etc.) is usually associated
to a completed trajectory from taking off to landing; second,
spatial patterns in form of images are ideal data to take
advantage of the great performance of Convolutional Neural
Networks (CNN) as used in computer vision. We call image
representation of trajectory data in terms of trajectory images.
Recently, more and more trajectory images are used to classify
diverse moving objects, such as migrant animals [5], game
players [6] or urban transportation modes [7], but not yet for
UAVs. A trajectory image can be binary, simply containing
sparse or connected coordinates, or using grayscale or color
to encode more information. For example, Endo et al. used
intensity to present moving speed, according to the numbers
of GPS records within a grid [7]; Singh et al. employed
two colors to represent a pair of trajectories [6]; Yang and
Gidofalvi encoded directional information of a trajectory set
by multiple channelled images [8]. Despite different image
generation methods, trajectory images are like sketches with
abstract features. Compared to textural photos as in ImageNet
and to binary characters as in MNIST, sketch-like images have
neither texture nor color block.

Since 2012 CNN-based architectures have dramatically im-
proved the performance of image recognition notably in the
competition of ImageNet, but most deep learning models are
designed for images with rich textural information [9]. For
free-hand sketch recognition, Eitz et al. built TU-Berlin sketch
database and investigated classic object recognition methods
by extracting local features [10]. In addition, Sangkoly et al.
proposed Sketchy database which is the first large scale col-
lection of sketch-photo pairs for sketch-based image retrieval
as well as sketch recognition [11]. With the development978-1-7281-3975-3/19/$31.00 ©2019 IEEE

of CNN in recent years, deep networks and their variations
are investigated to improve the accuracy of sketch recogni-
tion. Yu et al. used a customized CNN architecture called
Sketch-a-Net which beat the human recognition rate of 73%
on TU-Berlin database [12]. By using a residual network,
Sedatti et al. achieved an accuracy of 79% on TU-Berlin
benchmark and a success rate of 93% for sketch retrieval on
Sketchy database [13]. Larger filters, larger pooling size, higher
dropout and removing Local Response Normalization (LRN)
are empirical measures to increase performance and to reduce
computational cost for sketch-like images.

B. Reminder of the paper

The rest of the paper is organized as follows: Section II
describes the data preparation including trajectory simulation,
class definition and image generation. Section III presents our
CNN-based approaches adapted to UAV trajectory images.
Section IV shows different experiments carried out on our
trajectory database and similar sketch database, and analyzes
the results. In the final section, conclusions and perspectives
are drawn.

II. DATA PREPARATION

A. Trajectory simulation

Collecting a large UAV trajectory database and annotating
with mission-based categories is a complex job. Thanks to
Drone Harmony (DH)1, a drone data capture tool with a
mission planner, we are able to simulate UAV missions on
synthetic scenes. During the simulation, a series of GPS
waypoints are generated in an automatic way by selecting a
predefined mission. Thus, by exporting generated waypoints,
we can obtain simulated trajectories labeled by mission.

Instead of using fully unreal scenes, we created at first
two synthetic scenes, Bordeaux city center and campus of
University of Bordeaux (see Fig. 1), with almost real GPS
coordinates powered by OpenStreetMaps, in order to guide a
drone to fly in corresponding real areas in the future. Then we
chose a predefined category of DH mission planner to simulate
a UAV missions. Among all predefined mission categories, we
preselected 5 classes with typical flying patterns as follows:

- Facade inspection (fcd): mission for photometry and
close-up inspection of walls that have high 3D detail, such
as balconies or sculptures. The trajectory could go either
horizontally or vertically.

- Helix tower inspection (hlx): mission mainly for inspecting
and collecting data around single tall structures, for example
cell phone towers. The trajectory is characterized by spiral
movement.

- Orbit mapping (obm): mission for generating 3D models
of large structures as well as accurate point clouds of terrain.
The trajectory is featured by overlapped loops.

- Perimeter (per): mission for capturing one or more struc-
tures from the sides. The trajectory could follow the outline

1https://droneharmony.com

of the targets or use approximation perimeters like circles,
ellipses or convex hulls.

- Top-down mapping (tdm): mission for creating orthomo-
saics of mostly flat structures. The trajectory is mainly featured
by its sinusoidal undulation.

Fig. 1. Synthetic scenes of Bordeaux city center (left) and campus of
University of Bordeaux (right)

B. Image generation

The exported trajectory data consists of ordered GPS way-
points given by P = {pi}Ni=0, where N denotes the number of
total waypoints in the trajectory. Let pi(xi, yi, zi) be a given
point in a 3D space where xi, yi and zi represent respectively
its latitude, longitude and altitude. Assuming that a trajec-
tory pattern depends on the relative positions of waypoints
rather than absolute GPS locations, we normalize absolute
GPS values of each axe between 0 to 255. The normalized
trajectory is denoted by P̂(X̂, Ŷ, Ẑ). In the previous studies
of trajectory images, trajectories are always plotted on a
plane perpendicular to the ground. However, altitude variations
cannot be overlooked for UAVs. Since using 3D representation
is resource consuming, here we proposed two methods to
generate 2D images from the normalized trajectories.

1) 1-channelled XY-images: according to our observation,
in most cases UAV movements on XY-plane are more dom-
inant than on other planes. We plot (X̂, Ŷ) of P̂ into the
image IXY of 256 × 256 pixels. Each normalized waypoint
p̂i(x̂i, ŷi, ẑi) indicates a trajectory pixel at the position (x̂i, ŷi)
in IXY . As familiar with black sketch on white paper, we set
background as white and intensity of trajectory pixels from
255 to 0 inversely proportional to ẑi. Instead of plotting only
scattered GPS records, we connect adjacent trajectory pixels
with linear transitional intensity. Thanks to the normalization
step, all trajectories are centred in the image with the same
size. Examples are shown in Fig. 2 (top).

2) 3-channelled XYZ-images: to make each axe presents
equal information, we plot successively three planes (XY,
YZ and YZ) into the same image IXY Z of 256× 256
pixels and separate them by different colors. For example,
we keep using black for XY-trajectory, then use red and blue
for YZ-trajectory and XZ-trajectory, respectively. Since the
information of all planes is included, we do not need to vary
intensity to add redundancy. Hence IXY Z is composed of three
superposed trajectory projections in constant colors. Examples
are shown in Fig. 2 (bottom).

Fig. 2. Examples of trajectory images (top: 1-channelled XY-images; bottom: 3-channelled XYZ-images)

Notice that the trajectory generation of DH mission planner
is not fully automated. Manual input of a bunch of parame-
ters (UAV model, relative altitude, overlap percentage, etc.)
is necessary for each simulation. In consequence, creating
thousands or more trajectory images in the same way becomes
extremely tedious. Hence we performed data augmentation to
obtain enough adequate data for deep learning. We proposed
basic transformations including rotation, horizontal or vertical
flip, swirl distortion, background noise and partial erasing. We
randomly applied one or multiple above transformations to
generate different noise degrees. Fig. 3 shows XY-trajectory
examples created by data augmentation from one DH simu-
lated trajectory.

C. Unknown trajectories

In real applications not all input trajectories belong to the
limited number of predefined classes. It is therefore important
to detect unknown trajectories produced by UAVs flying in
unrecognizable ways, or by other flying objects like birds.
Currently without acquisition or simulation for such unknown
trajectories, we created stochastic trajectories as noise data in
the following way.

Given P{(xi, yi, zi)}Ni=0, we set N as an random integral
between 10 and 30, then make xi, yi and zi vary randomly
between 0 and 255. Stochastic trajectory images were gen-
erated in both methods that we proposed. Those stochastic
trajectories are labeled as random rnd (see Fig. 2).

D. Data summary

Finally, we created 3904 trajectory images in total: half
are 1-channeled XY-images and half are 3-channeled XYZ-
images. Each image type contains 1954 trajectories including
1604 known trajectories partitioning into 5 categories, and
350 unknown stochastic trajectories. Among those known
trajectories, 104 images are generated by DH simulation and
the rest are created by data augmentation. Data distribution

is quasi-equal with about 320 images per known class. We
named this database simTrj, short for simulated trajectories.

Fig. 3. Original 1-channelled XY-trajectory image (in blue) and examples
generated by data augmentation (in red)

III. DEEP LEARNING METHODOLOGY

In this section we introduce our CNN architecture adapted
to trajectory images. A general structure is composed of
convolutional, pooling and fully connected layers. In spite of
the developments of deep learning so far, it remains an open
question how to design the entire architecture for a specific
visual recognition task. Based on the state of the art to similar
data and on our experiments, AlexNet appears to be the most

suitable baseline architecture for our context rather than other
deeper networks. According to our tests, similar to Sketch-a-
Net, removing LRN layers tends to augment performance on
our trajectory images. However, other proposed improvements
in Sketch-a-Net such as using larger filters or larger pooling
size tend to decrease the accuracy. We call our network
SkalexNet since it is a modified version of AlexNet designed
and tuned for sketch-like trajectories.

In our context, recognition of unknown trajectories is as
important as classification of known patterns. Intuitively, the
softmax output describes categorical probability distribution.
We may think in a native way to treat softmax output as
kind of confidence score. Hence even if the test sample is
predicted as one of the training classes, it will be considered as
unknown if the corresponding softmax output below a certain
threshold. However, previous studies have already pointed
out that this naive approach is not robust to imperceptible
perturbations [14]. Therefore, we proposed two approaches to
deal with unknown trajectories based on our deep network
models.

A. Multiclass classification

In this approach, we consider all unknown trajectories
belonging to a novel class rnd and train a traditional multiclass
classifier. Having N known classes, the outputs of the network
is N+1. Stochastic trajectories in the simTrj database are also
used for supervised learning. This approach can be used in
condition that we have enough unknown data which are totally
random but discriminant compared to all known classes.

B. One-vs-rest classification

One-vs-rest classification consists of N separate binary
classifiers. Each class is used as positive training data for
one time and other classes as negative ones. After training
the separated networks, we apply N classifiers to a test
sample and predict it according to the classifier which gives
a positive response with the highest confidence score. If all
classifiers reports negative response, the sample should out of
the known classes. We assume that the negative training data
from other known classes are random enough to provide a
robust discriminator for a given class. The principal advantage
of this approach is no need of learning ”out-of-set” data.
Although it is computationally costly, only training limited
classifiers is acceptable in practice.

IV. EXPERIMENTS AND RESULTS

A. Experiments

In this section, we evaluated our methods on the database
simTrj. We chose Caffe (Convolutional Architecture for Fast
Feature Embedding) as deep learning framework since it is
easy to code and supports GPU acceleration [15]. AlexNet
and SkalexNet, the variation of AlexNet for sketch-like images
by removing LRN layers, were tested. To achieve the best
performance, hyperparameters of networks should be tuned
carefully and empirically. Concretely, using Stochastic Gradi-
ent Descent (SGD), we set training batch size as 35, learning

rate starting from 0.001 then reducing gradually with a step of
2500 iterations. We trained the whole network from scratch.

We started from multiclass classification on different
datasets. Datasets simTrj2gray and simTrj2color, for 1-
channelled XY-images and 3-channelled XYZ-images respec-
tively, contain only images of 5 known classes, while datasets
simTrj3gray and simTrj3color include stochastic trajectories in
addition. For each dataset, we used 200 images per class as
training set and all the rest as test set. Cross validation was
proceeded for all datasets.

Then, we performed one-vs-rest classification 5 times for
every known class. Even having more negative samples than
positive ones, we still chose randomly 200 per class training
data (400 in total) and put all the rest as test data. Stochastic
trajectories are unlabeled test data not used for training process
but for testing trained models.

At last, we tested the same networks on the Sketchy0
database, a preselection of Sketchy database containing 4184
freehand sketches in 7 classes (apple, bottle, cup, fish, pear,
sword and teapot). The goal is to check the generalizability
of our networks on similar data. We intentionally preselected
trajectory-like sketches, so sketches with complicated and triv-
ial details were not considered. Notice that interclass similarity
of Sketchy0 is relatively high even for human recognition (see
Fig. 4). For experiments, we divided the Sketchy0 database
into 3500 training data (500 per class) and 684 test data.

Fig. 4. Examples of similar sketches: apple, pear (left); pear, bottle (right)

B. Results

The current results summarized in Table I are quite promis-
ing. By training from scratch we achieved an accuracy of more
than 97% for all tests. For 5 known classes of simTrj, the
best result we obtained is 99.5% by using SkalexNet on 3-
channelled XYZ images. In general, SkalexNet outperformed
traditional AlexNet, which shows that LRN layer in the classic
CNN architecture for brightness normalization is not effective
for sketch-like images. In addition, we can see that XYZ-
images are generally better than XY-images. It is logical
because XYZ-images contain more altitude information than
XY-images, especially for class fcd and hlx.

Notice that all reported results are average values obtained
by cross validation. We do observe under some training-test
divisions, using AlexNet or XY-images may obtain higher
accuracy than using SkalexNet and XYZ-images. Moreover,
even for given training and test data, the results may vary
within a small range for the same test due to random process
of computation. An example of learning curve is shown in
Fig. 5.

TABLE I
RESULTS ON DIFFERENT DATASETS OF simTrj AND ON Sketchy0

Database N. class N.train N.test AlexNet SkalexNet
SimTrj2gray 5 1000 604 98.5% 98.8%
SimTrj2color 5 1000 604 99.2% 99.5%
SimTrj3gray 6 1200 754 97.8% 97.5%
SimTrj3color 6 1200 754 98.4% 98.6%
Sketchy0 7 3500 684 98.3% 98.9%

Fig. 5. Learning curve of SkalexNet on simTrj2color

To see which classes are more easily confused with others,
we computed the confusion matrix denoted by Mc. The
diagonal of Mc represents correct classification rate and all
values outside the diagonal represent false recognition rate.
Table III and Table II show respectively Mc obtained by
multiclass classification and by one-vs-rest classification, us-
ing skalexNet on dataset simTrj3color. Interestingly, for the
one-vs-rest classification, more than one third of stochastic
trajectories are wrongly recognized as the class tdm (top-down
mapping). However, for multiclass classification including the
class rnd, confusions between classes are very few. We would
like to say that the multiclass classification do find a decent
discrimination between tdm and rnd, while the one-vs-rest
classifier for tdm is not enough to discriminate top-down
trajectories from random ones.

TABLE II
CONFUSION MATRIX OBTAINED BY MULTICLASS CLASSIFICATION

The problem may be caused by our data. We hoped that
every one-vs-rest classifier extracts the most discriminant
features for the corresponding class, but we observed that top-
down mapping trajectories have a higher interclass variability
than ”stochastic” ones. Precisely, overall top-down trajectories
may be totally unlike if one or more factors (relative altitude,

TABLE III
CONFUSION MATRIX OBTAINED BY ONE-VS-REST CLASSIFICATION

overlap rates, one target or several sparsely distributed targets,
etc.) are changed. On the contrary, our ”stochastic” trajec-
tories in form of random polylines share obvious intraclass
similarities even though we attribute random values to number
and positions of waypoints. Moreover, human can quite easily
recognize a top-down mapping by its symbolic XY-undulation
patterns, but for deep networks it is closer to a real random
class than our ”stochastic” trajectories. To verify this obser-
vation, we tested several bird migrant trajectories (see Fig. 7)
on the 6-class well-trained model. Not surprisingly, most of
them were recognized as the class tdm instead of rnd.

Fig. 6. Interclass variability of top-down mapping trajectories (XYZ-images)

Fig. 7. Examples of migrant trajectories of birds (XY-images)

C. Discussion

According to the results, even the overall accuracy is quite
encouraging, detection of unknown samples especially among
the confusing top-down mapping trajectories remains a great
challenge.

1) Trajectories vs. freehand sketches: despite of similarities
between trajectory images and sketches, there are still some
differences between them for recognition tasks. Only for
databases simTrj and Sketchy0 used for experiments, trajecto-
ries are intuitively less ambiguous than sketches for human
recognition by its symbolic patterns that we described in
the Section II. According to our observation, sketches are
mainly depicted by global features while certain trajectory
patterns are characterized by local features. For example, it
is hard to recognize an apple only from a leaf-like drawing,
because it may be a leaf of an apple, or a fish fin, but all
apple drawings are more or less globally similar. In contrast,

some trajectory categories such as orbit mapping or top-down
mapping can be recognized by its local features (overlapped
loops or undulations) even though they are globally quite
different. The current network performs generally well for
both trajectories and sketches but can still be optimized and
specialized for one of them.

2) Limitations of current database: firstly, to develop robust
deeper networks and to compare with previous work on large
sketch databases (Berlin-TU and Sketchy), the database simTrj
needs to be largely extended in scale, even though it is not that
small compared to related work on trajectory images. Another
drawback of using small database is that the differences are
slight between results obtained by good solutions and the best
solution.

Secondly, in the current database the majority of data were
created by data augmentation. Although by doing this we
increased the size of database efficiently and improved the
ability of generalization of the fit model, too many augmented
data derived from much fewer original images might overfit
the model to the current database.

Moreover, the way we created ”stochastic” trajectories is
too naive to represent all unknown cases. It is worthwhile to
find a better way to generate real random noise trajectories,
for example chaos theory models.

Finally, the proposed 3-channelled XYZ-image is a decent
2D representation but may be not enough for more sophis-
ticated mission patterns. As like in the related studies, it is
possible to encode more information such as speed, direction,
recurrent position, etc., through a more comprehensive image
representation. Furthermore, it is also interesting to study
image generation with different weights of three superposed
planes.

3) Limitations of CNN models: SkalexNet derived from
AlexNet baseline model is simple but proficient on the current
database. However, for extended database and more sophisti-
cated image representation as we discussed above, we will
probably need deeper and more complicated networks.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented a method recognize UAV
mission patterns from raw GPS trajectories. Due to lack of
published data, we built the simTrj database of simulated 2D
trajectory images, and achieved a promising accuracy of 99.5%
by using SkalexNet, a concise CNN architecture tuned for
sketch-like trajectories.

As one of the first studies to analyze mission-based UAV
trajectories, the future work will be multifold. From the
aspect of data, we need to simulate more trajectories and
annotate them by more and finer categories with help of
powerful simulation tools and UAV experts; and for real UAV
trajectory data, trajectory acquisition (camera, radar, etc.),
data preprocessing and constraints in real environment need
to be investigated. For detecting unknown trajectories, one-
vs-rest classification will be practically impossible when we
have too many classes, so outputting robust confidence scores
instead of softmax becomes a trend for open set recognition

problems [16]. In addition, to distinguish UAVs from birds, we
also need to simulate or acquire corresponding databases of
bird and UAV trajectories in similar conditions, for example,
hovering above a building. However, most published bird
trajectory data are only migrant patterns. Furthermore, in the
frame of this project, we will extend our work from single
trajectory to a set of trajectories for multi-agent systems.

ACKNOWLEDGMENT

This study has been carried out with financial support from
the French State, managed by the French National Research
Agency (ANR) in the frame of the ”Investments for the future”
Programme IdEx Bordeaux - SysNum (ANR-10-IDEX-03-02).

REFERENCES

[1] A. Coluccia, M. Ghenescu and et al. ”Drone-vs-bird detection challenge
at IEEE AVSS 2017,” in IEEE Int. Conf. on Advanced Video and Signal
Based Surveillance, 2017, pp.1–6.

[2] Y. Zheng ”Trajectory data mining: an overview,” ACM Trans. on
Intelligent Systems and Technology, 2015, vol.6(3), pp.29, 2015.

[3] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, L. and
S. Savarese, ”Social LSTM: Human trajectory prediction in crowded
spaces,” in IEEE Conf. on CVPR, 2016, pp. 961-971.

[4] X. Jiang, E. N. de Souza, A. Pesaranghader, B. Hu, D. L. Silver, and
S. Matwin, ”TrajectoryNet: an embedded gps trajectory representation
for point-based classification using recurrent neural networks,” in 27th
Int. Conf. on Computer Science and Software Engineering, 2017, pp.
192-200.

[5] S. Wang, ”Exploring ocean animal trajectory pattern via deep learning,”
M.S.thesis, 2016.

[6] K. Y. Singh, N. Davis, C. P. Hsiao, M. Jacob, K. Patel, and B. Magerko,
”Recognizing actions in motion trajectories using deep neural networks,”
in 12th Artificial Intelligence and Interactive Digital Entertainment
Conference, 2016.

[7] Y. Endo, H. Toda, K. Hishida, and J. Ikedo ”Classifying spatial trajecto-
ries using representation learning,” Int. J. of Data Science and Analytics,
2016, vol.2, pp.107–117.

[8] C. Yang and G. Gidofavi, ”Classification of regional dominant movement
patterns in trajectories with a convolutional neural network,” Spatial Big
Data and Machine Learning in GIScience, 2017, 17.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ”Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, 2012, pp.1097-1105

[10] M. Eitz, J. Hays, and M. Alexa, ”How do humans sketch objects?” ACM
Trans. on Graphics, 2012, Vol.31, pp.44-1.

[11] P. Sangkloy, N. Burnell, C. Ham, and J. Hays, ”The sketchy database:
learning to retrieve badly drawn bunnies,” ACM Trans. on Graphics,
2016, vol.35, pp 119.

[12] Q. Yu, Y. Yang, F. Liu, Y. Z. Song, T. Xiang, and T. M. Hospedales,
”Sketch-a-net: A deep neural network that beats humans,” Int. J. of
Computer Vision,” 2017, vol.122, pp.411-425.

[13] O. Seddati, S. Dupont, and S. Mahmoudi, ”Deepsketch 3: Analyzing
deep convolutional neural networks for better sketch recognition and
sketch-based image retrieval,” Multimedia Tools and Applications, 2017,
vol.76, pp.22333-22359.

[14] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, ”Intriguing properties of neural networks,” 2016, arXiv
preprint arXiv:1312.6199.

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
... and T. Darrell, ”Caffe: Convolutional architecture for fast feature
embedding,” in 22nd ACM Int. Conf. on Multimedia, 2014, pp.675-678

[16] A. Bendale and T. E. Boult, ”Towards open set deep networks,” in Int.
Conf. on CVPR, 2016, pp.1563-1572.

