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Abstract

The employment of stochastic geometry for the analysis and design of ultra dense networks (UDNs) has provided
significant insights into network densification. In addition to the characterization of the network performance and
behavior, these tools can also be exploited toward solving complex optimization problems that could maximize the
capacity benefits arising in UDNs. However, this is preconditioned on the existence of tractable closed form
expressions for the considered figures of merit. In this course, the present paper introduces an accurate
approximation for the moment generating function (MGF) of the aggregate other-cell interference created by base
stations whose positions follow a Poisson point process of given spatial density. Given the pivotal role of the MGF of
the aggregate interference in stochastic geometry and the tractability of the derived MGF, the latter can be employed
to substantially simplify ensuing stochastic geometry analyses. Subsequently, the present paper employs the
introduced MGF to provide closed form expressions for the downlink ergodic capacity for the interference limited
case, and validates the accuracy of these expressions by the use of extensive Monte Carlo simulations. The derived
expressions depend on the density of users and base stations, setting out a densification road map for network
operators and designers of significant value.

Keywords: Ultra dense networks, Poisson point process, Moment generating function, Interference, Ergodic capacity,
Rate, Closed form, Base station density, User density

1 Methods/Experimental
The methods used in the present paper are based on
the mathematical tools of random spatial processes and
stochastic geometry. The analytical framework developed
for the performance evaluation of ultra dense networks is
validated by extensive Monte Carlo simulations.

2 Introduction
The advent of multimedia interactive services and the
surge in the number of interconnected devices has
imposed the investigation of new approaches able to
enhance wireless capacity in 5G networks. In this course,
three prime axes of network flexibility have been lever-
aged, namely the employment of wider spectrum, the
enhancement of spectral efficiency, and the employment
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of smaller cell sizes and, thus, of smaller transmit dis-
tances. In retrospect over the evolution of wireless net-
works, the efficient spatial reuse of the spectrum, through
the reduction of the inter-site distances, has provided,
out of these three axes of flexibility, the most substantial
capacity gains by a large margin [1]. Hence, the densifica-
tion of networks arises as the most prominent candidate
for achieving the envisaged capacity increase in the 5G era
as well.
In the direction of densifying their networks, network

operators employ system-level simulations and network
measurements. However, over the last decade, the seminal
work of Baccelli et al. [2] gave rise to stochastic geom-
etry as a tractable tool for the large-scale analysis and
design of wireless networks. Indicatively, the formulation
of tractable mathematical expressions for the expectation
of the aggregate interference in wireless networks [3]—
which was not analytically formulated hitherto—paved
the way for the theoretical analysis of the performance of
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wireless networks. Thenceforth, a multitude of research
works exploited these tools to provide significant insights
into network densification. These insights are essential
for understanding the innate features of dense networks
and can be employed by network operators as densifica-
tion road maps and guidelines for the use of system level
simulators and of auxiliary network planning tools.
The insights provided by such theoretical analyses

brought about significant changes in the understanding
of wireless networks. In particular, for single-slope path-
loss models and for networks comprising significantly
more users than base stations (BSs), it has been demon-
strated that the user signal quality is independent of the BS
density [4]. Moreover, the probability of coverage (which
constitutes the complementary cumulative distribution
function (CCDF) of the signal to interference plus noise
ratio (SINR)) is independent of the BS density and of the
number of tiers [5]. Similar analysis for the uplink (UL) has
demonstrated that the UL signal to interference ratio (SIR)
is also invariant of the BS density [6]. As a result, it has
been demonstrated that the network capacity increases
linearly with the density of BSs and with the number of
tiers [3].
These conclusions, however, which indeed hold for

sparse wireless networks (e.g., tier of macro cells (MCs)),
do not hold for extremely high BS densities. The rea-
son for that is that after a BS densification threshold, the
inter-site distances become so small that the proximity of
the neighboring BSs allows them to create line of sight
(LOS) interference to the intended user. As a result, after
this densification threshold, the probability of coverage
is diminished precipitately due to the presence of LOS
interference [7, 8].
As opposed to this behavior of networks comprising

much more users than BSs, the system performance is not
bounded by the aforementioned threshold in the case of
networks with more BSs than users; which is, in fact, the
case of the envisaged UDNs [9]. The reason for that is that
the excess BSs that do not serve any user can be switched
off, thus, reducing the system energy consumption and
interference. In this setup, the probability of coverage will
still decrease when LOS interference first appears in the
network, however, as the BS density increases past this
point, the probability of coverage will increase again with
the density of BSs. That is, since for a fixed number of
users, the excess BSs will remain idle, and therefore will
not create any interference, regardless of the density of
BSs [10].
Based on this comprehensive analysis, it has become

evident that two key factors need to be taken into account
by network operators in order to tap the capacity potential
of UDNs. Firstly, the detrimental effect of LOS inter-
ference and, secondly, the beneficial effect of idle (i.e.,
non-transmitting) BSs. The incorporation of these two

effects in the design of UDNs could engender extraor-
dinary capacity gains. In particular, the investigation of
BS coordination schemes to counteract LOS interference
could, indeed, allow for a linear capacity increase with
the density of BSs. Besides, the coordination of only LOS
interferers, able to communicate and coordinate directly
with the intended user, would not require intricate coordi-
nation schemes. Additionally, leveraging on the beneficial
effect of the idle mode, users could be clustered dynami-
cally under a single BS, not necessarily the one providing
the best service to each user. Thus, BSs that were acting as
sources of principal interference to the network could be
switched off. Given the high density of BSs, the connec-
tion to a neighboring BS after the best serving BS has been
switched off would entail a minimal path-loss increase
that would be outweighed by the interference mitigation
gain achieved by strategically switching off BSs.
The development of mathematical frameworks for com-

plex optimization problems, like the ones mentioned
above poses a great challenge. The reason for that is that
the majority of the stochastic geometry approaches in
the literature, including the theoretical analyses presented
above, involve intractable integrations. Even though such
integrals can be computed numerically, allowing the anal-
ysis of the network behavior, they cannot be employed
for the investigation of complex optimization problems.
In these cases, it is imperative that the considered objec-
tive functions, which evaluate the system performance,
involve tractable closed form expressions. In this course,
it is essential to exploit the available stochastic geome-
try tools to develop tractable and accurate approxima-
tions in addition to the available exact but cumbersome
expressions.
In this direction, the authors have already provided

approximate but accurate closed form expressions for
the DL rate of coordinating BSs [11], providing a figure
of merit for the investigation of coordination schemes
among BSs. However, the derivation of closed form
expressions for the DL ergodic rate of non-coordinating
BSs had remained an open issue in the literature hith-
erto. Addressing this gap in the literature, the present
paper provides approximate but extremely accurate closed
form expressions for the DL ergodic rate for the interfer-
ence limited case. The expressions account for networks
comprising more users than BSs, as well as networks
comprising more BSs than users. In the latter case, the
DL rate is associated by a closed form expression to
the density of BSs and of users allowing for the inves-
tigation of complex optimization problems like the one
mentioned above. Last but not least, in the direction of
obtaining the aforementioned expressions, an extremely
accurate and simple approximation of the MGF of the
aggregate other-cell interference in the DL is provided.
In the existing literature, the complexity of the exact
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MGF imposed inherent limitations on the extension of
the stochastic geometry analysis to complex optimization
problems. However, the present paper lifts these inher-
ent limitations by introducing a simple, albeit extremely
accurate expression for the MGF of the other cell
interference.
To elaborate, the main contributions of the present

paper can be summarized as follows:

• Derivation of a tractable and extremely accurate
approximation for the MGF of the aggregate
other-cell interference. The aggregate interference is
created by BSs whose spatial distribution follows a
homogeneous Poisson point process (PPP).

• Extension of the MGF to account for two different
scenarios. A realistic scenario where the fast fading
characterizing the channels of the interferers is not
known to the UE, and a scenario of academic interest,
where the fast fading of the interferers can be taken
into account.

• Derivation of a tractable and accurate approximation
for the coverage probability in the interference
limited and fully loaded case (i.e., for λUE � λ).

• Derivation of a tractable and accurate approximation
for the DL ergodic rate, in closed form, in the
interference limited and fully loaded case.

• Derivation of a tractable and accurate approximation
for the coverage probability in the interference
limited but not fully loaded case (i.e., the case of the
envisaged UDNs). As opposed to the fully loaded
case, the coverage probability depends on the density
of users λUE and the density of BSs λ.

• Derivation of a tractable and accurate approximation
for the DL ergodic rate, in closed form, in the
interference limited but not fully loaded case. The
closed form of the expressions and their dependence
on the density of users λUE and BSs λ, constitutes an
invaluable figure of merit for network planning and
network densification.

• The accuracy of the proposed approximations is
validated through extensive Monte Carlo simulations,
and the practicality of the derived expressions for
future applications is outlined.

The remainder of the paper is organized as follows.
Section 3 presents the considered network architecture.
Section 4 presents the approximation for the MGF of
the aggregate other-cell interference in the DL. Section 5
introduces for the first time in the literature closed form
expressions for the ergodic rate in the DL for the interfer-
ence limited case. Moreover, extensive simulation results
are presented corroborating the accuracy of the derived
expressions. Finally, Section 6 concludes the paper and
presents perspectives.

3 The wireless cellular network
A wireless cellular system is considered, comprising a set
of BSs, denoted by BSi, whose positions xi ∈ R

2 follow
a spatial distribution given by a homogeneous PPP � of
density λ (BSs/m2). Moreover, the positions of the over-
laid user equipment (UE) follow also a spatial distribution
given by a homogeneous PPP � of density λUE (UE/m2).
The reference UE, denoted by UE0, is located at the ori-
gin and is served by its closest BS, denoted by BS0. The
UE adjoined at the origin can be singled out and the loca-
tion of the other UE follows the reduced Palm distribution
of �, which is the same as the original distribution � (as
stated by Slivnyaks theorem [12]). Hence, adjoining UE0 at
the origin does not change the distribution of �.
For the sake of simplicity in the notation, it is assumed

that all UE and BSs are equipped with one antenna and all
BSs transmit at the same power level. Intra cell users are
assumed to be sharing orthogonal resources, as is typically
the case in the literature [6], whereas all BSs use the same
frequency band. If not explicitly mentioned otherwise (as
will be done in the following sections), it is assumed that
the network comprises significantly more users than BSs
(i.e., λUE � λ). As a result, every BS is active and trans-
mitting, acting as an interferer in the DL. The other-cell
interference in the DL is mathematically defined as the
interference coming from all BSs residing at a distance
||xi|| from the origin greater than the distance ||x0|| of BS0
from the origin, where ||·|| denotes the l2-norm. Note that
the origin is where the reference UE UE0 is located. Last
but not least, a single-slope unbounded path-loss model is
assumed in the analysis.
The considered scenario is depicted in Fig. 1. UE0 is

marked by the magenta diamond, BS0 by the magenta
circle, and the intra cell users are depicted in red. The
interfering BSs are depicted in black and reside in dis-
tances (||xi|| > ||x0||), where the circle of radius ||x0||
around UE0 is depicted in green. Every BS residing in
the region outside this circle is acting as an interferer
in the DL.

4 MGF of the aggregate other-cell interference
Having presented the considered network scenario and
having defined the set of interfering BSs by means of
their distance to the origin, we can proceed with the
mathematical formulation of the aggregate other-cell
interference and the MGF of the latter.

4.1 Derivation of the MGF
The aggregate other-cell interference in the DL is mathe-
matically formulated as follows:

g =
∑

x∈� ,
x�=x0

Ptx
κ ‖x‖β

, (1)
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Fig. 1 The considered network scenario

where Ptx denotes the transmit power of the BSs, β the
path-loss exponent, ‖x‖ the distance of the interferer to
the origin, and κ the path loss at a reference distance of 1m.
Although a term of fast fading, denoted by

∣∣h(x)∣∣2, is
present at the propagation, it has not been introduced in
the previous expression (1). The reason for that is that tak-
ing into account the fast fading of the interferers during
the computation of the UE capacity would implicitly mean
that the UE has perfect knowledge of the channel of all
interferers. However, since this is not the case in practice,
averaging over this fading would provide an upper bound
for the capacity. As opposed to that, the omission of the
fast fading

∣∣h(x)∣∣2 provides a lower bound for the capacity
[13]. Since a worst-case scenario analysis is more sensi-
ble than an overoptimistic calculation of the achievable
rate, the fast fading of the interferers is not introduced.
However, if accounting for the fast fading is of interest,
this can be done without increasing significantly the com-
plexity of the presented analysis as will be demonstrated
in Section 4.3.
The set of interfering BSs in (1) has been defined by

means of their distances to the origin, i.e., ‖xi‖ > ‖x0‖.
Equivalently, by defining the path loss as follows:

L(x) = κ ‖x‖β , (2)

the set of interfering BSs can be defined by means of their
path loss to the origin (i.e., L(x) > L(0), where L(0) = L(x0)

for brevity in the notation). Having defined mathemat-
ically the set of interfering BSs, the MGF of g can be
obtained by employing the probability generating fuc-
tional (PGFL) theorem according to which [3]:

E

{
∏

x∈�

f (x)
}

(a)= exp
(

−λ

∫

R2
(1 − f (x)) dx

)

(b)= exp
(∫

R

(f (r) − 1) 2πλrdr
)

(c)= exp
(∫

R

(f (r) − 1)
2πλ

β

(
1
κ

) 2
β

y
2
β
−1dy

)
,

(3)

where (3b) is obtained by computing the double integral
of (3a) in polar coordinates for 0 ≤ θ ≤ 2π and for
r = ‖x‖, and (3c) is obtained by changing the variable of
the integration to the path loss according to (2). Hence,
employing (3c) the MGF of g is given by [14]:
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Mg
(
s; L(0)

)
= E�

{
exp

(−sg
)}

= E�

{
exp

(
−s
∑

x∈�

Ptx
L(x) 1

(
L(x) > L(0)

))}

= E�

{
∏

x∈�

exp
(

−s
Ptx
L(x) 1

(
L(x) > L(0)

))}

(a)= exp

⎛

⎜⎝
∞∫

L(0)

(
exp

(
−s

Ptx
y

)
− 1

)
2πλ

β

(
1
κ

) 2
β

y
2
β

−1dy

⎞

⎟⎠

(b)= exp

⎛

⎝πλ

(
L(0)

κ

) 2
β
(
1 − 1F1

(
− 2

β
, 1 − 2

β
,
−sPtx
L(0)

))⎞

⎠ ,

s ∈ R,

(4)

where the second argument of Mg
(
s; L(0)) denotes the

dependence of the MGF on the random variable L(0) and
1(·) is the indicator function. (a) holds by employing (3c),
and (b) is attained by using the result of [15] according to
which:

I =
∞∫

a

(
exp

(
b
z

)
− 1

)
zv−1dz

=1
v
av
(
1 − 1F1

(
−v, 1 − v,

b
a

))
, (5)

with 1F1(a, b, z) being the Kummer confluent hypergeo-
metric function given by:

1F1(a, b, z) =
∞∑

k=0

(a)kzk

(b)kk!
, (6)

where (·)k denotes the Pochhammer function given by:

(x)k =
k−1∏

n=0
(x + n). (7)

The definitions of (6) and (7) demonstrate the
intractability of (4b). Since the derivation of the MGF of
the aggregate interference is one of the fundamental tools
of stochastic geometry, the intractability of (4b) propa-
gates to every analysis employing the MGF, hindering the
derivation of closed form figures of merit.

4.2 MGF approximation
In order to overcome the limitations imposed by (4b),
the present paper introduces a simple, albeit extremely
accurate, approximation of the MGF by introducing an
alternative calculation of (4a). In this course, the MGF is
derived as follows:

Mg
(
s; L(0)

)
(a)= exp

⎛

⎜⎝
∞∫

L(0)

(
exp

(
−s

Ptx
y

)
− 1

)
2πλ

β

(
1
κ

) 2
β

y
2
β

−1dy

⎞

⎟⎠

(b)= exp

⎛

⎜⎝
∞∫

L(0)

( ∞∑

n=1

1
n!

(
−s

Ptx
y

)n
)
2πλ

β

(
1
κ

) 2
β

y
2
β

−1dy

⎞

⎟⎠

(c)= exp

⎛

⎝ 2πλ

β

(
L(0)

κ

) 2
β

( ∞∑

n=1

(−1)n+1(sPtx)n(
L(0)

)n n! ( 2
β

− n)

)⎞

⎠

(d)= exp
(

−πλ
(
L(0)

κ

) 2
β

(
exp

( −sPtx
L(0)

)
−1+

(
sPtx
L(0)

) 2
β

	
(
1− 2

β
,0, sPtx

L(0)

)))

(e)= exp

⎛

⎝−πλ
(
L(0)

κ

) 2
β

⎛

⎜⎜⎝exp
( −sPtx

L(0)

)
−1+

(
sPtx
L(0)

) 2
β

sPtx
L(0)∫

0
t−

2
β exp(−t)dt

⎞

⎟⎟⎠

⎞

⎠ ,

(8)

where (b) holds by employing the Taylor expansion of the
exponential term, (c) holds by a simple calculation of the
integral, and (d) and (e) are obtained from the definition
of the generalized incomplete gamma function 	(·, ·, ·).
Having defined (8e) it can be noted that the term

within the integral of (8e) eventually tends to 0. When
this happens, namely when exp

(−sPtx
L(0)

)
≈ 0, the inte-

gral converges to a constant value. Hence, (8e) can be
approximated by a piecewise function, involving a con-
stant value when exp

(−sPtx
L(0)

)
≈ 0 and a varying function

when exp
(−sPtx

L(0)

)
�= 0.

In particular, by employing the constant value to which
the integral converges when exp

(−sPtx
L(0)

)
≈ 0, it holds that:

exp
(−sPtx

L(0)

)
− 1 +

(
sPtx
L(0)

) 2
β

sPtx
L(0)∫

0

t−
2
β exp(−t)dt

(
exp

(−sPtx
L(0)

)
≈0
)

≈
(
sPtx
L(0)

) 2
β

	

(
1 − 2

β

)
− 1 (9)

and when exp
(−sPtx

L(0)

)
�= 0, (8e) can be approximated by

the Taylor expansion around 0 as follows:

exp
(−sPtx

L(0)

)
− 1 +

(
sPtx
L(0)

) 2
β

sPtx
L(0)∫

0

t−
2
β exp(−t)dt

=
∞∑

n=1

−2(−sPtx)n(
L(0)

)n n! (nβ − 2)
.

(10)

Thus, by combining (9) and (10), (8e) can be approxi-
mated as follows:
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Mg
(
s; L(0)

)

≈

⎧
⎪⎪⎨

⎪⎪⎩

exp
(

πλ
(
L(0)

κ

) 2
β

∞∑
n=1

2(−sPtx)n
(L(0))

nn!(nβ−2)

)
, sPtx

L(0) ≤ c,

exp
(

πλ
(
L(0)

κ

) 2
β

(
−
(
sPtx
L(0)

) 2
β

	
(
1 − 2

β

)
+ 1

))
, sPtxL(0) > c

(11)

and by employing only the first two terms of the Taylor
expansion, (11) can be approximated by:

Mg
(
s; L(0)

)

≈

⎧
⎪⎪⎨

⎪⎪⎩

exp
(

πλ
(
L(0)

κ

) 2
β

(
−2

(β−2)
sPtx
L(0) + 1

2β−2

(
sPtx
L(0)

)2))
, sPtx

L(0) ≤ c

exp
(

πλ
(
L(0)

κ

) 2
β

(
−
(
sPtx
L(0)

) 2
β

	
(
1 − 2

β

)
+ 1

))
, sPtx

L(0) > c

(12)

where c is a constant indicating the point after which the
integral of (8e) converges to a constant value. c is the point
of intersection of the two functions of (12) and can be
obtained by solving the following equation:

−2c
β − 2

+ c2

2β − 2
= −c

2
β 	

(
1 − 2

β

)
+ 1. (13)

Although (13) cannot be solved analytically, for the limited
range of the path-loss exponent β (i.e., β ∈[ 2, 5]), it can
be computed numerically and the value of c for any value
of β ∈[ 2, 5] can be approximated by:

c ≈ 0.06662 log(β − 1.528) + 1.227, (14)

where log(·) in (14) and henceforth denotes the natural
logarithm.
The employment of the Taylor expansion and of the

exact value of the generalized incomplete function 	(·, ·, ·)
at the extreme cases guarantees the tightness of the
approximation far from the intersection point c. However,
the tightness of the proposed approximation still needs to
be verified close to c. In this course, relevant figures will be
provided in the following sections validating the tightness
of the approximation close to c against the exact result of
(4b). Given the dependence of c on β , the provided figures
will demonstrate the tightness of the proposed approxi-
mation in the whole range of β ∈[ 2, 5], which is also the
range of interest in wireless networks. It should also be
noted, that the value of λ does not have any impact on the
tightness of the approximation, since the term of (8e) that
has been approximated by (9) and (10) does not involve
λ. Therefore, the proposed approximation of (12) is not
just far more tractable and simple than (4b), but is also
tight over the whole range of values that are of interest in
wireless networks.

4.3 Fast fading of interferers
The aforementioned analysis can be easily extended to
account also for the fast fading of the interferers, if the lat-
ter is of interest. In this course, an independently marked
point process can be employed, that is, a point process
where a random variable, known as mark and denoted by
Mx, is randomly assigned to each random point of the
point process x [3]. The marks are mutually independent
and the conditional distribution of mark Mx ∈ R

l of a
point x ∈ � depends only on the location of x. For an inde-
pendently marked homogeneous PPP with density λ on
R
2 and marks with distribution Fx(dM) onR

l, the Laplace
transform of a function f (x,Mx) is given by [16]:

L�(f ) = E

{
exp(−

∑

x∈�

f (x,Mx))

}

= exp
(
−λ

∫

R2

(
1 −
∫

Rl
exp

(−f (x,Mx)
)
Fx(dM)

))
.

(15)

Hence, if the fast fading of the interferers needs be intro-
duced in (1), (15) can be applied directly to (4), with
Mx = ∣∣h(x)∣∣ ∈ R, in order to compute the expectation with
respect to the path loss and to the fading of the interferers.
That is, by setting:

f (x, h) = s
Ptx
∣∣h(x)∣∣2

L(x) 1
(
L(x) > L(0)

)
(16)

and l = 1 and by employing the distribution FH(h) for
the respective type of fading the MGF of (4a) is revised as
follows:

Mg
(
s; L(0)

)

= exp

⎛

⎜⎝
∞∫

h=0

⎡

⎢⎣
∞∫

L(0)

(
exp

(
−s

Ptx|h|2
y

)
− 1

)
2πλ

β

(
1
κ

) 2
β

y
2
β

−1dy

⎤

⎥⎦ FH (h)

⎞

⎟⎠ ,

s ∈ R.

(17)

The employment of (15) allowed for moving the expec-
tation over the fading within the exponential term of (17),
thus, simplifying the analysis to a great extent. As a result,
the expectation over the fading of the interferers can also
be moved within the exponential term of (12). Given the
tractability of (12), the introduction of an additional inte-
gral within the exponential term has a minor effect on the
complexity of the derived expressions and the analysis can
be easily extended accordingly.
However, as already mentioned, the present analysis

does not account for the fading of the interferers focusing
on a realistic scenario where the UE does not have perfect
knowledge of the channel of all interferers.
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5 Ergodic capacity in the DL
Having defined a simple approximation of the MGF, the
latter can be employed to provide closed form expressions
for the DL ergodic rate for the interference limited case.
In this course, the analysis will commence by employing
the MGF of (4b) and (12) to derive the coverage proba-
bility for the interference limited case. The latter can be
derived by both expressions, i.e., (4b) and (12), in spite
of the intractability of the former, allowing for the com-
parison of the two results and, thus demonstrating the
accuracy of the introduced approximation. Subsequently,
capitalizing on the accuracy of the introduced approxima-
tion, the DL ergodic rate will be derived in closed form by
employing the introduced approximate expression for the
coverage probability.
The analysis which will initially account only for net-

works comprising much more users than BSs will then be
extended to networks comprising more BSs than users.

5.1 Probability of coverage
The probability of coverage (i.e., the probability of the
SINR exceeding the value γ ) is defined as follows:

Pcov = P

⎛

⎜⎝
Ptx
∣∣h(0)∣∣2 /L(0)

∑
x∈� ,x �=x0

Ptx/L(i) + σ 2
N

≥ γ

⎞

⎟⎠ (18)

= P

(∣∣∣h(0)
∣∣∣
2 ≥ γL(0) (g + σ 2

N
)

Ptx

)
, (19)

where σ 2
N denotes the noise power and h(0) the fast fad-

ing of the intended user. As opposed to the fast fading
of the interferers, the fast fading of the intended user is
estimated and known in practice.
Assuming Rayleigh fading, then the random variable∣∣h(0)∣∣2 follows an exponential distribution with unit mean

and the Pcov is given by:

Pcov
(a)= Eg,L(0)

{
exp

(
−γL(0)(g + σ 2

N )

Ptx

)}

(b)= EL(0)

{
exp

(
−γL(0)σ 2

N
Ptx

)
Mg

(
γL(0)

Ptx
; L(0)

)}

(c)=
∞∫

y=0

exp
(

−γ yσ 2
N

Ptx

)
Mg

(
γ y
Ptx

; y
)
fL(0) (y)dy, (20)

where (a) is obtained by the CCDF of the exponential dis-
tribution, (b) is obtained based on the definition of the
MGF in (4), and (c) from computing the expectation with
respect to the path loss L(0) to the serving BS BS0.
The probability density function (PDF) of the distance

between a reference user and its closest BS for a PPP is
given in [17]. By employing this PDF and the definition of

(2), the PDF of the path loss between a reference user and
its closest BS fL(0) (y) is given by:

fL(0) (y) = 2πλ

β

(
1
κ

) 2
β

y
2
β
−1 exp

(
−πλ

( y
κ

) 2
β

)
, (21)

In the interference limited case, the exponential term of
(20c) is equal to 1 and, by employing (21), the coverage
probability can be calculated as follows:

Pcov=
∞∫

0

Mg

(
yγ
Ptx

; y
)
2πλ

β

(
1
κ

) 2
β

y
2
β
−1exp

(
−πλ

( y
κ

) 2
β

)
dy

(a)= 1

1F1
(
− 2

β
, 1 − 2

β
,−γ

)

(b)≈ 1 (γ ≤ c)(
− γ 2

2β−2 + 2γ
β−2 + 1

) + 1 (γ > c)

γ
2
β 	(1 − 2

β
)
, (22)

where (a) is obtained by employing (4b) and (b) by
employing the approximate MGF of (12).
The results of (22) verify the theoretical results pre-

sented in Section 2, since for a single-slope path-loss
model and for more users than BSs, the coverage prob-
ability of (22) does not depend on the density of BSs λ,
but only on the path loss exponent β and the SIR value
γ (c is also a function of β given by (14)). The accuracy
of (22b) and, implicitly, the accuracy of the MGF of (12),
is demonstrated in Fig. 2 where the approximate coverage
probability of (22b) is compared against the exact result
of (22a). Apart from extremely accurate, the approximate
coverage probability of (22b) is also significantly more
tractable than the exact result of (22a).

5.2 Ergodic rate
Having defined the tractable and accurate approxima-
tion of (22b) for the probability of coverage, this can be
employed to compute the DL ergodic rate. In particular,
the probability of coverage given by (22b) constitutes the
CCDF of the SIR (i.e., for SIR = w, Pcov = 1 − FW (w)).
Hence, the derived tractable expression of the CCDF of
the SIR allows for the computation of the DL ergodic rate
by averaging over the SIR as follows:

R = Ew{log(1 + w)} =
∞∫

0

log(1 + w)F ′
W (w)dw

(a)=
∞∫

0

Pcov
1 + w

dw

(b)≈
c∫

0

1(
− w2

2β−2 + 2w
β−2 + 1

)
(1 + w)

dw+
∞∫

c

1
(
w

2
β 	
(
1 − 2

β

))
(1 + w)

dw,

(23)

where (a) is obtained by integrating by parts and (b) is
obtained by employing (22b). The employment of (22a) in
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Fig. 2 Probability of coverage for different path-loss exponent values 2.5 ≤ β ≤ 5. β increases in the direction of the arrow with a step of 0.5

(23a) would not allow the analytical computation of the
above integral. However, (23b) can be computed in closed
form and the rate is given by:

R =(2β − 2)
(

4 + 2α − 3β − αβ

2α(10 − 11β + 2β2)

(
log
(
c + α − 2β−2

β−2

α − 2β−2
β−2

))

+ −4 + 2α + 3β − αβ

2α(10 − 11β + 2β2)

(
log
(
c − α − 2β−2

β−2

−α − 2β−2
β−2

))

+ −2 + β

(10 − 11β + 2β2)

(
log (c + 1)

))

+ βc−
2
β

2	
(
1 − 2

β

) 2F1
(
1,

2
β
,
2 + β

β
,−1

c

)
, (24)

where the first three terms of (24) are obtained by the
calculation of the first term of (23b) and the last term
of (24) is obtained by the calculation of the last term of
(23b). 2F1(a, b, c, z) denotes the Gaussian hypergeometric

function, α =
√(

2β−2
β−2

)2 + 2β − 2 and c is given by (14).
Again, as in the case of (22), (24) depends only on the
path-loss exponent β .
The employment of (24) allows the computation of the

rate for the interference limited case in closed form. The
tight performance of (24) for the calculation of the ergodic
rate is demonstrated in Fig. 3, where (24) is compared
against the results obtained by Monte Carlo simulations.
Even though the rate does not depend on the density of the

BSs, the density employed for generating the simulation of
Fig. 3 was λ = 1.27e − 06.
Several research works have focused on deriving expres-

sions for the DL ergodic rate, since the latter constitutes
the most sensible figure of merit for evaluating the per-
formance of UDNs. Indicatively, in [18] the authors have
provided expressions for the DL ergodic rate in heteroge-
neous cellular networks for all different types of fading.
However, in all of these works, including the latter, the
calculation of the DL ergodic rate involved at least one
integration that had to be computed numerically. This
imposed inherent limitations to the applicability of those
expressions to complex optimization problems. In order
to overcome this problem, the authors of [19] provided
for the first time in the literature expressions for the DL
ergodic rate in the interference limited case, for a fully
loaded scenario (i.e., for λUE � λ) that did not involve any
numerical integration. In this direction, the authors of [19]
provided lookup tables and employed the Meijer-G func-
tion to provide a tight approximation of the DL ergodic
rate in the fully loaded case. In particular, the approximate
ergodic rate of [19] is given by:

C =−s∗ log2 e
1 + s∗

(
E1
(−s∗

Dδ

)
− exp

(
1 + s∗

Dδ

)
E1
(

1
Dδ

))

+ sin(πδ) log2 e
π

G2,2
2,3

(
0, 1 − δ

0, 0,−δ

∣∣∣∣ z
)
, (25)

where s∗ is the solution to the equation s∗δ
	(−δ, s∗) = 0,

given by lookup tables that are computed a priori for
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Fig. 3 DL ergodic capacity vs path-loss exponent for the interference limited case

all relevant values of β . Furthermore, δ = 2
β
, Dδ =

s∗
log(1−sinc(δ)) , En(x) = ∫∞

1 t−ne−xtdt is the exponential
integral and

Gm,n
p,q

(
a1, . . . , an, an+1, . . . , ap
b1, . . . , bm, bm+1, . . . , bq

∣∣∣∣ z
)

=
1
2π i

∫

L

∏m
k=1 	(s + bk)

∏n
k=1 	(1 − ak − s)

∏p
k=n+1 	(s + ak)

∏q
k=m+1 	(1 − bk − s)

z−sds,

(26)

is the Meijer-G function. Improving the result of (25), the
present paper introduces for the first time a closed form
approximation for the ergodic rate in (24), without the
need for an a priori computed lookup table. Furthermore,
the result of (24) is significantly more tractable than the
result of (25), and Fig. 4 demonstrates the superior perfor-
mance of (24) over (25) with respect to the tightness of the
approximation. The accuracy and, more importantly, the
tractability of the above expressions allow for the exten-
sion of the analysis to even more complex scenarios, as
will be demonstrated in the following sections.

5.3 Ergodic rate over density of users and BSs
As already mentioned, the previous analysis corresponds
to a scenario where the density of users is much greater
than the density of BSs (i.e., λuser � λ) and, therefore,
every BS is in transmission mode. However, since in the
envisaged UDNs the number of BSs is expected to be
higher than the number of UE [9], the analysis needs

to be extended accordingly, taking into account the non
transmitting mode of the excess BSs that do not have any
UE in their coverage. In this course, the proposed tractable
MGF is revised to account for the probability of the excess
BSs to remain idle. This probability is defined by the den-
sity of UE λUE and the density of BSs λ. Thus, following a
similar approach as before, we derive closed form expres-
sions for the DL ergodic capacity (i.e., peak and divided
among intra-cell users) which depend on the density of UE
λUE and the density of BSs λ.
The probability that a randomly chosen BS does not

have any UE in its Voronoi cell and, therefore, goes into
idle mode is given by [20]:

Pinactive =
(
1 + λUE

3.5λ

)−3.5
(27)

and the probability of a BS being in transmission mode
and, thus, acting as an interferer in the DL, is denoted by:

Pactive = 1 − Pinactive. (28)

Since only a subset of the BSs create interference in the
DL, the density of the BSs λ must be thinned out by the
probability Pactive. By introducing the thinned out density
λPactive into (4) and (12), the MGF is revised as follows:
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Fig. 4 DL ergodic capacity vs path-loss exponent for the interference limited case. Tightness of closed form approximation compared to the lookup
table approximation employing the Meijer-G function. The range of β is defined by the range of the respective lookup table provided in [19]

Mg
(
s; L(0)

)
= exp

⎛

⎜⎝
∞∫

L(0)

(
exp

(
−s

Ptx
y

)
−1
)
2πλPactive

β

(
1
κ

) 2
β

y
2
β

−1dx

⎞

⎟⎠

(a)= exp

⎛

⎝πλ

(
L(0)

κ

) 2
β
(
1−1F1

(
− 2

β
, 1 − 2

β
,
−sPtx
L(0)

))
Pactive

⎞

⎠

(b)≈

⎧
⎪⎪⎨

⎪⎪⎩

exp
(

πλ
(
L(0)

κ

) 2
β
( −2sPtx

(β−2)L(0) + (sPtx)2
(2β−2)(L(0))2

)
Pactive

)
, sPtx

L(0) ≤c

exp
(

πλ
(
L(0)

κ

) 2
β

(
−
(
sPtx
L(0)

) 2
β
	
(
1 − 2

β

)
+1
)
Pactive

)
, sPtx

L(0) >c

s ∈ R,

(29)

and, following the approach of (22) for the MGF of (29),
the coverage probability is now given by:

Pcov/active
(a)= 1

1 +
(
1F1

(
− 2

β
, 1 − 2

β
,−γ

)
− 1

)
Pactive

(b)≈ 1 (γ ≤ c)

1 +
(
− γ 2

2β−2 + 2γ
β−2

)
Pactive

+ 1 (γ > c)

1 +
(
γ

2
β 	(1 − 2

β
) − 1

)
Pactive

.

(30)

The probability of coverage defined by the exact result
of (30a) and by the approximation of (30b) is plotted in
Fig. 5 for a path-loss exponent β = 4 and for density ratios
λUE/λ = 0.1, 0.4, 0.7, 1, demonstrating, once again, the
accuracy of the derived approximation.

Following the same approach as in (23) for the results of
(30b), the DL ergodic peak rate can be computed in closed
form as follows:

Rpeak =
c∫

0

1(
1 +

(
− w2

2β−2 + 2w
β−2

)
Pactive

)
(1 + w)

dw

+
∞∫

c

1
(
1 +

(
w

2
β 	
(
1 − 2

β

)
− 1

)
Pactive

)
(1 + w)

dw.

(31)

For path-loss exponent values of β = 3, 4, 5, the closed
form expressions for the peak rate are given in Table 1. The
expressions (34)–(36) provide a closed form representa-
tion of the peak DL ergodic rate over the probability Pactive
and, implicitly through (28), over the density of BSs λ and
of UE λUE.
The probability that a randomly chosen UE is assigned a

resource block at a given time and is served by its nearest
BS is given by [20]:

Pselection = λ

λUE

(
1 − (1 + λUE

3.5λ
)−3.5

)
. (32)

Employing this probability, a more sensible figure of
merit than the peak rate can be derived. This figure of
merit is the actual DL ergodic rate of the reference UE,
i.e., the rate of the reference UE after dividing the available
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Fig. 5 Probability of coverage for different density ratios (0.1 ≤ λUE/λ ≤ 1). The density ratio increases in the direction of the arrow with a step of 0.3

resources and, thus, the peak rate among all intra-cell UE.
The latter is given by:

R = RpeakPselection. (33)

The accuracy of expressions (33)–(36) is demonstrated
in Figs. 6 and 7 where the peak and the actual DL ergodic
rates are plotted over the ratio of the densities λUE/λ and
compared against Monte Carlo simulations.
In the Monte Carlo simulations, the BSs are deployed

following the PPP � of density λ and the users are
deployed following the PPP � of density λUE, whereas
the reference UE resides at the origin. BSs with no UE in
their coverage (i.e., within their Voronoi cell) do not create
any interference. To compute the actual rate, the num-
ber of users residing within the Voronoi cell of BS0 are
counted in each realization and the peak rate is divided
among these users and the reference UE. The number of
simulated BSs is fixed and the simulation area expands or
contracts as the BS density λ changes, in order to accom-
modate the predefined number of BSs, while the density
of users λUE remains fixed.
The closed form expressions derived in (33)–(36) pro-

vide, among others, a substantial computational gain
when compared to the computational time of the respec-
tive Monte Carlo simulations. Especially, since the sim-
ulation of a wireless network, which comprises both
users and BSs of different spatial distributions, and the

calculation of their relative distances, is computationally
expensive. In order to demonstrate the gain arising by the
employment of the closed form expressions of (33)–(36),
the computational time of the derived closed form expres-
sions is tabulated in Table 2. Since this time is not an
absolute metric, but depends on the hardware employed,
Table 2 presents the computational time of the expres-
sions as a percentage of the computational time required
for simulating the respective wireless networks of Fig. 7
using the same hardware.
Table 2 demonstrates that the computational gain aris-

ing by the derived expressions is immense. The time
required for the analytical computation of the rate is prac-
tically zero compared to the time required for simulating
the respective scenario. At this point it should also be
noted, that the variations in the values of the computa-
tional time arise due to the variations in the time required
for the respective simulations. That is since the simulation
area has to expand and contract as λ changes in order to
accommodate a fixed number of BSs. The variations with
respect to β emerge due to the different complexity of the
analytical expressions of (34)–(36), with respect to β .
Apart from the computational gain that has been

demonstrated by Table 2, the closed form expressions of
(33)–(36) and the respective figures, i.e., Figs. 6 and 7, pro-
vide a deep understanding of the behavior of UDNs as
the density of users λUE and BSs λ changes. First of all,
expressions (34)–(36) and Fig. 6 verify one of the funda-
mental findings of stochastic geometry, already explained
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Table 1 Closed form expressions for the DL ergodic peak rate for different path-loss exponents

β DL ergodic peak rate:
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Table 1 Closed form expressions for the DL ergodic peak rate for different path-loss exponents (continued)

β DL ergodic peak rate:

5

log

(
1 + i(−1 + √

5 + 4c1/5)
√
2(5 + √

5)

)
− 4 log

(
1 + c1/5

)+ (1 + √
5) log

(
2 + (−1 + √

5)c1/5 + 2c2/5
)

−(−1 + √
5) log

(
2 − (1 + √

5)c1/5 + 2c2/5
))

+
(

(1 + Pactive) 	

(
3

5

))2

Pactive

(
−i
√
2(5 + √

5)

log

(
1 + i(−1 + √

5 + 4c1/5)
√
2(5 + √

5)

)
− 4 log

(
1 + c1/5

)− (−1 + √
5) log

(
2 + (−1 + √

5)c1/5 + 2c2/5
)

(1 + √
5) log

(
2 − (1 + √

5)c1/5 + 2c2/5
))

+ (−1 + Pactive) (Pactive)
2 	

(
3

5

)3 (
i
√
2(5 + √

5)

log

(
1 + i(−1 + √

5 + 4c1/5)
√
2(5 + √

5)

)
− 4 log

(
1 + c1/5

)+ (−1 + √
5) log

(
2 + (−1 + √

5)c1/5 + 2c2/5
)

+(1 + √
5) log

(
2 − (1 + √

5)c1/5 + 2c2/5
))

− 2 (−2 + Pactive) (2 + Pactive (−2 + Pactive))
(
2 log (1 + c) + 5 log

(
Pactive	

(
3

5

))
− 5 log

(
1 − Pactive + Pactivec

2/5	

(
3

5

)))]

+10 log

(
1 − Pactive + Pactivec

2/5	

(
3

5

))]
/

(
−4 (−1 + Pactive)

5 + 4 (Pactive)
5 	

(
3

5

)5
)
,

where b = 2

√
16

9
+ 2

Pactive
, c = 1.3099 (36)

in Section 2, that in the fully loaded case (i.e., for λUE � λ)
the ergodic rate remains invariant while the BS density
changes. However, Fig. 7 demonstrates that even if the
peak rate remains invariant, the rate of the users that
have to share this peak rate tends to zero as the den-
sity ratio (i.e., the expected number of users per typical
cell) increases. This behavior demonstrates why the envis-
aged UDNs are expected to comprise more BSs than

users, highlighting the importance of the non-fully loaded
case. Given the importance of the non-fully loaded case,
expressions (34)–(36) and Fig. 6 allow for the first time to
quantify the threshold between the non-fully and the fully
loaded case. In particular, in all three expressions for the
different values of β , the network exhibits the behavior of
a fully loaded network for λUE/λ > 4, way earlier than
implied by the notation λUE � λ.

Fig. 6 DL ergodic peak rate vs ratio of densities λUE/λ for a path-loss exponent β = 3(∗), 4(o) and 5(+)
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Fig. 7 DL ergodic capacity vs ratio of densities λUE/λ for a path-loss exponent β = 3(∗), 4(o) and 5(+)

Another interesting finding can be derived from the
behavior of the network in the non-fully loaded case,
when the BSs that do not comprise any user in their
coverage do not create any interference. In this setup,
Fig. 6 demonstrates that the densification of the network
can provide substantial capacity gains, since the achieved
DL ergodic rate in this range is significantly higher than
the rate achieved at the fully loaded case. Thus, Fig. 6
demonstrates that just by switching off the BSs that do
not comprise users in their coverage, substantial capacity
gains can be engendered for the network. This motivates
the use of even more intricate schemes where BSs can
be switched off strategically to mitigate interference. This
optimization problem is only one of the problems that
the derived expressions can be applied to, with additional
applications being presented in the following section.
Moreover, expressions (34)–(36) and the respective

figures, verify the results of the expressions (24) and (25),
and of Figs. 3 and 4, according to which the DL ergodic

Table 2 Computational time of expressions (33)–(36) as a
percentage of the respective computational time for simulating
the scenarios of Fig. 7

Path loss (β)
Density ratio λUE/λ

0.17 4.34 8.51 11.11

3 6.9 10−4 % 6.7 10−4 % 3.4 10−7 % 2.7 10−7 %

4 6.9 10−4 % 6.8 10−4 % 1.8 10−7 % 1.3 10−7 %

5 2.2 10−3 % 4.6 10−3 % 2.3 10−6 % 1.6 10−6 %

rate increases monotonically with the path-loss exponent
β . In particular, since the distance from the UE to the
serving BS is always smaller than the distance to the inter-
fering BSs, i.e., since ‖xi‖ > ‖x0‖, each term of the sum
∑
x∈� ,
x�=x0

( ‖x0‖‖xi‖
)β

decreases with β . Consequently, the SIR and

the DL ergodic rate increase monotonically with β .

5.4 Applications of the derived expressions
Figures 6 and 7 corroborate the accuracy of the derived
expressions, while providing a deeper understanding of
the network performance as a function of the user and
BS densities. Hence, these expressions, which for the first
time associate the DL ergodic rate with the densities of the
UE and of the BSs is a closed form, pave the way for the
investigation of complex optimization problems, toward
improving UDN operation and offered QoS.
In particular, given the maximum density of UE λUE

during the operation of the network and the minimum
rate requirement per user (imposed by the QoS con-
straints), Fig. 7 and (33) can be employed by network
operators to define the minimum BS density λ that guar-
antees this rate. Hence, (33) can be employed as a rule
of thumb for the lower limit of the densification of BSs
that guarantees the QoS objectives, implicitly quantify-
ing the minimum capital expenditure required by network
operators.
In addition to that, given the aforementioned mini-

mum rate requirement per user and a network of BS
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density λ, comprising UE whose density λUE varies during
the operation of the network, Fig. 7 and (33) can be
employed to dynamically define the probability of trans-
mission Pactive that achieves the predefined rate require-
ment as λUE changes. This probability can indicate the
density of transmitting BSs λPactive, i.e., the density of
the BSs comprising at least one UE in their coverage.
The latter density can be input into optimization mod-
ules, to be used as a starting point for the search aiming
at pinpointing the optimum set of BSs to be switched
off, additionally to those that do not comprise any UE in
their coverage. Given the high density of the BSs, strate-
gically switching off the best serving BSs of a UE for
the latter to be served by a neighboring BS has a only
minimal impact on the path loss, while it can provide
substantial capacity gains through the mitigation of the
interference.

6 Conclusions
The present paper has demonstrated how stochastic
geometry tools can be exploited to derive not just exact
but cumbersome expressions, but also simple, albeit
extremely accurate closed form expressions that allow
for the investigation of complex optimization problems.
The resolution of these problems is essential in order
to reap the capacity benefits of UDNs. In this direction,
the present paper presented an accurate and tractable
approximation for the MGF of the aggregate other-cell
interference. Given the pivotal role of theMGF in stochas-
tic geometry analyses, the derived approximation can
be employed by a multitude of applications to simplify
the analysis and facilitate the derivation of closed form
expressions.
Building upon this result, the present paper has focused

on the interference limited case, providing very tractable
expressions for the coverage probability, as well as closed
form expressions for the DL ergodic capacity (i.e., peak
and actual) which depend on the density of UE λUE and
the density of BSs λ. The derived expressions and their
dependence on the user and BS densities set out a den-
sification road map for network operators and designers
of significant practical and commercial value. Moreover,
such expressions can be used for the resolution of com-
plex optimization problems in real time, improving the
network performance and operation.
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