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Outage Probability Analysis of Spectrum

Sharing Systems with Distributed Cyclic Delay

Diversity

Kyeong Jin Kim, Hongwu Liu, Miaowen Wen, Marco Di Renzo, and H. Vincent Poor

Abstract

In this paper, a distributed cognitive underlay single carrier system is investigated. A secondary users’ network

consists of a control unit (CU) and a group of secondary user remote radio heads (S-RRHs). To effectively access the

radio spectrum licensed to the primary users, a distributed cyclic delay diversity (dCDD) scheme is employed between

the CU and S-RRHs as the transmit diversity scheme. Multiple primary user transmitters (PTXs) are assumed to be

located isotropically within the secondary users’ network, so that a mixture of line-of-sight (LoS) and non-line-of-sight

(nLoS) paths from the PTXs to the secondary user receiver is considered. In addition, a mixture of LoS and nLoS

paths is considered in the secondary users’ network. For a new transmit diversity scheme and channel model, the

performance of the secondary users’ network achieved by dCDD in the presence of isotropically distributed multiple

PTXs is investigated. dCDD enables the CU to use multiple S-RRHs at the same time, so that determining the effects

of a different number of S-RRHs in the presence of a new channel model is an open research issue. To this end,

a new closed-form expression for the outage probability is derived, and then its accuracy is verified by link-level

simulations.

Index Terms

Distributed cyclic delay diversity, underlay spectrum sharing, cyclic-prefixed single carrier transmission, outage

probability, diversity gain.

I. INTRODUCTION

Since the radio frequency spectrum is a scarce natural resource, it needs to be efficiently utilized by all entities

that want to use it. To mitigate its inefficient utilization, cognitive radio has been proposed by [2]. Among several

approaches of cognitive radios, such as overlay, interweave, and underlay, underlay spectrum sharing is the most
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promising since unlicensed secondary users can reuse the spectrum licensed to primary users in transmitting their

information. As long as the aggregated received energy level from the secondary users’ transmissions does not

exceed an interference temperature limit at the primary users, the secondary users can use the licensed band.

To improve the performance of underlay spectrum sharing, several approaches have been proposed. Maximum

ratio transmission (MRT) was proposed as a transmit diversity scheme by [3] for a transmitter deployed with

multiple antennas. Recently, MRT has been applied to distributed single carrier transmission systems [4]. However,

acquiring exact channel state information at the transmitter side (CSIT) is a challenging task in distributed wireless

communications systems, in which transmit diversity heavily relies on CSIT.

As an alternative scheme, transmit antenna selection (TAS) has been proposed by [5]–[8] when multiple antennas

are deployed at the single transmitter. Considering feedback overhead and signal processing cost, a single transmit

antenna is selected in TAS to maximize the signal-to-noise ratio (SNR) at the secondary user receiver (SRX). In

addition, a general maximal ratio combining (MRC) is applied among several receive antennas to enhance the

performance of the secondary users’ network. In particular, the ergodic capacity was investigated for TAS and

MRC schemes in [5]. For multiple primary user receivers (PRXs) in the network, the outage probability of TAS

and MRC schemes was investigated by [6]. The authors of [7] investigated the power allocation problem for TAS

and MRC schemes with a single primary user transmitter (PTX) and PRX. Recently, the authors of [8] considered

both continuous and discrete power adaptation to reduce the interference at the PRX.

With the aid of backhaul signaling, a decentralized multi-cell beamforming scheme was investigated in underlay

spectrum sharing environments in [9]. Under ideal backhaul connections, joint information and energy cooperation

between the primary and secondary systems was considered to improve the spectral efficiency for cognitive radio

networks in [10]. In [11], the outage probability and ergodic capacity were investigated for best user selection in

cognitive relay networks with unreliable backhaul connecting multiple users. To support several secondary base

stations (SBSs) for simultaneous transmissions, precoding was proposed by [12] over the backhaul links between

the control unit (CU) and SBSs.

In contrast to MRT, TAS, and the work [11] which applies best user selection to achieve transmit diversity, a

distributed cyclic delay diversity (dCDD) has been proposed as a practical transmit diversity scheme for cyclic-

prefixed single carrier (CP-SC) systems [13]. The dCDD scheme improves the reliability of a message by transmitting

the same message over multiple channels having different channel characteristics. Although the dCDD protocol is

similar to TAS in avoiding explicit channel feedback from the receiver, dCDD works effectively for distributed

systems, in which only one antenna is deployed for each of the transmitters. In contrast, TAS assumes multiple

transmit antennas deployed at a single transmitter, and thus how to use TAS in a distributed system is still an open

problem. In addition, TAS supports only one antenna at each time epoch for transmission. In contrast, dCDD can

use as many transmitters allowed by a frequency selective fading channel. Consequently, the dCDD protocol results

in a higher coding gain while maintaining the same maximum diversity gain as TAS by intrinsically integrating

opportunistic transmitter cooperation.

Several works [14]–[17] have applied the conventional CDD to different applications that use a cyclic delay

among antennas deployed at a single transmitter. Accordingly, the conventional CDD scheme does not apply a cyclic
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delay among multiple distributed antennas, each of which is deployed at a different spatially located transmitter

in distributed systems. The authors of [13] firstly verified that by a proper design of the permutation matrix

that circularly shifts the transmission symbol block, an intersymbol interference (ISI)-free channel matrix can be

generated for distributed CP-SC transmissions. The size of the transmission symbol block which is specified by

the CU based on the CP-SC transmissions, and the maximum number of multipath components of the channel

that transmits this symbol block determine the number of transmitters for dCDD. The receiver needs to feedback

the maximum number of multipath components to the CU. It has been verified by [13] that the full diversity gain

with a higher coding gain can be achieved with respect to [18] and [19] without exact knowledge of CSIT. This

performance gain advantage will be beneficial to secondary users in reusing the radio band licensed to primary

users.

There are several existing works [20]–[22] on spectrum sharing systems that use CP-SC transmissions. In [20],

the decode-and-forward relaying protocol and selection combining were employed. The joint impact of multiple

licensed transceivers was investigated in [21]. Full-duplex relaying was studied in [22]. After proposing the CP-SC

based spectrum sharing in [23], these works have verified that the multipath gain can be attained over frequency

selective fading channels by proper use of the cyclic prefix and a very reliable data detector.

In contrast to existing works, our main contributions can be summarized as follows.

• To achieve the transmit diversity gain, dCDD is employed in the secondary users’ network comprising the

CU, a finite number of secondary user remote radio heads (S-RRHs), and a single SRX. Thus, we use a

mathematical analysis fit to finite-sized cooperative spectrum sharing systems. Over a secondary users’ network,

we investigate the impact of the random location of multiple PTXs on the outage probability. Accordingly, the

use of the dCDD protocol in the secondary users’ network is one of the key distinctions from existing works,

for example, [11] [12], [21], and [22].

• Due to the random location of the PTX within the secondary users’ network, a more practical channel model,

which is somewhat similar to that of [24]–[27], is used. The co-existence of line-of-sight (LoS) and non-

line-of-sight (nLoS) paths is modeled by using a time-sharing factor [28], which is distributed as a Bernoulli

process. However, we assume that a single PRX is placed at the location where the LoS path with respect to

S-RRHs is dominating. Nevertheless, this assumption can be removed in performance analysis.

• We provide an analytical framework jointly taking into account a different degree of S-RRH cooperation via

the dCDD protocol, non-identical frequency selective fading, random location of the PTX over co-existing

LoS and nLoS paths, and coexisting LoS and nLoS paths over the secondary users’ network. For this new

system setting and channel model for the underlay spectrum sharing system, a new expression for the spatially

averaged signal-to-interference ratio (SA-SIR) is derived.

A. Organization

The rest of the paper is organized as follows. In Section II, we detail the system and channel model of the dCDD-

based CP-SC system. After defining random quantities and deriving their distributions, performance analysis of the
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considered system in the interference limited regime is conducted in Section III. Simulation results are presented

in Section IV and conclusions are drawn in Section V.

B. Notation

N0 denotes the set of non-negative integers; C denotes the set of complex numbers; IN is the N ×N identity

matrix; 0 denotes an all-zero matrix of appropriate dimensions; CN
(
µ, σ2

)
denotes the circularly symmetric

complex Gaussian distribution with mean µ and variance σ2; Fϕ(·) and fϕ(·), respectively, denote the cumulative

distribution function (CDF) and probability density function (PDF) of the random variable (RV) ϕ; and E{·} denotes

expectation.
(
n
k

) △
= n!

(n−k)!k! denotes the binomial coefficient. The lth element of a vector a is denoted by a(l);

and L(a) denotes the cardinality of a vector a. RC(a) denotes the right circulant matrix determined by column

vector a. A|i→j denotes that a variable i in A is replaced by j. In specifying a channel related quantity, we use a

consistent way as follows:

• fi,L denotes the ith vector of an f -type channel with the LoS path. Similarly, Fi,L denotes the ith matrix of

an f -type channel with the LoS path. The ith composite f -type channel vector from LoS and nLoS paths is

denoted by fi.

• Nf,L denotes the number of multipath components of an f -type channel with the LoS path.

• Nf,L,m denotes the number of multipath components of the mth f -type channel with the LoS path.

• Similar notations corresponding to the nLoS path can be specified.

In addition, subscripts are used to identify an element from a particular set.

II. SYSTEM AND CHANNEL MODEL

Fig. 1 illustrates the considered dCDD-based spectrum sharing system comprising primary users’ and secondary

users’ networks. As for the primary users’ network, Q PTXs and a single PRX are assumed to be communicating

via a dedicated and licensed radio frequency band. Only one antenna is assumed to be deployed at the primary and

secondary users due to hardware and power constraints. A circular shaped communication cell of radius R for the

secondary users is formed. In the cell, the locations of the Q PTXs are assumed to be isotropic, whereas the PRX

is placed at a fixed location, (xPRX, yPRX). A plurality of M S-RRHs are distributed over the circumference of

the cell. A secondary user network consisting of the CU, M S-RRHs, and SRX shares the primary users’ licensed

radio frequency band subject to interference constraints imposed by the PRX. Since dCDD adopts a distributed

protocol, the CU specifies how to control M single antenna equipped S-RRHs [13] via dedicated highly reliable

backhauls1, {bm}Mm=1. The CU forms an information data being transmitted by S-RRHs simultaneously to the SRX

by using dCDD, so that each S-RRH requires only a simple hardware and low transmission power to communicate

with the SRX in achieving the transmit diversity gain in the frequency selective fading channel. A receiving unit for

Global Navigation Satellite System (GNSS) (e.g., GPS, Galileo, Glonass, Quasi-Zenith Satellite System (QZSS),

etc.) signal is deployed at the front-end of each node, so that S-RRHs can receive and transmit the same information

1In contrast to the works [4], [11], [12], a limited backhaul capacity and unreliable backhaul are not in the scope of this paper.
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Fig. 1. Illustration of the considered dCDD-based spectrum sharing system with randomly located Q PTXs within the secondary users’ cell.

data synchronously when they are operating for dCDD. Due to the use of half-duplex transceivers in every nodes,

they are allowed to either send or receive data at a time.

Since the number of S-RRHs for dCDD is limited by the transmission symbol block size and the maximum

multipath components over the frequency selective fading channel in the secondary users’ network [13], this paper

investigates only a finite-sized cooperative spectrum sharing system comprising a finite number of M S-RRHs and

a single SRX for dCDD. By employing appropriate channel sounding schemes or channel reciprocity [29], [30], we

further assume that the SRX is able to know the maximum number of multipath components over the channels from

S-RRHs to itself. Note that dCDD has a very similar handshaking message overhead compared with TAS, wherein

the receiving side conveys to the transmitting side the antenna index for transmissions. Since the considered system

employs CP-SC transmissions, the SRX needs to convey the maximum number of multipath components over the

channels from M S-RRHs to the SRX to the transmitting side to remove ISI. The following channels are assumed

in the considered system.

• Channels from S-RRHs to the SRX: A multipath channel, hm, from the mth S-RRH to the SRX is given by2

hm = JL

√

(d1,m)−ǫL h̃m,L + JnL

√

(d1,m)−ǫnL h̃m,nL (1)

2A similar model is also employed in [31] and [32]. Especially, a composite channel from LoS and nLoS paths is used for the ultra dense

cloud small cell network by [31].
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where h̃m,L and h̃m,nL identify the mth frequency selective fading channel connected to the mth S-RRH

over LoS and nLoS paths with Nh,L,m
△
= L(h̃m,L) and Nh,nL,m

△
= L(h̃m,nL) multipath components. A

distance from the mth S-RRH to the SRX is given by d1,m with d1,m = R, ∀m, independent of the index

of the S-RRH. In addition, ǫL and ǫnL are respectively denoting the path loss exponent of the LoS and nLoS

paths. The indicator functions, JL and JnL, model the random selection between LoS and nLoS paths with

probability Pr(JL) = G and Pr(JnL) = 1 − G, where G denotes the time-sharing factor [28]. The selection

probability of LoS and nLoS paths is assumed to be identical over the channels from M S-RRHs to the SRX.

In this paper, we model the random selection of LoS and nLoS paths using a Bernoulli process.

• Channel from the qth PTX to the SRX: A multipath channel from the PTX to the SRX is given by

fq = IL

√

(d2,q)−ǫL f̃q,L + InL

√

(d2,q)−ǫnL f̃q,nL (2)

where f̃q,L and f̃q,nL identify the qth frequency selective fading channel over LoS and nLoS paths with

Nf,L
△
= L({f̃q,L}

Q
q=1) and Nf,nL

△
= L({f̃q,nL}

Q
q=1) multipath components. The indicator functions, IL and

InL, are used to model the random selection of LoS and nLoS paths with probability Pr(IL) = F and

Pr(InL) = 1 − F . The selection probability of LoS and nLoS paths is assumed to be identical over the

channels from Q PTXs to the SRX. A Bernoulli process that models the selection of LoS and nLoS paths

from the PTXs to the SRX is assumed to be independent of the Bernoulli process that models the selection

of LoS and nLoS paths from S-RRHs to the SRX. With respect to the center of the communication cell,

d2 = d2,q, ∀q, is distributed as follows:

fd2(y) =
2y

(R)2 − (Rmin)2
for Rmin ≤ y ≤ R. (3)

When d2 < 1, the received power level becomes larger than the transmit power [33], so that Rmin ≥ 1.

• Channels from M S-RRHs to the PRX : When multiple S-RRHs are servicing for dCDD, they jointly influence

the PRX. Accordingly, a channel from the mth S-RRH to the PRX is given by

gm =
√

(d3,m)−ǫL g̃m,L (4)

where g̃m,L identifies the frequency selective fading channel with Ng
△
= L({g̃m,L}Mm=1). A distance from

the mth S-RRH to the PRX is given by d3,m. From (4), we assume that channels from the S-RRHs to the

PRX introduce only LoS path.

• A very reliable channel state information (CSI) from M S-RRHs to the PRX can be obtained via direct

feedback from the PRX [34], indirect feedback from a band manager [35], and periodic pilot-aided sensing

from the PRX [35].

• The multipath components of all the frequency selective fading channels are assumed to be independent and

identically distributed (i.i.d.) according to CN (0, 1). However, due to different distances from the S-RRHs

to the PRX, a composite frequency selective fading channel considering both small and large scale fading is

distributed independently and non-identically distributed (i.n.i.d.) in the considered system. We also assume

that all channels are constant over one data transmission interval due to a quasi-static channel assumption, but

different from, and independent of those for other transmission intervals.
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A. dCDD for CP-SC Transmissions

CP-SC transmissions [18] are used for all nodes in the primary and secondary users’ networks. Since dCDD

allows a plurality of S-RRHs to transmit the same block symbol block s at the same time, it is necessary to remove

a possible existence of ISI at the SRX. In addition, due to operation in the multipath fading channel, ISI can be

caused at the SRX. ISI being caused by a multipath channel can be removed by appending the last NCP , which is

called the CP length, symbols of s ∈ CB×1 to the front of s [13]. The size of symbol block s is denoted by B. We

assume that E{s} = 0 and E{ssH} = IB . Secondary, it is necessary to achieve the ISI-free reception at the SRX

even for distributed joint CP-SC transmissions made by the synchronized S-RRHs. When the CU has knowledge

about the CP length across the channels from the S-RRHs to the SRX, this can be possible by applying a different

CDD delay, as a function of NCP , to each of the S-RRHs. Let NCP be defined by the maximum number of

multipath components across the channels from the S-RRHs to the SRX, then the CDD delay, for example, the mth

CDD delay, ∆m, plays key roles in generating an equivalent ISI-free right circulant channel matrix by satisfying

the following two conditions [13]:

NCP ≥ max(Nh,L,m, Nh,nL,m) and ∆m = (m− 1)NCP . (5)

Note that when a mapping which assigns ∆m to a particular S-RRH is shared among the nodes in the secondary

user’s network, this does not cause any performance differences. This is the one of the unique features of dCDD

which was verified by [13]. For example, Eq. (5) specifies a linear mapping.

To make ISI free reception at the SRX from simultaneous distributed CP-SC transmissions, the CU determines

the maximum allowable number of S-RRHs for dCDD as follows: K = ⌊B/NCP ⌋, where ⌊·⌋ denotes the floor

function. In this paper, we assume that M ≤ K . However, when M > K , the SRX needs to convey a referencing

order list of S-RRHs in accordance with the receive channel gain at the SRX, which enables the CU to choose

only K S-RRHs for dCDD operation.

Having applied dCDD with the condition of M ≤ K , the received signal at the SRX, after removing the CP

signal, is given by

r =
√

Ps

M∑

m=1

(

JL(R)−ǫL/2H̃m,L + JnL(R)−ǫnL/2H̃m,nL

)

s̃m +

√

PP

Q
∑

q=1

(

IL(d2,q)
−ǫL/2F̃q,L + InL(d2,q)

−ǫnL/2F̃q,nL

)

x̃q,p + zR (6)

where s̃m
△
= P∆m

s and PP is the transmission power at the PTX. The additive noise over all the frequency

selective fading channels is denoted by zR ∼ CN (0, σ2
zIB). The permutation shifting matrix P∆m

is obtained

from the identity matrix IB by circularly shifting down by ∆m. Note that a set of S-RRHs can be recognized as a

distributed antenna system with additional hardware resource, in which each S-RRH applies a simple operation, i.e.,

multiplying the permutation matrix P∆m
to the incoming block symbol s. After appending the last NCP symbols

of the transformed block symbol, each S-RRH transmits the resulting block symbol sequentially via its dedicated

antenna.
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As one example of dCDD operation, let us assume B = 6 and Nh,L,m = 2, ∀m, so that we have NCP = 2 and

K = 3. Furthermore, only two S-RRHs are available in the secondary users’ network. Then, according to these

assumptions, one particular channel matrix in (6) is defined by

(R)−ǫL/2H̃1,L
△
= (R)−ǫL/2





















h̃1,L(1) 0 0 0 0 h̃1,L(2)

h̃1,L(2) h̃1,L(1) 0 0 0 0

0 h̃1,L(2) h̃1,L(1) 0 0 0

0 0 h̃1,L(2) h̃1,L(1) 0 0

0 0 0 h̃1,L(2) h̃1,L(1) 0

0 0 0 0 h̃1,L(2) h̃1,L(1)





















△
= (R)−ǫL/2RC

(

[(h̃1,L)
T , 01×4]

T
)

. (7)

According to (7), (R)−ǫnL/2H̃1,nL can be expressed by (R)−ǫnL/2H̃1,nL = (R)−ǫnL/2RC
(

[(h̃1,nL)
T , 01×4]

T
)

.

Recall that h̃1,L(i) denotes the ith element of h̃1,L. Based on (7) and applying the linear mapping, the desired

signal part in (6) can be expressed as

rs =
√

Ps

2∑

m=1

(

JL(R)−ǫL/2H̃m,L + JnL(R)−ǫnL/2H̃m,nL

)

P∆m
s

=
√

Ps

2∑

m=1

[

JL(R)−ǫL/2RC
(

[(h̃m,L)
T , 01×4]

T
)

+ JnL(R)−ǫnL/2RC
(

[(h̃m,nL)
T , 01×4]

T
)
]

P∆m
s

= JL

√

Ps(R)−ǫL/2RC
(

[(h̃1,L)
T , (h̃2,L)

T ,01×2]
T
)

s+

JnL

√

Ps(R)−ǫnL/2RC
(

[(h̃1,nL)
T , (h̃2,nL)

T ,01×2]
T
)

s

=
(

JL

√

PsH̃eq,L + JnL

√

PsH̃eq,nL

)

s. (8)

In (8), P∆m
has six rows and columns, which are determined by the block size B. According to the representation

provided in (7), H̃eq,L is given by

H̃eq,L
△
= (R)−ǫL/2H̃1,LP∆1 + (R)−ǫL/2H̃2,LP∆2

= (R)−ǫL/2





















h̃1,L(1) 0 0 h̃2,L(2) h̃2,L(1) h̃1,L(2)

h̃1,L(2) h̃1,L(1) 0 0 h̃2,L(2) h̃2,L(1)

h̃2,L(1) h̃1,L(2) h̃1,L(1) 0 0 h̃2,L(2)

h̃2,L(2) h̃2,L(1) h̃1,L(2) h̃1,L(1) 0 0

0 h̃2,L(2) h̃2,L(1) h̃1,L(2) h̃1,L(1) 0

0 0 h̃2,L(2) h̃2,L(1) h̃1,L(2) h̃1,L(1)





















. (9)

Similarly, H̃eq,nL can be determined. From (9), we can readily see that frequency selectivity becomes more

severe. However, ISI-free CP-SC transmissions can be possible by the use of dCDD. Thus, a frequency
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diversity gain can be achieved by dCDD. In contrast, F̃q,L and F̃q,nL follow the form defined by (7), that is,

F̃q,L = RC
(

[(f̃q,L)
T ,01×(B−Nq,L)]

T
)

and F̃q,nL = RC
(

[(f̃q,nL)
T ,01×(B−Nq,nL)]

T
)

.

The transmission power at all the S-RRHs is Ps, which is given by the following constraint [21]:

Ps = min

(

PT ,
Ip

max
m=1,...,M

(d3,m)−ǫL‖g̃m,L‖
2

)

(10)

where PT and Ip respectively denote the maximum allowable transmission power at all the S-RRHs and the peak

allowable interference temperature at the PRX. The distance from the mth S-RRH to the PRX is given by d3,m.

Since max{Nh,L,m, Nh,nL,m, Nf,L, Nf,nL, Ng} is smaller than the block size B, a zero padding is required in the

representation of right circulant channel matrices, H̃m,L, H̃m,nL, F̃q,L, and F̃q,nL. Note that when M > K , the

CU chooses only K S-RRHs having greater channel gains, so that the order statistics are implicitly assumed in

the representation of equivalent channel matrices H̃eq,L and H̃eq,nL. The transmission symbol block from the qth

PTX is given by x̃q,p with E{x̃q,p} = 0, ∀q and E{x̃q,p(x̃q′,p)
H} = IBδq−q′ with the Kronecker delta function,

δl =
{
0 if l 6= 0.
1 if l = 0

III. PERFORMANCE ANALYSIS IN INTERFERENCE LIMITED REGIME

From (6), the signal-to-interference ratio (SIR) measured at the SRX is given by

γSIR
△
=

Ps

(

JL
∑M

m=1 αh,L‖h̃m,L‖2 + JnL
∑M

m=1 αh,nL‖h̃m,nL‖2
)

PP

(
∑Q

q=1 IL(d2,q)
−ǫL‖f̃q,L‖2 +

∑Q
q=1 InL(d2,q)

−ǫnL‖f̃q,nL‖2
) (11)

where αh,L
△
= (R)−ǫL and αh,nL

△
= (R)−ǫnL . Note that when we use a maximum likelihood type detector, for

example, the QRD-M [36], we can obtain (11). Further exploiting synchronized communications by GNSS and

independent interference from Q PTXs to the SRX, we can rewrite (11) as

γSIR
△
=

Ps

(

JL
∑M

m=1 αh,L‖h̃m,L‖
2 + JnL

∑M
m=1 αh,nL‖h̃m,L‖

2
)

PP

(

IL(d2)−ǫL‖f̃L‖2 + InL(d2)−ǫnL‖f̃nL‖2
) = min

(

PT , Ip/X
)

Y. (12)

In (12), we have defined X
△
= max

m=1,...,M
PG(d3,m)−ǫL‖g̃m‖2, Y

△
= AL+AnL

B with

AL
△
= JL

∑M
m=1 αh,L‖h̃m,L‖2 and AnL

△
= JnL

∑M
m=1 αh,nL‖h̃m,nL‖2, and B

△
= PP

(

IL(d2)
−ǫL‖f̃L‖2 +

InL(d2)
−ǫnL‖f̃nL‖2

)

with f̃L
△
=
∑Q

q=1 f̃q,L and f̃nL
△
=
∑Q

q=1 f̃q,nL. Note that (12) equals (11) in the SA

sense.

A. Distributions of the SA-SIR

Owing to the random locations of Q PTXs within the secondary users’ cell, we need to compute the SA-SIR.

Moving from the analysis of [21], the CDF of the SA-SIR is given by

FγSIR
(x) = E{Pr(Y < x/PT , X < µ|d2)}+ E{Pr(Y < Xx/Ip, X > µ|d2)}

= E{FY (x/PT |d2)}FX(µ) + E

{∫ ∞

µ

FY (xt/Ip|d2)

}

fX(t)dt
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= FY,SA(x/PT )FX(µ)
︸ ︷︷ ︸

J1

+

∫ ∞

µ

FY,SA(xt/Ip)fX(t)

︸ ︷︷ ︸

J2

dt (13)

where µ
△
=

Ip
PT

.

1) Distribution of the RV X: According to [21], we can compute the distributions of RV X as follows:

FX(x) =

M∏

m=1

(

1−
Γu(Ng, x/(d3,m)−ǫL)

Γ(Ng)

)

= 1 + Υe−β̃xxl̃, (14)

fX(x) = Υ
[

l̃e−β̃xxl̃−1 − β̃e−β̃xxl̃
]

(15)

where Γ(·) and Γu(·) respectively denote the complete gamma and upper incomplete gamma functions [37, Eqs.

(8.310) and (8.350.2)]. In addition, β̃
△
=

∑m
t=1 (d3,qt)

ǫL , l̃
△
=

∑m
t=1 ℓt, and

Υ
△
=

M∑

m=1

(−1)m
M−m+1∑

q1=1

· · ·
M∑

qm=qm−1+1

Ng−1
∑

ℓ1=0

· · ·

Ng−1
∑

ℓm=0

m∏

t=1

(

(d3,qt)
ǫL

ℓt!

)

. (16)

Note that we assume the same number of multipath components for the expressions of (14) and (15), Ng, across

the channels from M S-RRHs to the PRX. For non-identical number of multipath components, we can make them

work by changing (16) as

Υ
△
=

M∑

m=1

(−1)m
M−m+1∑

q1=1

· · ·
M∑

qm=qm−1+1

Ng,q1−1
∑

ℓ1=0

· · ·

Ng,qm−1
∑

ℓm=0

m∏

t=1

(

(d3,qt)
ǫL

ℓt!

)

(17)

where Ng,m
△
= L(g̃m,L). Note that having updated equations (14)-(17), the distribution of the RV X can be used

even for multiple PRXs. When the channels from M S-RRHs to the PRX also follow the model as that of the

channel model either from the PTX to the SRX or from M S-RRHS to the SRX, then FX(x) should be replaced

by FX(x) = GFX,L(x)+ (1−G)FX,nL(x) due to the employed binary Bernoulli process. Similarly, it is necessary

to update fX(x) as follows: fX(x) = GfX,L(x) + (1 − G)fX,nL(x).

2) Distributions of the RVs AL and AnL: In the frequency selective fading, distributions of the RVs AL and

AnL are given by

FA,L(x) = 1−

Nh,L−1
∑

k=0

e−x/αh,L

Γ(k + 1)
(αh,L)

−kxk and

FA,nL(x) = 1−

Nh,nL−1
∑

k=0

e−x/αh,nL

Γ(k + 1)
(αh,nL)

−kxk (18)

where Nh,L
△
=
∑M

m=1 Nh,L,m and Nh,nL
△
=
∑M

m=1 Nh,nL,m.

3) Distribution of the interference power conditioned on a given distance d2: Due to CP-SC transmissions, the

conditional density of primary user’s interference power received at the SRX at a given distance d2, denoted by

RV B, is given by

fB(x|d2) =
GxN̂L−1

Γ(N̂L)(PP (d2)−ǫL)N̂L

e
−

x

PP (d2)−ǫL +
(1− G)xN̂nL−1

Γ(N̂nL)(PP (d2)−ǫnL)N̂nL

e
−

x

PP (d2)−ǫnL (19)

where N̂L
△
= QNf,L and N̂nL = QNf,nL.
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4) Distribution of the SA RV Y: Since the distribution of the SA Y is not available in existing literature, we

provide its closed expression in Theorem 1.

Theorem 1: In the i.n.i.d. frequency selective fading channel, the distribution of the SA Y at a fixed location of

the SRX is given by

FY,SA(x) = 1−

(

GF

Nh,L−1
∑

k=0

BL,Lx
−N̂LAL,L + G(1−F)

Nh,L−1
∑

k=0

BL,nLx
−N̂nLAL,nL +

(1− G)F

Nh,nL−1
∑

k=0

BnL,Lx
−N̂LAnL,L + (1− G)(1 −F)

Nh,nL−1
∑

k=0

BnL,nLx
−N̂nLAnL,nL

)

= 1− JA. (20)

In (20), we have defined the following terms:

AL,L
△
= (R)µLǫL

2F1

(

µL, k + N̂L;µL + 1;−z+1

)

− (Rmin)
µLǫL

2F1

(

µL, k + N̂L;µL + 1;−z−1

)

,

AL,nL
△
= (R)µnLǫnL

2F1

(

µnL, k + N̂nL;µnL + 1;−z+2

)

− (Rmin)
µnLǫnL

2F1

(

µnL, k + N̂nL;µnL + 1;−z−2

)

,

AnL,L
△
= (R)µLǫL

2F1

(

µL, k + N̂L;µL + 1;−z+3

)

− (Rmin)
µLǫL

2F1

(

µL, k + N̂L;µL + 1;−z−3

)

, and

AnL,nL
△
= (R)µnLǫnL

2F1

(

µnL, k + N̂nL;µnL + 1;−z+4

)

− (Rmin)
µnLǫnL

2F1

(

µnL, k + N̂nL;µnL + 1;−z−4

)

(21)

with

BL,L
△
=

(αh,L)
−N̂L

Γ(k + 1)

(Pp)
N̂LΓ(k + N̂L)

Γ(N̂L)

DR

µLǫL
, BL,nL

△
=

(αh,L)
−N̂nL

Γ(k + 1)

(Pp)
N̂nLΓ(k + N̂nL)

Γ(N̂nL)

DR

µnLǫnL
,

BnL,L
△
=

(αh,nL)
−N̂L

Γ(k + 1)

(Pp)
N̂LΓ(k + N̂L)

Γ(N̂L)

DR

µLǫL
, BnL,nL

△
=

(αh,nL)
−N̂nL

Γ(k + 1)

(Pp)
N̂nLΓ(k + N̂nL)

Γ(N̂nL)

DR

µnLǫnL
,

µL
△
= 2/ǫL + N̂L, µnL

△
= 2/ǫnL + N̂nL, and DR

△
=

2

(R2 −R2
min)

.

In addition,

z+1
△
=

(R)ǫLαh,L

Ppx
, z−1

△
=

(Rmin)
ǫLαh,L

Ppx
, z+2

△
=

(R)ǫnLαh,L

Ppx
, z−2

△
=

(Rmin)
ǫnLαh,L

Ppx
,

z+3
△
=

(R)ǫLαh,nL

Ppx
, z−3

△
=

(Rmin)
ǫLαh,nL

Ppx
, z+4

△
=

(R)ǫnLαh,nL

Ppx
, and z−4

△
=

(Rmin)
ǫnLαh,nL

Ppx
.

The Gauss hypergeometric function [37, Eq. (9.100)] is denoted by 2F1(·, ·; ·; ·). Note that since JA can be derived

easily from (20), we do not provide its detailed expression.

Proof: See Appendix A.

We can compute J1 from (14) and (20) as follows:

J1 = FY,SA(x/PT )FX(µ). (22)

Thus, we do not provide its detailed expression. Although a closed-form expression for J1 is obtained, a more

challenging task, the computation of J2 in (13), is left.

February 27, 2019 DRAFT



12

Corollary 1: According to [38, Eqs. (07.23.06.0021.01) and (07.23.06.0002.01)] and depending on the absolute

value of z, with |z| 6= 1 and |a− b| /∈ N0, we represent 2F1(a, b; c; z) as follows:

2F1(a, b; c; z) =







∞∑

k=0

(a)[k](b)[k](z)
k

(c)[k]
, |z| < 1,

Γ(b− a)Γ(c)(−z)−a

Γ(b)Γ(c− a)

∞∑

k=0

(a)[k](a− c+ 1)[k](z)
−k

Γ(k + 1)(a− b+ 1)[k]
+

Γ(a− b)Γ(c)(−z)−b

Γ(a)Γ(c− b)

∞∑

k=0

(b)[k](b − c+ 1)[k](z)
−k

Γ(k + 1)(−a+ b+ 1)[k]
, |z| > 1,

(23)

where (a)[k]
△
= Γ(a+k)

Γ(a) .

Note that the absolute difference of the first two parameters of Gauss hypergeometric functions used in (20) are

not positive integers, so that Corollary 1 will be used in the following analysis.

Corollary 2: According to Corollary 1, (20) can be expressed as follows:

FY,SA(x) = 1−



GF

Nh,L−1
∑

k=0

BL,L

(〈

AL,L,11x
−(ik+N̂L), | − z+1 | < 1

AL,L,12x
2/ǫL +AL,L,13x

−(ik+k), | − z+1 | > 1

〉

−

〈

AL,L,21x
−(ik+N̂L), | − z−1 | < 1

AL,L,22x
2/ǫL +AL,L,23x

−(ik+k), | − z−1 | > 1

〉)

+

G(1 −F)

Nh,L−1
∑

k=0

BL,nL

(〈

AL,nL,11x
−(ik+N̂nL), | − z+2 | < 1

AL,nL,12x
2/ǫnL +AnL,13x

−(ik+k), | − z+2 | > 1

〉

−

〈

AL,nL,21x
−(ik+N̂nL), | − z−2 | < 1

AL,nL,22x
2/ǫnL +AL,nL,23x

−(ik+k), | − z−2 | > 1

〉)

+

(1− G)F

Nh,nL−1
∑

k=0

BnL,L

(〈

AnL,L,11x
−(ik+N̂L), | − z+3 | < 1

AnL,L,12x
2/ǫL +AnL,L,13x

−(ik+k), | − z+3 | > 1

〉

−

〈

AnL,L,21x
−(ik+N̂L), | − z−3 | < 1

AnL,L,22x
2/ǫL +AnL,L,23x

−(ik+k), | − z−3 | > 1

〉)

+

(1− G)(1 −F)

Nh,nL−1
∑

k=0

BnL,nL

(〈

AnL,nL,11x
−(ik+N̂nL), | − z+4 | < 1

AnL,nL,12x
2/ǫnL +AnL,nL,13x

−(ik+k), | − z+4 | > 1

〉

−

〈

AnL,nL,21x
−(ik+N̂nL), | − z−4 | < 1

AnL,nL,22x
2/ǫnL +AnL,nL,23x

−(ik+k), | − z−4 | > 1

〉)

 (24)

where
〈 ·, c1

·, c2

〉

denotes a conditional equation depending on two conditions c1 and c2, and three key equations

are defined as follows:

AL,L,11 = (R)2+ǫLN̂L

(

Pp

αh,L

)−k−N̂L N∑

ik=0

(2/ǫL + N̂L)[ik](k + N̂L)[ik]

Γ(ik + 1)(2/ǫL + N̂L + 1)[ik]
(C1)

ik ,

AL,L,12 =

(

Pp

αh,L

)2/ǫL−k

C2Γ(2/ǫL + N̂L + 1), and
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AL,L,13 =
2/ǫL + N̂L

2/ǫL − k
R2−kǫL

N∑

ik=0

(k + N̂L)[ik](k − 2/ǫL)[ik]

Γ(ik + 1)(k − 2/ǫL + 1)[ik]
(C1)

−ik (25)

where C1
△
= − (R)ǫLαh,L

Pp
and C2

△
= Γ(k−2/ǫL)

Γ(k+N̂L)
. Based on (25), additional terms can be computed as follows:

AL,L,2i = AL,L,1i

∣
∣
∣
R→Rmin

, AL,nL,1i = AL,L,1i

∣
∣
∣
ǫL→ǫnL,µL→µnL,N̂L→N̂nL

,

AL,nL,2i = AL,nL,1i

∣
∣
∣
R→Rmin

, AnL,L,1i = AL,L,1i

∣
∣
∣
αh,L→αh,nL

,

AnL,nL,1i = AL,L,1i

∣
∣
∣
αh,L→αh,nL,ǫL→ǫnL,µL→µnL,N̂L→N̂nL

, and

AnL,L,2i = AnL,L,1i

∣
∣
∣
R→Rmin

, for i = 1, 2, and 3. (26)

Note that Corollary 2 provides that FY,SA(x) can be expressed by a finite sum of Hypergeometric series.

Corollary 3: The closed-form expression for J2 can be derived as

J2(x) = (1 − FX(µ))−




GF

Nh,L−1
∑

k=0

BL,L

(〈

CL,L,11(
x
Ip
)−(ik+N̂L), | − z+1 | < 1

CL,L,12(
x
Ip
)2/ǫL + CL,L,13(

x
Ip
)−(ik+k), | − z+1 | > 1

〉

−

〈

CL,L,21(
x
Ip
)−(ik+N̂L), for | − z−1 | < 1

CL,L,22(
x
Ip
)2/ǫL + CL,L,23(

x
Ip
)−(ik+k), for | − z−1 | > 1

〉)

+

G(1 −F)

Nh,L−1
∑

k=0

BL,nL

(〈

CL,nL,11(
x
Ip
)−(ik+N̂nL), for | − z+2 | < 1

CL,nL,12(
x
Ip
)2/ǫnL + CnL,13(

x
Ip
)−(ik+k), for | − z+2 | > 1

〉

−

〈

CL,nL,21(
x
Ip
)−(ik+N̂nL), for | − z−2 | < 1

CL,nL,22(
x
Ip
)2/ǫnL + CL,nL,23(

x
Ip
)−(ik+k), for | − z−2 | > 1

〉)

+

(1 − G)F

Nh,nL−1
∑

k=0

BnL,L

(〈

CnL,L,11(
x
Ip
)−(ik+N̂L), for | − z+3 | < 1

CnL,L,12(
x
Ip
)2/ǫL + CnL,L,13(

x
Ip
)−(ik+k), for | − z+3 | > 1

〉

−

〈

CnL,L,21(
x
Ip
)−(ik+N̂L), for | − z−3 | < 1

CnL,L,22(
x
Ip
)2/ǫL + CnL,L,23(

x
Ip
)−(ik+k), for | − z−3 | > 1

〉)

+

(1 − G)(1− F)

Nh,nL−1
∑

k=0

BnL,nL

(〈

CnL,nL,11(
x
Ip
)−(ik+N̂nL), for | − z+4 | < 1

CnL,nL,12(
x
Ip
)2/ǫnL + CnL,nL,13(

x
Ip
)−(ik+k), for | − z+4 | > 1

〉

−

〈

CnL,nL,21(
x
Ip
)−(ik+N̂nL), for | − z−4 | < 1

CnL,nL,22(
x
Ip
)2/ǫnL + CnL,nL,23x

−(ik+k), for | − z−4 | > 1

〉)





= 1− FX(µ) + JB. (27)

In (27), we have defined CL,L,11 = AL,L,11Υ
[

l̃(β̃)−(l̃−(ik+N̂L))Γu(l̃− (ik+ N̂L), µβ̃)− β̃(β̃)−(l̃−(ik+N̂L)+1)Γu(l̃−

(ik + N̂L)+ 1, µβ̃)
]

, CL,L,12 = AL,L,12Υ
[

l̃(β̃)−(l̃+2/ǫL)Γu(l̃+2/ǫL, µβ̃)− β̃(β̃)−(l̃+2/ǫL+1)Γu(l̃+2/ǫL+1, µβ̃)
]

,

and CL,L,13 = AL,L,13Υ
[

l̃(β̃)−(l̃−(ik+k))Γu(l̃− (ik + k), µβ̃)− β̃(β̃)−(l̃−(ik+k)+1)Γu(l̃− (ik + k)+ 1, µβ̃)
]

. Based

on these three key definitions, we can readily derive the other remaining terms as in the computations provided

in (26), so that we do not provide their corresponding expressions. Without detailed description, JB can be easily

derived from (27).
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B. Outage Probability Analysis

Theorem 2: Based on Theorem 1 and Corollary 3, the desired FγSIR
(x) can be derived as follows:

FγSIR
(x) = 1− JA

∣
∣
∣
x→ x

PT

FX(µ) + JB (28)

where JA and JB are respectively defined in Theorem 1 and Corollary 3.

With an available FγSIR
(x). The outage probability at a given SIR threshold xth is given by

Poutage(xth) = 1− JA

∣
∣
∣
x→

xth
PT

FX(µ) + JB|x→xth
. (29)

When µ =
Ip
PT

is not a constant, two distinctive operating regions can be specified.

1) The region with µ << 1 or a constant Ip : In this region, FX(µ) ≈ 0, so that we can have the following

approximate expression for the outage probability

Pµ<<1
outage (xth) ≈ 1 + JB |x→xth

(30)

which is provided in the following Corollary.

Corollary 4: In the region of µ << 1, when Ip is constant, the outage probability is limited by

Pµ<<1
outage (xth) = 1− FX(µ)−

(

GF
(xth

Ip

)−N̂L
Nh,L−1
∑

k=0

BL,LDL,L + G(1 −F)
(xth

Ip

)−N̂nL
Nh,L−1
∑

k=0

BL,nLDL,nL+

(1 − G)F
(xth

Ip

)−N̂L
Nh,nL−1
∑

k=0

BnL,LDnL,L + (1− G)(1 −F)
(xth

Ip

)−N̂nL
Nh,nL−1
∑

k=0

BnL,nLDnL,nL

)

(31)

where DL,L, DL,nL, DnL,L, and DnL,nL are defined in Appendix B with their derivations.

Note that Corollary 4 verifies that Pµ<<1
outage (xth) is proportional to either

(
xth

Ip

)−N̂L

or
(

xth

Ip

)−N̂nL

. Thus, when Ip

is constant, Pµ<<1
outage (xth) becomes constant independent of Ip.

2) The region with µ > 1 or a constant µ: In this region, we can have the following

Pµ>1
outage(xth) ≈ 1− JA

∣
∣
∣
x→

xth
PT

FX(µ) ≈ 1− JA

∣
∣
∣
x→

xth
PT

(32)

which can be derived from Theorem 1. Note that in this region, Ip has no impact on the outage probability, so that

the considered system is out of the spectrum sharing region as PT increases.

IV. SIMULATIONS

The following simulation setup is considered:

• As one example, we consider B = 32 and NCP = 8, so that K = 4 is the maximum number of S-RRHs

in the secondary users’ network for dCDD. Without loss of generality, the proposed analysis can support any

size of B and NCP .

• Quadrature phase-shift keying (QPSK) modulation is used.

• According to [27], different path-loss exponents, such as ǫL = 2.09 and ǫnL = 3.75, are used. We assume

Rmin = 1.

• The SRX is placed at the center of a circular shaped secondary users’ communication cell of radius R, within

which the PRX is placed at (xPRX = 0.2R, yPRX = 0.2R).
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• Four S-RRHs are respectively placed at random as follows: Rj(−0.0428)π , Rj(1.3707)π, Rj(0.4041)π , and

Rj(−0.9967)π. When two S-RRHs are under servicing, we choose the first two S-RRHs.

• A fixed transmission power is assigned at all the PTXs as PP = 3 dB.

• A fixed µ with µ = 1 is used for all the simulations, which will be relaxed with a non-constant value in one

simulation scenario.

• In specifying the upper limit of k in (23), 300 Hypergeometric series are selected from the empirical

observations.

• In the simulations, a system serviced with a single S-RRH, i.e., M = 1, is recognized as the conventional

system [20], [21], which does not use the dCDD scheme.

• We use the MATLAB for the link level simulations. At least 1,000,000 runs are used to obtain a very reliable

empirical outage probability.

The curves obtained via link-level simulations are denoted by Ex. Analytical performance curves is denoted by An.

The SIR threshold causing an outage is fixed at xth = 1 dB.

A. Verification of the outage probability

To verify the derivation of the outage probability, Poutage(xth), provided in Theorem 2, we used the following

fixed system and channel parameters: (Ng = 2, Nf,L = 2, Nf,nL = 3) and (G = 0.8 and F = 0.2). The value of
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Fig. 2. Poutage(xth) for various values of M , Q, and R.

M , the number of S-RRHs in the simulation can be determined by the number of elements of Nh,L,m and Nh,nL,m.
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For example, from Nh,L,m = {3, 4}, two S-RRHs are in the system, whereas from Nh,L,m = {3, 4, 4, 2}, we can

see that four S-RRHs are in the system.

In Fig. 2, we first compare the exact outage probability with its analytically derived outage probability, which

was developed by Theorem 2 for various values of M , Q, and R. We can see the following facts:

• As Q increases, a higher outage probability can be observed due to more aggregated interference from Q

PTXs.

• As M increases, a lower outage probability can be observed due to an increased desired signal power at the

SRX in the secondary user’s network.

• As either Nh,L or Nh,nL increases, a lower outage probability can be observed due to an increased desired

signal power received from M S-RRHs.

• For the considered scenarios, we can see the accuracy of the analytically derived outage probability comparing

with its corresponding exact one. Thus, we will mix them in the following outage probability analysis.

B. Impact of Nh,L,m and Nh,nL,m on the outage probability

15 20 25 30 35 40 45
10

-3

10
-2

10
-1

10
0

Fig. 3. Impact of G and Nh,nL,m on the outage probability for various values of G and F .

In the simulation of Fig. 3, we assume three S-RRHs in the system. For a fixed Nh,L,m = {3, 4, 4}, we investigate

the different multipath components over nLoS path for two different values of F . We use the following fixed system

and channel parameters: (Q = 2, Ng = 2, Nf,L = 2, Nf,nL = 3, G = 0.8, R = 25). From this figure, we can see that

as Nh,nL is increased, a lower outage probability can be achieved. As an additional comparison, we also consider

a fully populated spectrum sharing system with four S-RRHs. For Nh,L,m = {3, 4, 4, 2} and Nh,L,m = {4, 5, 5, 3},
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a significant performance improvement on the outage probability can be observed. Since the maximum number of

S-RRHs is determined by the block size of the transmission symbol, a larger value of B results in an improved

outage probability when the maximum number of multipath components over the secondary user’ network is same,

and the secondary users’ network can be fully populated by S-RRHs. This figure also shows that dCDD makes the

considered system reduce the outage comparing with the system which uses only one S-RRH [20], [21].
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Fig. 4. Impact of Nh,L, and Nh,nL on the outage probability for various values of G and F .

In Fig. 4, we investigate another aspect of the impact of different number of multipath components in the secondary

users’ network on the outage probability for various values of G and F . We use the following fixed parameters

for this scenario as (Q = 3, Nh,L,m = {3, 4, 4}, Nh,nL,m = {3, 4, 4}, R = 25, Nf,L = 2, Nf,nL = 3, Ng = 2).

We also plot the best and worst outage probabilities in this scenario. The best outage probability can be obtained

with LoS path between three S-RRHs and SRX and nLoS path between three PTXs and the SRX, that is, G = 1

and F = 0, whereas the worst outage probability can be obtained with nLoS path between three S-RRHs and the

SRX, and LoS path between three PTXs and the SRX, that is, G = 0 and F = 1. For various values of G and F ,

outage probabilities are placed between these two extreme outage probabilities. Especially, a significant gap exists

between the best outage probability and others corresponding to the remaining scenarios. This figure also shows that

the closed-form expression for the outage probability provides very accurate results even for two extreme outage

probabilities. This figure also shows that dCDD makes the considered system achieve a significantly lower outage

probability comparing with the system which uses only one S-RRH [20], [21].

In the following scenarios, we assume that the LoS and nLoS paths in the secondary users’ network have the

same number of multipath components. Thus, we will specify only the number of mulpath components of the LoS
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path.

C. Impact of F on the outage probability

Since F models the random selection of interfering LoS and nLoS paths, this subsection investigate a different type

of interference mixture in terms of F . For various scenarios, we verify the impact of F on the outage probability

at a fixed value of PT = 18 dB. In addition, we used the following fixed system and channel parameters:

(Nh,L,m = {3, 4, 4}, Ng = 2,G = 0.2, R = 25).
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Fig. 5. Impact of F on the outage probability for various values of Q, Nf,L, and Nf,nL.

This figure shows the following facts:

• If we compare (Nf,L = 2, Nf,nL = 4, Q = 1) with (Nf,L = 2, Nf,nL = 4, Q = 4), the gap in the outage

probability increases as F increases due a different path loss exponent over LoS and nLoS paths. However,

when Q = 4, the gap caused by a different number of interfering multipath components is not so big as that

of Q = 1 since interference is already enough to cause the outage.

D. Impact of G on the outage probability

Since G models the random selection of LoS and nLoS paths over the secondary users’ network, this subsection

investigate different type of a composite received signal in terms of G. In generating Fig. 6, we used M = 4 with

fixed values of (Nh,L,m = {3, 4, 4, 2}, Ng = 2, PT = 18 dB). From this figure, we can see the following facts:
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Fig. 6. Impact of G on the outage probability for various values of Q, F , R, Nf,L and Nf,nL.

• As G increases, the LoS path dominates, so that a better outage probability is achieved. Especially, as G → 1,

the outage probability changes significantly. This scenario corresponds to the case, in which only the LoS path

exists in the secondary users’ network.

• Even a system which uses only one S-RRH, a similar behavior in the outage probability can be observed as

G → 1. However, an intrinsic gap exists with respect to the dCDD based system.

• As R increases, a worse outage probability is achieved since the receive signal power at the SRX is reduced,

in which the path loss exponent is the key parameter causing this result.

E. Impact of R on the outage probability

Since the size of the communication cell of the secondary users’ network with respect to the SRX is also the

key parameter in the system design, we investigate its impact on the outage probability. In this scenario, we use

M = 4 with fixed values of (Nh,L,m = {3, 4, 4, 2}, Ng = 2,G = 0.2, F = 0.3, and PT = 18 dB), that is, the

system is fully populated by four S-RRHs. From Fig. 7, we can observe the following facts:

• As R increases, a worse outage probability is obtained since R impacts more on the receive signal power than

interference power at the SRX.

• At a fixed value of R, a more PTXs result in a worse outage probability as in previous several scenarios.

• Comparing (Nf,L = 2, Nf,nL = 4) with (Nf,L = 4, Nf,nL = 2), a more fluctuation can be observed with

(Nf,L = 2, Nf,nL = 4) due to a bigger change in the receive interference power at the SRX in the considered

simulation set up. When (Nf,L = 4, Nf,nL = 2), the outage probability does not change a lot in terms of
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Fig. 7. Impact of R on the outage probability for various values of Q, Nf,L, and Nf,nL.

R since the multipath over the LoS path dominates and the LoS path has a less degradation in terms of the

distance.

In the previous simulation scenarios, we assume that µ is constant. However, in the following subsection, we

will investigate the impact of µ on the outage probability.

F. Impact of µ on the outage probability

In this scenario, we used M = 4 with fixed values of (Nh,L,m = {3, 4, 4}, Ng = 2,G = 0.8, F = 0.6). From

Fig. 8, we can find the following facts:

• Two distinctive regions can separated as µ << 1 and µ > 1. In the region of µ << 1, JB|x→xth
dominates the

outage probability. Thus, we can see an outage probability floor, which is denoted by Pµ<<1
outage(xth). A similar

observation was investigated by [21]. However, in the region of µ > 1, JA|x→ xth
PT

FX(µ) dominates the outage

probability. Thus, the outage probability is decreased inversely proportional to µ.

• A more number of S-RRHs in the secondary users’ network impacts more on the outage probability in the

region of µ > 1 than that of the region of µ << 1.

• The outage probability floor depends on the number of PTXs, that is, interference from PTXs impacts the

outage probability floor.
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Fig. 8. Impact of µ on Poutage(xth) for various values of Q and M .

V. CONCLUSIONS

In this paper, we have investigated the performance improvement of the secondary users’ network for cooperative

spectrum sharing systems. As a transmit diversity scheme, the dCDD protocol has been employed between the

transmitting side of the secondary users’ network consisting of the CU, multiple S-RRHs, and a single SRX. From

the performance analysis, it can be concluded that dCDD can provide a better outage probability over the existing

work, which uses only one S-RRH as the secondary user transmitter due to ISI-free reception at the SRX. It has

been shown that the primary users channel and system configuration parameters have no impacts when the ratio of

the interference temperature to the maximum transmission power is constant on the outage probability. However,

as this ratio decreases, the outage probability of the considered spectrum sharing system has shown to be limited

by the outage probability floor.

APPENDIX A: COMPUTATION OF THE DISTRIBUTION OF THE RV Y

We can see that FA,L(x) is proportional to a term e
−

x
αh,L xk for k ∈ N0. In addition, fB(x|d2) is expressed by a

mixture of two parts, each of which is independent of each other. Thus, we will mainly focus on the computation

related with the first LoS-relevant part, which is somewhat similar to those of [39].

The conditional probability, Pr(Y < x|d2), is given by

Pr(Y < x|d2) ∝

∫ ∞

0

e
−

xy

αh,L (xy)kfB(y|d2)dy
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=
xkΓ(k + N̂L)(Pp)

k(d2)
ǫLN̂L

Γ(N̂L)

(

Ppx

αh,L
+ dǫL2

)−k−N̂L

. (A.1)

From (A.1), Pr(Y < x) is computed as follows:

Pr(Y < x) ∝

∫ R

Rmin

Pr(Y < x|z)fd2(z)dz. (A.2)

Now applying (3), we can have

Pr(Y < x) ∝

∫ R

Rmin

xkΓ(k + N̂L)(Pp)
k(z)ǫLN̂L+1

Γ(N̂L)

(

Ppx

αh,L
+ zǫL

)−k−N̂L

dz

=
Γ(k + N̂L)

Γ(N̂L)

(Pp)
−N̂L(αh,L)

k+N̂L

ǫLµL
x−N̂L

[

(R)ǫLµL · 2F1

(

µL, k + N̂L;µL + 1;−
(R)ǫLαh,L

Ppx

)

−

(Rmin)
ǫLµL · 2F1

(

µL, k + N̂L;µL + 1;−
(Rmin)

ǫLαh,L

Ppx

)
]

=
Γ(k + N̂L)

Γ(N̂L)

(Pp)
−N̂L(αh,L)

k+N̂L

ǫLµL
x−N̂LAL,1 (A.3)

where [40, Eq. (2.10.3.2)] is used in this derivation. Having applied the derivation for different cases and some

manipulations, we can derive Theorem 1.

APPENDIX B: DERIVATION OF COROLLARY 4

We mainly use the term x−N̂LAL,L specified in (20). That is, we can have (B.1) as follows:

DL,L =

∫ ∞

0

t−N̂L

[

RµLǫL
2F1

(

µL, k + N̂L;µL + 1;−
Ip(R)ǫLαh,L

Ppxt

)

︸ ︷︷ ︸

J2

−

(Rmin)
µLǫL

2F1

(

µL, k + N̂L;µL + 1;−
Ip(Rmin)

ǫLαh,L

Ppx

)
]

Υ
[

l̃e−β̃ttl̃−1
︸ ︷︷ ︸

J3

−β̃e−β̃ttl̃
]

dt. (B.1)

Let us focus on the computation relevant to J2 and J3 as follows:

DL,L ∝ l̃

∫ ∞

0

t−N̂L
2F1

(

µL, k + N̂L;µL + 1;−
Ip(R)ǫLαh,L

Ppxt

)

e−β̃ttl̃−1dt

= l̃
Γ(µL + 1)

Γ(µL)Γ(k + N̂L)

∫ ∞

0

t−N̂L+l̃−1e−β̃tG2,1
2,2

(

Ppxt

Ip(R)ǫLαh,L

∣
∣
∣
∣
∣

1, µL + 1

µL, k + N̂L

)

dt

= l̃
Γ(µL + 1)

Γ(µL)Γ(k + N̂L)
(β̃)N̂L−l̃G2,2

3,2

(

Ppx

Ip(R)ǫLαh,Lβ̃

∣
∣
∣
∣
∣

1 + N̂L − l̃, 1, µL + 1

µL, k + N̂L

)

(B.2)

where we have used [38, eq. (07.34.22.0003.01)], [41, eq. (2.24.3.1)]. Thus, we can have the following form for

DL,L.

DL,L = Υ

[

l̃(R)µLǫLΓ(µL + 1)(β̃)N̂L−l̃

Γ(µL)Γ(k + N̂L)
G2,2

3,2

(

Ppx

Ip(R)ǫLαh,Lβ̃

∣
∣
∣
∣
∣

1 + N̂L − l̃, 1, µL + 1

µL, k + N̂L

)

−

(Rmin)
µLǫLΓ(µL + 1)(β̃)N̂L−l̃

Γ(µL)Γ(k + N̂L)
G2,2

3,2

(

Ppx

Ip(Rmin)ǫLαh,Lβ̃

∣
∣
∣
∣
∣

N̂L − l̃, 1, µL + 1

µL, k + N̂L

)]

. (B.3)
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Based on (B.3), the following terms can be readily derived as:

DL,nL = DL,L

∣
∣
∣
ǫL→ǫnL,µL→µnL,N̂L→N̂nL

, DnL,L = DL,L

∣
∣
∣
αh,L→αh,nL

, and

DnL,nL = DL,L

∣
∣
∣
αh,L→αh,nL,ǫL→ǫnL,µL→µnL,N̂L→N̂nL

. (B.4)

In (B.3), Gm,n
p,q

(

t

∣
∣
∣
∣
∣

a1, ..., an, an+1, ..., ap
b1, ..., bm, bm+1, ..., bq

)

denotes the Meijer G-function [37, Eq. (9.301)].
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