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Abstract—Ultra dense networks (UDNs) allow for efficient
spatial reuse of the spectrum, giving rise to substantial capacity
and power gains. However, recent findings have demonstrated
that the reduction of inter-site distances after a certain threshold,
has a detrimental effect on the network performance. In such
cases, interference mitigation strategies to counteract the effect
of primarily the line of sight (LOS) interference are impera-
tive. In this course, the present paper investigates a minimum
coordination strategy among immediate neighbors. The adopted
scheme realizes the interference mitigation objective, enhancing
system capacity, while being implementable in practice. Building
upon this scheme, the present paper provides tractable closed
form expressions for the downlink (DL) ergodic capacity of a
reference user under the examined coordination scheme. The
analysis is performed for a scenario consisting of base stations
(BSs) whose positions follow a Poisson point process of a given
spatial density. The tractability and accuracy of the derived
expressions renders them ideal for quantifying the performance
of additional coordination strategies and for revealing trends in
complex optimization problems. Thus, constituting a valuable tool
for network operators, toward assessing different interference
mitigation techniques and coordination schemes in UDNs.

Index Terms—Ultra dense networks; Base station coordination;
Poisson point process; Ergodic Capacity; Rate; Closed form.

I. INTRODUCTION

The ever increasing demand for broadband access coupled
with the scarcity of frequency resources has imposed the
investigation of new approaches to enhance wireless capacity
in 5G networks. This can be achieved by leveraging three main
pillars of flexibility, i.e. the employment of wider spectrum,
the improvement of spectral efficiency and the employment of
smaller cell sizes and, thus, of smaller transmit distances. Out
of these three pillars, the efficient spatial reuse of the spectrum,
achieved through the reduction of the inter-site distances, has
provided the most substantial capacity gains by a large margin
[1]. Hence, network densification arises as a prime candidate
for achieving the envisaged capacity increase, in the 5G era
as well.

In this direction, network operators employ system level
simulations and network measurements to plan the densifica-
tion of their networks. However, following the seminal work
of Baccelli et al. [2], which gave rise to stochastic geometry
as a tractable tool for the large-scale analysis and design

of wireless networks, a multitude of research works have
provided significant insights into network densification. These
insights are essential for understanding the innate features of
dense networks, and can be employed by network operators
as practical densification road maps.

Such analytical approaches brought about significant
changes in the understanding of wireless networks. In partic-
ular, it has been demonstrated that for single-slope path loss
models and for networks comprising more users than base
stations (BSs), the user signal quality is independent of the
BS density [3]. Moreover, the probability of coverage (i.e.
the complementary cumulative distribution function (CCDF)
of the signal to interference plus noise ratio (SINR)) is
independent of the BS density and of the number of tiers [4].
Similar analysis for the uplink (UL) has demonstrated that the
UL signal to interference ratio (SIR) is also invariant of the
BS density [5]. As a result, it has been demonstrated that the
network capacity increases linearly with the density of BSs
and with the number of tiers [6].

This analysis however, which indeed holds for sparse wire-
less networks (e.g. tier of macro cells (MCs)), does not hold
for extremely high BS densities. The reason for that is that
extremely small inter-site distances allow neighboring BSs to
create LOS interference to the intended user. As a result, after
a densification threshold, the probability of coverage is dimin-
ished precipitately due to the presence of LOS interference
[7], [8]. Furthermore, in UDNs where the inter-site distance is
comparable to the elevation of the BS and LOS interference
is present, the probability of coverage tends to zero for high
BS densities [9]. That is since for high BS densities LOS
interferers approach the intended user at a faster rate than the
rate in which the intended user approaches the elevated BS.

These theoretical findings provide two illuminating con-
clusions. On the one hand, the network capacity increases
linearly with the density of BSs in the presence of only non
line of sight (NLOS) interference. On the other hand, the
existence of LOS interference sets an upper threshold on net-
work densification. However, the employment of interference
mitigation techniques for LOS interference can counteract this
detrimental effect, allowing for linear capacity increase with
the network density.



Some early interference mitigation strategies considered
guard regions around fixed-size cells, which constituted inter-
ference free zones [10]. Similar strategies were also considered
for D2D networks [11]. However, the coordination of all
BSs residing within these guard regions, which is required
by these techniques, is a highly involved task. Moreover,
the coordination of all BSs within neighboring guard regions
requires the coordination of the entire network as a whole.

As opposed to these techniques, the present paper investi-
gates a minimum coordination strategy. Instead of coordinating
a random number of BSs residing within a fixed zone, a
fixed number of BSs are coordinated. The coordinated BSs
are the ones residing closest to the selected BS. The number
of coordinated BSs is defined a priori, and this value is
subsequently introduced in the analytical framework. Contrary
to other coordination strategies, the present strategy can be
implemented in practice, since in LTE systems BSs are aware
of the topology of their immediate neighbors to facilitate the
handover process. Moreover, since the immediate neighbors
constitute the principal source of LOS interference, such a
coordination strategy can provide substantial capacity gains,
as buttressed by the aforementioned analysis.

Building upon the benefits of the examined scheme, the
present paper derives a tight approximation in closed form, for
the user ergodic capacity, for a setup of BSs coordinating at the
level of their immediate neighbors. The derived closed form
expressions quantify the performance of the network under
the examined coordination scheme. Moreover, the tractability
of the expressions makes them ideal for revealing trends in
complex optimization problems.

The remainder of the paper is organized as follows. Section
II presents the considered network architecture and the ana-
lytical expressions for the DL ergodic capacity of a reference
user equipment (UE). The derived approximations are defined
in closed form and provide expressions for the DL ergodic
rate in the general case of non-coordinating networks, as
well as the particular case of a coordinating network where
BSs coordinate with their immediate neighbors. Section III
presents the simulation results corroborating that the devised
approximations from the preceding analysis are tight. Finally,
Section IV concludes the paper and presents perspectives.

II. THE WIRELESS CELLULAR NETWORK ARCHITECTURE
AND THE ERGODIC CAPACITY APPROXIMATION

A. The Wireless Cellular Network Scenario

A wireless cellular system is considered, comprising a set of
BSs BSi, whose positions follow a spatial distribution given
by a homogeneous Poisson point process (PPP) Ψ of density
λ (BSs/m2). The reference UE belongs to the cell served by
the BS BS0. BS0 can be singled out and the location of the
other BSs follows the reduced Palm distribution of Ψ, which
is the same to the original distribution Ψ (Slivnyaks theorem
[12]). For the sake of simplicity in the notation, it is assumed
that all UEs and BSs are equipped with one antenna. However,
the analysis can be easily extended to the multi-antenna case.
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Fig. 1. The Considered Network Scenario

Intra cell users are assumed to be sharing orthogonal re-
sources, as is the typical case in literature [5]. Furthermore,
the network is assumed to comprise significantly more users
than BSs. As a result, every BS is active and transmitting,
acting as an interferer in the DL. However, some BSs adjacent
to BS0 are assumed to coordinate and not to create any
interference. The number of coordinating BSs in the following
analysis is defined by an elementary property of stochastic
geometry. In particular, the mean degree in the Poisson-
Delaunay tessellation is 6 [12], hence in the Poisson-Delaunay
tessellation of Ψ, the average number of adjacent cells to the
cell comprising BS0 is 6 (similar to hexagonal grids). Hence,
the 6 BSs closest to BS0 are assumed to coordinate. However,
the subsequent analysis can be extended to any number of
coordinating BSs.

The considered scenario is depicted in Figure 1, where BS0

is marked by the magenta circle, the reference UE by the
magenta diamond and the intra cell users are depicted in red.
In this setup the interfering BSs are depicted in black and the
6 coordinated BSs in green.

As already stressed, the investigated coordination scheme
can be implemented in practice since BSs are aware of
the topology of their immediate neighbors to facilitate the
handover process. Moreover, such a scheme can counteract
effectively the LOS interference which is the most detrimental
in UDNs. Hence, LOS interference is assumed to be coun-
teracted in this setup and single-slope path loss models are
considered henceforth. For high network densities, where LOS
interferers reside also after the 6 closest BSs, the analysis
could be extended accordingly.

B. The Ergodic Capacity Bound

The ergodic capacity of a UE placed at distance d from BS0

resulting from the average over fast fading, if no additional



BSs are overlaid, is given by

E[R] = Eh
{

log
(
1 + d−βh2γ

)}
, (1)

where the expectation is with respect to the fading coefficient
h, log() in all the expressions henceforth represents the natural
logarithm, β is the path-loss exponent, and γ is the SNR at
the reference distance with

γ =
PBS
σ2Lref

. (2)

In (2) PBS is the transmission power of the BS, σ2 is the
noise power, and Lref is the equivalent path-loss at a reference
distance of 1 meter, which includes also the effects of the
transmit and receive antenna gains.

Assuming that the BSs BSi are placed at distance di from
the UE and every BSi is acting as an interferer (for simplicity
in this section’s notation, although this is not the case in
coming sections due to the coordination of the 6 closest BSs)
the expectation of the rate must be calculated with respect to
the fading coefficient h, the distances d and di and the fading
coefficient hi of all interferers. However, the incorporation of
hi in the calculation would imply perfect knowledge of the
channel of all interferers, which is not available in practice.
Hence, the incorporation of hi would provide an upper bound
for the ergodic capacity, whereas its omission would provide
a lower bound [11]. Following the approach of [11] the
expectation with respect to hi is omitted and the lower bound
for the capacity is calculated as follows:

E[R] ≥ Eh,d,di

{
log

(
1 +

γh2d−β∑∞
i=1 γd

−β
i + 1

)}
. (3)

C. Taylor Approximation

Following a similar approach as that of the authors in
[13], [14], a mathematical manipulation is introduced and the
convex function f(x) = log(1+exp(x)) is employed, revising
(3) as follows:

E[R] ≥ Eh,d,di

{
f

(
log

(
γh2d−β∑∞

i=1 γd
−β
i + 1

))}
. (4)

The right-hand side of (4) can be approximated by a N-order
Taylor expansion, as follows::

E{f(y)} ≈ f(E{y}) +

N∑
n=2

E{y − E{y}}n

n!
f (n)(E{y}) +RN .

(5)

where, y = log
(

γh2d−β∑∞
i=1 γd

−β
i +1

)
and RN is the error after N

terms (Lagrange Remainder) and is given by:

RN = E{ (y − y0)N+1

(N + 1)!
f (n)(ζ(y, y0))} (6)

for some ζ(y, y0) ∈ 〈y, y0〉.
The proposed framework allows for a twofold approach. On

the one hand an infinitely large number of Taylor terms can be
analytically defined, thus, allowing the analytical computation

of (4) at the expense of computational time. On the other hand,
a tight approximation of (4) can be provided, by employing
the first two terms of (5) as follows:

E{f(y)} ≈ f(E{y}) +
(
E{y − E{y}}2

)
f ′′(E{y}). (7)

Further to the approximation of (7), the employment of
Jensen’s inequality for the convex function f(x) provides the
following lower bound:

E{f(y)} ≥ f(E{y}). (8)

In addition, in the case of a second order expansion there exists
an α ∈ [0, 1] such that [15]:

E{f(y)} =f(E{y}) (9)

+
1

2

(
E{y − E{y}}2

)
E{f ′′(αy + E{y}(1− α))}.

Hence, employing the Descent Lemma [15] and since the
function f ′′(y) attains its maximum value f ′′(0) = 1

4 at y = 0
for α = 1 an upper bound can be defined as follows

E{f(y)} ≤ f(E{y}) +
1

8

(
E{y − E{y}}2

)
. (10)

Having defined the bounds of (8) and (10) that provide a
guideline regarding the validity of the obtained expressions, a
correction factor c(E{y}) is introduced, to fine tune (7). The
correction factor c(E{y}) is a polynomial function of E{y}
that is obtained numerically by the Lagrange remainder of (5)
as detailed in the Appendix. Thus, (7) is redefined as follows

E{f(y)} ≈ f(E{y}) + c(E{y})
(
E{y − E{y}}2

)
f ′′(E{y}).

(11)

In order to employ (7)-(11) for the computation of (4) E{y}
needs to be defined. Since the expectations over the fading and
the distances are independent E{y} is obtained as follows

E{y} =Eh,d,di

{
log

(
γh2d−β∑∞

i=1 γd
−β
i + 1

)}
(12)

= log(γ) + Eh {2 log(h)} − Ed {β log(d)} (13)

− Edi
{

log

( ∞∑
i=1

γd−βi + 1

)}
.

Assuming a Rayleigh fading where h follows a zero-
mean circularly symmetric Gaussian distribution with variance
equal to 1, then the pdf of the fast fading is given by
fH(h) = 2he−h

2

. Moreover, the pdf of the distance d between
a reference user and its closest BS is given by [16]

fD(d) = 2πdλe−λπd
2

, d ≥ 0 (14)

Since the pdf of a Rayleigh distribution is given by:

fY (y) =
y

σ2
y

e
−y2

2σ2y , (15)

both random variables h and d follow a Rayleigh distribution
with σ2

d = 1
2πλ and σ2

h = 1
2 . Hence, the random variables

of the second and third term of (13) follow a log-Rayleigh
distribution.



The mean of a log-Rayleigh distributed variable µ is given
by [17]

E{µ} = log σ +
log 2

2
− ψ

2
(16)

where ψ is the Euler−Mascheroni constant defined as ψ =
−
∫∞

0
log(x) exp(−x)dx ≈ 0.577. The variance of the log-

Rayleigh distributed variable µ is given by [17]

E{µ− E{µ}}2 =
π2

24
. (17)

Since log d and log h are log-Rayleigh distributed random
variables of variance σ2

d and σ2
h, by employing (13) and (16)

it follows that

E{y} = log (γ) +
β

2
(ψ + log(πλ))− ψ (18)

− Edi
{

log

( ∞∑
i=1

γd−βi + 1

)}
and by (13) and (17):

E{y − E{y}}2 =(β2 + 4)
π2

24
(19)

− var

{
log

( ∞∑
i=1

γdi
−β + 1

)}
In order to compute (18) and (19) the expectation and the

variance of the log of the aggregate interference needs to be
computed. In this course, it is known that the expectation and
the variance of the aggregate interference can be computed in
an exact manner by Campbell’s theorem as follows [18]:

Edi

{∑
i∈Ψ

d−βi

}
= λ

∫
R+

d−βi 2πdiddi, (20)

vardi

{∑
i∈Ψ

d−βi

}
= λ

∫
R+

(
d−βi

)2

2πdiddi, (21)

Employing the results of (20) and (21), the expectation
and variance of the log of the aggregate interference can be
approximated by the Taylor expansion of (5) as follows:

Edi
{

log

( ∞∑
i=1

γd−βi + 1

)}
≈ (22)

log

(
Edi
{ ∞∑
i=1

γd−βi

}
+ 1

)
−

vardi

{∑∞
i=1 γdi

−β
}

2

(
Edi
{∑∞

i=1 γd
−β
i

}
+ 1

)2

and

vardi

{
log

( ∞∑
i=1

γd−βi + 1

)}
≈

vardi

{∑∞
i=1 γdi

−β
}

(
Edi

{∑∞
i=1 γd−βi

}
+ 1

)2

(23)

By plugging (20) and (21) into (22) and (23), the expectation
and variance of (18) and (19) are defined.

D. The Correction Factor c(E{y})
For the Log-Rayleigh random variables of (18) an infinitely

large number of moments can be computed analytically [19].
In addition, the moment generating function (MGF) of the
mean interference appearing in (18) is also known [6]. Hence,
after obtaining the cumulants from the respective moments an
infinitely large number of Taylor terms of (5) can be computed
analytically for the exact calculation of the bound of (4).

However, in the present analysis, the employment of the
function f(y) allows for the introduction of a correction factor
c(E{y}) into the first two terms of the Taylor expansion.
This correction by a polynomial function provides extremely
accurate results. The correction factor c(E{y}) needs to be
computed numerically for different values of the path-loss
exponent. This computation is performed offline for different
path-loss exponents and the obtained results are tabulated
in Table I. The derivation of c(E{y}) is presented in the
Appendix.

TABLE I
THE CORRECTION FACTOR c(E{y})

β c(E{y})
3 -0.0001(E{y})5 + 0.0006(E{y})4 - 0.0044(E{y})3

+ 0.0918(E{y})2 - 0.0199(E{y}) + 0.6730
4 -0.0002(E{y})5 + 0.0016(E{y})4 - 0.0052(E{y})3

+ 0.0937(E{y})2 - 0.0254(E{y}) + 0.6059
5 -0.0004(E{y})5 + 0.0023(E{y})4 - 0.0036(E{y})3

+ 0.0926(E{y})2 - 0.0293(E{y}) + 0.5465

E. Coordination of Immediate Neighbors

For the particular scenario considered herein, where the first
interfering BSs is in fact the 7th closest BS to BS0 the first
interferer is not in the vicinity of the UE. As a result of this
large value of di, (23) and the last term of (22) tend to zero
and (18) and (19) are defined as follows:

E{y} = log (γ) +
β

2
(ψ + log(πλ))− ψ (24)

− log

(
λ

∫
R+

γd−βi 2πdiddi + 1

)
,

and by (13) and (17):

E{y − E{y}}2 = (β2 + 4)
π2

24
. (25)

However, the integration limits of the last term of (24)
needs to be defined accordingly, taking into account only the
interference from BSs farther than the 6th closest BSs to BS0.
By assuming that the UE and the BS0 are relatively close
compared to the distance to the first interferer (which for the
considered scenario is actually the case), it can be assumed
that the 6th closest BS to BS0 is in fact the 7th closest BS
to the UE (the closest BS to the UE is BS0). Hence, in order
to define the distance between the UE and the first interferer,
the distance between the UE and the 7th BS must be defined.



In this direction, is employed the pdf of the distance to the
n-th neighbor in a 2−dimensional PPP, which is given by [20]

fRn(r) = exp(−πλr2)
2(λπr2)n

rΓ(n)
(26)

Hence, the expected distance between the UE and its 7th
closest BS is given by

E{d7} =

∫ ∞
0

d exp(−πλd2)
2(λπd2)7

Γ(7)d
dd =

3003

2048
√
λ
. (27)

The result of (27) can be employed for the lower integration
limit of the last term of (24). Moreover, since BS0 coordinates
with its 6 closest BSs this implies that the whole network also
coordinates in a similar fashion. Hence, out of the BSs acting
as interferers only one out of seven BSs transmits at any given
resource block. Thus, the density of the interferers is in fact
λI = λ

7 and the last term of (24) is given by

E{
∑
i∈Ψ

d−βi 1{di ≥ E{d7}}} = (28)

∫ ∞
3003

2048
√
λ

d−β+1λI2πdr
β>2
=

2πλ

7(β − 2)
(
2048

√
λ

3003
)β−2.

Hence, by plugging (28) into (24) the following holds:

E{y} = log (γ) +
β

2
(ψ + log(πλ))− ψ (29)

− log

(
2γπλ

7(β − 2)
(
2048

√
λ

3003
)β−2 + 1

)
.

The expectation of (29) along with the variance of (25) can
be employed for the computation of the DL ergodic rate by
the approximations and bounds of (7)-(11). For the sake of
completeness in the expressions the approximation of (7) is
given by

E{R} ≈ log (1 + exp(E{y})) (30)

+
(
E{y − E{y}}2

) exp(E{y})
(1 + exp(E{y}))2

.

III. SIMULATIONS

In order to demonstrate the tight performance of the ex-
tremely tractable approximation of (30), and of all bounds and
approximations defined in (7)-(11), the wireless network of
Section II-A has been simulated, encompassing BSs positioned
according to a homogeneous PPP of spatial density λ and a
reference UE. The 6 closest BSs to BS0 which serves the UE
do not produce any interference. As opposed to those BSs,
one in every seven of the remaining BSs is selected randomly
and acts as an interferer in the DL. The parameters employed
for the calculation of the link budget are tabulated in Table II.

The tight relationship between the obtained analytical ex-
pression of (7)-(11) and the simulated results is manifested
in Figure 2, where the ergodic DL rate of the reference UE
is plotted for different BS densities and for two different
path loss exponents. The tight performance of the expressions
verifies the reliability of the preceding analysis and its utility
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toward devising efficient coordination strategies. Furthermore,
the performance of the network as the BS density increases
corroborates the fundamental conclusion of stochastic geome-
try that the user signal quality is independent of the BS density.
Thus, further verifying the validity of the analysis.

TABLE II
LINK BUDGET PARAMETERS

Parameter Value
BS Transmit Power PBS 33 dBm

Bandwidth 10 MHz
Noise Power Spectral Density -174 dBm/Hz

Noise Power σ2 -104 dBm
Path Loss at Reference Distance Lref 25.6 dB

(Including Antenna Gains)
Path Loss Exponent 3 & 4

IV. CONCLUSIONS

The increasing interest toward network densification and
the emerging analytical framework have demonstrated the
potential of UDNs with respect to capacity enhancement and
power efficiency. However, it has become evident that in order
reap those benefits, efficient interference mitigation schemes
are essential. In this direction, the present paper analyzed a
minimum coordination strategy, providing extremely accurate
and tractable expressions for quantifying the DL ergodic ca-
pacity of a reference user, thus, characterizing the performance
of the investigated coordination scheme.

The tractability and accuracy of the proposed analytical
framework renders it ideal for characterizing additional co-
ordination strategies, thus, allowing for assessing and devel-
oping efficient coordination strategies based on their perfor-
mance. Last but not least, its tractability allows to be used
complementary to intractable stochastic geometry approaches,



revealing trends and allowing for the convergence of complex
optimization problems.

APPENDIX

Langrange Remainder

Following the definition of (5) and (6) the funcion f(x) =
log(1 + exp(x)) can be expanded around x0 as follows:

f(x) = f(x0) + f ′(x0)(x− x0) +R1(x, x0) (31)

where
R1(x, x0) =

(x− x0)2

2
f ′′(ζ(x, x0)) (32)

is the Langrange remainder for some ζ(x, x0) ∈ 〈x, x0〉.
Note, that the function f ′′(x) = ex

(1+ex)2 tends to zero for
values outside the interval (-6,6). Therefore, the remainder
needs to be defined only within this interval. By employing
(31) the E{R1(x, x0)} can be computed numerically in this
particular interval. That is, by assuming that x follows a
log−Rayleigh distribution, which is the case if the interference
is disregarded. The analysis can be repeated taking also the
statistics of the interference into account. However, in this
case the accuracy gain is minimal and by far outweighed by
the complexity introduced in the analysis.

Adjusting Correction Factor c(E{y})
In order to compute E{f(·)} = E{log(1 + exp(·))}, the

series is expanded around x0 = E{y}, and by employing (31),
(11) and (25) we obtain:

E{f(y)} = f(E{y}) + E{R1(x,E{y})} (33)

= f(E{y}) + c(E{y})f ′′(E{y})(β2 + 4)
π2

24

Having defined E{R1(x, x0)} numerically, c(E{y}) can be
defined employing (33) for different values of β. The numeri-
cally obtained correction factor c(E{y}) is then approximated
by a polynomial approximation and the results are tabulated
in Table I for different values of β.
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