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Highlights 

• Subject identification by hand odor using GCxGC-MS and Bayesian testing is proposed. 

• Bayesian testing enables to decide if two odor samples stem from the same person. 

• The AUC, sensitivity and sensitivity of the classifiers is evaluated on a panel of 139 subjects. 

 

Abstract 

A new method for identifying people by their odor is proposed. In this approach, subjects 

are characterized by a GCxGC-MS chromatogram of a sample of their hand odor. The meth-

od is based on the definition of a distance between odor chromatograms and the application 

of Bayesian hypothesis testing. Using a calibration panel of subjects for whom several odor 

chromatograms are available, the densities of the distance between chromatograms of the 

same person, and between chromatograms of different persons are estimated. Given the 

distance between a reference and a query chromatogram, the Bayesian framework provides 

an estimate of the probability that the corresponding two odor samples come from the 

same person. We tested the method on a panel that is fully independent from the calibra-

tion panel, with promising results for forensic applications.  
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1. Introduction 

Forensic profiling of human hand odor using analytical devices and statistical tools is of par-

ticular interest to confirm the information provided by dogs in courts of law. Indeed, the 

identification dogs can perform remains challenged because of their inability to testify. For 

some years, several teams have tried to get a better understanding of the human odor and 

have aimed at characterizing it using analytical devices. The results and conclusions of these 

studies on odor sampling, sample analysis and data processing, three steps that are essential 

to a successful odor identification strategy, were recently reviewed1. 

The sampling procedure can either be performed directly, i.e. with contact, or indirectly, i.e. 

without contact: direct sampling necessitates putting an adsorbent phase on the skin of the 

subject in order to collect odor compounds2, whereas indirect sampling is based on air suc-

tion around the object of interest3. In both cases, appropriate protocols can be implemented 

to reduce the contamination by exogenous substances. Most of the time, they consist in 

prewashing the sampling zone with tap water or perfume-free soap and subsequent “natu-

ral” drying. Subjects can be asked to use special soap and deodorant or no deodorant at all 

up to a week before the study4,5. Some authors asked their subjects not to eat specific foods 

(spices, garlic) or to do some exercise before sampling in order to increase the production of 

sweat5,6. To our knowledge, there is no validated, let alone standardized protocol yet.  

The analytical separation is often performed by gas chromatography (GC) coupled with mass 

spectrometry (MS)7,8. Still, the information collected might not be sufficient, especially when 

hundreds of compounds need to be monitored within short-time analysis. Thus, the use of 

two-dimensional gas chromatography (GCxGC) is a relevant alternative and was already 

shown to provide more information than classic GC9. 

Finally, the statistical processing is essential to extract the information relevant for identifi-

cation. To our knowledge, only few studies were carried out on a large panel, one of the 
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largest being that collected by Colon-Crespo et al. involving 105 subjects, 54 women and 51 

men belonging to 3 different ethnic groups (Caucasian, Hispanic and east Asian), with ages in 

the range 18-772. In their study, Curran et al.7 worked with a panel of 60 people, 30 men and 

30 women, but since only one sample (hands) per person was collected, the comparison of 

samples from the same individual was not possible. Brown et al.8 worked with a more re-

duced panel (20 people), but sampled each subject 3 times from different body locations. 

However, though samples were taken in triplicate, average profiles were used, so that the 

degree of similarity between samples from the same person was again not evaluated. Gal-

lagher et al.5 sampled the backs and arms of 25 people twice to study the significance of the 

effects of three factors, sampling area (back/arm), sex (male/female) and age (young/old): 

significant differences were found for certain compounds across age and site of collection, 

but not between men and women. The study conducted by Penn et al.4 is more thorough, 

their panel including 197 individuals who were sampled five times each, once every fort-

night, over a ten-week period. The results of this study suggest that using pattern recogni-

tion on the entire profile pattern, rather than on a small set of compounds, could be essen-

tial to perform proper identification.  

The aim of the present paper is to propose an attempt, not at classifying people into catego-

ries by gender and/or ethnicity, not at attributing chromatograms to a finite set of persons 

for which numerous odor samples are available, but at identification. For this purpose, we 

gathered an important and diversified panel of subjects sampled several times, and adopted 

a Bayesian approach, which does not suffer from several drawbacks of the frequentist ap-

proach. The first main drawback is the asymmetry between the null and alternative hypoth-

eses, since evidence can essentially be collected against the null hypothesis and not in favor 

of it, and the second one is that very small p-values can be obtained despite weak evidence 

against the null hypothesis10,11. For these reasons, Barcaru and Vivò-Truyols used Bayesian 

hypothesis testing to spot differences between the GCxGC-MS chromatograms of pairs of 

diesel samples12. Bayesian approaches are successfully used in many fields of forensics, es-

pecially to assess the probative value of DNA 13,14. Though there are large differences be-

tween DNA and odor profiles, the ultimate question is essentially the same: given a refer-

ence profile (the one collected on the crime scene), does the query profile (that of the sus-

pect) correspond to the same person? 



 

 

4 

The proposed procedure can be outlined as follows. First, the available panel, in which sub-

jects are described by several GCxGC-MS chromatograms of their hand odor reduced to the 

intensities of a large set of compounds, is to be split into a calibration set for training and 

validation, and an independent test set for performance estimation.  Second, the calibration 

set is used to estimate the distributions of a distance between two chromatograms when 

they correspond to the same subject, i.e. under the null hypothesis, and when they belong 

to two different subjects, i.e. under the alternative hypothesis. The posterior probability of 

the null hypothesis given the distance between two chromatograms is computed using 

Bayes’ formula, and the performance of the corresponding classifier is estimated using the 

independent test set, in terms of area under the receiver operating curve, sensitivity and 

specificity. The issues of the choice of a distance and of the selection of the most appropri-

ate compounds to enhance the performance will be discussed.  

2. Material and methods 

2.1. Subjects 

A panel of 119 subjects was set up. The subjects gave their consent for the analyses of the 

samples and filled an information sheet. The data were anonymized before the analysis.  

This panel gathers 61 men and 58 women, with 39 subjects aged 10 to 23, 39 subjects aged 

24 to 36, and 41 subjects aged 37 to 81. They also belong to 3 different phototype groups, 

the phototype measuring the susceptibility of the skin to tan depending on the amount of 

melanin in the skin, and is linked to the vitamin D biosynthesis by the skin: the first group (25 

subjects) burns easily and is seldom or never tanned, the second group (79 subjects) can get 

tanned more or less quickly and also burned, whereas the last group (15 subjects) never 

burns when exposed to the sun, as categorized by Fitzpatrick15 (actually we grouped Fitzpat-

rick’s six phototypes by pairs, the first group bringing phototypes I and II together,  etc.). 

These subjects were sampled four times to make sure that at least three repetitions per sub-

ject were available, should analytical problems occur. 

2.2. Analytical separation and detection 

2.2.1. Sorbent phase for compounds trapping 

Sorb-Stars® were purchased from Action Europe (Sausheim, France) for direct sampling. This 

sorbent is a patented silicon-based polymeric phase and is subject to specific conditioning 
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processes to avoid contaminations as much as possible. The Sorb-Star® is a 2 cm long cylin-

der with a cylindrical section of 2 mm in diameter, has a density of 1.12 g/cm3 and is compli-

ant with FDA 177.2600. It is physiologically safe, and even suitable for applications in the 

food industry. 

2.2.2. Sample collection 

Care was taken that the sampling conditions were the same for all subjects. To this end, 

identical sample collection kits of Sorb-Stars®, special soap (Topialyse, SVR laboratory), ni-

trile gloves and information sheets were dispatched to different samplers in France, who 

were given precise instructions for the sampling protocol. The subjects were asked to wash 

their hands for 30 seconds with the provided soap, to rinse them carefully with clear water 

for 1 minute, to dry them with a paper towel and to rub them for 2 minutes. 5 minutes later, 

4 Sorb-Stars® were placed into the hands of the subjects, who rubbed them for 15 minutes. 

In the meantime, a blank was obtained by placing an open vial containing a sorbstar® in 

front of the sampled person. 

2.2.3. Analytical devices 

The Sorbstars® were thermodesorbed prior to GCxGC-MS analysis. The development of the 

analytical method and its optimization were the topic of two previous studies16,17. 

The purge and trap system Versatile Sample Preparator (VSP4000) was purchased from In-

novative Messtechnik GmbH (Vohenstrauß, Germany). Volatile substances were purged 

from the Sorbstar® by the carrier gas of the GC. This concentration step is done by adsorp-

tion on a Tenax TA® in the system trap by freezing out at –30 °C. After incubation of the 

sample at 190 °C and completion of the purging process (20 mL/min during 20 minutes), the 

concentrated substances were transferred by fast thermal desorption from the trap onto a 

transfer line, heated at 280 °C, and then separated by GC.  

The thermodesorption device was coupled with a GCxGC-MS Q2010Plus purchased from 

Shimadzu (Kyoto, Japan). A ZB-1MS column (30 m x 0.25 mm, 0.25 µm) (Phenomenex, Tor-

rance, USA) coupled with a ZB-1701 column (1.5 m x 0.1 mm, 0.1 µm) (Phenomenex, Tor-

rance, USA) were used to conduct the chromatographic separation. The modulation was 

performed with a N2 cooled Zoex ZX1 thermal modulator (Zoex, Houston, USA), and the 

modulation time was set at 8 seconds. The initial temperature was set to 40 °C for 1 minute, 

then raised to 250 °C at 2.5 °C/min, and held for 1 minute at 250 °C. The mass spectrometer 
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was used with the electronic ionization source (70 eV) heated at 200 °C, the acquisition be-

ing performed in scan mode. The scan range was 29-250 m/z, and the sampling frequency 

50Hz. Figure 1 displays a typical chromatogram collected on a 25-year-old man’s hand. 

2.3. Chromatogram processing 

Data were acquired, converted to .mzXML file with GC Real Time Analysis 4.20 (Shimadzu 

software), and then processed with MatlabTM (Natick, MA, USA) version 9.3.0.713579 

(R2017b), its Statistics and Machine Learning Toolbox version 11.2 and its Bioinformatics 

Toolbox version 4.9. 

A preliminary manual processing of 25 chromatograms obtained on a subset of subjects of 

both genders sampled several times at different time instants enabled to draw up a list of 

several hundreds of peaks. A library was built to store their retention times, their linear re-

tention index, their mass spectrum, and the name of the corresponding compound when it 

could be identified using the NIST library. Indeed, a compound does not need to be formally 

identified for the comparison of chromatograms, whereas the availability of its mass spec-

trum is compulsory. We also checked whether compounds described in the literature as 

constituents of the human hand odor1 were present in this library, otherwise they were in-

cluded. This preliminary work led us to a customized library of 600 compounds, identified or 

not, which were looked for in each chromatogram using a “home-made” Matlab script18. 

As a result, each chromatogram was characterized by a list of 600 descriptors/compounds 

and their associated intensity (apex of the detected peak). In order to compensate for un-

controlled variations of the total intensity of the chromatograms, the sum of these intensi-

ties was normalized to unit value. Not knowing whether all 600 compounds are relevant for 

identification, such a normalization might be questionable. Thus, the possibility to avoid the 

problem by working on the binarized intensities, i.e. 1 if the compound is present or 0 if it is 

absent from the sample, was also investigated. 

3. Statistical treatment 

The aim is, given two odor chromatograms, to decide whether the corresponding odors be-

long to the same person or not. In the Bayesian framework, the two hypotheses are random 

events whose probability, given the observed data, can be estimated. 
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3.1. Bayesian hypothesis testing 

In the following, H0 refers to the null hypothesis that the two chromatograms are similar and 

correspond to the same person, and H1 to the alternative hypothesis that they do not. Given 

the a priori probabilities P(H0) and P(H1), the Bayesian formula yields the posterior probabil-

ity of H0 given some observed data D: 

P(H
0

|D) =
f(D |H

0
)P(H

0
)

f(D |H
0
)P(H

0
) + f(D |H

1
)P(H

1
)

 

where the f(D|Hi) are the distributions of the observed data under H0 and H1, or likelihoods. 

Jeffreys (1939) developed an absolute scale to evaluate the degree of confidence in the null 

hypothesis outside a decisional framework based on the posterior probability of H0 using the 

likelihood ratio 19, 20 defined as: 

LR(D) =
f(D |H

0
)

f(D |H
1
)

 

which is independent from the a priori probabilities. If LR > 10, the confidence is considered 

as strong, and if LR > 100, as  decisive. 

3.2. Choice of a distance between two chromatograms 

Actually, the observed data D consists of the two 600-vectors of intensities representing the 

two chromatograms. Here, we propose to reduce the information contained in these two 

vectors to a scalar that is relevant for the discrimination between H0 and H1, i.e. to a scalar 

distance d between the two vectors of normalized or binarized intensities. We will consider 

the Euclidean distance and the distances based on Pearson and Spearman’s correlation coef-

ficients (one minus the correlation coefficient), the latter differing in the case of normalized 

intensities only. Compared to the Euclidean distance, the correlation-based distances are 

robust with respect to shifts and linear transformations of the peak intensities, and since 

Spearman’s correlation coefficient is able to capture a monotonic nonlinear association, as 

opposed to Pearson’s linear correlation coefficient21, the Spearman correlation-based dis-

tance is also expected to be more robust with respect to nonlinear variations of the peak 

intensities. 
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3.3. Estimating the distributions of the distance under H0 and H1 

 In order to apply Bayes’ formula, we need to have an insight into the distribution of the dis-

tance d between chromatograms under H0 (same person) and under H1 (different persons). 

For this purpose, a part of the panel was used as calibration set, while the rest of the panel 

served as test set, i.e. for independent performance estimation. The calibration set was used 

to build two types of couples of chromatograms: couples chromatograms obtained on the 

same person and couples of chromatograms obtained on two different persons. Using the 

former, an empirical estimate of f(d|H0) was obtained, while f(d|H1) was estimated using the 

latter. To be able to retrieve (d|Hi) whatever the value of d, the empirical densities where 

fitted with a Gaussian mixture distribution using Matlab’s function “fitgmdist”. 

3.4. Compound selection 

We also studied the advantage gained by selecting the compounds that contribute most to 

having different densities under H0 and H1. To this end, for each compound c, we computed 

the absolute values of the difference in intensity for couples of chromatograms correspond-

ing to the same person (sample corresponding to H0), and those for couples of chromato-

grams corresponding to different persons (sample corresponding to H1). We tested for a 

difference between these two samples with Wilcoxon’s non parametric test when using 

normalized intensities, and with Fisher’s exact test when using binarized intensities, both 

tests being one-sided since smaller differences in intensity under H0 are desired. These tests 

lead to a p-value pc for each compound, and the compounds for which –log10(pc) was larger 

than a given threshold  were selected, the value of being established by cross-validation 

on the calibration set. 

3.5. Performance estimation 

 We assumed that the plausibility of the two hypotheses H0 and H1 was equal prior to taking 

the data into account, i.e. we took prior probabilities P(H0) = P(H1) = 0.5. Varying the decision 

threshold on P(H0|d), the sensitivity and the specificity were estimated on the calibration 

and test sets, and used to compute the corresponding areas under the receiver operating 

characteristic “ROC” curve (AUC)22. The likelihood ratio, which is independent from the a 

priori probabilities, will also be evaluated as a function of the distance d. 
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4. Results and discussion 

The data was first split into calibration and test sets, the split being made so as to respect 

the gender and phototype proportions, with subject of all ages in the two sets, and chroma-

tograms of the same subject being put in the same set. The calibration set includes 260/75 

chromatograms/individuals, while there are 139/44 chromatograms/individuals in the test 

set (due to analytical problems, the four samples per subject were not systematically ex-

ploitable). 

The homogeneity of the two sets can be grasped with a principal component analysis (PCA), 

see Figure 2. Figure 2 also shows a limited fidelity: the chromatograms of the same subject 

are not necessarily very similar, see for example subject 61 of the calibration set (bottom 

left, 3 chromatograms) and subject 20 of the test set (top right, 4 chromatograms). As a mat-

ter of fact, though the four samples of a given subject were performed at the same time, the 

GCxGC-MS analyses of these samples were randomized, so that the dispersion of the results 

reflects the analytical variability. The latter can be estimated using the 111 subjects for 

which at least 2 chromatograms are available to compute relative standard deviations of the 

compounds normalized intensities. The median of the mean relative standard deviations is 

indeed quite large with a median of 47.1% and interquartile range [5.2% ; 70.2%]. 

The procedure was first applied on the 600 compounds, i.e. without compound selection, 

either on the corresponding normalized intensities, or on their binarized version (0 if the 

compound is absent, 1 if it is present). The chosen distance was either the Euclidean dis-

tance, or the distances based on Pearson’s and Spearman’s correlation coefficients. The his-

tograms under H0 (341 couples) and H1 (33 329 couples) were both fitted with a Gaussian 

mixture of two components. The corresponding results in terms of AUC on the calibration 

set and on the test set (in the latter, there are 173 couples of the same person, i.e. under H0, 

and 9 418 couples under H1) are summarized in Table 1. These results show that binarization 

significantly improves the performance of the classifier using the Euclidian distance, but bet-

ter results are obtained with the normalized intensities when using the distance based on 

the non-parametric Spearman correlation coefficient. This is very satisfactory, because it 

indicates that the quantitative information supplied by GCxCG-MS is likely to be properly 

exploited despite the analytical variability, provided an adequate distance is chosen. With a 

distance that does not compensate for shifts and nonlinearities (Euclidean), or only for shifts 
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(Pearson’s), the possibly improperly normalized and/or nonlinearly transformed intensities 

cannot be handled, so that binarization improves the performance. With a more robust dis-

tance that compensates both for shifts and nonlinearities (Spearman’s), it becomes possible 

to extract useful information from the normalized intensities despite their imperfections. 

The estimates of the likelihoods and of the posterior probability of H0 and the likelihood ra-

tio obtained with the Spearman correlation based distance between normalized intensities 

are shown in Figure 3.  

Note that the distribution of the distance under H0 is bimodal, and that its largest mode is 

close to the lowest mode of the distribution under H1. In order to weaken this undesired 

mode, we investigated the possibility of keeping only the compounds that were most discri-

minant between H0 and H1, i.e. which contributed most to having different distributions of 

the distance d between chromatograms under H0 and H1. They were chosen as the com-

pounds having the most significantly different absolute differences between intensities un-

der H1 and H0 in the sense of the appropriate statistical test (Wilcoxon’s test for normalized 

intensities, Fisher’s test for binarized ones), with –log10(p-value) larger than a given thresh-

old . The value of  was fixed using 3-fold cross-validation on the calibration set. The corre-

sponding results in terms of AUC are summarized in Table 2. These results demonstrate the 

benefit of compound selection for all distance choices. The best classifier using normalized 

intensities still outperforms the one using binarized intensities, however, the latter proves 

more parsimonious: it uses 82 compounds, against 146 for the classifier using the normal-

ized intensities and Spearman’s based distance. Note that the two classifiers have 67 com-

pounds in common, i.e. the great majority of those of the classifier on the binarized intensi-

ties. The chemical relevance of these lists of compounds will be the subject of a future pa-

per. 

The estimates of the likelihoods and of the posterior probability of H0 as well as the likeli-

hood ratio obtained with the correlation distance on the binarized intensities are shown in 

Figure 4, and those obtained with Spearman’s correlation distance on the normalized inten-

sities are shown in Figure 5. In both cases, as sought for with the compound selection, the 

distributions of the distance d between chromatograms under H0 and H1 are now very dif-

ferent (the second undesired mode of the distribution under H0 having almost vanished and 

the plateau of the likelihood ratio having disappeared), hence the increase in performance. 
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These results must also be analyzed in terms of sensitivity and specificity. The classifier of 

Figure 5 achieves the best mean of sensitivity and specificity on the calibration set with a 

sensitivity of 89.1% and a specificity of 94.9%, and on the test set with a sensitivity of 85.9% 

and a specificity of 95.0%. Though both sensitivity and specificity should be raised for a fo-

rensic application, these results are already promising in view of the identification of a sus-

pect by his olfactory fingerprint. 

A first limitation of this work is that, for practical reasons, the subjects were sampled at a 

single time point, so that the variability of the data is essentially due to the analytic variabil-

ity. A second one is that the chromatograms being compared are of the same nature, i.e. 

obtained on samples provided by directly sampling the subject, whereas in real life, only the 

query chromatogram will be obtained this way, the reference chromatogram of the odor on 

the crime scene being indirect. Finally, the odor collected on the crime scene might also be 

contaminated by other odors than that of a person. However, the excellent results we have 

obtained with data of limited reproducibility (as shown on the PCA of Figure 2), to the point 

that a performance close to the best one could be obtained using only the knowledge of 

presence/absence of the compounds, are encouraging. Moreover, a normalization on specif-

ic compounds (and not on all 600 compounds), or the use of ratios between the abundance 

of these compounds, might also contribute to improve the results on the non binarized, 

quantitative data. 

A point that might offer an interesting perspective is the extension of the proposed method 

to a vector distance, using a naïve Bayes classifier. The components of this vector distance 

could be distances relevant to specific compounds or sets of compounds. Another possibility 

would be to take other elements of evidence than GCxGC-MS results (like those stemming 

from dogs for example) into account, either by using of an appropriate more complex vector 

distance, or by introducing evidence supporting (or against) the null hypothesis in the a pri-

ori probabilities (P(H0) ≠ P(H1)). 

5. Conclusions 

Considering the important amount of compounds that need to be monitored for human 

hand odor fingerprinting, the development and implementation of statistical tools is essen-

tial to perform a proper identification. In this study, 600 compounds were used to character-

ize the hand odor samples. Bayesian classifiers based on a distance between chromatograms 
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defined on a subsets of selected compounds and calibrated on 75 subjects of both genders, 

all ages and various phototypes, proved to be very efficient with AUCs as higher than 98% on 

a fully independent test set of 44 subjects. These first results are promising considering that 

the compound selection is purely statistical, so that the analysis of the chemical relevance of 

the selected compounds, which will be the subject of a future paper, is likely to lead to a 

better normalization of the compound abundances or to use specific ratios of these abun-

dances. Finally, the principle of the method extends easily to more complex distances possi-

bly involving other elements of evidence, and is hence likely to be suitable for forensic appli-

cations. 
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Figure Captions 

 

Figure 1. GC×GC-MS chromatogram of a hand odor sample of a 25-year-old man. 

 

Figure 2. PCA on the correlation matrix of the normalized intensities of the 600 compounds. 

The numbers refer to the identity of the subjects inside a set. 

 

Figure 3. Bayesian identification using the Spearman correlation based distance on the nor-

malized intensities of all 600 compounds. a) Histogram of the distances between chromato-

grams of the same subject (341 couples under H0), and Gaussian mixture fit; b) Histogram of 

the distances between chromatograms of different subjects (33 329 couples under H1), and 

Gaussian mixture fit: c) Fits and posterior probability of H0. 

 

Figure 4. Bayesian identification using the correlation based distance on the binarized inten-

sities of 82 selected compounds only. a) Histogram of the distances between chromato-

grams of the same subject (H0), and Gaussian mixture fit; b) Histogram of the distances be-

tween chromatograms of different subjects (H1), and Gaussian mixture fit: c) Fits and poste-

rior probability of H0.  

 

Figure 5. Bayesian identification using the Spearman correlation based distance on the nor-

malized intensities of 146 selected compounds only. a) Histogram of the distances between 

chromatograms of the same subject (H0), and Gaussian mixture fit; b) Histogram of the dis-

tances between chromatograms of different subjects (H1), and Gaussian mixture fit: c) Fits 

and posterior probability of H0.    

  



 

 

16 

Figures 

 

Figure 1. GC×GC-MS chromatogram of a hand odor sample of a 25-year-old man.  
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Figure 2. PCA on the correlation matrix of the normalized intensities of the 600 compounds. 

The numbers refer to the identity of the subjects inside a set.  
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Figure 3. Bayesian identification using the Spearman correlation based distance on the nor-

malized intensities of all 600 compounds. a) Histogram of the distances between chromato-

grams of the same subject (341 couples under H0), and Gaussian mixture fit; b) Histogram of 

the distances between chromatograms of different subjects (33 329 couples under H1), and 

Gaussian mixture fit: c) Fits and posterior probability of H0; d) Likelihood ratio.  
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Figure 4. Bayesian identification using the correlation based distance on the binarized inten-

sities of 82 selected compounds only. a) Histogram of the distances between chromato-

grams of the same subject (H0), and Gaussian mixture fit; b) Histogram of the distances be-

tween chromatograms of different subjects (H1), and Gaussian mixture fit: c) Fits and poste-

rior probability of H0; d) Likelihood ratio.  
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Figure 5. Bayesian identification using the Spearman correlation based distance on the nor-

malized intensities of 146 selected compounds only. a) Histogram of the distances between 

chromatograms of the same subject (H0), and Gaussian mixture fit; b) Histogram of the dis-

tances between chromatograms of different subjects (H1), and Gaussian mixture fit: c) Fits 

and posterior probability of H0; d) Likelihood ratio.   
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Tables 

 

Table 1. Performance without compound selection, expressed as AUCs: the first percentage 

corresponds to the calibration set, the second one to the test set. 

 

distance 

intensities 

Euclidean Pearson’s Spearman’s 

normalized 62.7% / 64.6% 74.6% / 74.7% 92.4% / 93.6% 

binarized 88.4% / 91.6% 89.6% / 91.7% 

 

 

Table 2. Performance obtained with compound selection. The first figure corresponds to the 

threshold  on the test –log10(p-value) of Wilcoxon or Fisher’s test, the second one to the 

number of selected compounds, the first percentage to the AUC on the calibration set, and 

the second one to the AUC on the test set. 

 

distance 

intensities 

Euclidean Pearson’s Spearman’s 

normalized =12, 61 comp. 

76.2% / 73.9% 

=13, 54 comp. 

78.1% / 75.2% 

=7, 146 comp. 

97.5% / 98.2% 

binarized =18, 82 comp. 

93.1% / 94.8% 

=18, 82 comp. 

97.4% / 98.1% 

 

 


