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Spectral-Energy Efficiency Pareto Front in Cellular Networks:
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Abstract—We compute the spectral efficiency vs. energy effi- TABLE | )
ciency Pareto front in Poisson cellular networks, by formulating NOTATION (a = 3.5,6 = 2/8, 8 > 2,7 = ko&7a, f: 1ST DERIVATIVE).
a spectral-energy efficiency bi-objective optimization problem as [ SymbollFunction | Definiton |

a functlor) of elthe( the_ transmit power or the density of_ the Ao, T Density of BSs, density of MTs
base stations. Capitalizing on fundamental results on weighted P, Bw Transmit power, fransmission bandwidth

Tchebycheff optimization problems applied to strictly quasi- x; oZ = BwNy || Noise power spectral density, noise variance
concave functions, we derive analytical expressions of the unique[—p_ P, (P > P) Circuits and idle power consumption of BSs
Pareto-optimal solution of the bi-objective problem. We prove [z 3 = Path-loss constant and slope
that the Pareto front is constituted by a subset of the spectral- [, 74 Threshold for decoding and cell association
energy efficiency trade-off curve and that it can be formulated in | 27 (-, -, -, ) Gauss hypergeometric function
analytical terms. We identify new functional relations between the | ,p, £ (x) loga(1+vp), 1 — (1 +x/a)™®
Pareto-optimal transmit power and density of the base stations. [ T 21 (=5, 1,1—6,—wp)—1>0
Index Terms—Cellular network, Pareto front, point process. Q(z,y, 2) 1 —exp (—mz(y/n)° (1+ YL (2))
P ABs (Pex — Pi) £ O\t /A AMTPe + \BsP;
| INTRODUCTION g(;lo) Bs (Pt ) £ Mt /ABS) + AMTPc + ABs
- . SEp, BwppAssL (At /ABs) / (14 TL (At /ABs))
The Spectral Efficiency (SE) and Energy Efficiency (EB) g B P AT
are important performance metrics that guide the optimiza= (,ﬁi?l) (max) — ,
. . . . P L P Minimum and maximum values dPx
tion of cellular networks. Under typical operating conditions;—(mmy —(max — -
AR s Aps Minimum and maximum values 0Ofgg

however, they are conflicting objective functions [1]: Ther
exists no single solution that simultaneously optimizes eachAgainst this background, we derive an explicit analytical
of them. There exist, on the other hand, several optim@rmulation of the SE-EE Pareto front in cellular networks,
solutions for which none of the two objective functions cawnhich is obtained by solving a SE-EE bi-objective optimiza-
be improved without degrading the other objective. The SEHen problem, as a function of either the transmit power or
EE pairs that fulfill the latter optimality condition are referredhe deployment density of the BSs, without resorting to any
to as Pareto-optimal solutions, and the corresponding SE-R&merical methods. To the best of the authors’ knowledge,
curve is known as the Pareto front [2, Def. 2.2.1]. Since alhis has been a long-lasting open research issue. Our new con-
Pareto-optimal solutions are, without any subjective preferengiution is obtained by capitalizing on the approach recently
information, equally good, it is important to identify the entiréntroduced in [8] for computing, in closed-form, the SE and EE
Pareto front for subsequent (subjective) decision making. in Poisson cellular networks, and on fundamental theoretical
The aim of this letter is to derive a complete and expliciiesults on the existence and uniqueness of Pareto-optimal
formulation of the SE-EE Pareto front in cellular networkssolutions in weighted Tchebycheff optimization problems [2].
We focus our attention omnalytically formulating the SE-
EE Pareto front from thesystem-levelstandpoint, i.e., by Il Bl'OBJECT'VE PROBLEM FORMULATION .
taking the average with respect to the irregular deponment_sVVe conS|der_a cellular network w_hose BSs and MTs are dis-
of cellular Base Stations (BSs) and the random locations $#outed according to two mutually independent homogeneous
the Mobile Terminals (MTs) within the cells. Some author§0isson Point Processes (PPPs) of densify and Ay,
have recently studied the SE-Ede-offin cellular networks eSpectively. The same system model as in [8] is assumed.
from the system-level standpoint [3]-[5]. The contributiof®y USing the notation in Table I, the SE (bit/se€jnand the
of this letter is, however, different: We are not interestefiE (Pit/Joule) can be formulated, respectively, as follows:
in analyzing the SE-EE trade-off but in characterizing the SE—B ABsL (Amt/ABs) 0 (e P AMT )
SE-EE Pareto front, which is the solution of a bi-objective »* = PW/DT7 "~ (At /Ass) ( BS) T tx; /\BS)
optimization problem [2]. Recently, the authors of [6] and [7]
have computed the SE-EE Pareto front in cellular networks, _ SE @)
with the aid of multi-objective optimization theory. Therein, ABs (Pex — Pi) £ (Amr/As) + AvmtPe + ApsPi
howev_er,numerica!methods are used, and, thus,. no explicihere the denominator in (2), i.@41iq, is the power con-
analytical formulation of the SE-EE Pareto front is given. sumption (Watt/rR) of the cellular network [8].

Manuscript received June 8, 2018. This work was supported in part by theIn Table Il, we summarize Important properties of the SE
European Commission through the H2020-MSCA ETN-5Gwireless projeaind EE, as a function d?, and \gg, that are used next. For
under grant 641985, the H2020-MSCA IF-BESMART project under grar@enera"ty, we use the symb@lto denote eitheP, or \gs.
749336, and the H2020-ERC PoC-CacheMire project under grant 727682 . . T (0) i .
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CentraleSupélec, Univ Paris Sud, Université Paris-Saclay, 3 rue Joliot-Curie, . .
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TABLE Il

MAIN PROPERTIES OFSE & EE (€ = Pix ORE = g, £(Min) & g(max)
ARE THE MINIMUM & MAXIMUM VALUES OF £, Q = FU“‘“),g(max)},

Q(min) — [&(min) , 6(0)] , Q(max) — [5(0) L€

max)} ).

| Property

] Meaning

SE(€=10)=0

SE is zero if€ =0

SE (Pix — 00) = SERY)

Asymptotic limit of SE withPx

SE (Aps — o) = SE**)

Asymptotic limit of SE with Agg

SE(>0)>0

SE is strictly increasing i€ > 0

s(m) — s(SE,opt) — §(max)

Unique maximizer of SE irf € Q

SEm =SE (é-(m))

Maximum value of SE ir€ €

EE(E=0)=0

EE is zero if =0

EE (£ — 00) =0

EE is zero if§ — oo

EE (€) is unimodal ing

EE has a unique maximizer (see (3))

£(0) = ¢(EE,0pt) — (3)

Unigue maximizer of EE fog € Q

EE (¢) > 0, £ € Q(min)

EE is strictly increasing it € Q(®in)

EE (¢) <0, £ € Qmax)

EE is strictly decreasing i € Q(max)

andg (-) are strictly quasi-concave functions. The last equality
is obtained by definition of point-wise minimum. O
Lemma 2:Let f (£) be a strictly quasi-concave function in
¢ € Q. Then, f (§) has a unique maximizer ig € Q.
Proof: It follows from [9, Corollary 2.5.1]. O
Proposition 1:Let f(£) and g (£) be two strictly quasi-
concave functions ig € 2. Then, the optimization problem:

maxgeq {min {f (§), ¢ (§)}} (%)

has a unique solution ig € Q.

Proof: It follows from Lemma landLemma 2 O

Let f (&) be a strictly quasi-concave function € Q.
Similar to the notation in Table Il, the unique maximizer
of f(-) and its corresponding maximum objective value are
denoted by¢(/Pt) and f., = f (¢°PY), respectively.

Pmax — min*

EE, = EE (¢()) Maximum value of EE ir¢ € Q

A. Weighted Tchebycheff Method

where£™) is the unique unconstrained maximizer of the EE. | et f(€) andg (¢) be two continuous functions i € Q.

The trends in Table Il either are proved in [8] or directly followrhe (conventional) weighted Tchebycheff optimization prob-
from (1) and (2). In this letter, thus, no proof is given. We notem is defined as follows [2, Section 3.4]:

that the SE and EE are continuous functiong ia .
We are interested in solving, as a function&f= Py, or Pr: maxeeo {min{uF' (§), (1 - )G ()} (6)
¢ = Ags, the following bi-objective optimization problem [2]: where F (&) = £(€)/fopt — 1, G (€) = g(€)/gopt — 1, and
P maxeeq [SE (¢),EE (¢)] @) HKEe [0,1] is a given and constant parameter. .
Lemma 3:Let f () andg (£) be two strictly quasi-concave
Definition 1: The bi-objective optimization problem in (4)functions in¢ € Q. Then, Py in (6) has, for each: € [0,1],
is said to benon-trivial or meaningfulif £(*) < £ O 3 unique solution that is (strong) Pareto-optimal.
Remark 1L:If £(©) > ¢max) P in (4) is trivial because,  Proof: It follows from Prop. 1and [9, Cor. 3.4.4]. O
based on Table II, both the SE and EE are increasing functionsroposition 2: Let ¢(*) be the unique solution oPr in
in & Thus, they are not conflicting objectives and are bos) for i e [0, 1]. Let us considerf (&) = SE (¢) andg (&) =
maximized for¢ = ¢, i.e., the (trivial) solution of (4)0 EE (¢). The Pareto front of in (4) is constituted by the pairs
Remark 2:Strictly monotonically increasing and unimodal(f (g(u)) .g (5@))) that are obtained by varying € [0, 1].
functions are strictly quasi-concave functions [9]. O Proof: It follows from [9, Theorem 3.4.5]. O
From Remark 2 we evince that the SE and EE are strictly Lemma 4:Let £*) be the unique solution dPy in (6) for
quasi-concave functions. This property is used in the sequgle [0, 1]. Let us considerf (¢) = SE (¢) andg (¢) = EE (¢).
In the next sections, we focus our attention on non-trivial bifhen,¢(®) e [g(o),g(max)], where£(©) is given in (3).
objective optimization problems. For generality, where appro- Proof: In the range&(*) < £(°), the SE and EE are increas-
priate, we use the mappinfg§) = SE (§) andg (§) = EE (§). ing functions. Based on the definition of Pareto-optimality, the
pairs (f (€#), g (¢)) cannot be Pareto-optimal. [
1. TCHEBYCHEFFSCALARIZATION Lemma 5:Let ¢ e [5(0)’5(111&1)()] be the unique solution
To solveP and compute the Pareto-front, we employ thef Pr in (6) for 1 € [0,1]. Let us considerf (£) = SE (§)
scalarization approach [2]. Two methods are used: 1) thadg (&) = EE (£). Then, we have: if(*) = glg:opt) — ¢(0)
conventional weighted Tchebycheff optimizatioy() [2, Sec. if and only if u = 0, i) €W = ¢f.opt) — £(m) if and only
3.4], and 2) the simplified weighted Tchebycheff optimizatioif 1 = 1, and iii) £(*) is the unique solution of the equation
(Pst). Pst is introduced in this letter and proved to beuF (¢) = (1 — p) G (¢W) if and only if u € (0, 1).
equivalent toPr, but shown to be instrumental for obtaining Proof: If 4 =0 andy = 1, Pr in (6) is equivalent to max-
an analytical expression of the Pareto frobt: is studied first imizing G (-) and F (-), respectively, since, by definition, they
in order to mathematically prove the equivalence wWithy.  are both negative functions. if € (0, 1), the SE is monotoni-
Lemma 1liLet f (£) andg (¢) be two strictly quasi-concave cally increasing and the EE is monotonically decreasing in the
functions in¢ € Q. Then, the point-wise minimum function,range [¢(*), £(m29)] . Also, uF (£)) < (1 —p) G (¢)) =0
X (&) =min{f (£),g (&)}, is strictly quasi-concave i € . and(1 — p) G (£M*9) < pF (¢(max)) = 0. So, the functions
Proof: Let us defineg, = a&1 + (1 —a) &, Xy (&1,&) = wpF (§) and (1 — p) G (€) cross each other exactly once in
min {f (&), f (&)}, Xy (&1,&) = min{g(&1),9(&)} By  [¢09),£m29]. By definition of max-min optimization, this
virtue of strict quasi-concavityf (§,) > Xy (£1,62), g (€,) > unique crossing point is the solution & in (6). O
X, (€1,&) for & # & € Q anda € (0,1). Then, X (&) = Lemma 6:Let f(¢) and g(¢) be two continuous and
min{f (&),9 (&)} > min{X;(&,&), X (&,6)F = strictly quasi-concave functions e Q. Then, there exists a
min {X (&), X (&2)}, where the inequality holds true becauseontinuous and strictly decreasing functidh,that expresses
the point-wise minimum is an increasing function, afid) the objective functiory in terms of the objective functioff,



i.e., g =C(f), wheref (¢oPV)) < f < foop = f(£F0P) Proposition 3:Let £) be the unique solution dPsr in
andg (£U°PY) < g < gopy = g (£09°PY). (7) according toLemma 7 The pairs (f (£)),g (£™))

Proof: It follows from [10, Theorem 2.1, Theorem 2.2],0obtained by varyingw € [w;,w,] describe the same SE-
since f (-) andg (-) are continuous and strictly quasi-concav&E Pareto front a®r in (6). Givenw, (f (€™)),g (£™)))
functions, and? is a non-empty, compact, and convex $ét. is obtained fromPr in (6) by choosingl/p = 1 +

Remark 3: Proposition, 2. emma SandLemma gprovide us (1 /4y — ¢§rw) 1 ¢<jﬂ>), wheregzsiw) = 141/G (¢w).
with fundamental properties of the SE-EE Pareto front. They, pryof: From Lemma SandLemma 7P+ andPsr provide
however, have the following limitations: Rroposition 2does o same(f (é—(w)) g (é—(w))) _ (f (5(#)) g (5(#))) pairs
not_ yie!d an explicit gnalytical formqlation _(_)f f[he Pareto frontg 44 only if the equationg:F (g(ﬂ)) = (1-pG (g(p,))
which is parameterized as a function ef ii) if 1 € (0,1), 04, F () = (1- w)@(g(w)) are simultaneously sat-
it is not straightforward to obtain a closed-form expression ‘?gfied. By imposing this condition, we obtaih/u — 1 +
¢ from Lemma 5 and iii) Lemma 6asserts the existence(l/w _ ¢(w)) (1/¢(w)) Bv direct inspection of this latter
of the curveC but does not provide an explicit formula for it. + ] A y ) P . -
Also, no insight for system design is obtained from them. formula, we evince that: i) = 1 if and only if w = wy, ii)

As anticipated, these limitations are overcome in the neit= 0 if and only if w = w,, and iii) . € (0, 1) if and only
section with the aid of the proposétlr method. if we (@l,wu), since . in the o.btamed formula decreases
B. Simolified Weiahted Tchebvcheff Method monotonically asw increases. This completes the proofl]

- Simplified Weighted Tchebycheft Metho Remark 6:From Proposition 3 we evince that the SE-EE

Unless otherwise stated, we assurfi€) = SE(§) and  pareto front ofPr in (6) can be obtained frosy in (7). It is
g(§) = EE(§) in ¢ € ©. We introduce the simplified weightedconstituted, in particular, by: i) the poif§E,,, EE (€M) if
Tchebycheff problem as follows (for any € (0,1)): w = w; (extreme right value), i) the pointSE (¢(°)) ,EE,)

) ‘ = N7 if w=w, (extreme left value), and iii) the continuous set of

Por i maxeequ {min {wF (§), (1 —w)G O} (7 points obtained by varying in the rangew € (w;, w,). O
whereF (¢) = SE (¢)/SE., andG (¢) = EE (¢) /EE,. Compared withPr in (6), the advantage oPst in (7) is

Remark 4The optimization problem in (7) is restricted ovetthat, with the exception of the extreme left and right points
the sett € Q™) py virtue ofLemma 4i.e., only the values of the SE-EE Pareto front that are known, the others are the
¢ > ¢(©) are admissible in order for the paifSE (¢) ,EE (€))  unique solution ofwF (£®)) = (1 —w)G (¢™)) for w €
not to contradict the definition of Pareto-optimality. 0 (w;, w,) and ™) € Q™% This is the fundamental result

Remark 5:Pgst in (7) fulfills the conditions stated in that allows us to compute an explicit analytical formulation of
Proposition 1 It has a unique solution i € Q(™**) for every the SE-EE Pareto front, as proved in the next section.

€ (0,1). No conclusion, however, can be drawn about its
Pareto-optimality, i.e.L.emma 3is, in general, not true. O IV. SE-EE RRETO FRONT

The following lemma and proposition provide us with suf- The following sections provide an explicit formulation of
ficient conditions under whic®r andPsr describe the same the SE-EE Pareto front fof = Py, and{ = Ags. We prove,
SE-EE Pareto front as a function pfandw, respectively. ~ in particular, that the SE-EE Pareto front can be computed by

Lemma 7:Definew; = (1 + EE,/EE (g(m)))_l € (0,1) knowing only£(m) = ¢max) gnd () available from [8].

andwqz :) (1f+ SE (géo)))/SE)m)(—)l c (?7 )1)_fTh3 unilqufe solu- A case Study = Py
tion, &), of Pyt in (7) is: i) &) = ™) if and only if w < i B
wn, i) €% = € if and only if w > w,, and ii) the unique  -SMMA BILELE = Prxandw € [y, v, wherew; and
solution of the equationvF (¢®)) = (1 —w)G (¢®)) in Wu 8r€ defined w(l;?mma ! I.Defme.P“‘(w): ¢ (.O)T.he Hnique
¢w) € Qmax) if and only if w € (wy, wy). solution, &™) = PSX , of Pgr in (7)is Py’ = Py if w = w,

(max

Proof: In Q(maX) — [5(0)7 g(max)}, the SE and EE are mono_and ng) = Ptx if w= wy. If we (wl, wu), it is:
tonically increasing and decreasing, respectively. Then, fora .,  (1/w — 1) (SE/EE,) — T (P(O) P(max)) ®)

giVen_w S (O, 1) |) min {wf (5) N (1 — U}) G (5)} = F(é—) Ptx = ABS‘C ()\MT/ABS) tx 0 tx
if wF (™)) < (1 —w)G ((Mm2), ie., the maximum
of wF (§) in ¢ € Q™) s |ess than the minimum of where7" = AvirPe + AssPi (1 = £ (Awr/Ass)).

(1—w)G(€) in € € QW) which yieldsw < w, ii) Proof: The casesy = w; andw = Wy follqw from Lemma
min {w? €),(1— w)@(@} —GEO)if(1-wa (5(0) < 7._As forw € (wy, wu),_(8) follows by wzit)ertmg ((%2 ar}?na()(Z)) in
wF (£09)), i.e., the maximum of 1 — w) G (€) in € € Qma) Wk (™) = (1 —w)G (™). Also, Py’ € rLPtx P é

is less than the minimum ofwF (¢) in ¢ e QM) by virtue of the continuity of the Pareto frontdmma §.
which yields w > w,, and iii) the functionswF (¢) Remark 7:From (8), the following remarks can be made. 1)
and (1 —w) G (&) aways cross each other exactly once ing) is given in closed-form. This is not possible, in general,
Qmax) jf F (£0)) < (1 —w)G (@) andwF ((™29)) > from Pr in (6). 2) P{") monotonically decreases ips.

(1 —w)G (¢m>)), since the SE and EE are monotoniThis is becaus@psL (Avr/Ags) increases imps and —7
cally increasing and decreasing functions, respectively, decreases im\gs. 3) The functional relation betweeﬁg)
Q(max) By definition of max-min optimization, this uniqueand \gg is fundamentally different compared with the case
crossing point is the solution dPst in (7). By definition, study where the coverage probability is maximized. In, e.g.,

EE,/EE (¢0) > 1, SE (¢(9)) /SE,, < 1. So,w; < w,. O the highly-loaded regime, i.e{ (Avr/Ass) = 1, (8) yields



Pg) x 1/Ags. If the coverage probability is maximized, we

haveP, /\155/2, whereg is the path-loss slope [8]. Notably,

ng) in (8) is independent of the path-loss parameters[]
Theorem 1:As a function ofP.y, the SE-EE Pareto front

can be obtained from (2) by settirigy,, as follows:

(s (- Sy

S (ABs) L (Ass)

where S ()\MT//\BS)_ =14+ 7L (/\MT/)\BS)y S ()\BS) =
mABsS (Amr/ABs), £ (ABs) = BwppAssL (Amt/As), and
SE lies in the rang&E € [SE (¢(©)) ,SE,,].

Proof: It follows by insertingPEﬁ) in (8) into (1) and (2),
and by expressing as a function of the SE from (1). The
range of valueSE € [SE (¢(°)) ,SE,] follows by virtue of

the continuity of the Pareto front (as statedliemma §. [

772/’8 _ S (/\MT/)\BS) SE

tx —

P is Optimized (a)

ayix

Ags is Optimized (b)
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In conclusion, the SE-EE Pareto front is obtained by Ir-I':'ig. 1. SE-EE Pareto front: Monte Carlo simulations vs. theor

serting (9) into (2) and by plotting the curve f&E €
[SE (¢9)),SEw ], which is decreasing in SE.¢mma §.
B. Case Study = Ags

Lemma 9:Let £ = Ags andw € [w;, w,], wherew; and
w, are defined inLemma 7 Define Al;) = ¢(). The unique
solution,£™) = ALY of Pyr in (7) is Ahy) = ALY
and )\g“g) = /\](B'msax§ if w=w.Ifwe (w,w,), /\](3%) S
()\g’s), Agga">) is the unique solution of the equation:

if w=w,

Pyid = Pyuia (Agg) — (1w —1) (SEn/EE,)  (10)

(w)

wherePgiq = Pgrid ()‘BS ) is defined in Table I.
Proof: The proof is similar toLemma 8 Also, )\g’é) €
Asd, A2 | by virtue of continuity stated ihemma 6 (]
By direct inspection of (10), similar comments asRemark

7 can be made. They are not reported for brevity. As oppos

to P{*) in Lemma 8 /\](37“%) cannot be formulated, in general
in closed-form. Two exceptions are studied as follows.
Corollary 1: If £ (Aur/ABS) 1 (highly-loaded
regime), A2 = ((1/w — 1) (SEm/EEo) — AmrPe)/Piy. If
L (Mr/Ass) ~ Aur/Ass (lightly-loaded regime) A\ =
((1/w —1) (SEm/EE,) — Am (Pix + Pe — Py))/P;.
Proof: It follows from Lemma 9by solving (10). O

~
~

B8 =3.5,P. =20 dBm,P; = 10 dBm, x andN, are set as in
[8]. If £ = Py, we sethgs = (7500%) ' BSs/n?, P{"™ = 0
dBm, P — 43 dBm. If ¢ = Agg, we setPy, = 25 dBm,
Al — (7500%) 7" BSs/n?, ALE) — (r52) " BSsin®.
The curve “SE-EE tradeoff” follows from (1), (2) fdt, €
Exmin),PéxmaX)} in Fig. 1(a) and\gs € [Mmin),xggax) in

P BS
J;ig. 1(b). The curve “Pareto front (theory)” is computed from

Theorems 1, 2The markers “Pareto front (Monte Carlo)” are
obtained by solvingPr in (6) via exhaustive search. The other
markers show the left and right extreme values of the Pareto
front (Remark § and the “ideal point(SE,,, EE,) [2].

Fig. 1 confirms the findings ofheorems 1, 2The SE-EE
Pareto front is constituted by a subset of points of the SE-EE
trade-off curve, i.e.£() € [¢(0), ¢max)] C [¢(min) ¢(max)]

VI. CONCLUSION
ed]n this letter, we have proved that the SE-EE Pareto front is
constituted by a subset of points of the SE-EE trade-off curve,
and that the functional dependency between the Pareto-optimal
values ofP, and Agg is not the same as if the coverage is
optimized. Also, the Pareto-optimal solutions either are given
in closed-form or are the solution of a simple equation.
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Theorem 2As a function ofAgg, the SE-EE Pareto front is [2]
constituted by the pairéSE ()\g’g)) ,EE (/\](3“3)) for \0t) e B3

/\1(305)7 )\gga";], where the SE and EE are given in (1) and (2)4!
Proof: It directly follows fromLemma 9 O
It is worth noting that, even thoughgg) is, in general, not 5]
explicitly available, there is no need to compute it numerically.
This is because, fronhemma 9and by the continuity of [6]

the Pareto front, we have provedy) e [Ag’g,Ag‘gaﬂ. As
opposed taTheorem 1it is not possible to express the EE as|[7]
a function of the SE, because it is difficult to wridgs as a

function of the SE from (1). Nevertheless, the SE-EE Paret

front is formulated without using any numerical methods.

V. NUMERICAL RESULTS [
The findings inTheorems 1, 2re validated in Fig. 1. Setup:[1
AMT = 121-106 MTs/rr12, YD = YA = 5 dB,BW = 20 MHz,

9
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