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Spectral-Energy Efficiency Pareto Front in Cellular Networks:
A Stochastic Geometry Framework

Marco Di Renzo,Senior Member, IEEE, Alessio Zappone,Senior Member, IEEE,
Thanh Tu Lam,Student Member, IEEE, and Mérouane Debbah,Fellow, IEEE

Abstract—We compute the spectral efficiency vs. energy effi-
ciency Pareto front in Poisson cellular networks, by formulating
a spectral-energy efficiency bi-objective optimization problem as
a function of either the transmit power or the density of the
base stations. Capitalizing on fundamental results on weighted
Tchebycheff optimization problems applied to strictly quasi-
concave functions, we derive analytical expressions of the unique
Pareto-optimal solution of the bi-objective problem. We prove
that the Pareto front is constituted by a subset of the spectral-
energy efficiency trade-off curve and that it can be formulated in
analytical terms. We identify new functional relations between the
Pareto-optimal transmit power and density of the base stations.

Index Terms—Cellular network, Pareto front, point process.

I. I NTRODUCTION

The Spectral Efficiency (SE) and Energy Efficiency (EE)
are important performance metrics that guide the optimiza-
tion of cellular networks. Under typical operating conditions,
however, they are conflicting objective functions [1]: There
exists no single solution that simultaneously optimizes each
of them. There exist, on the other hand, several optimal
solutions for which none of the two objective functions can
be improved without degrading the other objective. The SE-
EE pairs that fulfill the latter optimality condition are referred
to as Pareto-optimal solutions, and the corresponding SE-EE
curve is known as the Pareto front [2, Def. 2.2.1]. Since all
Pareto-optimal solutions are, without any subjective preference
information, equally good, it is important to identify the entire
Pareto front for subsequent (subjective) decision making.

The aim of this letter is to derive a complete and explicit
formulation of the SE-EE Pareto front in cellular networks.
We focus our attention onanalytically formulating the SE-
EE Pareto front from thesystem-levelstandpoint, i.e., by
taking the average with respect to the irregular deployments
of cellular Base Stations (BSs) and the random locations of
the Mobile Terminals (MTs) within the cells. Some authors
have recently studied the SE-EEtrade-off in cellular networks
from the system-level standpoint [3]-[5]. The contribution
of this letter is, however, different: We are not interested
in analyzing the SE-EE trade-off but in characterizing the
SE-EE Pareto front, which is the solution of a bi-objective
optimization problem [2]. Recently, the authors of [6] and [7]
have computed the SE-EE Pareto front in cellular networks
with the aid of multi-objective optimization theory. Therein,
however,numericalmethods are used, and, thus, no explicit
analytical formulation of the SE-EE Pareto front is given.
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TABLE I
NOTATION (α = 3.5, δ = 2/β, β > 2, η = κσ2

NγA , ḟ : 1ST DERIVATIVE).

Symbol/Function Definition

λBS, λMT Density of BSs, density of MTs
Ptx, BW Transmit power, transmission bandwidth
N0, σ2

N = BWN0 Noise power spectral density, noise variance
Pc, Pi (Pc ≥ Pi) Circuits and idle power consumption of BSs
κ, β Path-loss constant and slope
γD, γA Threshold for decoding and cell association
2F1 (·, ·, ·, ·) Gauss hypergeometric function
ρD, L (x) log2 (1 + γD), 1− (1 + x/α)−α

Υ 2F1 (−δ, 1, 1− δ,−γD)− 1 ≥ 0

Q (x, y, z) 1− exp
(

−πx(y/η)δ (1 + ΥL (z))
)

Pgrid λBS (Ptx − Pi)L (λMT/λBS) + λMTPc + λBSPi

SE
(∞)
Ptx

BWρDλBSL (λMT/λBS) / (1 + ΥL (λMT/λBS))

SE
(∞)
λBS

BWρDλMT

P
(min)
tx , P(max)

tx Minimum and maximum values ofPtx

λ
(min)
BS , λ(max)

BS Minimum and maximum values ofλBS

Against this background, we derive an explicit analytical
formulation of the SE-EE Pareto front in cellular networks,
which is obtained by solving a SE-EE bi-objective optimiza-
tion problem, as a function of either the transmit power or
the deployment density of the BSs, without resorting to any
numerical methods. To the best of the authors’ knowledge,
this has been a long-lasting open research issue. Our new con-
tribution is obtained by capitalizing on the approach recently
introduced in [8] for computing, in closed-form, the SE and EE
in Poisson cellular networks, and on fundamental theoretical
results on the existence and uniqueness of Pareto-optimal
solutions in weighted Tchebycheff optimization problems [2].

II. B I-OBJECTIVE PROBLEM FORMULATION

We consider a cellular network whose BSs and MTs are dis-
tributed according to two mutually independent homogeneous
Poisson Point Processes (PPPs) of densityλBS and λMT,
respectively. The same system model as in [8] is assumed.
By using the notation in Table I, the SE (bit/sec/m2) and the
EE (bit/Joule) can be formulated, respectively, as follows:

SE = BWρD
λBSL (λMT/λBS)

1 + ΥL (λMT/λBS)
Q

(

λBS,Ptx,
λMT

λBS

)

(1)

EE =
SE

λBS (Ptx − Pi)L (λMT/λBS) + λMTPc + λBSPi
(2)

where the denominator in (2), i.e.,Pgrid, is the power con-
sumption (Watt/m2) of the cellular network [8].

In Table II, we summarize important properties of the SE
and EE, as a function ofPtx andλBS, that are used next. For
generality, we use the symbolξ to denote eitherPtx or λBS.
In particular, the unique maximizer of EE,ξ(o), is [8]:

ξ(o) = ξ(EE,opt) = max
{

ξ(min),min
{

ξ(∗), ξ(max)
}}

(3)



TABLE II
MAIN PROPERTIES OFSE & EE (ξ = Ptx OR ξ = λBS , ξ(min) & ξ(max)

ARE THE MINIMUM & MAXIMUM VALUES OF ξ, Ω =
[

ξ(min), ξ(max)
]

,
Ω(min) =

[

ξ(min), ξ(o)
]

, Ω(max) =
[

ξ(o), ξ(max)
]

).

Property Meaning

SE (ξ = 0) = 0 SE is zero ifξ = 0

SE (Ptx → ∞) = SE
(∞)
Ptx

Asymptotic limit of SE withPtx

SE (λBS → ∞) = SE
(∞)
λBS

Asymptotic limit of SE withλBS.
SE (ξ > 0) > 0 SE is strictly increasing ifξ > 0

ξ(m) = ξ(SE,opt) = ξ(max) Unique maximizer of SE inξ ∈ Ω

SEm = SE
(

ξ(m)
)

Maximum value of SE inξ ∈ Ω
EE (ξ = 0) = 0 EE is zero ifξ = 0
EE (ξ → ∞) = 0 EE is zero ifξ → ∞

EE (ξ) is unimodal inξ EE has a unique maximizer (see (3))
ξ(o) = ξ(EE,opt) = (3) Unique maximizer of EE forξ ∈ Ω.
EE (ξ) > 0, ξ ∈ Ω(min) EE is strictly increasing ifξ ∈ Ω(min)
.

EE (ξ) < 0, ξ ∈ Ω(max) EE is strictly decreasing ifξ ∈ Ω(max)

EEo = EE
(

ξ(o)
)

Maximum value of EE inξ ∈ Ω

whereξ(∗) is the unique unconstrained maximizer of the EE.
The trends in Table II either are proved in [8] or directly follow
from (1) and (2). In this letter, thus, no proof is given. We note
that the SE and EE are continuous functions inξ ∈ Ω.

We are interested in solving, as a function ofξ = Ptx or
ξ = λBS, the following bi-objective optimization problem [2]:

P : maxξ∈Ω [SE (ξ) ,EE (ξ)] (4)

Definition 1: The bi-objective optimization problem in (4)
is said to benon-trivial or meaningfulif ξ(o) < ξ(max). �

Remark 1:If ξ(o) ≥ ξ(max), P in (4) is trivial because,
based on Table II, both the SE and EE are increasing functions
in ξ. Thus, they are not conflicting objectives and are both
maximized forξ = ξ(max), i.e., the (trivial) solution of (4).�

Remark 2:Strictly monotonically increasing and unimodal
functions are strictly quasi-concave functions [9]. �

From Remark 2, we evince that the SE and EE are strictly
quasi-concave functions. This property is used in the sequel.
In the next sections, we focus our attention on non-trivial bi-
objective optimization problems. For generality, where appro-
priate, we use the mappingf (ξ) = SE (ξ) andg (ξ) = EE (ξ).

III. T CHEBYCHEFFSCALARIZATION

To solveP and compute the Pareto-front, we employ the
scalarization approach [2]. Two methods are used: 1) the
conventional weighted Tchebycheff optimization (PT) [2, Sec.
3.4], and 2) the simplified weighted Tchebycheff optimization
(PST). PST is introduced in this letter and proved to be
equivalent toPT, but shown to be instrumental for obtaining
an analytical expression of the Pareto front.PT is studied first
in order to mathematically prove the equivalence withPST.

Lemma 1:Let f (ξ) andg (ξ) be two strictly quasi-concave
functions inξ ∈ Ω. Then, the point-wise minimum function,
X (ξ) = min {f (ξ) , g (ξ)}, is strictly quasi-concave inξ ∈ Ω.

Proof: Let us defineξa = aξ1 + (1− a) ξ2, Xf (ξ1, ξ2) =
min {f (ξ1) , f (ξ2)}, Xg (ξ1, ξ2) = min {g (ξ1) , g (ξ2)}. By
virtue of strict quasi-concavity,f (ξa) > Xf (ξ1, ξ2), g (ξa) >
Xg (ξ1, ξ2) for ξ1 6= ξ2 ∈ Ω anda ∈ (0, 1). Then,X (ξa) =
min {f (ξa) , g (ξa)} > min {Xf (ξ1, ξ2) ,Xg (ξ1, ξ2)} =
min {X (ξ1) ,X (ξ2)}, where the inequality holds true because
the point-wise minimum is an increasing function, andf (·)

andg (·) are strictly quasi-concave functions. The last equality
is obtained by definition of point-wise minimum. �

Lemma 2:Let f (ξ) be a strictly quasi-concave function in
ξ ∈ Ω. Then,f (ξ) has a unique maximizer inξ ∈ Ω.

Proof: It follows from [9, Corollary 2.5.1]. �

Proposition 1: Let f (ξ) and g (ξ) be two strictly quasi-
concave functions inξ ∈ Ω. Then, the optimization problem:

Pmax−min: maxξ∈Ω {min {f (ξ) , g (ξ)}} (5)

has a unique solution inξ ∈ Ω.
Proof: It follows from Lemma 1andLemma 2. �

Let f (ξ) be a strictly quasi-concave function inξ ∈ Ω.
Similar to the notation in Table II, the unique maximizer
of f (·) and its corresponding maximum objective value are
denoted byξ(f,opt) andfopt = f

(

ξ(f,opt)
)

, respectively.

A. Weighted Tchebycheff Method

Let f (ξ) andg (ξ) be two continuous functions inξ ∈ Ω.
The (conventional) weighted Tchebycheff optimization prob-
lem is defined as follows [2, Section 3.4]:

PT : maxξ∈Ω {min {µF (ξ) , (1− µ)G (ξ)}} (6)

whereF (ξ) = f (ξ)/fopt − 1, G (ξ) = g (ξ)/gopt − 1, and
µ ∈ [0, 1] is a given and constant parameter.

Lemma 3:Let f (ξ) andg (ξ) be two strictly quasi-concave
functions inξ ∈ Ω. Then,PT in (6) has, for eachµ ∈ [0, 1],
a unique solution that is (strong) Pareto-optimal.

Proof: It follows from Prop. 1 and [9, Cor. 3.4.4]. �

Proposition 2: Let ξ(µ) be the unique solution ofPT in
(6) for µ ∈ [0, 1]. Let us considerf (ξ) = SE (ξ) andg (ξ) =
EE (ξ). The Pareto front ofP in (4) is constituted by the pairs
(

f
(

ξ(µ)
)

, g
(

ξ(µ)
))

that are obtained by varyingµ ∈ [0, 1].
Proof: It follows from [9, Theorem 3.4.5]. �

Lemma 4:Let ξ(µ) be the unique solution ofPT in (6) for
µ ∈ [0, 1]. Let us considerf (ξ) = SE (ξ) andg (ξ) = EE(ξ).
Then,ξ(µ) ∈

[

ξ(o), ξ(max)
]

, whereξ(o) is given in (3).
Proof: In the rangeξ(µ) < ξ(o), the SE and EE are increas-

ing functions. Based on the definition of Pareto-optimality, the
pairs

(

f
(

ξ(µ)
)

, g
(

ξ(µ)
))

cannot be Pareto-optimal. �

Lemma 5:Let ξ(µ) ∈
[

ξ(o), ξ(max)
]

be the unique solution
of PT in (6) for µ ∈ [0, 1]. Let us considerf (ξ) = SE (ξ)
andg (ξ) = EE (ξ). Then, we have: i)ξ(µ) = ξ(g,opt) = ξ(o)

if and only if µ = 0, ii) ξ(µ) = ξ(f,opt) = ξ(m) if and only
if µ = 1, and iii) ξ(µ) is the unique solution of the equation
µF

(

ξ(µ)
)

= (1− µ)G
(

ξ(µ)
)

if and only if µ ∈ (0, 1).
Proof: If µ = 0 andµ = 1, PT in (6) is equivalent to max-

imizing G (·) andF (·), respectively, since, by definition, they
are both negative functions. Ifµ ∈ (0, 1), the SE is monotoni-
cally increasing and the EE is monotonically decreasing in the
range

[

ξ(o), ξ(max)
]

. Also, µF
(

ξ(o)
)

< (1− µ)G
(

ξ(o)
)

= 0
and(1− µ)G

(

ξ(max)
)

< µF
(

ξ(max)
)

= 0. So, the functions
µF (ξ) and (1− µ)G (ξ) cross each other exactly once in
[

ξ(o), ξ(max)
]

. By definition of max-min optimization, this
unique crossing point is the solution ofPT in (6). �

Lemma 6: Let f (ξ) and g (ξ) be two continuous and
strictly quasi-concave functions inξ ∈ Ω. Then, there exists a
continuous and strictly decreasing function,C, that expresses
the objective functiong in terms of the objective functionf ,



i.e., g = C (f), wheref
(

ξ(g,opt)
)

≤ f ≤ fopt = f
(

ξ(f,opt)
)

andg
(

ξ(f,opt)
)

≤ g ≤ gopt = g
(

ξ(g,opt)
)

.
Proof: It follows from [10, Theorem 2.1, Theorem 2.2],

sincef (·) andg (·) are continuous and strictly quasi-concave
functions, andΩ is a non-empty, compact, and convex set.�

Remark 3: Proposition 2, Lemma 5, andLemma 6provide us
with fundamental properties of the SE-EE Pareto front. They,
however, have the following limitations: i)Proposition 2does
not yield an explicit analytical formulation of the Pareto front,
which is parameterized as a function ofµ, ii) if µ ∈ (0, 1),
it is not straightforward to obtain a closed-form expression of
ξ(µ) from Lemma 5, and iii) Lemma 6asserts the existence
of the curveC but does not provide an explicit formula for it.
Also, no insight for system design is obtained from them.�

As anticipated, these limitations are overcome in the next
section with the aid of the proposedPST method.

B. Simplified Weighted Tchebycheff Method

Unless otherwise stated, we assumef (ξ) = SE (ξ) and
g (ξ) = EE (ξ) in ξ ∈ Ω. We introduce the simplified weighted
Tchebycheff problem as follows (for anyw ∈ (0, 1)):

PST : maxξ∈Ω(max)

{

min
{

wF (ξ) , (1− w)G (ξ)
}}

(7)

whereF (ξ) = SE (ξ)/SEm andG (ξ) = EE(ξ)/EEo.
Remark 4:The optimization problem in (7) is restricted over

the setξ ∈ Ω(max) by virtue ofLemma 4, i.e., only the values
ξ ≥ ξ(o) are admissible in order for the pairs(SE (ξ) ,EE (ξ))
not to contradict the definition of Pareto-optimality. �

Remark 5: PST in (7) fulfills the conditions stated in
Proposition 1: It has a unique solution inξ ∈ Ω(max) for every
w ∈ (0, 1). No conclusion, however, can be drawn about its
Pareto-optimality, i.e.,Lemma 3is, in general, not true. �

The following lemma and proposition provide us with suf-
ficient conditions under whichPT andPST describe the same
SE-EE Pareto front as a function ofµ andw, respectively.

Lemma 7:Definewl =
(

1 + EEo

/

EE
(

ξ(m)
))−1

∈ (0, 1)

andwu =
(

1 + SE
(

ξ(o)
)/

SEm

)−1
∈ (0, 1). The unique solu-

tion, ξ(w), of PST in (7) is: i) ξ(w) = ξ(m) if and only if w ≤
wl, ii) ξ(w) = ξ(o) if and only if w ≥ wu, and iii) the unique
solution of the equationwF

(

ξ(w)
)

= (1− w)G
(

ξ(w)
)

in
ξ(w) ∈ Ω(max) if and only if w ∈ (wl, wu).

Proof: In Ω(max) =
[

ξ(o), ξ(max)
]

, the SE and EE are mono-
tonically increasing and decreasing, respectively. Then, for a
given w ∈ (0, 1): i) min

{

wF (ξ) , (1− w)G (ξ)
}

= F (ξ)
if wF

(

ξ(max)
)

≤ (1− w)G
(

ξ(max)
)

, i.e., the maximum
of wF (ξ) in ξ ∈ Ω(max) is less than the minimum of
(1− w)G (ξ) in ξ ∈ Ω(max), which yields w ≤ wl, ii)
min

{

wF (ξ) , (1− w)G (ξ)
}

= G (ξ) if (1− w)G
(

ξ(o)
)

≤
wF

(

ξ(o)
)

, i.e., the maximum of(1− w)G (ξ) in ξ ∈ Ω(max)

is less than the minimum ofwF (ξ) in ξ ∈ Ω(max),
which yields w ≥ wu, and iii) the functionswF (ξ)
and (1− w)G (ξ) always cross each other exactly once in
Ω(max) if wF

(

ξ(o)
)

< (1− w)G
(

ξ(o)
)

andwF
(

ξ(max)
)

>
(1− w)G

(

ξ(max)
)

, since the SE and EE are monotoni-
cally increasing and decreasing functions, respectively, in
Ω(max). By definition of max-min optimization, this unique
crossing point is the solution ofPST in (7). By definition,
EEo

/

EE
(

ξ(m)
)

> 1, SE
(

ξ(o)
)/

SEm < 1. So,wl < wu. �

Proposition 3:Let ξ(w) be the unique solution ofPST in
(7) according toLemma 7. The pairs

(

f
(

ξ(w)
)

, g
(

ξ(w)
))

obtained by varyingw ∈ [wl, wu] describe the same SE-
EE Pareto front asPT in (6). Givenw,

(

f
(

ξ(w)
)

, g
(

ξ(w)
))

is obtained fromPT in (6) by choosing 1/µ = 1 +
(

1/w − φ
(w)
+

)(

1
/

φ
(w)
−

)

, whereφ(w)
± = 1± 1

/

G
(

ξ(w)
)

.
Proof : From Lemma 5andLemma 7, PT andPST provide

the same
(

f
(

ξ(w)
)

, g
(

ξ(w)
))

=
(

f
(

ξ(µ)
)

, g
(

ξ(µ)
))

pairs
if and only if the equationsµF

(

ξ(µ)
)

= (1− µ)G
(

ξ(µ)
)

and wF
(

ξ(w)
)

= (1− w)G
(

ξ(w)
)

are simultaneously sat-
isfied. By imposing this condition, we obtain1/µ = 1 +
(

1/w − φ
(w)
+

)(

1
/

φ
(w)
−

)

. By direct inspection of this latter
formula, we evince that: i)µ = 1 if and only if w = wl, ii)
µ = 0 if and only if w = wu, and iii) µ ∈ (0, 1) if and only
if w ∈ (wl, wu), sinceµ in the obtained formula decreases
monotonically asw increases. This completes the proof.�

Remark 6:From Proposition 3, we evince that the SE-EE
Pareto front ofPT in (6) can be obtained fromPST in (7). It is
constituted, in particular, by: i) the point

(

SEm,EE
(

ξ(m)
))

if
w = wl (extreme right value), ii) the point

(

SE
(

ξ(o)
)

,EEo

)

if w = wu (extreme left value), and iii) the continuous set of
points obtained by varyingw in the rangew ∈ (wl, wu). �

Compared withPT in (6), the advantage ofPST in (7) is
that, with the exception of the extreme left and right points
of the SE-EE Pareto front that are known, the others are the
unique solution ofwF

(

ξ(w)
)

= (1− w)G
(

ξ(w)
)

for w ∈
(wl, wu) and ξ(w) ∈ Ω(max). This is the fundamental result
that allows us to compute an explicit analytical formulation of
the SE-EE Pareto front, as proved in the next section.

IV. SE-EE PARETO FRONT

The following sections provide an explicit formulation of
the SE-EE Pareto front forξ = Ptx andξ = λBS. We prove,
in particular, that the SE-EE Pareto front can be computed by
knowing onlyξ(m) = ξ(max) andξ(o) available from [8].

A. Case Studyξ = Ptx

Lemma 8:Let ξ = Ptx andw ∈ [wl, wu], wherewl and
wu are defined inLemma 7. DefineP(o)

tx = ξ(o). The unique
solution,ξ(w) = P

(w)
tx , of PST in (7) isP(w)

tx = P
(o)
tx if w = wu

andP(w)
tx = P

(max)
tx if w = wl. If w ∈ (wl, wu), it is:

P
(w)
tx =

(1/w − 1) (SEm/EEo)− T

λBSL (λMT/λBS)
∈
(

P
(o)
tx ,P

(max)
tx

)

(8)

whereT = λMTPc + λBSPi (1− L (λMT/λBS)).
Proof: The casesw = wl andw = wu follow from Lemma

7. As for w ∈ (wl, wu), (8) follows by inserting (1) and (2) in

wF
(

ξ(w)
)

= (1− w)G
(

ξ(w)
)

. Also, P(w)
tx ∈

[

P
(o)
tx ,P

(max)
tx

]

by virtue of the continuity of the Pareto front (Lemma 6). �

Remark 7:From (8), the following remarks can be made. 1)
P
(w)
tx is given in closed-form. This is not possible, in general,

from PT in (6). 2) P
(w)
tx monotonically decreases inλBS.

This is becauseλBSL (λMT/λBS) increases inλBS and−T

decreases inλBS. 3) The functional relation betweenP(w)
tx

and λBS is fundamentally different compared with the case
study where the coverage probability is maximized. In, e.g.,
the highly-loaded regime, i.e.,L (λMT/λBS) ≈ 1, (8) yields



P
(w)
tx ∝ 1/λBS. If the coverage probability is maximized, we

havePtx ∝ λ
−β/2
BS , whereβ is the path-loss slope [8]. Notably,

P
(w)
tx in (8) is independent of the path-loss parameters.�
Theorem 1:As a function ofPtx, the SE-EE Pareto front

can be obtained from (2) by settingPtx as follows:

Ptx =

(

η2/β

S (λBS)

[

− ln

(

1−
S (λMT/λBS) SE

L (λBS)

)])β/2

(9)

where S (λMT/λBS) = 1 + ΥL (λMT/λBS), S (λBS) =
πλBSS (λMT/λBS), L (λBS) = BWρDλBSL (λMT/λBS), and
SE lies in the rangeSE ∈

[

SE
(

ξ(o)
)

, SEm

]

.
Proof: It follows by insertingP(w)

tx in (8) into (1) and (2),
and by expressingw as a function of the SE from (1). The
range of valuesSE ∈

[

SE
(

ξ(o)
)

, SEm

]

follows by virtue of
the continuity of the Pareto front (as stated inLemma 6). �

In conclusion, the SE-EE Pareto front is obtained by in-
serting (9) into (2) and by plotting the curve forSE ∈
[

SE
(

ξ(o)
)

, SEm

]

, which is decreasing in SE (Lemma 6).

B. Case Studyξ = λBS

Lemma 9:Let ξ = λBS andw ∈ [wl, wu], wherewl and
wu are defined inLemma 7. Defineλ(o)

BS = ξ(o). The unique
solution,ξ(w) = λ

(w)
BS , of PST in (7) isλ(w)

BS = λ
(o)
BS if w = wu

and λ
(w)
BS = λ

(max)
BS if w = wl. If w ∈ (wl, wu), λ

(w)
BS ∈

(

λ
(o)
BS, λ

(max)
BS

)

is the unique solution of the equation:

Pgrid = Pgrid

(

λ
(w)
BS

)

= (1/w − 1) (SEm/EEo) (10)

wherePgrid = Pgrid

(

λ
(w)
BS

)

is defined in Table I.

Proof: The proof is similar toLemma 8. Also, λ(w)
BS ∈

[

λ
(o)
BS , λ

(max)
BS

]

by virtue of continuity stated inLemma 6. �

By direct inspection of (10), similar comments as inRemark
7 can be made. They are not reported for brevity. As opposed
to P

(w)
tx in Lemma 8, λ(w)

BS cannot be formulated, in general,
in closed-form. Two exceptions are studied as follows.

Corollary 1: If L (λMT/λBS) ≈ 1 (highly-loaded
regime),λ(w)

BS = ((1/w − 1) (SEm/EEo)− λMTPc)/Ptx. If
L (λMT/λBS) ≈ λMT/λBS (lightly-loaded regime),λ(w)

BS =
((1/w − 1) (SEm/EEo)− λMT (Ptx + Pc − Pi))/Pi.

Proof: It follows from Lemma 9by solving (10). �

Theorem 2:As a function ofλBS, the SE-EE Pareto front is
constituted by the pairs

(

SE
(

λ
(w)
BS

)

,EE
(

λ
(w)
BS

))

for λ(w)
BS ∈

[

λ
(o)
BS , λ

(max)
BS

]

, where the SE and EE are given in (1) and (2).
Proof: It directly follows from Lemma 9. �

It is worth noting that, even thoughλ(w)
BS is, in general, not

explicitly available, there is no need to compute it numerically.
This is because, fromLemma 9and by the continuity of
the Pareto front, we have provedλ(w)

BS ∈
[

λ
(o)
BS , λ

(max)
BS

]

. As
opposed toTheorem 1, it is not possible to express the EE as
a function of the SE, because it is difficult to writeλBS as a
function of the SE from (1). Nevertheless, the SE-EE Pareto
front is formulated without using any numerical methods.

V. NUMERICAL RESULTS

The findings inTheorems 1, 2are validated in Fig. 1. Setup:
λMT = 121·10−6 MTs/m2, γD = γA = 5 dB,BW = 20 MHz,
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Fig. 1. SE-EE Pareto front: Monte Carlo simulations vs. theory.

β = 3.5, Pc = 20 dBm,Pi = 10 dBm, κ andN0 are set as in
[8]. If ξ = Ptx, we setλBS =

(

π5002
)−1

BSs/m2, P(min)
tx = 0

dBm, P(max)
tx = 43 dBm. If ξ = λBS, we setPtx = 25 dBm,

λ
(min)
BS =

(

π5002
)−1

BSs/m2, λ(max)
BS =

(

π52
)−1

BSs/m2.
The curve “SE-EE tradeoff” follows from (1), (2) forPtx ∈

[

P
(min)
tx ,P

(max)
tx

]

in Fig. 1(a) andλBS ∈
[

λ
(min)
BS , λ

(max)
BS

]

in
Fig. 1(b). The curve “Pareto front (theory)” is computed from
Theorems 1, 2. The markers “Pareto front (Monte Carlo)” are
obtained by solvingPT in (6) via exhaustive search. The other
markers show the left and right extreme values of the Pareto
front (Remark 6) and the “ideal point”(SEm,EEo) [2].

Fig. 1 confirms the findings ofTheorems 1, 2: The SE-EE
Pareto front is constituted by a subset of points of the SE-EE
trade-off curve, i.e.,ξ(w) ∈

[

ξ(o), ξ(max)
]

⊆
[

ξ(min), ξ(max)
]

.

VI. CONCLUSION

In this letter, we have proved that the SE-EE Pareto front is
constituted by a subset of points of the SE-EE trade-off curve,
and that the functional dependency between the Pareto-optimal
values ofPtx andλBS is not the same as if the coverage is
optimized. Also, the Pareto-optimal solutions either are given
in closed-form or are the solution of a simple equation.
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