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I. INTRODUCTION

The Spectral Efficiency (SE) and Energy Efficiency (EE) are important performance metrics that guide the optimization of cellular networks. Under typical operating conditions, however, they are conflicting objective functions [START_REF] Zappone | Energy efficiency in wireless networks via fractional programming theory[END_REF]: There exists no single solution that simultaneously optimizes each of them. There exist, on the other hand, several optimal solutions for which none of the two objective functions can be improved without degrading the other objective. The SE-EE pairs that fulfill the latter optimality condition are referred to as Pareto-optimal solutions, and the corresponding SE-EE curve is known as the Pareto front [2, Def. 2.2.1]. Since all Pareto-optimal solutions are, without any subjective preference information, equally good, it is important to identify the entire Pareto front for subsequent (subjective) decision making.

The aim of this letter is to derive a complete and explicit formulation of the SE-EE Pareto front in cellular networks. We focus our attention on analytically formulating the SE-EE Pareto front from the system-level standpoint, i.e., by taking the average with respect to the irregular deployments of cellular Base Stations (BSs) and the random locations of the Mobile Terminals (MTs) within the cells. Some authors have recently studied the SE-EE trade-off in cellular networks from the system-level standpoint [START_REF] Tsilimantos | Spectral and energy efficiency trade-offs in cellular networks[END_REF]- [START_REF] Alam | Asymptotic analysis of area spectral efficiency and energy efficiency in PPP networks with SLNR precoder[END_REF]. The contribution of this letter is, however, different: We are not interested in analyzing the SE-EE trade-off but in characterizing the SE-EE Pareto front, which is the solution of a bi-objective optimization problem [START_REF] Miettinen | Nonlinear Multiobjective Optimization[END_REF]. Recently, the authors of [START_REF] Aydin | Energy-spectral efficiency tradeoffs in 5G multioperator networks with heterogeneous constraints[END_REF] and [START_REF] Hao | On the energy and spectral efficiency tradeoff in massive MIMO-enabled HetNets with capacity-constrained backhaul links[END_REF] have computed the SE-EE Pareto front in cellular networks with the aid of multi-objective optimization theory. Therein, however, numerical methods are used, and, thus, no explicit analytical formulation of the SE-EE Pareto front is given.
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Against this background, we derive an explicit analytical formulation of the SE-EE Pareto front in cellular networks, which is obtained by solving a SE-EE bi-objective optimization problem, as a function of either the transmit power or the deployment density of the BSs, without resorting to any numerical methods. To the best of the authors' knowledge, this has been a long-lasting open research issue. Our new contribution is obtained by capitalizing on the approach recently introduced in [START_REF] Renzo | System-level modeling & optimization of the energy efficiency in cellular networks -A stochastic geometry framework[END_REF] for computing, in closed-form, the SE and EE in Poisson cellular networks, and on fundamental theoretical results on the existence and uniqueness of Pareto-optimal solutions in weighted Tchebycheff optimization problems [START_REF] Miettinen | Nonlinear Multiobjective Optimization[END_REF].

II. BI-OBJECTIVE PROBLEM FORMULATION

We consider a cellular network whose BSs and MTs are distributed according to two mutually independent homogeneous Poisson Point Processes (PPPs) of density λ BS and λ MT , respectively. The same system model as in [START_REF] Renzo | System-level modeling & optimization of the energy efficiency in cellular networks -A stochastic geometry framework[END_REF] is assumed. By using the notation in Table I, the SE (bit/sec/m 2 ) and the EE (bit/Joule) can be formulated, respectively, as follows:

SE = B W ρ D λ BS L (λ MT /λ BS ) 1 + ΥL (λ MT /λ BS ) Q λ BS , P tx , λ MT λ BS (1) 
EE = SE λ BS (P tx -P i ) L (λ MT /λ BS ) + λ MT P c + λ BS P i (2)
where the denominator in (2), i.e., P grid , is the power consumption (Watt/m 2 ) of the cellular network [START_REF] Renzo | System-level modeling & optimization of the energy efficiency in cellular networks -A stochastic geometry framework[END_REF].

In Table II, we summarize important properties of the SE and EE, as a function of P tx and λ BS , that are used next. For generality, we use the symbol ξ to denote either P tx or λ BS . In particular, the unique maximizer of EE, ξ (o) , is [START_REF] Renzo | System-level modeling & optimization of the energy efficiency in cellular networks -A stochastic geometry framework[END_REF]: (min) , ξ (max) , Ω (min) = ξ (min) , ξ (o) , Ω (max) = ξ (o) , ξ (max) ).

ξ (o) = ξ (EE,opt) = max ξ (min) , min ξ ( * ) , ξ (max) (3) 

Property Meaning

SE (ξ = 0) = 0 SE is zero if ξ = 0 SE (Ptx → ∞) = SE (∞) Ptx Asymptotic limit of SE with Ptx SE (λ BS → ∞) = SE (∞) λ BS Asymptotic limit of SE with λ BS . SE (ξ > 0) > 0 SE is strictly increasing if ξ > 0 ξ (m) = ξ (SE,opt) = ξ (max) Unique maximizer of SE in ξ ∈ Ω SEm = SE ξ (m) Maximum value of SE in ξ ∈ Ω EE (ξ = 0) = 0 EE is zero if ξ = 0 EE (ξ → ∞) = 0 EE is zero if ξ → ∞ EE (ξ) is unimodal in ξ EE has a unique maximizer (see (3)) ξ (o) = ξ (EE,opt) = (3) Unique maximizer of EE for ξ ∈ Ω . EE (ξ) > 0, ξ ∈ Ω (min) EE is strictly increasing if ξ ∈ Ω (min)
.

EE (ξ) < 0, ξ ∈ Ω (max) EE is strictly decreasing if ξ ∈ Ω (max) EEo = EE ξ (o) Maximum value of EE in ξ ∈ Ω
where ξ ( * ) is the unique unconstrained maximizer of the EE.

The trends in Table II either are proved in [START_REF] Renzo | System-level modeling & optimization of the energy efficiency in cellular networks -A stochastic geometry framework[END_REF] or directly follow from ( 1) and ( 2). In this letter, thus, no proof is given. We note that the SE and EE are continuous functions in ξ ∈ Ω.

We are interested in solving, as a function of ξ = P tx or ξ = λ BS , the following bi-objective optimization problem [START_REF] Miettinen | Nonlinear Multiobjective Optimization[END_REF]:

P : max ξ∈Ω [SE (ξ) , EE (ξ)] (4) 
Definition 1: The bi-objective optimization problem in ( 4) is said to be non-trivial or meaningful if ξ (o) < ξ (max) .

Remark 1: If ξ (o) ≥ ξ (max) , P in ( 4) is trivial because, based on Table II, both the SE and EE are increasing functions in ξ. Thus, they are not conflicting objectives and are both maximized for ξ = ξ (max) , i.e., the (trivial) solution of (4).

Remark 2: Strictly monotonically increasing and unimodal functions are strictly quasi-concave functions [START_REF] Cambini | Generalized Convexity & Optimization[END_REF].

From Remark 2, we evince that the SE and EE are strictly quasi-concave functions. This property is used in the sequel. In the next sections, we focus our attention on non-trivial biobjective optimization problems. For generality, where appropriate, we use the mapping f (ξ) = SE (ξ) and g (ξ) = EE (ξ).

III. TCHEBYCHEFF SCALARIZATION

To solve P and compute the Pareto-front, we employ the scalarization approach [START_REF] Miettinen | Nonlinear Multiobjective Optimization[END_REF]. Two methods are used: 1) the conventional weighted Tchebycheff optimization (P T ) [2, Sec. 3.4], and 2) the simplified weighted Tchebycheff optimization (P ST ). P ST is introduced in this letter and proved to be equivalent to P T , but shown to be instrumental for obtaining an analytical expression of the Pareto front. P T is studied first in order to mathematically prove the equivalence with P ST .

Lemma 1: Let f (ξ) and g (ξ) be two strictly quasi-concave functions in ξ ∈ Ω. Then, the point-wise minimum function,

X (ξ) = min {f (ξ) , g (ξ)}, is strictly quasi-concave in ξ ∈ Ω. Proof : Let us define ξ a = aξ 1 + (1 -a) ξ 2 , X f (ξ 1 , ξ 2 ) = min {f (ξ 1 ) , f (ξ 2 )}, X g (ξ 1 , ξ 2 ) = min {g (ξ 1 ) , g (ξ 2 )}. By virtue of strict quasi-concavity, f (ξ a ) > X f (ξ 1 , ξ 2 ), g (ξ a ) > X g (ξ 1 , ξ 2 ) for ξ 1 = ξ 2 ∈ Ω and a ∈ (0, 1). Then, X (ξ a ) = min {f (ξ a ) , g (ξ a )} > min {X f (ξ 1 , ξ 2 ) , X g (ξ 1 , ξ 2 )} = min {X (ξ 1 ) , X (ξ 2 )}
, where the inequality holds true because the point-wise minimum is an increasing function, and f (•) and g (•) are strictly quasi-concave functions. The last equality is obtained by definition of point-wise minimum.

Lemma 2: Let f (ξ) be a strictly quasi-concave function in ξ ∈ Ω. Then, f (ξ) has a unique maximizer in ξ ∈ Ω.

Proof : It follows from [9, Corollary 2.5.1]. Proposition 1: Let f (ξ) and g (ξ) be two strictly quasiconcave functions in ξ ∈ Ω. Then, the optimization problem:

P max -min : max ξ∈Ω {min {f (ξ) , g (ξ)}} (5) 
has a unique solution in ξ ∈ Ω.

Proof : It follows from Lemma 1 and Lemma 2.

Let f (ξ) be a strictly quasi-concave function in ξ ∈ Ω. Similar to the notation in Table II, the unique maximizer of f (•) and its corresponding maximum objective value are denoted by ξ (f,opt) and f opt = f ξ (f,opt) , respectively.

A. Weighted Tchebycheff Method

Let f (ξ) and g (ξ) be two continuous functions in ξ ∈ Ω. The (conventional) weighted Tchebycheff optimization problem is defined as follows [2, Section 3.4]:

P T : max ξ∈Ω {min {µF (ξ) , (1 -µ)G (ξ)}} (6) 
where Then, ξ (µ) ∈ ξ (o) , ξ (max) , where ξ (o) is given in [START_REF] Tsilimantos | Spectral and energy efficiency trade-offs in cellular networks[END_REF].

F (ξ) = f (ξ)/f opt -1, G (ξ) = g (ξ)/g opt -1,
Proof : In the range ξ (µ) < ξ (o) , the SE and EE are increasing functions. Based on the definition of Pareto-optimality, the pairs f ξ (µ) , g ξ (µ) cannot be Pareto-optimal.

Lemma 5: Let ξ (µ) ∈ ξ (o) , ξ (max) be the unique solution of P T in [START_REF] Aydin | Energy-spectral efficiency tradeoffs in 5G multioperator networks with heterogeneous constraints[END_REF] 

for µ ∈ [0, 1]. Let us consider f (ξ) = SE (ξ) and g (ξ) = EE (ξ). Then, we have: i) ξ (µ) = ξ (g,opt) = ξ (o) if and only if µ = 0, ii) ξ (µ) = ξ (f,opt) = ξ (m) if and only if µ = 1, and iii) ξ (µ) is the unique solution of the equation µF ξ (µ) = (1 -µ) G ξ (µ) if and only if µ ∈ (0, 1).
Proof : If µ = 0 and µ = 1, P T in ( 6) is equivalent to maximizing G (•) and F (•), respectively, since, by definition, they are both negative functions. If µ ∈ (0, 1), the SE is monotonically increasing and the EE is monotonically decreasing in the range ξ (o) , ξ (max) . Also, µF ξ (o) < (1 -µ) G ξ (o) = 0 and (1 -µ) G ξ (max) < µF ξ (max) = 0. So, the functions µF (ξ) and (1 -µ) G (ξ) cross each other exactly once in ξ (o) , ξ (max) . By definition of max-min optimization, this unique crossing point is the solution of P T in [START_REF] Aydin | Energy-spectral efficiency tradeoffs in 5G multioperator networks with heterogeneous constraints[END_REF].

Lemma 6: Let f (ξ) and g (ξ) be two continuous and strictly quasi-concave functions in ξ ∈ Ω. Then, there exists a continuous and strictly decreasing function, C, that expresses the objective function g in terms of the objective function f , i.e., g = C (f ), where f ξ (g,opt) ≤ f ≤ f opt = f ξ (f,opt) and g ξ (f,opt) ≤ g ≤ g opt = g ξ (g,opt) .

Proof : It follows from [10, Theorem 2.1, Theorem 2.2], since f (•) and g (•) are continuous and strictly quasi-concave functions, and Ω is a non-empty, compact, and convex set.

Remark 3: Proposition 2, Lemma 5, and Lemma 6 provide us with fundamental properties of the SE-EE Pareto front. They, however, have the following limitations: i) Proposition 2 does not yield an explicit analytical formulation of the Pareto front, which is parameterized as a function of µ, ii) if µ ∈ (0, 1), it is not straightforward to obtain a closed-form expression of ξ (µ) from Lemma 5, and iii) Lemma 6 asserts the existence of the curve C but does not provide an explicit formula for it. Also, no insight for system design is obtained from them.

As anticipated, these limitations are overcome in the next section with the aid of the proposed P ST method.

B. Simplified Weighted Tchebycheff Method

Unless otherwise stated, we assume f (ξ) = SE (ξ) and g (ξ) = EE (ξ) in ξ ∈ Ω. We introduce the simplified weighted Tchebycheff problem as follows (for any w ∈ (0, 1)):

P ST : max ξ∈Ω (max) min wF (ξ) , (1 -w) G (ξ) (7) 
where

F (ξ) = SE (ξ)/SE m and G (ξ) = EE (ξ)/EE o . Remark 4:
The optimization problem in ( 7) is restricted over the set ξ ∈ Ω (max) by virtue of Lemma 4, i.e., only the values ξ ≥ ξ (o) are admissible in order for the pairs (SE (ξ) , EE (ξ)) not to contradict the definition of Pareto-optimality.

Remark 5: P ST in (7) fulfills the conditions stated in Proposition 1: It has a unique solution in ξ ∈ Ω (max) for every w ∈ (0, 1). No conclusion, however, can be drawn about its Pareto-optimality, i.e., Lemma 3 is, in general, not true.

The following lemma and proposition provide us with sufficient conditions under which P T and P ST describe the same SE-EE Pareto front as a function of µ and w, respectively.

Lemma 7: Define w l = 1 + EE o EE ξ (m) -1 ∈ (0, 1) and w u = 1 + SE ξ (o) SE m -1 ∈ (0, 1). The unique solution, ξ (w) , of P ST in ( 7) is: i) ξ (w) = ξ (m) if and only if w ≤ w l , ii) ξ (w) = ξ (o) if and only if w ≥ w u , and iii) the unique solution of the equation wF ξ max) , the SE and EE are monotonically increasing and decreasing, respectively. Then, for a given w ∈ (0, 1 o) , i.e., the maximum of (1 -w) G (ξ) in ξ ∈ Ω (max) is less than the minimum of wF (ξ) in ξ ∈ Ω (max) , which yields w ≥ w u , and iii) the functions wF (ξ) and (1 -w) G (ξ) always cross each other exactly once in Ω (max) if wF ξ (o) < (1 -w) G ξ (o) and wF ξ (max) > (1 -w) G ξ (max) , since the SE and EE are monotonically increasing and decreasing functions, respectively, in Ω (max) . By definition of max-min optimization, this unique crossing point is the solution of P ST in [START_REF] Hao | On the energy and spectral efficiency tradeoff in massive MIMO-enabled HetNets with capacity-constrained backhaul links[END_REF]. By definition,

(w) = (1 -w) G ξ (w) in ξ (w) ∈ Ω (max) if and only if w ∈ (w l , w u ). Proof : In Ω (max) = ξ (o) , ξ ( 
): i) min wF (ξ) , (1 -w) G (ξ) = F (ξ) if wF ξ (max) ≤ (1 -w) G ξ (max) , i.e., the maximum of wF (ξ) in ξ ∈ Ω (max) is less than the minimum of (1 -w) G (ξ) in ξ ∈ Ω (max) , which yields w ≤ w l , ii) min wF (ξ) , (1 -w) G (ξ) = G (ξ) if (1 -w) G ξ (o) ≤ wF ξ (
EE o EE ξ (m) > 1, SE ξ (o) SE m < 1. So, w l < w u .
Proposition 3: Let ξ (w) be the unique solution of P ST in [START_REF] Hao | On the energy and spectral efficiency tradeoff in massive MIMO-enabled HetNets with capacity-constrained backhaul links[END_REF] according to Lemma 7. The pairs f ξ (w) , g ξ (w) obtained by varying w ∈ [w l , w u ] describe the same SE-EE Pareto front as P T in [START_REF] Aydin | Energy-spectral efficiency tradeoffs in 5G multioperator networks with heterogeneous constraints[END_REF]. Given w, f ξ (w) , g ξ (w) is obtained from P T in ( 6) by choosing 1/µ = 1 + 1/w -φ

(w) + 1 φ (w) -
, where φ (w) w) . Proof : From Lemma 5 and Lemma 7, P T and P ST provide the same f ξ (w) , g ξ (w) = f ξ (µ) , g ξ (µ) pairs if and only if the equations µF ξ (µ) = (1 -µ) G ξ (µ) and wF ξ (w) = (1 -w) G ξ (w) are simultaneously satisfied. By imposing this condition, we obtain 1/µ = 1 + 1/w -φ

± = 1 ± 1 G ξ (
(w) + 1 φ (w) -
. By direct inspection of this latter formula, we evince that: i) µ = 1 if and only if w = w l , ii) µ = 0 if and only if w = w u , and iii) µ ∈ (0, 1) if and only if w ∈ (w l , w u ), since µ in the obtained formula decreases monotonically as w increases. This completes the proof.

Remark 6: From Proposition 3, we evince that the SE-EE Pareto front of P T in (6) can be obtained from P ST in [START_REF] Hao | On the energy and spectral efficiency tradeoff in massive MIMO-enabled HetNets with capacity-constrained backhaul links[END_REF]. It is constituted, in particular, by: i) the point SE m , EE ξ (m) if w = w l (extreme right value), ii) the point SE ξ (o) , EE o if w = w u (extreme left value), and iii) the continuous set of points obtained by varying w in the range w ∈ (w l , w u ).

Compared with P T in ( 6), the advantage of P ST in ( 7) is that, with the exception of the extreme left and right points of the SE-EE Pareto front that are known, the others are the unique solution of wF ξ (w) = (1 -w) G ξ (w) for w ∈ (w l , w u ) and ξ (w) ∈ Ω (max) . This is the fundamental result that allows us to compute an explicit analytical formulation of the SE-EE Pareto front, as proved in the next section.

IV. SE-EE PARETO FRONT

The following sections provide an explicit formulation of the SE-EE Pareto front for ξ = P tx and ξ = λ BS . We prove, in particular, that the SE-EE Pareto front can be computed by knowing only ξ (m) = ξ (max) and ξ (o) available from [START_REF] Renzo | System-level modeling & optimization of the energy efficiency in cellular networks -A stochastic geometry framework[END_REF].

A. Case Study ξ = P tx

Lemma 8: Let ξ = P tx and w ∈ [w l , w u ], where w l and w u are defined in Lemma 7. Define P

(o) tx = ξ (o) . The unique solution, ξ (w) = P (w) tx , of P ST in (7) is P (w) tx = P (o) tx if w = w u and P (w) tx = P (max) tx if w = w l . If w ∈ (w l , w u ), it is: P (w) tx = (1/w -1) (SE m /EE o ) -T λ BS L (λ MT /λ BS ) ∈ P (o) tx , P (max) tx (8) 
where

T = λ MT P c + λ BS P i (1 -L (λ MT /λ BS )).
Proof : The cases w = w l and w = w u follow from Lemma 7. As for w ∈ (w l , w u ), [START_REF] Renzo | System-level modeling & optimization of the energy efficiency in cellular networks -A stochastic geometry framework[END_REF] follows by inserting (1) and (2) in wF ξ (w) = (1 -w) G ξ (w) . Also, P Remark 7: From (8), the following remarks can be made. 1) P (w) tx is given in closed-form. This is not possible, in general, from P T in (6). 2) P (w) tx monotonically decreases in λ BS . This is because λ BS L (λ MT /λ BS ) increases in λ BS and -T decreases in λ BS . 3) The functional relation between P (w) tx and λ BS is fundamentally different compared with the case study where the coverage probability is maximized. In, e.g., the highly-loaded regime, i.e., L (λ MT /λ BS ) ≈ 1, (8) yields

P (w) tx ∝ 1/λ BS . If the coverage probability is maximized, we have P tx ∝ λ -β/2
BS , where β is the path-loss slope [START_REF] Renzo | System-level modeling & optimization of the energy efficiency in cellular networks -A stochastic geometry framework[END_REF]. Notably, P (w) tx in ( 8) is independent of the path-loss parameters. Theorem 1: As a function of P tx , the SE-EE Pareto front can be obtained from (2) by setting P tx as follows:

P tx = η 2/β S (λ BS ) -ln 1 - S (λ MT /λ BS ) SE L (λ BS ) β/2 (9) 
where tx in ( 8) into ( 1) and ( 2), and by expressing w as a function of the SE from [START_REF] Zappone | Energy efficiency in wireless networks via fractional programming theory[END_REF]. The range of values SE ∈ SE ξ (o) , SE m follows by virtue of the continuity of the Pareto front (as stated in Lemma 6).

S (λ MT /λ BS ) = 1 + ΥL (λ MT /λ BS ), S (λ BS ) = πλ BS S (λ MT /λ BS ), L (λ BS ) = B W ρ D λ BS L (λ MT /λ BS )
In conclusion, the SE-EE Pareto front is obtained by inserting ( 9) into (2) and by plotting the curve for SE ∈ SE ξ (o) , SE m , which is decreasing in SE (Lemma 6).

B. Case Study ξ = λ BS

Lemma 9: Let ξ = λ BS and w ∈ [w l , w u ], where w l and w u are defined in Lemma 7. Define λ

(o) BS = ξ (o) . The unique solution, ξ (w) = λ (w) BS , of P ST in (7) is λ (w) BS = λ (o) BS if w = w u and λ (w) BS = λ (max) BS if w = w l . If w ∈ (w l , w u ), λ (w) BS ∈ λ (o) BS , λ (max) BS
is the unique solution of the equation:

P grid = P grid λ (w) BS = (1/w -1) (SE m /EE o ) (10) 
where P grid = P grid λ (w) BS is defined in Table I.

Proof : The proof is similar to Lemma 8. Also, λ

BS ∈ λ 

BS cannot be formulated, in general, in closed-form. Two exceptions are studied as follows.

Corollary 1:

If L (λ MT /λ BS ) ≈ 1 (highly-loaded regime), λ (w) BS = ((1/w -1) (SE m /EE o ) -λ MT P c )/P tx . If L (λ MT /λ BS ) ≈ λ MT /λ BS (lightly-loaded regime), λ (w) BS = ((1/w -1) (SE m /EE o ) -λ MT (P tx + P c -P i ))/P i .
Proof : It follows from Lemma 9 by solving [START_REF] Daniilidis | Connectedness of the efficient set for three-objective quasiconcave naximization problems[END_REF]. , where the SE and EE are given in (1) and (2). Proof : It directly follows from Lemma 9. It is worth noting that, even though λ (w) BS is, in general, not explicitly available, there is no need to compute it numerically. This is because, from Lemma 9 and by the continuity of the Pareto front, we have proved λ . As opposed to Theorem 1, it is not possible to express the EE as a function of the SE, because it is difficult to write λ BS as a function of the SE from [START_REF] Zappone | Energy efficiency in wireless networks via fractional programming theory[END_REF]. Nevertheless, the SE-EE Pareto front is formulated without using any numerical methods. The SE-EE Pareto front is constituted by a subset of points of the SE-EE trade-off curve, i.e., ξ (w) ∈ ξ (o) , ξ (max) ⊆ ξ (min) , ξ (max) .

VI. CONCLUSION

In this letter, we have proved that the SE-EE Pareto front is constituted by a subset of points of the SE-EE trade-off curve, and that the functional dependency between the Pareto-optimal values of P tx and λ BS is not the same as if the coverage is optimized. Also, the Pareto-optimal solutions either are given in closed-form or are the solution of a simple equation.
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 1 Fig. 1. SE-EE Pareto front: Monte Carlo simulations vs. theory. β = 3.5, P c = 20 dBm, P i = 10 dBm, κ and N 0 are set as in [8]. If ξ = P tx , we set λ BS = π500 2 -1 BSs/m 2 , P (min) tx = 0 dBm, P (max) tx = 43 dBm. If ξ = λ BS , we set P tx = 25 dBm, λ(min) BS = π500 2 -1 BSs/m 2 , λ (max) BS = π5 2 -1 BSs/m 2 .The curve "SE-EE tradeoff" follows from (1), (2) for P tx ∈ P (min) tx , P (max) tx in Fig. 1(a) and λ BS ∈ λ (min) BS , λ (max) BS in Fig. 1(b). The curve "Pareto front (theory)" is computed from Theorems 1, 2. The markers "Pareto front (Monte Carlo)" are obtained by solving P T in (6) via exhaustive search. The other markers show the left and right extreme values of the Pareto front (Remark 6) and the "ideal point" (SE m , EE o ) [2]. Fig. 1 confirms the findings of Theorems 1, 2:The SE-EE Pareto front is constituted by a subset of points of the SE-EE trade-off curve, i.e., ξ (w) ∈ ξ (o) , ξ (max) ⊆ ξ (min) , ξ(max) .

TABLE I

 I 

	NOTATION (α = 3.5, δ = 2/β, β > 2, η = κσ 2 N γ A , ḟ : 1ST DERIVATIVE).
	Symbol/Function	Definition
	λ BS , λ MT	Density of BSs, density of MTs
	Ptx, B W N 0 , σ 2 N = B W N 0 Pc, P i (Pc ≥ P i )	Transmit power, transmission bandwidth Noise power spectral density, noise variance Circuits and idle power consumption of BSs
	κ, β	Path-loss constant and slope
	γ D , γ A	Threshold for decoding and cell association
	2	

TABLE II MAIN

 II PROPERTIES OF SE & EE (ξ = Ptx OR ξ = λ BS , ξ (min) & ξ (max) ARE THE MINIMUM & MAXIMUM VALUES OF ξ, Ω = ξ

  , and SE lies in the range SE ∈ SE ξ(o) , SE m .

	Proof : It follows by inserting P	(w)