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 15 

Abstract 16 

Gram-negative bacteria have evolved a complex envelope to adapt and survive in a broad range 17 

of ecological niches. This physical barrier is the first line of defense against noxious compounds 18 

and viral particles called bacteriophages. Colicins are a family of bactericidal proteins produced 19 

by and toxic to Escherichia coli and closely related bacteria. Filamentous phages have a 20 

complex structure, composed of at least five capsid proteins assembled in a long thread-shaped 21 

particle that protect the viral DNA.  Despite their difference in size and complexity, group A 22 

colicins and filamentous phages both parasitize multiprotein complexes of their sensitive host 23 

for entry. They first bind to a receptor located at the surface of the target bacteria before 24 

specifically recruiting components of the Tol system to cross the outer membrane and find their 25 



way through the periplasm. The Tol system is thought to use the proton-motive force of the 26 

inner membrane to maintain outer membrane integrity during the life cycle of the cell. This 27 

review will describe the sequential docking mechanisms of group A colicins and filamentous 28 

phages during their uptake by their bacterial host, with a specific focus on the translocation 29 

step, promoted by interactions with the Tol system. 30 

 31 

 32 

Introduction 33 

 The cell envelope of Gram-negative bacteria, such as Escherichia coli, is characterized 34 

by the presence of two membranes, the inner (IM) and outer (OM) membranes, separated by 35 

the periplasm and a thin layer of peptidoglycan (PG). This envelope is a formidable barrier 36 

against a myriad of harmful compounds, while simultaneously allowing the entry of nutrients 37 

necessary for cell survival. However, this barrier, like the "Maginot Line" in France during the 38 

Second World War, is not completely impenetrable and exogenous particles, including some 39 

toxins and viruses, can pierce it. 40 

 Colicins are plasmid-encoded toxins (40 to 80 kDa), produced by E. coli under 41 

conditions of stress, that allow the efficient killing of related bacteria competing for space and 42 

resources. The toxicity of colicins relies on various modes of action, including IM 43 

depolarization, the inhibition of PG synthesis, and the degradation of DNA or RNA of the target 44 

cell. Colicins can be classified into two groups, A and B, depending on whether they use the 45 

Tol or Ton protein complexes to cross the OM and translocate through the periplasm of their 46 

host (for a review, see 1) 47 

 Filamentous bacteriophages or Inoviridae are elongated viruses (~7 by ~800-2000 nm) 48 

that must pierce the whole envelope to deliver their nucleic acid into the cytoplasm of the target 49 

cell to complete their life cycle. The virion particle consists of an assembly of the major coat 50 



protein pVIII, capped with the adsorption protein pIII and minor coat proteins (pVI, pVII and 51 

pIX), encapsulating the circular single-stranded viral DNA. Among inoviruses, Ff coliphages 52 

have garnered particular scientific attention because of their extensive application in genetic 53 

engineering and phage display technology (reviewed in 2), along with the vibriophage CTX, 54 

which converts Vibrio cholerae to pathogenicity (3).  55 

 While colicins and phages are very different particles, their mode of uptake across the 56 

bacterial envelope shares both structural and functional similarities. They both use a multistep 57 

process that relies on the parasitism of structures produced by sensitive bacteria. Group A 58 

colicins and filamentous phages are first specifically recruited via an interaction with a bacterial 59 

surface receptor (reception step), followed by crossing of the OM and transport through the 60 

periplasm (translocation step). This step requires interactions with one or several proteins of 61 

the Tol system, a conserved macromolecular motor of the cell (4). This review describes the 62 

similarities and differences observed between the group A colicin and filamentous phage 63 

models of adsorption and translocation into their host and the role of cellular energy in these 64 

processes.  65 

 66 

Colicins and the Filamentous Phage Adsorption Protein pIII Show Similar Structural 67 

Organization. 68 

 As for many toxins, colicins are organized into three structural domains that perform 69 

specific functions (Fig. 1A); the central domain (receptor domain, R) binds a specific bacterial 70 

OM protein, the N-terminal domain (translocation, T domain) is required for colicin 71 

translocation across the OM and interacts with the Tol system, and the C-terminal domain 72 

encodes the toxic activity (5-10). The crystallographic structures of some colicins have 73 

highlighted two important features: long antiparallel coiled-coil a-helices within the R-domain 74 

that separate this domain from the T and C-domains and a disordered region within the T 75 



domain (11-14). Importantly, nuclease colicins are produced in a complex with an immunity 76 

protein, preventing their lethal action in the producing cell (Fig. 1B).  77 

Filamentous phage infection is driven by three to five copies of the minor coat protein 78 

pIII (also called G3P), located at the tip of the particle (2, 15). As for colicins, phage pIII protein 79 

is organized into three functional domains, separated by two flexible regions (16, 17) (Fig. 1A). 80 

The central (N2) domain is responsible for adsorption to a pilus, whereas the N-terminal (N1) 81 

domain interacts with the Tol system. The pIII C-terminal domain anchors pIII to the phage 82 

particle and is required for DNA injection into the host. The structure of pIII-N1 and pIII-N1-83 

N2 has been solved for the Ff and CTX phages by crystallography and NMR studies (Fig. 1B) 84 

(16, 18-22) 85 

 86 

Binding to the Primary Receptor and Crossing of the OM. 87 

 The initial cellular reception of most group A colicins requires a high affinity OM 88 

protein receptor, such as BtuB for colicins A and E1 to E9 (Table1) (23-25). The structure of 89 

the colicin E3 and E2 R domain (135 residues) bound to BtuB has been solved (26, 27). In the 90 

current model of colicin uptake, the elongated helical coiled-coil R-domain binds BtuB with 91 

the T and C domains extending at a 45° angle out over the OM.  Then, the intrinsically 92 

disordered region of the T-domain, adjacent to the OM, searches for a more abundant second 93 

receptor (called “the translocator”), in this case OmpF, and crosses the OM through one of the 94 

OmpF pores, which are wide enough to accommodate unfolded peptides. This model is based 95 

on numerous experiments, such as occlusion of the OmpF channel in planar lipid bilayers by 96 

colicin T domains and isolation of an intact complex of colicin with BtuB and OmpF, confirmed 97 

by crystallization of colicin T-domain peptides within the OmpF pore (28-32). The resulting 98 

Colicin-BtuB-OmpF complex is called the “colicin OM translocon” (Fig. 2A).   99 



Filamentous phages have been reported to use host-specific Type IV pili or fimbriae 100 

that extend from the cell surface as extracellular receptors (Table1). Adsorption of the phage 101 

to the pilus is dependent on pIII-N2, the central domain of the capsid protein pIII (17, 33). For 102 

Ff phages, N2 binding to the E. coli F pilus leads to conformational changes in pIII that unmask 103 

the TolA binding site on N1, allowing phage infection to proceed (34) (Fig. 2B). How these 104 

phages cross the OM to reach the periplasmic space is unknown, but they may follow pilus 105 

retraction through the pilus secretin that spans the OM (35-37). Interestingly, the reception step 106 

is not strictly required for phage infection, as phages can bypass the pilus to infect cells at low 107 

frequencies (17, 38, 39). In the absence of the F pilus receptor, the addition of CaCl2 to the 108 

medium has been reported to enhance phage infection, possibly by neutralizing negative 109 

charges at the cell surface (38). 110 

After the binding step, which allows specific targeting of the bacterial host, both group 111 

A colicins and filamentous phages parasitize a trans-envelope protein complex, the Tol system, 112 

to cross the periplasm. The Tol-system components required for this step can vary depending 113 

on the group A colicin or phage involved (Table1). 114 

 115 

The Tol Macrocomplex: A Conserved Molecular Motor of the Bacterial Envelope 116 

 The Tol system is highly conserved among Gram-negative bacteria (40). It consists of 117 

five proteins, TolQ, TolR, TolA, TolB, and Pal, which form a complex in the cell envelope. 118 

TolQRA are IM proteins that interact via their trans-membrane (TM) segments to form an IM 119 

complex (41-44). TolQ is a polytopic protein with three TM segments, whereas TolA and TolR 120 

are bitopic proteins with a large periplasmic domain (43, 45-48). TolB is a periplasmic protein 121 

composed of two subdomains, called D1 and D2, in which D2 forms a six-bladed ß-propeller 122 

(49, 50). Finally, Pal is a lipoprotein tethered to the OM via its N-terminal acylated residue, and 123 

its C-terminal domain is free to interact with the peptidoglycan (PG) layer and TolB (51-55). 124 



Thus, TolB-Pal forms the OM complex of the Tol system and TolB competes with the PG to 125 

bind Pal (56). The two Tol subcomplexes are transiently connected via the C-terminal domain 126 

of TolA (called TolAIII), which interacts with both TolB-D1 and Pal (57-60). The TolQ-TolR 127 

complex uses the proton motive force (PMF) to induce conformational changes in the 128 

periplasmic domain of TolA, promoting the TolA-Pal interaction (4, 41, 61). Thus, the Tol 129 

system works as a molecular motor, using the PMF to form a link between PG and the inner 130 

and outer membranes. 131 

 The Tol system has been reported to be essential in many bacterial species, whereas it 132 

is dispensable in the E. coli K12 strain (62-66). In E. coli, deletion of any of the tol genes causes 133 

a pleiotropic phenotype. Indeed, tol mutants are highly sensitive to detergents and some 134 

antibiotics, they release periplasmic proteins into the extracellular medium and they form 135 

numerous OM vesicles (67-71). These phenotypes all suggest a potential role of the Tol system 136 

in the maintenance of OM integrity. This role can be partially explained by the involvement of 137 

the Tol complex in OM lipid homeostasis (72, 73).  Finally, the Tol system has been described 138 

to be involved in the late stage of the cell-division process, more precisely in OM invagination 139 

during cell division (62, 74). 140 

 141 

The Tol System Serves as a Versatile Import Machinery for Parasites and Toxins. 142 

 Various tol mutants have been reported to show resistance both to group A colicins and 143 

filamentous phages. Indeed, direct or indirect interactions of these particles with components 144 

of the Tol complex have been described. When they reach the periplasmic space, most group 145 

A colicins first recruit the ß-propeller domain of TolB through their N-terminal T domain (50, 146 

58, 75-77). Conversely, TolB is not required for phage uptake (39, 78). The affinity of ColE9 147 

to TolB has been shown to be strong enough to competitively displace TolB from Pal (77, 79). 148 

Structural data has shown that, in the presence of Pal, the N-terminal 12 residues of TolB, 149 



encompassing the TolA binding domain, are ordered and sequestered to the TolB surface, 150 

whereas these residues are disordered and accessible to TolA binding in the presence of the 151 

ColE9 T-domain (79, 80). Thus, in the presence of ColE9, TolB binds to TolAIII and the toxin 152 

can continue its translocation. Although this model can be applied to the other nuclease colicins, 153 

some results suggest that the mechanism for the recruitment of TolB by the pore-forming 154 

colicin A may be different. As ColA is unable to competitively displace TolB in the TolB-Pal 155 

complex, the model suggests that the toxin binds to free periplasmic TolB and then to TolAIII, 156 

for which it has a higher affinity (81) (Fig. 2A).  157 

All group A colicins and filamentous bacteriophages studied to date require TolA for 158 

their transit into the periplasm (Table 1). Direct interaction between the TolAIII domain and 159 

the colicin A, E1, N, and K T-domain has been shown by numerous in vivo and in vitro 160 

experiments (82-85). Similarly, the pIII protein at the tip of the phage particle is responsible for 161 

TolA binding (19, 22, 86, 87). The phage pIII-N1 and pIII-N2 domains have been reported to 162 

bind E. coli TolAIII and TolAII domains, respectively (88). No direct interaction has yet been 163 

observed between TolA and enzymatic colicins, even though tolA mutants are tolerant to these 164 

toxins.  165 

Several studies indicate that TolA has diverse binding sites, which enable multiple 166 

interactions with other partners. First, point mutations or deletions in tolA differentially affect 167 

colicin import; some remain active, whereas others lose their ability to kill mutated strains (59, 168 

89). Second, structural data have shown that the colicin A T-domain interacts with the convex 169 

site of TolAIII, whereas the phage Ff and IF1 pIII-N1 domain and colicin N T-domain bind to 170 

the concave side of TolAIII (18, 21, 90-93) (Fig. 1B). In contrast to coliphage Ff, the 171 

vibriophage CTX pIII-N1 domain binds to the convex site of V. cholerae TolAIII (22).  172 

 The role of the TolQ and TolR proteins in both phage and colicin uptake is less clear.  173 

Although TolQ and TolR are necessary but not essential for phage infection (39, 94), both are 174 



absolutely required for the translocation of group A colicins (excepted ColE1). However, only 175 

a few studies have reported a direct interaction between colicins and either TolQ or TolR. The 176 

ColA and ColE3 T-domain has been shown to interact with TolR by cross-linking experiments 177 

(95) and the interaction between the ColK T-domain with TolQ or TolR has been revealed by 178 

coimmunoprecipitation (85).  The final steps concerning the toxic effect of colicins and phage 179 

DNA injection are not discussed here but are briefly summarized in Figure 2. 180 

 181 

Importance of Protein Structural Flexibility in Uptake Pathways. 182 

 An interesting aspect of the current models of colicin uptake is that their T-domains are 183 

disordered and that they fold into an ordered structure upon binding to a Tol protein. This 184 

disorder-to-order transition could explain the ability of colicins to bind several target partners 185 

and progress through the periplasm.  186 

 Another important aspect in both colicin and phage translocation is the large-scale 187 

structural modification of the molecules during the process. First, studies have shown that 188 

colicins A and E2 remain bound to their receptor and the Tol machinery, whereas their C and 189 

T domains are translocated (96, 97).  Second, in vivo and in vitro experiments have shown that 190 

colicin A unfolds during its import into the cells (98, 99). This unfolding is triggered either by 191 

binding to the first ColE1 receptor, which is then propagated to the distal ends of the T and C 192 

domains of the toxin (26, 100), or it occurs after recruitment of the second receptor and 193 

formation of the “colicin OM translocon” for ColE9 (101).  Similarly, the extensive structural 194 

modifications of coliphage pIII protein during initial binding to the F-pilus, followed by 195 

interaction with TolA in the periplasm, have been proposed to lead to the insertion of pIII-C 196 

into the IM of the host and the formation of a multimeric channel that allows phage DNA 197 

injection into the bacterial cytoplasm, concomitant with disassembly of the capsid by diffusion 198 

of the major coat protein pVIII in the membrane (102, 103). 199 



 200 

Energetics of Colicin and Filamentous Phage Uptake.  201 

 Despite the large number of publications on colicin and phage import, only a few studies 202 

have focused on the energetic aspect of this process.  As discussed above, the Tol system use 203 

the IM PMF, by means of the TolQR motor, to power mechanisms involved in the maintenance 204 

of OM integrity and cell constriction. However, initial studies suggested that the Tol-dependent 205 

import of two pore-forming colicins, ColA and ColE1, is energy-independent (104, 105). These 206 

results were later confirmed by point-mutations introduced into the TolQR motor that affect the 207 

physiological function of the Tol system without preventing the killing action of pore-forming 208 

colicins. These mutations were called “discriminative mutations” (106, 107). Energy 209 

requirements for the import of nuclease colicins appear to be different. It is clear that release of 210 

the immunity protein from nuclease colicins in the external medium requires functional import 211 

machinery (108, 109). Intriguingly, the release of the ColE9 immunity protein was shown to be 212 

energy dependent (109), whereas strains harboring discriminative TolQR mutations remain 213 

susceptible to ColE2 (107). Based on these divergent results, the question of the energy 214 

requirement for the translocation of group A colicins is still open. For coliphages, experiments 215 

using arsenate or protonophores has led to the hypothesis that phage uptake may be dependent 216 

on both ATP and PMF, possibly for pilus retraction and phage particle transit through the 217 

periplasm, respectively (110, 111). 218 

 219 

 In summary, it is fascinating to observe that small toxins, such as colicins, and complex 220 

viral structures, such as filamentous phages, are shaped so as to use similar molecular 221 

mechanisms to pierce the envelope of their target cell. These include a sequential docking 222 

mechanism, the strict requirement for the hub protein TolA, and large-scale structural 223 

modifications of the proteins during their transit. Although some key steps in these processes 224 



have been well characterized, numerous questions are still unanswered concerning the 225 

dynamics, sequence of events, and role of host-cell energy in the uptake of these 226 

nanostructures.  227 
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Table1. Host proteins required for reception and translocation of filamentous phages and group A colicins. 713 

___________________________________________________________________________ 714 

Name Receptor Translocator Uptake Proteins Cytotoxicity/Host Ref. 715 

__________________________________________________________________________________________ 716 

 717 

Group A colicins 718 

 719 

ColA BtuB OmpF  TolA, B, Q, R Pore-forming 720 

ColE2, E7, E8, E9 BtuB OmpF TolA, B, Q, R Dnase  721 

ColE3, E4, E6 BtuB OmpF TolA, B, Q, R rRNase 722 

ColE1 BtuB TolC TolA, Q Pore-forming 723 

ColN LPS OmpF TolA, Q, R Pore-forming  (112) 724 

ColE5 BtuB OmpF TolA, B, Q, R tRNase 725 

ColK Tsx OmpF/OmpA  TolA, B, Q, R Pore-forming  (113) 726 

ColU OmpA OmpF  TolA, B, Q, R Pore-forming  (114) 727 

 728 

Filamentous phages 729 

Ff (Fd, f1, M13) F-pilus  TolA, Q, R E. coli 730 

IKE N-pilus  TolA, Q, R E. coli   (115) 731 

IF1  I-pilus  n.d. E. coli 732 

CTX TCP pilus  TolA, Q, R V. cholerae 733 

VGJ MshA pilus  n.d.  V. cholerae  (116) 734 

Pf1  type IV PAK pilus n.d. P. aeruginosa  (117) 735 

Pf3  RP4 pilus  n.d. P. aeruginosa  (117) 736 

__________________________________________________________________________________________ 737 

Only references that do not appear in the text are cited in this table. n.d.: not determined.  738 

  739 

 



Figure legends 740 

Figure 1. Colicin and phage minor coat protein organization and crystal structures. (A) 741 

Schematic representation highlighting the similar general organization of colicin and phage pIII 742 

proteins for Translocation (T or N1 domains), Reception (R or N2 domains), and Activity or 743 

Anchoring (A or C domain), respectively. (B) Structures of: full length colicin E3 (top left, 744 

PDB: 1JCH) bound to its immunity protein (in green); full length colicin N (top right, PDB: 745 

1A87); M13 phage protein pIII N1-N2 domains (bottom left, PDB: 1G3P); and superposition 746 

(bottom right) of E. coli TolAIII domain (grey) interacting with the colicin A T-domain on its 747 

convex side (co-crystal PDB: 3QDR) and E. coli TolAIII domain (grey) interacting with G3P-748 

N1 on its concave side (co-crystal PDB: 1TOL). The color code used for each protein domain 749 

is the same for panels A and B.  750 

 751 

 752 

Figure 2.  Models of group A colicin (A) and Tol-dependent filamentous phage import (B) 753 

into sensitive E. coli cells. (A) In stage 1, colicin binds to the OM receptor by its central domain 754 

(26, 27). In stage 2(a), the disordered N-terminal segment of the T-domain translocates through 755 

the OM ß-barrel and interacts with a free periplasmic TolB or dissociates TolB from Pal (28-756 

31, 77, 79, 81). In stage 2(b), the N-terminal segment interacts with other Tol proteins (82-85, 757 

95). At this stage, the immunity protein of nuclease colicins is released (108, 109). Then, the 758 

unfolded C-terminal domain is thought to cross the OM through the interface between OmpF 759 

and the lipid bilayers (118) or directly through the OmpF porin (28). In stage 3, for pore-forming 760 

colicins (i) the C-terminal domain inserts spontaneously into the IM and form voltage-gated 761 

channels that depolarize and kill the target bacteria (for a review see, 119). For nuclease colicins 762 

(ii), the C-terminal domain is cleaved by FtsH (120, 121), an essential ATP-dependent IM 763 

protease, and spontaneously crosses the IM (122) or uses FtsH for its transfer (121). (B) In stage 764 



1, the phage minor coat protein pIII-N2 domain binds to the tip of a F-pilus protruding from the 765 

cell surface (33). In stage 2, pilus retraction pulls the phage into the cell periplasm, possibly 766 

through the pilus secretin pore. Once there, the phage pIII-N1 domain interacts with the 767 

globular domain of TolA (TolAIII) (86, 87). In E. coli, a direct interaction between TolAII and 768 

phage pIII-N2 has been reported (dash arrow) (88). The PMF-dependent TolQR motor may 769 

trigger conformational changes of TolA that brings the phage particle in close contact with the 770 

IM. The phage uncapping process during the uptake stage (3) is speculative. In the model, pIII 771 

oligomerizes to form a channel in the IM of the host through its C-ter domain (pIII-C). Then, 772 

diffusion of the phage pVIII major coat protein in the IM leads to disassembly of the capsid, 773 

releasing the internal pressure of the structure. This force is thought to drive phage DNA 774 

injection through the IM pIII-C channel (102, 103).  775 

OM, outer membrane; IM, inner membrane; PG, peptidoglycan; peri, periplasm; cyto, 776 

cytoplasm; rec, receptor; trans, translocator. The phage is composed of three to five copies of 777 

pIII, but only one copy has been represented, and other minor virion coat proteins have been 778 

omitted for simplicity. 779 
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