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Abstract. While the pursuit of better time resolution in positron emission
tomography (PET) is rapidly evolving, little work has been performed on time of
flight (TOF) image quality at high time resolution in the presence of modelling
inconsistencies. This works focuses on the effect of using the wrong attenuation map
in the system model, causing perturbations in the reconstructed radioactivity image.
Previous work has usually considered the effects to be local to the area where there is
attenuation mismatch, and has shown that the quantification errors in this area tend
to reduce with improved time resolution. This publication shows however that errors
in the PET image at a distance from the mismatch increase with time resolution. The
errors depend on the reconstruction algorithm used. We quantify the errors in the
hypothetical case of perfect time resolution for maximum likelihood reconstructions.
In addition, we perform reconstructions on simulated and patient data. In particular,
for respiratory-gated reconstructions from a wrong attenuation map, increased errors
are observed with improved time resolutions in areas close to the lungs (e.g., from
13.3% in non-TOF to up to 20.9% at 200 ps in the left ventricle).

1. Introduction

The emergence of the first time of flight (TOF) positron emission tomography (PET)
scanners brought a whole new dimension to nuclear imaging, by incorporating within the
PET image reconstruction the time information from a coincidence pair to estimate more
accurately the localisation of the originating annihilation event. The reconstruction
problem is better determined and therefore less ill-posed, accomplishing an overall
better image quality and better quantification (Conti 2011). Vendors and research
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teams are now improving the physical characteristics of their scanners in order to get
better time resolution (Lecoq 2017, Cates & Levin 2018). Current PET scanners with
TOF capabilities used in clinical settings have TOF resolution between 210 ps (van Sluis
et al. 2019, Pan et al. 2019) and ≈ 550 ps (Bettinardi et al. 2011, Rausch et al. 2015),
but sub-100 ps time resolutions are expected in the future. A current initiative is hoping
to achieve 10 ps resolution (Lecoq 2017, The 10 ps Challenge committee 2019), which
would possibly allow “reconstruction-less” PET images, as the detected events could be
placed directly in the images. However, effects such as photon attenuation and scatter
will still have to be taken into account.

Attenuation is defined as the loss of coincidences resulting from the photon
interactions occurring within the body of the patient. Whereas photon attenuation
is the foundation of X-ray imaging, it represents a major issue in PET where the
fraction of photons attenuated in a tissue is proportional to the tissue density and
the distance travelled through medium. For large patients, the fraction can be up to
95% and needs to be accounted for (Mettler Jr. & Guiberteau 2018). In practice,
this requires an attenuation map (also referred as µ map). All current scanners are
in fact dual modality: they are either combined with a CT gantry (PET/CT) or with
a MRI gantry (PET/MR). In this case, the PET attenuation maps are in most cases
derived from the coupled modality. A CT acquisition can usually provide quite accurate
information to derive the attenuation factors used in the PET image reconstruction,
usually via rescaling the CT attenuation values to PET 511 keV photon energy (Kinahan
et al. 1998, Alessio et al. 2004) (although problems exist, e.g., metal artefacts, see
Blodgett et al. (2011)). MR-derived attenuation maps are usually less robust (Lillington
et al. 2019).

Another common cause of mismatch between the estimated and actual attenuation
map is motion (Bousse et al. 2016). Mismatched data are common, especially in case
of respiratory motion: errors can be large when no motion correction/gating is used,
although intra-gate motion is unavoidable.

The use of “mismatched” attenuation maps in the PET reconstruction can induce
large quantification errors in the reconstructed images, as discussed theoretically in Bai
et al. (2003), Thielemans et al. (2008), Ahn et al. (2014) and clinically in Geramifar
et al. (2013), Nyflot et al. (2015) and Mehranian & Zaidi (2015).

In the lungs, the attenuation mismatch is not solely due to the “displacement”
caused by the compression and dilation, but also to the change of density while doing so.
Cuplov et al. (2018) has shown that up to 17.1% of mass density changes can be observed
during respiration. The effect of motion mismatch in the lungs was assessed in Holman
et al. (2016) specifically for non-TOF reconstructions and demonstrated the importance
of the density changes for quantification, additionally to the effect of mis-alignment
due to motion displacement. Strategies to mitigate this exist (outside of correcting
for motion), such as the use of average CT images for attenuation correction (Pan
et al. 2005).

In non-TOF reconstruction (i.e., when the time information is not used), when
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far away from the edges, for an “emission object” that is large enough (for example, in
the chest), the effect is mostly local and depends on the size of the perturbation area,
as well as the amount of activity in the surrounding areas. This was used to derive
approximations to quantify the error in the reconstructed PET image in the area where
the mismatch occurs (Thielemans et al. 2008, Bousse et al. 2017). In Ahn et al. (2014),
the effect of mismatched attenuation maps in TOF reconstruction was also considered
as local, which allowed the authors to obtain an approximation of the quantification
errors. Under that assumption, if the object size is considered negligible compared to
the time resolution, an estimation close to the one found in Thielemans et al. (2008)
can be found, now depending on the time resolution instead of the size of the emission
object. In both cases, only the local effect of a perturbation in the attenuation map on
the emission image was considered in the analysis.

This work aims to demonstrate the non-local effect of attenuation mismatches
in the reconstructed PET images for high time resolution scanners, with a focus
on Maximum Likelihood Expectation Maximisation (MLEM) and Ordered Subset
Expectation Maximisation (OSEM) reconstructions. Particular attention will be given
to non-local errors in quantification, i.e., in regions where there is no attenuation
mismatch.

The paper will first briefly introduce mathematically the reconstruction problem in
PET, including a demonstration of the non-local effect and its quantification error for
perfect time resolution. Then, it will show the spatial extent of a localised attenuation
mismatch in the reconstructed images for different time resolutions. Finally simulations
and the reconstruction of patient data will demonstrate the quantification error that
can arise from the use of mismatched data. The convergence rates will also be assessed
in both cases.

2. Theory

2.1. PET Imaging System

The measured data take the form of a random vector g ∈ Nnb , where [g]i is the number
of counts at bin i ∈ J1, nbK and nb is the number of detection bins. nb depends on the
PET system, i.e., nb = nd for non-TOF PET and nb = ndnt for TOF PET, nd and nt

denoting the number of detection bins for non-TOF reconstruction and the number of
temporal bins, respectively. The imaging system is usually modelled as

p = Mλ+ n (1)

where p = E[g], λ ∈ Rnv
+ is the unknown emission image, M ∈ Rnb×nb is the imaging

system matrix, n is the background term (comprising randoms and scatter), and nv is
the number of voxels.

Each entry [M ]i,j = Mi,j represents the probability that a pair of unscattered
photons emitted in a voxel j is detected at the detection bin i, and incorporates
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the attenuation. In principle, detector blurring should be modelled after attenuation;
however, for simplicity, we will consider the factorisation of M as (Leahy & Qi 2000)

M = a(µ)H , (2)

where a(µ) is a nb×nb diagonal matrix containing the attenuation factors corresponding
to µ and H is a system matrix that incorporates a geometrical mapping between the
source and the data—each entry [H ]i,j = Hi,j represents the probability that an emission
from voxel j is detected by the detection bin i in the absence of attenuation.

The background term n includes scatter, which in practice can be estimated from
the attenuation map (Watson et al. 1996, Ollinger 1996). In the remainder of this
section, we will assume that n = 0, so that (1) becomes

p = a(µ)Hλ . (3)

This can be achieved, for example, by subtracting n from p and zeroing the negative
values.

2.2. Spatial Extent of Activity Errors due to Local Attenuation Mismatch

We assume the true activity and attenuation images are respectively λ? ∈ Rnv
+ and

µ? ∈ Rnv
+ . Furthermore, we assume that H is full rank with nb ≥ nv such that the

mapping H : x 7→Hx is injective. The transmission system matrix—used to generate
the attenuation coefficients—is the discretised line integral operator R ∈ Rnd×nv .

The attenuation coefficient diagonal matrix a(µ) is of size ndnt × ndnt (in non-
TOF PET, nt = 1) and for each bin detector pair d ∈ J1, ndK and time bin t ∈ J1, ntK,
the diagonal element at the detection bin [id = AB]i = (d− 1)× nt + ti = (t− 1)nt + d

is
[a(µ)]i,i = exp(−[Rµ]d) ,

that is to say, in TOF PET, the attenuation coefficients are independent of the time
bin.

Let p? be an idealised noiseless measurement of the true activity λ? with attenuation
µ? ∈ Rnv , i.e.,

p? = a(µ?)Hλ? . (4)

In absence of noise, the PET image reconstruction problem becomes

find λ such that p? = a(µ?)Hλ (5)

and has a unique solution λ = λ?.
Now assume that the attenuation map µ̃ used for reconstruction is a perturbed

version of µ?, i.e., µ̃ = µ? + η where η is a small perturbation supported on a small
region far from the edges. The reconstruction problem (5) is equivalent to solving

a(µ̃)Hλ = a(µ?)Hλ?
⇔ Hλ = a(−η)Hλ?
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Non-TOF PET : Along the lines of Thielemans et al. (2008) and Bousse et al. (2017),
using a Taylor expansion around Rµ?, the problem is approximated in non-TOF PET
as:

H(λ− λ?) ≈ diag[Rη]Hλ? (6)

where diag[·] is the operator that generates a diagonal matrix from a vector. In non-
TOF, the PET system matrix H and transmission matrix R are equal. Furthermore,
Rη is sparse and its non-zero entries correspond to the lines of responses i intersecting
the support of η. Assuming that Hλ? is approximately constant where Rη is non-
zero (this is the case, for example, when the perturbation is located far from the body
contour), we can further approximate (6) as

R(λ− λ?) ≈ ρRη (7)

where ρ is the mean projected activity along the lines of response intersecting the support
of η. Approximation (7) shows that when µ and µ? differ from a local perturbation
η, then, by injectivity of R, the solution to the approximated reconstruction problem
is λ̂ = λ? + ρη, which suggests that the error in the reconstructed activity remains
localised on the mismatch.

TOF PET :
Equation (6) can be extended to TOF PET, i.e., for all line of response i intersecting

the support of η and for all time bin t,

[H(λ− λ?)]i ≈ [Rη]d[Hλ?]i . (8)

Approximation (8) implies that for all lines of response i intersecting the mismatch area,
the error between the reconstructed activity λ̂ and λ? propagates to each time bin t by
a factor proportional to [Rη]d, which means the error can no longer be considered local.

The previous equation (8) implies that in most cases the system to solve is made of
inconsistent equations. For this reason, the solution depends on the cost function used
for solving such reconstruction problem.

2.3. Maximum-Likelihood Expectation Maximisation in Perfect Time Resolution

In this section we deepen the analysis from Section 2.2 by investigating the effect of the
attenuation mismatch from the perspective of MLEM reconstruction. We will consider
the highly idealised case of perfect spatial resolution here.

We denote for (i, j) ∈ J1, nbK× J1, nvK (here i is a TOF bin and nb = ndnt):

• λ̂ =
[
λ̂j
]

the activity image reconstructed with the true attenuation map µ?, i.e.,
using M ? =

[
M?

i,j

]
= a(µ?)H .

• λ̃ =
[
λ̃j
]

the activity image reconstructed with a wrong attenuation map µ̃, where
M̃ =

[
M̃i,j

]
= a(µ̃)H .
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We also define the sets
Sj = { i ∈ J1, nbK |Hi,j 6= 0 } .

In a hypothetical case of an activity image reconstructed with perfect time resolution
as well as perfect spatial resolution, the Sj are disjoint, so that

∀i ∈ J1, nbK, ∃!j ∈ J1, nvK, i ∈ Sj. (9)

In other words, [M ]i,j is non-zero if and only if i ∈ Sj. Given a system matrix M ,
which can either be M ? or M̃ , and the measurement data p = {pi}i∈J1,nbK, the MLEM
algorithm (k + 1)-th iteration at a voxel j is

λ
(k+1)
j =

λ
(k)
j

Mj

nb∑
i=1

Mi,j
pi∑nv

l=1 Mi,lλ
(k)
l

(10)

where Mj = ∑nb
i=1 Mi,j and λ

(k)
j is the value of the activity image at a voxel j and

iteration k (Dempster et al. 1977, Shepp & Vardi 1982, Lange & Carson 1984).
In TOF PET, assuming the temporal resolution is perfect, condition (9) holds and

therefore ∑nv
l=1 Mi,lλ

(k)
l = Mi,jλ

(k)
j . Equation (10) simplifies to

λ
(k+1)
j =

λ
(k)
j

Mj

∑
i∈Sj

Mi,j
pi

Mi,jλ
(k)
j

=
∑
i∈Sj

pi∑
i∈Sj

Mi,j

(11)

and convergence is achieved after one iteration. Substituting M with M ? and M̃
successively in (11) leads to

λ̃j

λ̂j
=
∑
i∈Sj

M?
i,j∑

i∈Sj
M̃i,j

=
∑
iM

?
i,j∑

i M̃i,j

(12)

where the second equation follows from the fact that the Sj are disjoint. Therefore, the
ratio between the “wrong” and “true” reconstructed images is equal to the ratio of the
“true” and “wrong” sensitivity images. The quantification of the non-local effect due
to a local error in the attenuation map, from Equation (8) can therefore be quantified
easily for MLEM/OSEM in the case of perfect time resolution by the relative error

λ̃j − λ̂j
λ̂j

=
∑
iM

?
i,j∑

i M̃i,j

− 1 (13)

The maximum-likelihood (ML) solution being unique in this case, Equation (12) and
(13) are valid for other ML algorithms. It is worth noticing that for small attenuation
mismatches and using the same first-order Taylor expansion around µ?, (13) resembles
an image space version of (8). Similar results for other reconstruction algorithms are
shown in the Appendix.

3. Experiments and Results

In this section we will study the quantification errors in TOF reconstruction due to
attenuation mismatch for MLEM/OSEM.



7

(a) True λ? (b) True µ? (c) Incorrect µ̃

0

1,500

Bq/mL 0

0.12

cm−1

Figure 1: Simulation 1 – Axial and coronal views of the input images used: (a) true
activity, (b) true attenuation and (c) incorrect attenuation.

3.1. Summary of Simulated and Patient Data

We use four different datasets, either simulated for or acquired on a GE Discovery 690
PET/CT scanner (Bettinardi et al. 2011). The PET reconstructions use two different
attenuation maps: the true attenuation map µ? and a wrong attenuation map µ̃.

3.1.1. Simulations The simulated datasets are the following:

Simulation 1 : A 28.8-cm diameter uniform cylinder (linear attenuation: 0.0916 cm−1)
is placed at the centre of the FOV. The wrong attenuation map µ̃ is known accurately
in the reconstruction except for one small cylinder (diameter = 6 mm) at the centre of
the FOV, where the attenuation is overestimated by 15%. This simulation is aimed at
studying the impact of a very small attenuation mismatch on the reconstructed activity
image. The phantom volumes are shown in Figure 1.

Simulation 2 : An XCAT PET/CT simulation of an FDG oncological pulmonary
acquisition at end-inspiration (tumour of 1 cm3 situated in the lower right lung). Two
incorrect input µ̃ maps are assessed:

• Lung density changes only: The incorrect µ̃ map (denoted µ̃1) is aligned with
the structures in the PET data, however the density in the lung is not known
accurately (overestimation of 15%). Note that the lung tumour density does not
change, as the structure is considered rigid. Such simulation is relevant in motion-
compensated image reconstruction (MCIR) or gated reconstruction, when a static
µ map is warped to another respiratory gate (for which intra-motion is negligible),
but the changes in density are not considered.
• Lung density changes + misalignment: The incorrect µ̃ map (denoted µ̃2)

corresponds to the end-expiration state, therefore both structure alignment and
lung density are wrong. The input simulation images are given in Figure 2.
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(a) True λ? (b) True µ?

0

6,000

Bq/mL 0

0.12

cm−1

(c) µ̃1 (d) |µ̃1 − µ?|

0

0.12

cm−1
0

1.2·10−2

cm−1

(e) µ̃2 (f) |µ̃2 − µ?|

0

0.12

cm−1
0

1.2·10−2

cm−1

Figure 2: Simulation 2 – Axial and coronal views of the input images used: (a) true
activity λ?, (b) true attenuation µ?, (c) incorrect attenuation µ̃1, (d) absolute difference
between µ? and µ̃1 (e) incorrect attenuation µ̃2 and (f) absolute difference between µ?
and µ̃2.

Data Generation : The simulations were performed using STIR with TOF (Efthimiou
et al. 2018) in the following order:

(i) Forward projection of the true activity image λ? to obtain the non-attenuated
projection data.

(ii) Calculation of the attenuation coefficient sinogram a(µ?) from the true attenuation
map µ? and multiplication by the projection data.

(iii) Reconstruction of the attenuated projection data using either the true attenuation
map µ? or the incorrect attenuation map µ̃.

To assess the effect of varying time resolution in the TOF reconstruction, the
overall scanner geometry of the GE PET/CT Discovery 690 was used, but the TOF
characteristics were altered:

• The maximal number of TOF bins extended to 175 (of width equal 28 ps) instead
of the original 55 bins (of width ≈ 89 ps).
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TOF FWHM 70 100 150 200 250 300 350 400 450 500 550
MLEM iteration # 80 160 160 240 240 240 240 240 240 240 240

Table 1: Time resolution FWHM simulated and the corresponding number of MLEM
iterations used.

• The time resolution was modified to test a range of time resolutions, from 70 ps to
550 ps.

Image Reconstruction : For the simulations, the projection data were reconstructed
with MLEM (image size: 256 × 256 × 47, voxel size: 2.1306 × 2.1306 × 3.27 mm3,
no post-filter applied), using a sufficient number of iterations so that the mean
difference between the last two iterations was less than 0.1% overall, when the correct
attenuation map was used in the reconstruction. The numbers of iterations for the TOF
reconstructions, depending therefore on the time resolution, are given in Table 1. 1600
iterations were used in non-TOF reconstructions. For computational reasons, TOF
“mashing” was used in this work, therefore combining TOF bins together with only
small loss reported for quantification (Efthimiou et al. 2018).

3.1.2. Patient Data: A 76-year-old male patient (clinical trial ID: NCT02885961)
underwent a static FDG acquisition (injected activity: 170.8 MBq), on a GE Discovery
690 at the Institute of Nuclear Medicine, University College London Hospital (London,
UK). Two different CT acquisitions were available: one at end-expiration (CTAC
acquisition, multislice helical acquisition at shallow breathing, slice thickness: 3.75 mm,
pitch: 1.375, voltage: 120 kVp, current: 40 mA, revolution time: 0.8 s) and one at end-
inspiration (HRCT, multislice helical acquisition at breathhold, slice thickness: 1.25 mm,
pitch: 0.516, voltage: 120 kVp, current: 149 mA, revolution time: 0.6 s). In addition, the
listmode data were also (amplitude-) gated into 4 respiratory bins (no cardiac gating)
based on the respiratory trace from a Varian RPM system. The end-expiration gated
PET data were reconstructed using two µ maps µ? and µ̃, computed from the end-
expiration and the end-inspiration CT images, respectively. The alignment between the
end-expiration PET data and CT image was visually assessed using non-attenuation-
corrected (AC) TOF gated images. The patient data were reconstructed using GE
proprietary software in MATLAB (Matlab 2016b), with OSEM using 8 subsets with
200 iterations for non-TOF data and 100 iterations for TOF data. A 2D Gaussian
postfilter of FWHM 6 mm and a 1-4-1 weighted z-axis postfilter were applied to the
final images (image size: 256 × 256 × 83, voxel size: 2.7344 × 2.7344 × 3.27 mm3).

3.1.3. Measures: At a given time resolution, we denote λ̂ and λ̃ the reconstructed
images at the final reconstruction iteration, using the true attenuation map µ? and the
incorrect attenuation map µ̃, respectively. In the following, we will use the relative
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End-Expiration CT End-Inspiration CT

−1,350

150

HU
(a) (b) (c) (d)

Figure 3: Patient Data – (a) Coronal and (b) sagittal view of the end-expiration CT
image and (c) coronal and (d) sagittal view of the end-inspiration CT image, used to
derive the attenuation maps in this study.

errors in absolute value defined in a region of interest (ROI) R as

|RE|R =

∣∣∣∣mean
R

(λ̃)−mean
R

(λ̂)
∣∣∣∣

mean
R

(λ̂)

where mean
R

(·) designates the mean value in R.
We also define the relative difference image RDλ (in absolute values) such that

[RDλ]j∈J1,nvK =

∣∣∣λ̃j − λ̂j∣∣∣
λ̂j

3.2. Results

3.2.1. Simulation 1 We consider five rectangular ROIs (4× 4× 45 voxels, the first and
last slices are excluded). The first one is placed at the centre of the field of view (FOV),
therefore at the centre of the perturbation area. The four other ROIs are off-centre
(distance between the centre of the FOV and the ROIs: 12.8 mm, 21.3 mm, 29.8 mm
and 55.4 mm respectively). In order to minimise problems related to discretisation, off-
centre ROIs measures average values in reconstructed images rotated about the centre
of the cylinder (60 rotation angles considered).

We computed the relative error within the perturbation area and in the four off-
centre ROIs. The plots showing the relative errors with respect to the time resolution
are shown in Figure 4, where the relative error at perfect time resolution was predicted
by Equation (13).

The first subplot is consistent with previous results on TOF, where improved time
resolution decreases errors locally in the activity images. The second subplot confirms
that the errors propagate globally in the image, in agreement with Equation (8).

3.3. Simulation 2: Lung XCAT Simulation

3.3.1. Lung density changes only: In Figure 5, the relative errors are plotted in different
3×3×3 voxel ROIs (left and right lungs, descending aorta and lung tumour), relative to
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Figure 4: Simulation 1 – Relative errors versus time resolution at the centre of the
cylinder (left) and for three off-centre ROIs (right), from the reconstructions and from
Equation (13). We used two subplots due to scale differences.

Figure 5: Simulation 2 (Lung density changes only) – Relative errors versus time
resolution in different ROIs: left lung, right lung, lung tumour and descending aorta.

time resolution. Similarly as for Simulation 1, the relative errors within the lungs (where
the attenuation mismatch is located) decrease with improved time resolution. However,
the errors increase in the lung tumour and the descending aorta. The same behaviour
was observed for the right and left ventricles, as well as ascending aorta (results not
shown). The results show the propagation of the errors outside of the lungs (where the
attenuation mismatches lie), in neighbouring regions, as predicted by Formula (13).
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(a) Perfect ∆T (b) 70 ps (c) 200 ps

(d) 550 ps (e) non-TOF
0

10

%

Figure 6: Simulation 2 (Lung density changes only) – Relative difference images RDλ,
in coronal view (a) expected at perfect time resolution and for four reconstructions with
different TOF resolution: (b) 70 ps, (c) 200 ps, (d) 550 ps and (e) non-TOF.

(a) Perfect ∆T (b) 70 ps (c) 200 ps

(d) 550 ps (e) non-TOF
0

50

%
Figure 7: Simulation 2 (Lung density changes + misalignment) – Relative difference
images RDλ, in coronal view (a) expected at perfect time resolution and for four
reconstructions with different TOF resolution: (b) 70 ps, (c) 200 ps, (d) 550 ps and
(e) non-TOF.

The relative difference images corresponding to different time resolutions are shown
in Figure 6.

3.3.2. Lung density changes + misalignment: In Figure 7, the relative difference images
in absolute values are shown.

Additionally, the relative errors RER were quantified in different ROIsR: ascending
aorta (AA), descending aorta (DA), left ventricle (LV), right ventricle (RV) and liver.
The relative differences |RD| between λ̂ and λ̃ are given in Table 2.

3.4. Patient Data

The two input CT images and the relative errors images are shown in Figures 3 and 8,
respectively.

Additionally, spherical ROIs were drawn on the end-expiration CT for
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ROI AA DA LV RV
Perfect TOF 12.8% 3.3% 22.9% 25.5%

70 ps 12% 1.0% 23.0% 26.6%
200 ps 8.8% 1.7% 20.9% 27.9%
550 ps 6.5% 4.5% 14.2% 21.8%

non-TOF 8.3% 5.4% 13.3% 16.6%

Table 2: Simulation 2 (Lung density changes + misalignment) – Relative errors |RE|R
for different time resolutions and for non-TOF in different ROIs R: ascending aorta
(AA), descending aorta (DA), left ventricle (LV), right ventricle (RV) and liver.

(a) (b) (c) (d)

0

50

%

Figure 8: Patient data – Relative errors for TOF reconstruction (550 ps) in (a) coronal
and (b) sagittal views and for non-TOF reconstruction in (c) coronal and (d) sagittal
views.

ROI AA U-DA L-DA LV RV Liver
TOF 5.1% 2.1% 14.0% 8.2% 5.7% 8.6%

non-TOF 2.7% 0.5% 13.5% 2.8% 3.6% 5.1%

Table 3: Patient data – Relative errors |RE|R in TOF and non-TOF in different ROIsR:
ascending aorta (AA), upper descending aorta (U-DA), upper descending aorta (L-DA),
left ventricle (LV), right ventricle (RV) and liver.

measurements using ITK-SNAP (Yushkevich et al. 2006): Ascending Aorta (AA,
1.76 cm3), upper Descending Aorta (U-DA, 1.76 cm3), lower Descending Aorta (L-
DA, 1.76 cm3), Left Ventricle (LV, 1.76 cm3), Right Ventricle (RV, 1.54 cm3) and Liver
(7.33 cm3).

The relative differences |RE|R in different ROIs R between λ̂ and λ̃ are shown in
Table 3.

4. Discussion

System model inconsistencies in PET reconstruction are a cause of quantification errors.
When improving the TOF resolution, local errors in the attenuation map will lead to
non-local quantitative errors in the reconstructed activity image. Moreover, the errors
in areas away from the attenuation mismatch increase with improved timing resolution.
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The errors depend on the optimisation chosen to reconstruct the data. Here we focused
on MLEM/OSEM reconstructions, which are the most widely used algorithms in the
clinics. We first derived a simple formula for the relative error for perfect time resolution.
This formula was confirmed with simulations, by observing the trend for improved time
resolution.

Results were first shown for a simple cylindrical simulation, to demonstrate the
non-local effect with highly symmetrical structures. They were in agreement with Ahn
et al. (2014) at the centre of the mismatch, however we observed errors in areas outside
of the mismatch, as predicted by the theory presented in this paper. The region in
closest proximity to the mismatch (12.8 mm off-centre) presented a mixed effect: the
corresponding relative error curve (Figure 4) is not monotonic and resembles the curve
for the ROI in the region of the mismatch at low time resolution. The study was
then extended to XCAT simulations with activity at end-inspiration, first using an
aligned µ map with incorrect values in the lung, and then a mismatched end-expiration
µ map. As expected, the quantitative errors decreased in the lungs but increased in
the neighbouring regions, such as the ventricles and the aorta. Finally patient PET
data were gated (end-expiration) and reconstructed using two different µ maps: one
close to the PET gate and the second one corresponding to end-inhalation. Both TOF
(FWHM: 550 ps) and non-TOF were employed. The differences between the two sets
of images were similar to those observed with the second XCAT simulation. While
differences in the lung reduced with increased TOF timing resolution, they increased in
most neighbouring ROIs, such as the ascending aorta (from 2.7% to 5.1%) or the left
ventricles (from 2.8% to 8.2%), similarly to the 12.8 mm off-centre ROI of the cylindrical
simulation.

The findings have clinical implications for PET in the thorax. The observed effects
are likely to be most important for TOF PET/MR, where existing methods to compute
the attenuation map from MR acquisitions are not quantitatively accurate in the thorax,
although progress has been made to overcome this issue (Lillington et al. 2019). It is
likely that the problem would be largest in the case where the bones are not inserted
in the MR-derived attenuation map used for the reconstruction. Effects due to errors
in the attenuation map are also important for PET/CT as perfect alignment between
PET and CT is usually impossible (especially in the thorax).

These results also show a possible impact on kinetic modelling. As previously
stated, larger errors will be expected in regions commonly used to estimate image-
derived input functions, such as the aorta or the left ventricle. From the values in
Tables 2 and 3, we suggest to use an input function derived from either the ascending
aorta or an upper region of the descending aorta. A further complication is that errors
due to attenuation mismatch depend on the surrounding activity distribution. This
was reported in non-TOF PET (Thielemans et al. 2008, Holman et al. 2016, Mérida
et al. 2017) but is also the case with TOF, although this dependency disappears at
perfect TOF resolution (see Equation 12). As the activity distribution is globally
changing over the duration of the dynamic PET acquisitions, we expect time-dependent
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errors in presence of an attenuation mismatch on both image-derived input function and
reconstructed activity, which would affect estimated kinetic parameters. Kotasidis et al.
(2016) already discussed such errors and found that although the biases were reduced
with improved time resolution, they could not completely be resolved.

Furthermore, as shown in Figure 5 the observed effect has consequences for MCIR,
where it would therefore be necessary to model the density changes in the lung (Cuplov
et al. 2018, Emond et al. 2019) in order to avoid intra-gate inconsistencies.

A possible way to correct the attenuation maps is by using an algorithm such
as Maximum-Likelihood reconstruction of Activity and Attenuation (MLAA) (Nuyts
et al. 1999). When TOF information is available, it is possible to determine, from the
prompts only, the corrected attenuation sinogram up to a constant (Defrise et al. 2012).
It becomes therefore possible to compute the entire attenuation sinogram when at least
a part of it is known precisely (e.g., when a suitable region of the µ map is known).
Rezaei et al. (2019) has recently demonstrated clinical feasibility of MLAA, when robust
calibration and corrections are used. The results in this paper imply that MLAA will
become essential at higher TOF timing resolution. The effect observed in this paper
also provides an alternative explanation for the fact that MLAA becomes more stable
with improved TOF resolution: the non-locality of the error can be a reflection of the
inconsistencies between the data and the system model if the wrong attenuation map is
used (Equation (8)).

This publication only focused on system model inconsistency linked to the
attenuation map. The study could be extended to inconsistencies due to incorrect
background term within the reconstruction (i.e., including estimation of randoms and
scatters). An accurate estimation of the scatter sinogram was indeed shown to be of
great importance to obtain quantitative measures in TOF-MLAA (Rezaei et al. 2019).

5. Conclusion

We have shown that the effect of using an incorrect attenuation map in the
reconstruction on the activity image cannot be considered local in TOF reconstructions.
The relative errors can be easily quantified for perfect time resolution, which should be
very similar to high resolution reconstruction such as 100 ps or better.

In conclusion, even at high time resolution, using an accurate attenuation map
within the PET reconstruction is essential to obtain robust quantitative measures.
When the attenuation map is not known precisely enough (as is usually the case for
lung imaging), the attenuation images would need to be systematically re-estimated,
for example via MLAA. This is especially important in future scanners with sub-100 ps
time resolution.
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Appendix: Extension to Other Reconstruction Algorithms

The notations in this appendix follows the one used in Section 2.3. In this appendix, we
derive formulas similar to Equation (12) for unweighted least-squares reconstructions.
When using pre-corrected data, this derivation is equivalent to that of filtered back-
projection. The unweighted least-squares solution is obtained by solving

min
λ≥0
‖p−Mλ‖2

2 (14)

The solutions of (14) with M = M ? and M = M̃ are respectively

λ̂ = (M ?TM ?)−1M ?Tp and λ̃ = (M̃TM̃ )−1M̃Tp

where [ · ]T is the transpose matrix operator. For a voxel pair (j, j′) and using (9), we
have the following element of MTM :

[MTM ]j,j′ =
∑
i∈D

Mi,jMi,j′ = δj,j′
∑
i∈Sj

M2
i,j ,

where δj,j′ is the Kronecker delta. Thus, MTM is a diagonal matrix and the solution λ̂
corresponding to a given system matrix M is therefore straightforward (provided that∑
i∈Sj

M2
i,j > 0):

λ̂j =
∑
i∈Sj

Mi,jpi∑
i∈Sj

M2
i,j

.

In the noiseless situation p = M ?λ?, then

λ̂j = λ?j ·
∑
i∈Sj

Mi,jM
?
i,j∑

i∈Sj
M2

i,j

(15)


