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Light propagation in nonuniform plasmonic
subwavelength waveguide arrays

Massimiliano Guasoni, Matteo Conforti and Costantino De Angelis

Abstract— We study light propagation in nanoscale periodic
structures composed of dielectric and metal in the visible range.
We demonstrate that diffraction curves of nonuniform waveguide
arrays can be tailored by varying the geometric and dielectric
features of the waveguides. The results obtained from a proper
formulation of Coupled Mode Theory for non uniform arrays
are validated through numerical solution of Maxwell equations
in frequency domain.

I. INTRODUCTION

The miniaturization of photonic devices for confining and
guiding electromagnetic energy down to nanometer scale is
one of the biggest challenges for the information technology
industries [1]. In the last years, photonic crystals technology
allowed to gain one order of magnitude in the miniaturization
of components such as waveguides and couplers with respect
to conventional (i.e. based on total internal reflection) optics.
However when the size of a conventional optical circuit is
reduced to the nanoscale, the propagation of light is limited by
diffraction. One way to overcome this limit is through surface
plasmon polaritons [2], which are evanescent waves trapped
at the interface between a medium with positive real part of
dielectric constant and one with negative real part of dielectric
constant, such as metals in the visible range. Even though
this phenomenon has been known for a long time, in the last
years there is a renewed interest in this field, mainly motivated
by the wide range of potential applications that sweep from
the realization of biologic nanosensors [3], to sub-wavelength
imaging [4], to the merging of electronic circuits to photonic
devices [5].

On the other hand, control of light propagation by means
of periodic photonic structures is a fundamental issue that
is attracting a lot of interest in the scientific community.
In particular, arrays of evanescently coupled waveguides are
unique structures that exhibit the peculiar properties of discrete
systems. Indeed, light propagation in waveguide arrays is
characterized by strong confinement of the field into the
individual waveguides and the observable exotic phenomena
are due to the weak coupling between the waveguides. As
a result, modes of the whole structure can be approximated
by a superposition of a discrete set of localized modes, thus
light propagation can be considered truly discretized [6], [7].
Recently there is a great research effort in the field of discrete
effects in plasmonic structures, and some peculiar outcome
of discreteness were reported for metal-dielectric waveguide
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arrays, for example Bloch oscillations [8], negative refraction
[9] and diffraction management [10].

Nonuniform waveguide arrays have received increasing at-
tention, since a more complex engineering of the periodic
structure can provide further degrees of freedom. In this con-
text, the first reported example concerns the usage of zigzag
waveguide arrays (i.e., the cascade of arrays characterized by
alternating tilt angles) in order to obtain diffraction manage-
ment. Binary arrays composed of waveguides with alternating
widths have been thoroughly studied [11], [12] since they
exhibit interesting features, such as double refraction, due to
their intrinsic two-band nature.

In the present work we study the behavior of nonuniform
metal-dielectric waveguide arrays composed of waveguides
with different dielectric cores, that determine strong variations
of the coupling coefficients. Coupled mode theory (CMT) is
extended in order to deal with plasmonic modes and varying
coupling coefficients, and further improvements are proposed
in order to take into account the different widths of the two
array bands. Moreover, we demonstrate that the ability to
control the magnitude of the coupling between the waveguides
opens the way to the design of binary waveguide arrays with
unusual properties, such as almost flat diffraction curves, that
are required, for example, to achieve self collimation [13].
Finite Element solution of Maxwell equations in nonuniform
plasmonic waveguide arrays are reported in order to assess the
validity of the analytical treatment.

The paper is organized as follows. After this Introduction, in
sec. II we introduce the nonuniform arrays and report some re-
sults of the standard CMT. In sec. III we develop an extension
of coupled mode theory for non-uniform waveguide arrays that
exploits the unsymmetric coupler as the fundamental cell; this
extension is motivated by the unacceptable low accuracy of the
standard CMT for nonuniform plasmonic waveguide arrays. In
sec. IV we calculate Bloch modes of the array and the energy
distribution between different bands. Due to the high energy
concentration characteristic of plasmonic waveguide we obtain
simple approximate (yet accurate) expressions for the energy
distribution between bands. In sec. V we exploit the theoretical
results of previous sections to engineer diffraction in nonuni-
form waveguide arrays, reporting as a relevant example the
design of arrays characterized by a flat diffraction curve. We
end with the conclusion in sec. V.

II. NON UNIFORM PLASMONIC ARRAYS

We consider a one dimensional (1D) array formed by the
alternation of two dielectric layers (cores) divided by a metallic



2

Fig. 1. The plasmonic array studied in this paper. Two cores with dielectric
constant ε1 and ε2 (white and black respectively) are alternated and divided
by a metal layer (grey) whose dielectric constant is εm. Width of cores is 2b,
width of metal layers is 2a. The fundamental period Λ is 4a + 4b. Dashed
rectangles surround 3 consecutive basic cells of the array, that according to
the CMT developed in this paper are plasmonic couplers.

Fig. 2. In the upper and in the center figure two single plasmonic guides are
shown. The cores (width 2b) have dielectric constant ε1 and ε2 respectively,
and are surrounded by metal with dielectric constant εm . In the lower figure
there is the coupler used as basic cell in the CMT developed in this paper.
Two cores (width 2b) with dielectric constant ε1 and ε2, and divided by a
metal layer (width 2a, dielectric constant εm), are surrounded by metal.

one (cladding), as sketched in Fig.1. In a CMT approach
we can consider, as basic cell, the single isolated waveguide
formed by a dielectric layer surrounded by metal (Fig.2).
Let’s call ε1, ε2 and εm the relative dielectric constants of
dielectrics and metal in the array, and 2a and 2b the widths
of metallic and dielectric layers, respectively. Metal dielectric
constant εm is calculated by means of Drude’s model, i.e.
εm = 1−ω2

p/(ω2− iγω), where ωp and γ are the plasma and
collision frequency of the metal, respectively. Supposing that
ε2 > ε1 (from here and for the rest of the article), we work at
frequencies such that ω < ωp/

√
1 + ε2. Under this condition,

the fundamental mode of the single waveguides is TM-even
and can be expressed as a sum of decaying exponentials both
in dielectric and metal; if 2b is sufficiently small the guides are
monomodal, that is the necessary condition to obtain a bimodal
array. Indeed the array supports two different modes since the
alternated guides have different propagation constants β1 and
β2. According to CMT model, diffraction functions of the two
array modes are [11]:

kz(1,2)(k) =
β1 + β2

2
±

√(
β1 − β2

2

)2

+ 4C2 cos
(

k

2

)
(1)

where k is the tilt angle normalized with respect to the

period of the array (−π < k < π) and C is the coupling
coefficient between modes of adjacent waveguides, whose
value is [14]:

C = ωε0

∫ +∞

−∞
[εarr(x)− εg1(x)] Ex1(x)E∗

x2(x) dx +

+ωε0

∫ +∞

−∞

εg2(x) [εarr(x)− εg1(x)]
εarr(x)

Ez1(x)E∗
z2(x) dx (2)

In Eq.(2) ε0 is the dielectric constant of vacuum, Ex1, Ex2,
Ez1 and Ez2 are the modal electric fields of the two isolated
waveguides, εg1(x) and εg2(x) are the dielectric profiles of
the two unperturbed waveguides and εarr(x) is the dielectric
profile of the whole array.

Looking at Eq.(1) we see that by controlling ∆β = (β1 −
β2)/2 and C we can obtain diffraction curves with very dif-
ferent amplitudes, where for amplitude we mean kz(1,2)(π)−
kz(1,2)(0). For example when ∆β >> C, diffraction curves
become nearly flat. The propagation constant β of a single
guide with relative dielectric constant ε and width 2b at
pulsations ω that satisfy the inequality ε/|εm(ω)| < 0.5 is
well approximated by Eq.(3) (see Appendix):

β ≈ √
ε

√(
w

c0

)2

+
(

wp

|εm|c0b

)
(3)

where c0 is light speed in vacuum. It’s easy to note that
β is very sensitive to ε, so that a sensible difference ∆β
arises (β2/β1 =

√
ε2/ε1) by coupling waveguides with cores

with different dielectric constant ε1 and ε2. In contrast, the
dependence of β on the width b is usually weaker than the
dependence on ε. For example, if we use silver (neglecting
losses: wp = 13.6884e15 rad/s, γ = 0 rad/s), at any
pulsation smaller than ωp/

√
1 + ε, β is almost independent on

b, for b > 40nm : so ∆β will be quite small when coupling
waveguides with the same dielectric but different width.

III. COUPLED MODE THEORY FOR PLASMONIC ARRAYS

It’s well known that CMT gives good results when the
modes of two coupled waveguides are, with good approxi-
mation, a linear combination of the modes of the single un-
perturbed waveguides. From Eq.(1) we derive that the second
array mode has a diffraction curve kz2(k) whose values can be
smaller than ωε2/c0, implying that field becomes sinusoidal
in the cores of the waveguides with dielectric ε2. In these
conditions a linear combination of single waveguides modes
(that are combination of exponentials in the cores) can not
well approximate the real array mode, making the value of
kz2(k) calculated from Eq.(1) unreliable.
To overcome this problem we consider a refined CMT model
where the single cell of the array consists of two adjacent
waveguides (i.e. a waveguide coupler) with dielectrics ε1 and
ε2, respectively (Fig.2). We expect this alternative formulation
of CMT to work better, because it takes into account the
effective fundamental basic cell of the non uniform array (that
is the coupler). We will consider linear combination of the
coupler modes, that can be sinusoidal in waveguides with
dielectric ε2, approximating better the second array mode.



3

Let’s consider bimodal couplers (any coupler has at least two
TM-modes), and let’s use a CMT model in which array modes
are linear combinations of the two modes of all the couplers
in the array, so that the total transverse electric field Ex(x, z)
can be written as:

Ex(x, z) =
∑

n

An,a(z)Ex(n,a)(x) + An,b(z)Ex(n,b)(x)

+ Eres(x) (4)

where Ex(n,a)(x) and Ex(n,b)(x) are the two modes (de-
noted with a and b) of the n-th coupler in the array, An,a(z)
and An,b(z) are their amplitudes and Eres(x) is the residual
field. Supposing that the residual field is negligible and fol-
lowing the treatment reported in [14], we find that amplitudes
are connected by the relations below:

A′n,a + Ra1,a2A
′
n+1,a + Ra1,a0A

′
n−1,a +

+Ra1,b2A
′
n+1,b + Ra1,b0A

′
n−1,b = i(βa + ka1,a1)An,a +

+iCa1,b1An,b + iCa1,a2An+1,a +
+iCa1,a0An−1,a + iCa1,b2An+1,b + iCa1,b0An−1,b (5)

A′n,b + Rb1,b2A
′
n+1,b + Rb1,b0A

′
n−1,b +

+Rb1,a2A
′
n+1,a + Rb1,a0A

′
n−1,a = i(βb + kb1,b1)An,b +

+iCb1,a1An,a + iCb1,b2An+1,b +
+iCb1,b0An−1,b + iCb1,a2An+1,a + iCb1,a0An−1,a (6)

In Eq.(5) and Eq.(6) A′n,i (i = a, b) is the derivative respect
to z of the amplitude An,i. Any term Ri1,jl is the correlation
between mode i in the coupler n and mode j in coupler m =
n+ l−1 (l = 0 with reference to the coupler at the left of the
coupler n and l = 1 with reference to the coupler n and l = 2
with reference to the coupler at its right, see Fig.1) , that is:

Ri1,jl =
∫ +∞

−∞
Ex(n,i)(x)H∗

y(m,j)(x)dx (7)

under the normalization condition Ri1,i1 = 1, while
Ri1,j1 = 0 (i 6= j) because different modes in the same cou-
pler are orthogonal. βa and βb are the propagation constants
of modes a and b in any basic unperturbed coupler, while
any term Ci1,jl is the coupling coefficient between mode i in
the coupler n and mode j in coupler m = n + l − 1 . This
coefficient can be written as:

Ci1,jl = βiRi1,jl + ki1,jl, (8)

where the term ki1,jl is:

ki1,jl =

ωε0

∫ +∞

−∞

{
[εarr(x)− εcn(x)] Ex(n,i)(x)E∗

x(m,j)(x)+

+
εcm(x) [εarr(x)− εcn(x)]

εarr(x)
Ez(n,i)(x)E∗

z(m,j)(x)
}

dx, (9)

where εcn(x) and εcm(x) are the transverse dielectric
profiles of adjacent and unperturbed couplers n and m, while
εarr(x) is the transverse profile of the whole array.
Using as solutions An,a = Aeikn+ikzz and An,b =
Beikn+ikzz (−π < k < π) we can rewrite Eq.(5) and Eq.(6)
in matrix form:

R̄

[
A
B

]
kz = C̄

[
A
B

]
(10)

Where:

R̄ =
[

P11 P12

P21 P22

]
, C̄ =

[
Q11 Q12

Q21 Q22

]
, (11)

with

Q11 = βa + ka1,a1 + Ca1,a2e
ik + Ca1,a0e

−ik,

Q12 = Ca1,b1 + Ca1,b2e
ik + Ca1,b0e

−ik,

Q21 = Cb1,a1 + Cb1,a2e
ik + Cb1,a0e

−ik,

Q22 = βb + kb1,b1 + Cb1,b2e
ik + Cb1,b0e

−ik,

P11 = 1 + Ra1,a2e
ik + Ra1,a0e

−ik,

P12 = Ra1,b2e
ik + Ra1,b0e

−ik,

P21 = Rb1,a2e
ik + Rb1,a0e

−ik,

P22 = 1 + Rb1,b2e
ik + Rb1,b0e

−ik.

Diffraction curves kz(k) are the eigenvalues of R̄−1C̄;
being coefficients Rix,jy << 1 in Eq.(11), we can well
approximate R̄−1 ≈ (2I − R̄). In the product (2I − R̄)C̄ we
can neglect all terms different from Ci1,jl, βa, βb, βaRi1,jl and
βbRi1,jl because they are much smaller. In this way, matrix
(2I − R̄)C̄ becomes:

(2I − R̄)C̄ =
[

M11 M12

M21 M22

]
(12)

where

M11 = βa + ka1,a1 + ka1,a2e
ik + ka1,a0e

−ik

M12 = ka1,b1 + (ka1,b2 + 2∆βRa1,b2)eik

+ (ka1,b0 + 2∆βRa1,b0)e−ik

M21 = kb1,a1 + (kb1,a2 − 2∆βRb1,a2)eik

+ (kb1,a0 − 2∆βRb1,a0)e−ik

M22 = βb + kb1,b1 + kb1,b2e
ik + kb1,b0e

−ik

and ∆β = (βa − βb)/2.

If we neglect the residual field Eres(x), the system con-
serves the energy, implying that R̄−1C̄ must be hermitian.
This property imposes the following equalities:

ka1,a2 = ka1,a0 = Ca,

kb1,b2 = kb1,b0 = Cb,

ka1,b2 + 2∆βRa1,b2 = kb1,a0 − 2∆βRb1,a0 = Cab,

ka1,b0 + 2∆βRa1,b0 = kb1,a2 − 2∆βRb1,a2 = Cba,

ka1,b1 = kb1,a1 = C.
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Moreover, calling βa + ka1,a1 = β̄a and βb + kb1,b1 = β̄b,
we can rewrite (12) in this way:

(2I − R̄)C̄ =[
β̄a + 2Ca cos(k) C + Cabe

ik + Cbae−ik

C + Cbaeik + Cabe
−ik β̄b + 2Cb cos(k)

]
(13)

Diffraction curves are the eigenvalues of (13):

kz(1,2) =
β̄a + β̄b

2
+ (Ca + Cb) cos(k)±

√[
β̄a − β̄b

2
+ (Ca − Cb) cos(k)

]2

+ |C + Cabeik + Cbae−ik|2 (14)

Even when difference (ε2 − ε1) is small, the two modes
of any coupler concentrate energy in a different way: the first
confine the most part of energy in the core with dielectric
constant ε2, while the second in the core with dielectric ε1,
so that the term (β̄a − β̄b) increases and coefficients C, Cab

and Cba becomes negligible respect to [(β̄a − β̄b)/2 + (Ca −
Cb) cos(k)]2, implying:

kz1 = β̄a + 2Ca cos(k)
kz2 = β̄b + 2Cb cos(k) (15)

That is a very simple solution where the two diffraction
curves depend only on the coupling between same modes in
two adjacent couplers. Their amplitudes are respectively 4Ca

and 4Cb, and they can take very different values, in contrast
to what results from Eq.(1). This result can be found also
following [15], where interaction with second neighboring
guide is taken in account.

IV. MODES AND ENERGY CONCENTRATION IN PLASMONIC
ARRAYS

Now we want to show that the coupling coefficients depend
quite exclusively on how field of the unperturbed basic coupler
concentrates at the metal-dielectric interfaces. This fact allow
us to deeply understand the link between non uniformity of
the array (ε2 6= ε1) and its diffraction curves.
Let’s call g1, g2 and gm the regions with dielectric ε1, ε2

and εm in the coupler (Fig.2), and let’s start with observing
that the first coupler mode is very similar to the mode of the
single isolated guide with core ε2, excluding the region g1.
We can then approximate the first coupler mode in all regions
except g1 with the mode of the single guide with core ε2. An
analogous argument holds true for the second coupler mode.

Coupling coefficient Ca = ka1,a0 can be very well approx-
imated considering only the fields overlapping in region g2 of
coupler (n− 1) ( see Fig.3) :

Ca ≈ ωε0(ε2 − εm)
∫

g2,n−1

Ex(n,a)(x)Ex(n−1,a)(x)∗

︸ ︷︷ ︸
C′a

+

ωε0(ε2 − εm)
∫

g2,n−1

Ez(n,a)(x)Ez(n−1,a)(x)∗

︸ ︷︷ ︸
C′′a

(16)
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Fig. 3. The array is shown together with transverse electric field Ex of
modes a of couplers n−1 and n (dotted and solid lines respectively), that are
Ex(n−1,a) and Ex(n,a) according to the explanation of section IV. Regions
g1 and g2 of each coupler are shown ((g1, n − 1), (g2, n − 1) for coupler
n− 1; (g1, n), (g2, n) for coupler n). In the region (g1, n− 1) the modes
Ex(n−1,a) and Ex(n,a) are much smaller than in region (g2, n − 1), so
that their overlapping in (g1, n − 1) can be neglected in the calculation of
ka1,a0 ( Eq.(16)). Large discontinuities of the electric field are due to the big
dielectric constat change between metal and dielectric.
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Fig. 4. Solid line is the field Ex of mode a in a coupler with ε1=1.0,
ε2=1.5, width of central metallic layer (εm) 40 nm and widths of dielectric
layers 120 nm. Wavelength is 750 nm. Black dots denoted with A, B, C,
D represent values of field at the interfaces of a coupler used in Eq.(17) and
Eq.(18). They are respectively he
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, hi

x(R,a)
, he

x(R,a)
. Double

dashed arrows indicates hc and hi respectively, that are values of mode at
the center and at the interface of core in guide g2 of the coupler.

where we distinguish the overlapping between the x and
z components of electric fields (C ′a and C ′′a , respectively).
Subscript (g2, n−1) refers to the region g2 of coupler (n−1).
Let’s consider now an array with dielectrics ε1 and ε2, and let’s
study non uniformity effects by varying ε2 keeping ε1 fixed. In
(g2, n−1) the fields Ex(n,a)(x, ε2) and Ez(n,a)(x, ε2) behave
nearly such as the mode of the single guide with core ε2, that
decays in metal with constant Tm (see Appendix). Being Tm

practically independent on ε2, also the field Ex(n,a)(x, ε2) is
quite independent on ε2 in (g2, n−1) except for a constant, so
that we can write Ex(n,a)(x, ε2) ≈ Ex(n,a)(x, ε1)he

x(L,a)(ε2),
where he

x(L,a)(ε2) is the value of the transverse electric field
of the coupler mode a at the external left interface and, by
definition, he

x(L,a)(ε1) = 1 (see Fig.4). For the same fact,
Ez(n,a)(x, ε2) ≈ Ez(n,a)(x, ε1)he

z(L,a)(ε2), where he
z(L,a)(ε2)

is the value of the longitudinal electric field of coupler mode
a at the external left interface.
Similar arguments holds true for fields Ex(n−1,a)(x, ε2) and
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Ez(n−1,a)(x, ε2): in (g2, n − 1) they are sum of evanescent
waves decaying with constant Td (see Appendix) that doesn’t
vary too much as function of ε2 (when the array is bimodal);
so using Ex(n−1,a)(x, ε2) ≈ Ex(n−1,a)(x, ε1)hi

x(R,a)(ε2) and
Ez(n−1,a)(x, ε2) ≈ Ez(n−1,a)(x, ε1)hi

z(R,a)(ε2) we approxi-
mate very well Eq.(16), being hi

x(R,a)(ε2) and hi
z(R,a)(ε2) the

values of the transverse and longitudinal electric field of the
coupler mode a at the internal right interface. On the basis
of the arguments reported above, we can easily deduct the
following relations:

C ′a(ε2)
C ′a(ε1)

≈ εm − ε2

εm − ε1
he

x(L,a)(ε2)hi
x(R,a)(ε2)

C ′′a (ε2)
C ′′a (ε1)

≈ εm − ε2

εm − ε1
he

z(L,a)(ε2)hi
z(R,a)(ε2) (17)

Reasoning in the same way for Cb = k(b1,b2) we can write:

C ′b(ε2)
C ′b(ε1)

≈ hi
x(L,b)(ε2)he

x(R,b)(ε2)

C ′′b (ε2)
C ′′b (ε1)

≈ hi
z(L,b)(ε2)he

z(R,b)(ε2) (18)

Eq.(17) and Eq.(18) show how variations of couplings as
function of non uniformity are related only on fields concen-
tration at the interfaces of the unperturbed basic coupler. We
note that C ′a(ε2) and C ′′a (ε2) are always decreasing function
of ε2, while C ′b(ε2) and C ′′b (ε2) exhibit a minimum when the
condition kz2(k) ≈ ωε2/c0 is satisfied, corresponding to the
threshold between a decaying or oscillating field in the core of
the waveguide g2. This fact is not intuitive, because we could
expect that the more the difference (ε2 − ε1) is increased the
more the modes of adjacent couplers are decoupled.

It is worth showing now how to calculate the Bloch modes
of the array from CMT. From Eq.(4) we see that the transverse
electric field propagating in the array (neglecting Eres(x)) can
be written as:

Ex(x, z) =
∑

n

[A1(k)eikz1z + A2(k)eikz2z]eiknEx(n,a)(x) +

∑
n

[B1(k)eikz1z + B2(k)eikz2z]eiknEx(n,b)(x) =

=
∑

n

B1(k)[r1(k)Ex(n,a)(x) + Ex(n,b)(x)]eikneikz1z +

∑
n

B2(k)[r2(k)Ex(n,a)(x) + Ex(n,b)(x)]eikneikz2z (19)

where the couples (A1(k), B1(k)) and (A2(k), B2(k))
are the eigenvectors of Eq.(13) corresponding to the eigen-
values kz1(k) and kz2(k) respectively, and r1,2(k) =
A1,2(k)/B1,2(k).
From Eq.(19) we deduct that the transverse electric field of
two Bloch modes mE(1,k)(x) and mE(2,k)(x) are:

mE(1,k)(x) =
∑

n

[r1(k)Ex(n,a)(x) + Ex(n,b)(x)]eikn

mE(2,k)(x) =
∑

n

[r2(k)Ex(n,a)(x) + Ex(n,b)(x)]eikn (20)

Mode mE(1,k)(x) can be written as (see [15]):

mE(1,k)(x) =

=
(
r1(k)Ex(0,a)(x) + Ex(0,b)(x)

) ∗
(
δΛ(x)eikx/Λ

)
=

=
[
uE(1,k)(x) ∗ δΛ(x)

]
eikx/Λ, (21)

where

uE(1,k)(x) =
((

r1(k)Ex(0,a)(x) + Ex(0,b)(x)
)
e−ikx/Λ

)
,

(22)
and Ex(0,a)(x) and Ex(0,b)(x) are the two modes of the
first unperturbed basic coupler in the array (modes of other
couplers are translation of these two), Λ is the array period,
δΛ(x) is the Dirac comb that makes uE(1,k)(x) periodic and
∗ is the convolution operator.
In the same way we can deduct that mode mE(2,k)(x) is:

mE(2,k)(x) =

=
(
r2(k)Ex(0,a)(x) + Ex(0,b)(x)

) ∗
(
δΛ(x)eikx/Λ

)
=

=
[
uE(2,k)(x) ∗ δΛ(x)

]
eikx/Λ, (23)

where

uE(2,k)(x) =
((

r2(k)Ex(0,a)(x) + Ex(0,b)(x)
)
e−ikx/Λ

)
,

(24)
The corresponding transverse magnetic fields of Bloch

modes are:

mH(i,k)(x) =
ωε0εarr(x)

kzi(k)
mE(i,k)(x) i = 1, 2 (25)

Let’s take now a plane wave Ex(x) = eikxx at the array
input, then it can be expressed (see [15]) as linear combination
of array modes:

Ex(x) = a1mE(1,k)(x) + a2mE(2,k)(x) + Eres(x)
(26)

Hy(x) = a1mH(1,k)(x) + a2mH(2,k)(x) + Hres(x) (27)

where Eres(x) and Hres(x) refer to the input component
projected upon radiative modes: we are supposing that only
two modes propagate in the array, that are mE(1,k)(x) and
mE(2,k)(x) (mH(1,k)(x) and mH(2,k)(x) are the correspon-
dent magnetic field modes), with kx = (k + 2πm)/Λ (m
integer) [15]. We consider (−π/Λ < kx < π/Λ) in order to
achieve a good coupling over the propagating array modes.
The total input power density is:
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∫ +∞

−∞

Ex(x)H∗
y (x)

2
dx =

=

En1︷ ︸︸ ︷
|a1|2

∫ +∞

−∞

mE(1,k)(x)m∗
H(1,k)(x)

2
dx +

+

En2︷ ︸︸ ︷
|a2|2

∫ +∞

−∞

mE(2,k)(x)m∗
H(2,k)(x)

2
dx+

+
∫ +∞

−∞

Eres(x)H∗
res(x)

2
dx (28)

where En1 and En2 represent power densities carried by
the first and second array mode respectively. Coefficients a1

and a2 can be deducted by the orthogonality relation between
modes [14]:

ai =

∫ +∞
−∞ Ex(x)m∗

H(i,k)(x)dx
∫ +∞
−∞ mE(i,k)(x)m∗

H(i,k)(x)
i = 1, 2 (29)

From Eq.(25) we see that:

mH(1,k)(x) =
ωε0εarr(x)

kz1

(
uE(1,k)(x) ∗ δΛ(x)

)
eikx/Λ ≈

≈
[(

ωε0εcou(x)
βa

uE(1,k)(x)
)
∗ δΛ(x)

]
eikx/Λ =

=
[
uH(1,k)(x) ∗ δΛ(x)

]
eikx/Λ (30)

where

uH(1,k)(x) =
((

r1(k)Hy(0,a)(x) + Hy(0,b)(x)
)
e−ikx/Λ

)
,

(31)
and εcou(x) is the relative dielectric profile of the unperturbed
basic coupler. The approximation done is justified by the fact
that kz1(k) ≈ βa and the energy of the overlapping fields
between two adjacent coupler modes is much smaller then the
energy of the modes themselves. With the same treatment for
mH(2,k)(x) we deduce that:

mH(2,k)(x) =
[
uH(2,k)(x) ∗ δΛ(x)

]
eikx/Λ (32)

In Eq.(30) and Eq.(32) Hy(0,a)(x) and Hy(0,b)(x) are the
transverse magnetic fields of the modes of the unperturbed
coupler. The equations above allow us to deduce the power
carried by the two array modes written in Eq.(28) from the
analysis of the unperturbed coupler. Indeed we can write:

a1 =

∫ +∞
−∞ eikxxm∗

H(1,k)(x)dx
∫ +∞
−∞ mE(1,k)(x)m∗

H(1,k)(x)dx
=

=

∫ +Λ/2

−Λ/2
u∗H(1,k)(x)dx

∫ +Λ/2

−Λ/2
uE(1,k)(x)u∗H(1,k)(x)dx

(33)

where the integration can be done over one period.
Using orthogonality condition between Ex(0,a),Hy(0,b) and
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Fig. 5. Approximation of coupler modes (transverse magnetic field). Exact
modes (solid lines) are approximated with a constant over the two basic
semiperiods of the array (dot lines). Constants ha1, ha2, hb1, hb1 represent
the mean value of modes over the correspondent semiperiod.a)mode 1; b)mode
2

Ex(0,b),Hy(0,a) the denominator in Eq.(33) can be written as
2(|r1(k)|2 + 1) under the normalization condition that:

∫ +Λ/2

−Λ/2

Ex(0,i)(x)H∗
y(0,i)(x)

2
dx = 1 i = a, b (34)

In order to calculate numerator in Eq.(33) we can approx-
imate Hy(0,a) and Hy(0,b) by considering them constant over
the two semiperiods of the coupler. So we set Hy(0,a)(x) =
ha1 when (−Λ/2 < x < 0) and Hy(0,a)(x) = ha2 when
(0 < x < +Λ/2). Constants ha1 and ha2 are the mean value of
Hy(0,a)(x) in the regions g1 and g2 of the coupler respectively
(see Fig.5). In the same way we set Hy(0,b)(x) = hb1 when
(−Λ/2 < x < 0) and Hy(0,a)(x) = hb2 when (0 < x <
+Λ/2). With these approximations numerator becomes:

∫ +Λ/2

−Λ/2

u∗H(1,k)(x)dx =

= (−iΛ/k)(r1(k)ha1 + hb1)∗(1− e−ik/2) +
(−iΛ/k)(r1(k)ha2 + hb2)∗(eik/2 − 1) (35)

The treatment to calculate a2 is exactly the same as above,
replacing r1(k) with r2(k). Then we can now estimate the
power density ratio En1/En2 :

En1

En2
≈ N1

N2

D2

D1
, (36)

where Ni = |(ri(k)ha1 + hb1)(1 − eik/2) + (ri(k)ha2 +
hb2)(e−ik/2 − 1)|2, and Di = |ri(k)|2 + 1.

As shown in the next section, this approximation is very
good and we can deduce that the two modes carry nearly 50%
of power whatever the tilt angle k is. Indeed even with small
non uniformity ha2 >> ha1, hb1 >> hb2, |r1(k)| >> 1 and
|r2(k)| << 1, because terms of the main diagonal in matrix
of Eq.(13) are much grater than the other two. Then as first
approximation we can write En1/En2 ≈ |ha2|2/|hb1|2. Being
the first and the second coupler modes concentrated in g2 and
g1 respectively, we can approximate ha1 = hb2 = 0; imposing
normalization condition (Eq.(34)) we obtain |ha2|2βa/ε2 =
|hb1|2βb/ε1, then

En1

En2
≈ |ha2|2
|hb1|2 ≈

√
ε2

ε1
, (37)
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Fig. 6. Amplitude of the diffraction curves as function of ε2, when ε1 = 1.0.
Solid lines for band 1, dotted lines for band 2. a) 750 nm; b) 450 nm

since βb/βa ≈
√

ε1/ε2 (see Eq.(3)).
Ratio ε2/ε1 must be limited in order to maintain bimodality,

so we consider usually (1 <
√

ε2/ε1 < 1.5), that justify why
the two modes carry nearly the same amount of power inde-
pendently on k. In order to obtain a good coupling between
the input and the array modes, transverse electric and magnetic
fields of the coupler modes have to be the more constant as
possible in the core where they concentrate the most of their
energy. Then it’s important to evaluate ratio hc/hi between
value hc of the mode at the centre of the core and value
hi at the interfaces (see Fig.4). The characteristics of mode
a in g2 can be deducted by the single guide with dielectric
ε2, so in case of mode a ratio hc/hi can be approximated
as 2/(eTd(ε2)b + e−Td(ε2)b), where Td is function of ε2 (see
Appendix). The same treatment can be done for mode b of the
coupler in guide g1, replacing Td(ε2) with Td(ε1).

V. DESIGN OF A FLAT-DIFFRACTION ARRAY IN THE
VISIBLE BAND

In this section we design a non uniform plasmonic array
in order to have flat diffraction curves in all the visible range
(450 nm-750 nm) and in order to test all predictions done
in the previous sections. Thanks to a flat diffraction curve, is
possible to prevent either the beam divergence or diffraction
broadening, enabling flexible design of light path in plasmon
integrated optics [13].

Dielectric and metal layers of the array are 120 nm and
40 nm wide respectively; ε1 = 1.0 (air) and metal layers are
silver (ωp = 13.61e15 and γ = 0, because we can neglect
losses for propagation distances that we consider). In Fig.6
the amplitudes of the two diffraction curves related to the
two modes of the array at 450 nm and 750 nm are shown
as function of ε2. We consider only values of ε2 that allow
the array to be bimodal. Difference (kz1(π) − kz1(0)) is the
amplitude of the first diffraction curve (band 1),(kz2(π) −
kz2(0)) is the amplitude of the second (band 2). As predicted,
the amplitude of the first curve always decreases as function
of ε2, while the second exhibits a minimum of its absolute
value. A good choice to obtain a flat second curve in all the
visible range is to set ε2 = 1.5, for which we have nearly the
lowest amplitude of band 2 in all the range considered.

The chosen parameters guarantee that hc/hi > 0.8 for both
the coupler modes in all the visible range. In Fig.7 we show
the comparison between the amplitude of diffraction curves
in the case of a uniform array (ε1 = 1.0, ε2 = 1.0 or ε1 =
1.5, ε2 = 1.5) and a non uniform array (ε1 = 1.0, ε2 = 1.5) as
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Fig. 7. Amplitude of the diffraction curves as function of wavelength. Solid
line for ε1 = 1.5, ε2 = 1.5; dotted line for ε1 = 1.0, ε2 = 1.0; dashes thin
line for ε1 = 1.0, ε2 = 1.5. a) band 1; b) band 2
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Fig. 8. Amplitudes of the diffraction curves as function of wavelength when
ε1 = 1.0, ε2 = 1.5. Solid line for numerically calculated values; dotted lines
for predicted ones (by CMT). a) band 1; b) band 2

function of wavelength : the amplitude is significantly reduced
in case of non uniformity, about 5 times for band 1 and 2-3
times for band 2.

In Fig.8, in the case of ε1 = 1.0, ε2 = 1.5, we report
a comparison between the numerically calculated amplitudes
and those predicted by CMT using Eq.(15). Relative errors are
very small, less then 3% in the worst case. In the case of band
2, numerical and predicted curves are undistinguishable. As
expected the amplitudes of both the diffraction curves reduces
in modulus by increasing the wavelength. In fact the modulus
of the dielectric constant of metal increase with wavelength,
enabling a stronger confinement into the waveguides.

In Fig.9 we report the good agreement between coupling
coefficients Ca and Cb calculated with Eq.(8) and those
approximated by Eq.(17) and Eq.(18). It is worth noting that
the second band coupling constant Cb has a non-monotonic
behavior, exhibiting a minimum of the absolute value at around
ε2 = 2, in accordance with Fig. 6.
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Fig. 9. Coupling coefficients Ca and Cb as function of ε2, when ε1 = 1.0.
Solid lines represent values calculated with classic CMT model (Eq.(8));
dotted lines represent values C′a(ε2) + C′′a (ε2) and C′b(ε2) + C′′b (ε2),
where C′a(ε2), C′′a (ε2), C′b(ε2) and C′′b (ε2) are approximated by Eq.(17)
and Eq.(18) after calculation of C′a(ε1), C′′a (ε1), C′b(ε1) and C′′b (ε1).
Wavelength is 750 nm. a) Ca; b) Cb
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Fig. 10. Diffraction curves kz(kx) of the non uniform array with 2a =
40nm, 2b = 120nm, ε1 = 1.0, ε2 = 1.5. kx is normalized respect to
the period Λ of the array. Solid line for numerically calculated values; dotted
lines for CMT. a) 750 nm; b) 450 nm.
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Fig. 11. Ratio En1/(En1 +En2) as function of tilt k when 2a = 40nm,
2b = 120nm, ε1 = 1.0, ε2 = 1.5. Solid line, numerically calculated values;
dotted lines, predicted values (CMT). a) 750 nm; b) 450 nm.

In Fig.10 we show numerically calculated diffraction curves
at 450 nm and 750 nm, and those predicted by CMT in
Eq.(15): also in this case, the agreement is very good. Inter-
estingly enough the curvature changes sightly from 450nm to
750nm case, indicating the broadband feature of the diffraction
engineering.

In Fig.11 we report a comparison between the numeri-
cally calculated power density ratio En1/(En1 + En2) and
the CMT prediction from Eq.(36). Numerical values derive
from the projection of an input field (Ex(x),Hy(x)), where
Ex(x) = eikxx, over the exact (numerically calculated) Bloch
Modes; predicted values are obtained as explained in the
previous section. Also in this case relative errors are very
small and we can see that the two modes carry nearly the
same amount of power independently on tilt k.

In Fig.12 and Fig.13 we show the outcome of some finite-
element frequency-domain simulations of Maxwell equation in

Fig. 12. Propagation in the array with 2a=40 nm, 2b=120 nm. Single guide
excitation. Wavelength λ is 750 nm. a) ε1 = 1.0, ε2 = 1.0; b) ε1 = 1.0,
ε2 = 1.5, core ε2 excited; c) ε1 = 1.0, ε2 = 1.5, core ε1 excited.

Fig. 13. Same as in Fig.12, but wavelength λ is 450 nm.
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Fig. 14. Diffraction curves of a plasmonic array whith different widths of
adjacent cores. Widths are alternately 2b=120 nm and 2c that sweeps from 120
nm to 180 nm. Dielectric constants of the cores: ε1 = ε2 = 1.0. Wavelength
λ = 450nm. Solid lines for 2c=120 nm; dashed line for 2c=150 nm; dotted
lines for 2c=180 nm.

uniform and non uniform arrays. In order to test the previous
approximations we inject into the arrays a narrow beam,
corresponding to a broad spatial spectrum. If the array bands
are flat, any plane wave component at the array input should
be refracted and diffracted very little, entailing propagation
without spatial broadening of the input beam.

In Fig.12 the input wavelength is set to 750 nm, the propaga-
tion length is 5 µm along z direction, and three different cases
are compared. On the left propagation in a uniform array with
ε1 = ε2 = 1.0 is simulated, and we notice that diffraction
effects are much more accentuated than in the central and
right figure, where non uniform case (ε1 = 1.0, ε2 = 1.5)
is considered. In these two last cases, array bands are very
flat and for a propagation distance of 5 µm they allow the
field to propagate without distortion. In the central figure the
core with dielectric ε1 is excited whereas in the right one the
core with dielectric ε2 is excited. In the first case power is
quite totally coupled on band 2, while in second case is quite
totally coupled on band 1, so we could notice difference in
propagation because the two bands have different amplitudes.
Using a wavelength of 750 nm this difference is negligible for
a propagation of 5 µm, but becomes noticeable when using a
wavelength of 450 nm, as we can see in Fig.13.

As far as losses are concerned, we verified that the propa-
gation in the diffraction-engineered devices is not influenced
at all by including a lossy model for the metal [ experimental
values [16] gives ε(600nm) = −16 − 0.44i], being the only
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effect a reduction in the transmitted power. Moreover the
decay length of the fundamental mode of the waveguides
with ε2 = 1.5 dielectric core is, for example, LD(600nm) =
[2Im(kz)]−1 = 11.95µm, much longer than the device length,
indicating that all the relevant dynamics can take place without
being suppressed by absorption.

We conclude this section reminding that, as said in section
II, diffraction curves of the array are not sensitive on non
uniformity consisting in the different width of adjacent cores:
in Fig.14 an example is shown in which cores have different
widths 2b=120 nm (fixed) and 2c that sweeps from 120 nm
to 180 nm. On the contrary, dielectric is constant in all cores
and is set to 1.0. As we can see, diffraction curves change not
too much even when 2b and 2c are very different.

VI. CONCLUSIONS

In this paper we studied non uniform plasmonic arrays. We
have found that diffraction curves of the array modes are very
sensitive to non uniformity consisting in the alternation of two
different dielectrics ε1 and ε2 in the cores of the array, while
not to non uniformity consisting in the alternation of different
widths of cores.

In order to overcome problems arising from the CMT model
whose basic cell is the single waveguide, we proposed a CMT
model where the basic cell is the unperturbed coupler. We
noticed that even for little non uniformity the shape of diffrac-
tion curves is sinusoidal and depends only on the couplings
between equal modes in adjacent couplers; these couplings can
assume different values, entailing different amplitudes for the
two diffraction curves. We have seen that the trend of coupling
coefficients as function of non uniformity (that is ε2 − ε1)
depends quite exclusively on how modes of unperturbed basic
coupler concentrate energy at its interfaces. Moreover, by
using CMT, we have obtained a good approximation of Bloch
modes of the array and of the amount of energies carried by
the array modes as function of the input tilt.

In the last section, basing on all results obtained, we
proposed an example of a flat-diffraction array in the visible
band, showing the correctness of all predictions done in the
previous sections.

VII. APPENDIX

In a single plasmonic guide formed by a dielectric layer
2b wide, with relative dielectric constant ε and surrounded
by metal with relative dielectric constant εm, the fundamental
mode is TM-even one. Imposing the continuity of the tangen-
tial electric and magnetic fields, whose propagation constant
is β, we find that:

Tdb

Tmb
=

ε

|εm| tanh(Tdb)
(38)

where Td and Tm are the decaying constant of the field in
dielectric and metal respectively, with Td =

√
β2 − (ω/c0)2ε

and Tm =
√

β2 − (ω/c0)2εm. Substituting Tdb = x and k2 =
(w/c0)2(|εm|+ ε)b we obtain:

x√
x2 + k2

=
ε

|εm| tanh(x)
(39)

When ε/|εm| < 0.5 we can approximate left and right hand
side of Eq.(39) with (1/k)x and (ε/|εm|)(1/x) respectively,
and k with wpb/c0. In this way we found that x =

√
εk/|εm|,

then we obtain approximated solutions for the decaying and
propagation constants:

Td ≈
√

εwp

|εm|bc0

Tm ≈ wp

c0

β ≈ √
ε

√(
ω

c0

)2

+
(

ωp

|εm|c0b

)
(40)
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