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Complex dispersion relation of a double chain of

lossy metal nanoparticles

Massimiliano Guasoni and Matteo Conforti

CNISM and Dipartimento di Ingegneria dell’Informazione, Università di Brescia,

Via Branze 38, 25123 Brescia, Italy

We study the propagation characteristics of optical signals in waveguides

composed of a double chain of metallic nanoparticles embedded in a dielectric

host. We find that the complex Bloch band diagram for the guided modes,

derived by the Mie scattering theory including material losses, exhibits strong

differences with respect to the previously studied single chain. The results

of the model are validated through finite element solution of Maxwell’s

equations.

c© 2011 Optical Society of America

OCIS codes: 78.67.Bf,42.70.Qs,42.82.Et,71.45.Gm

1. Introduction

Metal optics is becoming a valid route for the miniaturization of photonic circuits [1,2].

Plasmonic waveguides can be realized by exploiting straight metal-dielectic interfaces
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[3], slots [4], wedges [5], grooves [6] or linear chains of closely spaced nanoparticles

[7–19].

The coupled-dipole approximation (CDA) is usually used in order to calculate the

dispersion relation of a linear chain of nanoparticles, where the spheres are treated as

point dipoles with a certain polarizability α(ω). Recently the authors have developed

a method to calculate the dispersion relation of a lossy linear chain analytically by

means of the Mie theory and numerically by a proper formulation of finite element

method for Maxwell Equation [19].

At optical frequency the linear chain is characterized by a trade off between field

concentration and propagation losses: the more the field is concentrated around the

nanostructure, the more the imaginary part of the mode wavevector is high. A solution

to this trade off can be offered by pairing together two chains of nanoparticles [20,21].

This geometry can offer high field confinement between the chains, without giving rise

to excessively high propagation losses. This structure has been studied recently by

exploiting concepts of optical nanocircuits, and two propagating modes have been

identified [21].

In this paper we derive the dispersion relation of the first six modes for couples of

nanoparticle chains by exploiting Mie scattering method.

We calculate the complex band diagram by numerically solving the dispersion rela-

tion for lossy particles, by fixing a real frequency and finding a complex wavevector.

We find a complex dispersion relation where the real part of the propagation constant
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is modified by the losses.

To conclude we compare the results of the Mie model with the exact Bloch modes

dispersion calculated by means of a revised finite element method formulation of

Maxwell’s equations in which, as explained in [19], frequency is a parameter and the

strong dispersion of the metal is easily taken into account.

The paper is organized as follows. In Sec. II and III we find the complex dispersion

relation of a double chain of nanoparticles following the Mie scattering approach.

We show that, differently from the case of a uniform single chain (see [19]), the

dispersion relations cannot be expressed as a linear combination of polylogarithms but

they need to be calculated as a linear combination of Lerch functions. The treatment

can also be applied to calculate the dispersion relations of a non-uniform single chain,

in which the center-to-center distances between spheres are not constant but are

alternated.

In Sec. IV we analyze the dispersion relation in a case of interest, that is two

parallel chains of nanoparticles. We put in evidence that six non degenerate modes

exist differently from the case of the single chain, where only two non degenerate

modes exist (see [19]). We also highlight that in four of this six modes there is a

coupling interaction between the transverse mode of a chain and the longitudinal

mode of the other chain (and viceversa). In the end we also show that the useful

transmission band of the double chain can be much greater than the band of the

single chain (until five times, see [19] ). In Sec. V we compare the results of the
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finite element simulation with those of the analytical approach. Sec. VI contains the

concluding remarks.

The use of Lerch functions, the possibility of treating the non uniform

single chain, the demonstration of the existence of six modes and the

increased useful band are the main achievements of this work with respect

to the previous regarding the uniform single chain (such as in [19]).

2. Dispersion relation of a double chain of nanoparticles: Mie theory

approach

In this section we exploit the generalized Mie theory of Gerardy-Ausloos [22] to study

the properties of a double chain of nanospheres. The nanospheres in both chains have

radius R, center-to-center spacing d, dielectric constant ǫs, and are embedded in an

infinite matrix with dielectric constant ǫm. The two chains, that we assume, without

loss of generality, to be disposed on the x − y plane, are aligned along the x axis,

are separated by a distance L on the y axis and a displacement s on the x axis (see

Fig.1).

As explained in [22], the total electric field is a linear combination of the vector

spherical harmonics (VSH) of the first and third kind −→m1
lm(n), −→n 1

lm(n), −→m3
lm(n) and

−→n 3
lm(n) centered in the n−th sphere, where l sweeps from 1 to infinity, while m from

−l to +l. The VSH of the third kind are generated by the scattering of the VSH of the

first kind, and are linked to each other by means of the scattering coefficients Γl and
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∆l. When the radius R is sufficiently smaller than the wavelength of the input field

only the coefficient ∆1 is significant, so that a great simplification of the treatment

occurs because only the vector functions −→n 1
1−1,

−→n 1
10,

−→n 1
11,

−→n 3
1−1,

−→n 3
10 and −→n 3

11 need

to be considered (see [19]). By following the treatment described in [19], it is then

possible to write for the n−th sphere:

bi,1m(n) = ∆−1
1 d1m(n) −

∑

v 6=n

1
∑

q=−1

T1q1m(v, n)d1q(v) (1)

where m = {−1, 0, 1} and bi,1m(n) are the coefficients of the linear combination

related to the vector functions −→n 1
1m(n) that represent the incident field, while d1m(n)

are the coefficients related to −→n 3
1m(n) that represent the scattered field. T1q1m(v, n)

is the coupling coefficient between −→n 1
1m(n) and −→n 3

1q(v) in the n-th frame. Once the

incident field is known (i.e. the coefficients bi,1m(n) for any sphere), the scattered field

can be calculated by solving the system (1) for the coefficients d1m(n). The coupling

coefficients can be easily calculated by means of simple analytical formulas [23] and

when the spheres are located on the x− y plane, we have T101−1(v, n) = T1011(v, n) =

T1−110(v, n) = T1110(v, n) = 0, so that the functions −→n 1
10 (respectively −→n 3

10) are

decoupled from −→n 3
1−1 and −→n 3

11 (respectively −→n 1
1−1 and −→n 1

11). Let’s now distinguish

the even spheres, that are in the right chain, from the odd spheres, that are in the

left chain (see Fig.1). Then it is possible to write, for the coefficients d10:

5



bi,10(2n) = ∆−1
1 d10(2n) −

∑

v 6=n

T1010(2v, 2n)d10(2v) −

−
∑

v

T1010(2v + 1, 2n)d10(2v + 1), (2)

bi,10(2n + 1) = ∆−1
1 d10(2n + 1) −

−
∑

v

T1010(2v, 2n + 1)d10(2v) −

−
∑

v 6=n

T1010(2v + 1, 2n + 1)d10(2v + 1). (3)

Let’s now denote with E and O the quantities related to the even and the odd

spheres, respectively. We adopt the notation: bi,10(2n) = bi,10E(n), bi,10(2n + 1) =

bi,10O(n), d10(2n) = d10E(n), d10(2n + 1) = d10O(n), −T1010(2v, 2n) = −T1010(2v +

1, 2n + 1) = U1010(v, n), −T1010(2v + 1, 2n) = E1010(v, n), −T1010(2v, 2n + 1) =

O1010(v, n). Being the spacing d constant in the two chains U1010(v, n) = U1010(v − n)

and similarly for the other coupling coefficients (v, n) can be substituted by (v − n),

so that the equations Eq.(2) and Eq.(3) are conveniently rewritten as:

bi,10E(n) = ∆−1
1 d10E(n) +

∑

v 6=n

U1010(v − n)d10E(v) +

+
∑

v

E1010(v − n)d10O(v), (4)
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bi,10O(n) = ∆−1
1 d10O(n) +

∑

v

O1010(v − n)d10E(v) +

+
∑

v 6=n

U1010(v − n)d10O(v). (5)

By defining U1010(0) = ∆−1
1 it is possible to rewrite Eq.(4) and Eq.(5) by means of

the convolution operator ∗:

bi,10E(n) = U1010(n) ∗ d10E(n) + E1010(n) ∗ d10O(n), (6)

bi,10O(n) = O1010(n) ∗ d10E(n) + U1010(n) ∗ d10O(n). (7)

Finally, the equations (6-7) can be rewritten in the spatial frequency domain by

using the Discrete Time Fourier Transform (DTFT):

MA











d̂10E(k)

d̂10O(k)











=











b̂i,10E(k)

b̂i,10O(k)











(8)

where

MA =











Û1010(k) Ê1010(k)

Ô1010(k) Û1010(k)











. (9)

where the accentˆdenotes the DTFT.

All the treatment can be repeated for the coefficients bi,1−1, bi,11, d1−1 and d11: let’s

call bi,1m(2n) = bi,1mE(n), bi,1m(2n+1) = bi,1mO(n), d1m(2n) = d1mE(n), d1m(2n+1) =
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d1mO(n), −T1l1m(2v, 2n) = −T1l1m(2v+1, 2n+1) = U1l1m(v−n), −T1l1m(2v+1, 2n) =

E1l1m(v−n), −T1l1m(2v, 2n+1) = O1l1m(v, n), with l and m = −1, 1, then considering

that U1−11−1(0) = U1111(0) = ∆−1
1 and U1−111(0) = U111−1(0) = 0 and using the DTFT

we can write:

MB





























d̂11E(k)

d̂1−1E(k)

d̂11O(k)

d̂1−1O(k)





























=





























b̂i,11E(k)

b̂i,1−1E(k)

b̂i,11O(k)

b̂i,1−1O(k)





























(10)

where

MB =





























Û1111(k) Û1−111(k) Ê1111(k) Ê1−111(k)

Û111−1(k) Û1−11−1(k) Ê111−1(k) Ê1−11−1(k)

Ô1111(k) Ô1−111(k) Û1111(k) Û1−111(k)

Ô111−1(k) Ô1−11−1(k) Û111−1(k) Û1−11−1(k)





























(11)

Following the treatment in [23] it is possible to find analytical formulas for the

coupling coefficients:
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U1010(n) = i
3

2

eidU (n)

dU(n)
− 3

2

eidU (n)

dU(n)2
− i

3

2

eidU (n)

dU(n)3
, n 6= 0

U1111(n) = i
3

4

eidU (n)

dU(n)
+

3

4

eidU (n)

dU(n)2
+ i

3

4

eidU (n)

dU(n)3
, n 6= 0

U1−111(n) = −i
3

4

eidU (n)

dU(n)
+

9

4

eidU (n)

dU(n)2
+ i

9

4

eidU (n)

dU(n)3
, n 6= 0

E1010(n) = i
3

2

eidE(n)

dE(n)
− 3

2

eidE(n)

dE(n)2
− i

3

2

eidE(n)

dE(n)3
,

E1111(n) = i
3

4

eidE(n)

dE(n)
+

3

4

eidE(n)

dE(n)2
+ i

3

4

eidE(n)

dE(n)3
,

E1−111(n) = −i
3

4

eid′
E

(n)

dE(n)
+

9

4

eid′
E

(n)

dE(n)2
+ i

9

4

eid′
E

(n)

dE(n)3
,

E111−1(n) = −i
3

4

eid′′
E

(n)

dE(n)
+

9

4

eid′′
E

(n)

dE(n)2
+ i

9

4

eid′′
E

(n)

dE(n)3
, (12)

where dU(n) is the distance between the 2m sphere and the 2(m + n) sphere in

the right chain (or equivalently between the 2m + 1 sphere and the 2(m + n) + 1

sphere in the left chain) normalized respect to the wave-vector kM in the matrix

(that is dU(n) = kMd|n|). Similarly dE(n) indicates the normalized distance between

the 2m sphere in the right chain and the 2(m+n)+1 sphere in the left chain, that is

dE(n) = kM

√

L2 + (dn + s)2. Besides d′
E(n) = dE(n)−2β(n), where β(n) is the angle

between these two last spheres (see Fig.1), and d′′
E(n) = dE(n) + 2β(n) . Moreover,

the subsequent equalities hold true: U111−1(n) = U1−111(n), U1111(n) = U1−11−1(n),

E1111(n) = E1−11−1(n), O1111(n) = O1−11−1(n) and O1l1m(n) = E1l1m(−n) ( l and

m = {−1, 1}).

As consequence, in the matrix MB (11) Û111−1(k) = Û1−111(k), Û1111(k) = Û1−11−1(k),

Ê1111(k) = Ê1−11−1(k), Ô1111(k) = Ô1−11−1(k) and Ô1l1m(k) = Ê1l1m(−k) ( l and
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m = {−1, 1}).

In order to find the propagating modes of the double chain we proceed as follows: we

fix a value of frequency ω and impose a vanishing input field (i.e. bi,1−1(n) = bi,10(n) =

bi,11(n) = 0). We then search for values of wavevector k that give nontrivial solutions

of systems (9) and (10), by imposing Det(MA(k)) = 0 and Det(MB(k)) = 0. These

values of k represent the propagation constants of the modes normalized respect to

the period d of the system. The corresponding coefficients dlmE(n) and dlmO(n) ( l

and m = {−1, 0, 1}) are of the form D(k)eikn (D(k) constant independent on n). In

the next section we discuss about the search of k in the complex plane.

3. Derivation of the complex dispersion relations

Being the system periodic, the real part of k falls between 0 and π. It is possible

to show that under the condition of k real and kMd < k < π (i.e. under the light

line) the DTFTs in MA and MB except Û1010(k) and Û1111(k) have a vanishing real

part, and Re(Û1010(k) − ∆−1
1 )= Re(Û1111(k) − ∆−1

1 )=1. If the system is lossless it

is also verified that Re(∆−1
1 )=-1 [19], implying Re(Û1010(k))= Re(Û1111(k))=0. To

sum up, in a lossless system the DTFTs in MA and MB have vanishing real part if

kMd < k < π, making Im[Det(MA(k))] = Im[Det(MB(k))] = 0; then it is possible

to find modes that propagates without damping by looking for real k between kMd

and π that solve Re[Det(MA(k))] = 0 or Re[Det(MB(k))] = 0. It is worth noting

that, being k real, these last two equations are well-posed because the summations in
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the DTFTs converge and can be evaluated by truncating them to a finite number of

terms.

When the system is lossy Re(∆−1
1 ) 6= −1, then Re(Û1010(k)) 6= 0 and Re(Û1111(k)) 6=

0. In this case Im[Det(MA(k))] 6= 0 and Im[Det(MB(k))] 6= 0 even for k under the

light line. As a consequence Det(MA(k)) = 0 and Det(MB(k)) = 0 have no real

solutions, and solutions have to be found in the complex plane. This means that the

modes propagate necessary with damping. In this case, being k complex, the DTFTs

of MA(k) and MB(k) diverge, making the problem ill-posed.

In [19] it is shown that Û1l1m(k) (for l and m = {−1, 0, 1}) can be rewritten as sum of

polylogarithms and then evaluated by exploiting analytic continuation as suggested

by Citrin [14], so that the difficulties entailed by the presence of a complex k can be

overcome. The other DTFTs can not be expressed directly as sum of polylogarithms

because of the term
√

L2 + (dn + s)2 in dE(n). However we can manage to write them

as functions that admit an analytic continuation, in order to avoid the divergence

problem. Let’s then take first of all the case of L = 0, so that dE(n) = kM |dn + s|

and let’s consider, as example, the DTFT Ê1010(k) :

Ê1010(k) = E1010(0) +

+
3

∑

v=1

av

[

∞
∑

n=1

eikM (dn+s)−ikn

kv
M(dn + s)v

+
∞

∑

n=1

eikM (dn−s)+ikn

kv
M(dn − s)v

]

(13)

where a1 = (3i/2), a2 = −(3/2) and a3 = −(3i/2). The summations in n can be
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expressed by means of Lerch functions [24] that, similarly to polylogarithms, admit

analytic continuation. In fact the following relation holds true:

∞
∑

n=1

eikM (dn∓s)±ikn

kv
M(dn ∓ s)v

=

(kMd)−veikM (d∓s)±ikLerch(eikM d±ik, v, 1 ∓ (s/d)) (14)

Then Ê1010(k) can be written as linear combination of Lerch functions, and similarly

all the other DTFTs in MA(k) and MB(k), so that analytic continuation is possible

for all them.

In this way the divergence problem in the evaluation of Det(MA(k)) and Det(MB(k))

is avoided, and complex solutions k can be found in the case L = 0. This case

corresponds to a non uniform linear chain of spheres whose center-to-center distance

is not constant but is, alternately, s and (d − s).

When L 6= 0 it is not possible to write the DTFTs as combination of Lerch functions.

In this case we expand them in a Taylor series in L around L = 0. In particular, let’s

consider the infinite summations in n of the DTFTs, that posses the form
∑∞

n=1 f(n),

with f(n) = eikM

√
L2+(dn∓s)2±ikn/[kv

M

√

L2 + (dn ∓ s)2]v (v = 1, 2, 3). We note that

any term f(n) can be expanded in Taylor series fT (n) about 0 only if |L| < |(dn∓s)|.

Let’s then take the first N for which |L| < |(dN ∓ s)| and rewrite the sums in the

following way:
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∞
∑

n=1

f(n) =
N−1
∑

n=1

f(n) +
∞

∑

n=N

f(n) ≈
N−1
∑

n=1

f(n) +
∞

∑

n=N

fT (n) =

=

∞
∑

n=1

fT (n) +

N−1
∑

n=1

(f(n) − fT (n)) (15)

where the approximation fT (n) ≈ f(n) is done for n ≥ N . The term
∑N−1

n=1 (f(n)−

fT (n)) does not diverge because it is made over a finite number of elements and the

term
∑∞

n=1 fT (n) can be expressed as a linear combination of Lerch functions. To

summarize, we succeeded in approximating any infinite summation in the DTFTs as

a sum between a linear combination of Lerch functions (
∑∞

n=1 fT (n)) and the finite

term
∑N−1

n=1 (f(n) − fT (n)): in this way we can exploit analytic continuation. Let’s

note that the approximations can be improved at will by considering a sufficiently

high number of terms in the Taylor expansion.

Let us note that the proposed methodology can be extended by taking into

account for higher order VHS (but at the price of a major complexity) so

that spheres whose radius is not much smaller than the wavelength could

be taken into account.

Note also that the developed approach is valid for strictly spherical par-

ticles, but a modified version of Mie theory exists for ellipsoidal particles,

and our methodology can in principle be applied exploiting this theory.

The derivation of our method for chains with ellipsoidal particles follows

strictly the method described for chains with spherical particles.
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We conclude by noting that the derived theory can represent also the

core of the method to find the modes of other guiding structures, such as

plasmonic photonic crystal waveguides or arrays.

4. Design and analysis of a double-chain without displacement

In this section we calculate the dispersion curves for a case of interest by considering

two parallel chains of silver spheres embedded in glass (ǫm = 2.25) with null dis-

placement s = 0, period d = 75nm, distance between the chains L = 75nm, radius

R = 25nm. The dielectric constant ǫs(ω) of the spheres is calculated by means of a

fitting model based on values tabulated by Johnson and Christy in [25]. We decided

to avoid the popular Drude model because it is not accurate in the visible range,

expecially for what concern absorption.

It is well known (see for example [19], [14] or [10]) that the single chain has two trans-

verse (T1 and T2) and one longitudinal (L) modes. The two transverse modes are

degenerate because the second is simply a ninety-degree rotation of the first around

the axis of the chain.

The modes T1 and T2 are found by solving Û1010(k) = 0 and the corresponding electric

fields can be written respectively as
∑

n
−→n 3

10(n)eikn and
∑

n(−→n 3
11(n)−−→n 3

1−1(n))eikn;

whereas L is found by solving Û1111(k)+ Û111−1(k) = 0 and the corresponding electric

field is
∑

n(−→n 3
11(n) + −→n 3

1−1(n))eikn.

In the double chain, since the functions −→n 1
10 are decoupled from −→n 3

1−1 and −→n 3
11, the

14



mode T1 of the left (rigth) chain is decoupled from the modes T2 and L of the right

(left) chain. In this way we find that two modes of the double chain are generated

by the coupling of the modes T1 of the isolated chains. These modes are found by

solving Det(MA(k)) = 0. Having assumed s = 0 we have that Ê1010(k) = Ô1010(k),

so that Det(MA(k)) = 0 implies Û1010(k) ± Ê1010(k) = 0, and d10E(n) = ±d10O(n).

Then the solution of Û1010(k) + Ê1010(k) = 0 corresponds to a transverse mode T1i in

which the two T1 modes of the single chains propagate in phase; whereas the solution

of Û1010(k) − Ê1010(k) = 0 correspond to a transverse mode T1a in which the two T1

modes of the single chains propagate in antiphase.

The mode T2 of the single left (rigth) chain is not decoupled from the mode L of the

right (left) chain, and vice versa, so we expect that in the double chain some modes ex-

ist that are combinations of T2 and L. They can be found by solving Det(MB(k)) = 0.

Let’s note that, being s = 0, Ê1111(k) = Ô1111(k), Ê1−111(k) = Ô111−1(k) and

Ê111−1(k) = Ô1−111(k). It is easy to prove that in this case the matrix MB(k) has eigen-

vectors [d̂11E(k), d̂1−1E(k), d̂11O(k), d̂1−1O(k)] of the form [a, b, b, a] or [a, b,−b,−a]. In

the first case we can write

[a, b, b, a] = (a/2 + b/2)[1, 1, 1, 1] + (a/2 − b/2)[1,−1,−1, 1]

that means that the electric field given by the left chain is
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∑

n

a + b

2
[−→n 3

11(n) + −→n 3
1−1(n)]eikn +

+
∑

n

a − b

2
[−→n 3

11(n) −−→n 3
1−1(n)]eikn

while the electric field given by the right chain is

∑

n

a + b

2
[−→n 3

11(n) + −→n 3
1−1(n)]eikn −

−
∑

n

a − b

2
[−→n 3

11(n) −−→n 3
1−1(n)]eikn

Then in the left chain the linear combination of L and T2 is (a/2 + b/2)L + (a/2−

b/2)T2, while in the right chain is (a/2 + b/2)L − (a/2 − b/2)T2 (modes L in phase,

T2 in antiphase).

Similar arguments hold true when the eigenvector is of the form [a, b,−b,−a]: in this

case in the left chain the linear combination of L and T2 is −(a/2 + b/2)L + (a/2 −

b/2)T2, while in the right chain is (a/2+b/2)L+(a/2−b/2)T2 (modes L in antiphase,

T2 in phase). The coefficients (a/2 + b/2) and (a/2− b/2) give more or less weight to

the modes L and T2 in the linear combination. We expect that, if for a fixed frequency

ω only the mode T2 propagates in the single chain (1.3 < ωd < 1.65 in Fig.3), then

in the double chain it is dominant with respect to L ((a/2+ b/2) << (a/2− b/2)), so

we can define two modes where T2 is dominant over L, in which T2 is in phase and

L in anti-phase (T2iLa) or vice versa (T2aLi), on the basis of what we stated above.

Conversely, if for a fixed pulsation ω only the mode L propagates in the single chain
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(ωd > 1.65 in Fig.5), then L is dominant over T2 in the double chain, so we can define

two modes (LiT2a) and (LaT2i) in which the two L modes of the single chains are in

phase or antiphase respectively (and vice versa for the T2 modes).

In Fig.2, Fig.3, Fig.4 and Fig.5 we plot the dispersion curves (Re(k)) and the losses of

the modes (Im(k)) in the single chain and in the double chain. Being the system lossy,

in order to calculate the DTFTs of MA(k) and MB(k), we exploited the procedure

described in the previous section, using Eq.(15), stopping the correspondent Taylor

series at the eighth order. Moreover we analyzed the eigenvectors of MB(k) (the

coefficients (a/2 ± b/2)) in order to understand if the components T2 and L are in

phase or in antiphase, and if T2 is dominant over L or vice versa.

We note that at low frequencies (ωd < 1.65) we have the modes T1i and T2iLa (T2 is

dominant), because in this range only T1 andT2 are allowed in the single chain. Indeed

the dispersion curve of T2aLi lies in between those of T2 and L of the single chain,

because it’s in the range of frequencies (1.56 < ωd < 1.72) in which them both exist

in the single chain, so they have nearly the same weight in the linear combination that

generates T2aLi; the curve of T2aLi flows into that of LiT2a for frequencies ωd > 1.72,

for which L start to be dominant over T2.

We can also observe that losses are acceptable only for modes T2iLa and T1i and at low

frequencies; this is due to the fact that for the other modes and at high frequencies

the electric field is almost concentrated around the metal spheres, increasing in this

way the absorption.
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Let’s conclude by noting that in the double chain the useful transmission band is

greater than in the single chain. If we require a decay length of 5µm and a transverse

mode decay at 1/e of 50nm, the sum of the useful bands of modes T1i (1.34 < ωd <

1.45) and T2iLa (1.24 < ωd < 1.34) in the double chain is nearly five times greater

than the useful band of T1 in the single chain (1.44 < ωd < 1.48).

5. Finite element simulations

We calculated the dispersion curves (Re(k)) and the losses (Im(k)) of the modes in

the double chain by solving Maxwell’s equations with a finite element method, in or-

der to asses the validity of the theoretical results. When calculating the Bloch modes

it is usual to fix the wavevector and to find the frequency by solving a linear eigen-

value problem: in our case, being the metal dispersive, this requires an iterative cycle.

Moreover the wavevectors are complex due to material losses, making the iterative

search even harder. In order to avoid these difficulties, we used a different approach

reformulating the problem into a quadratic eigenvalue problem where the frequency is

fixed and the wavevector is searched. The description of this formulation is reported

in [19].

As it can be seen in Fig.3, Fig.4 and Fig.5 the curves of modes T1i, T1a and T2iLa

calculated with the FEM match quite perfectly those predicted both in the real and

the imaginary part. As far as the other modes are concerned, we can notice that

FEM results are greater of nearly the 10% for the real part; even greater errors are
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present in the imaginary part. This is due to the fact that the curves of these modes

stay in a range of high frequencies, for which the influence of high order VSH is not

neglectable, so that our model can not describe accurately the dipersion relations.

Let’s note that, as predicted, losses are acceptable only at low frequencies for modes

T2iLa and T1i, making them usefull for transmission, and also note that all the modes

have a band folding for which it is impossible to reach a zero group velocity [19].

Fig. 6 shows the magnetic field of mode T1 in the single chain and of modes T1i and

T1a in the double chain over the y−z plane: only the component Hx is shown because

Hy and Hz are vanishing over this plane. It is clear that T1i is the sum of the two T1

modes of the single chains that propagate in phase, as expected, while T1a is sum of

the two T1 modes that propagates in antiphase.

In Fig.7 the magnetic field of modes T2 and L in the single chain and of modes T2iLa,

T2aLi and LiT2a in the double chain is shown over the yz− plane. As it was stated in

the previous section, the mode T2iLa is the combination of the two T2 modes of the

single chains in phase and of the two L modes in antiphase, and the most of the energy

is carried by the T2 modes. Fig.7 c) fully confirms this scenario: the components Hy

and Hz, that are absent in the mode T2 of the single chain, are due to the presence

of the L modes, but they are negligible respect to Hx, that is the only non vanishing

component of T2.

Indeed Fig.7 e) shows that the situation is reversed respect to Fig.7 c): for the mode

LiT2a the main modes in combination are the two L modes in phase, so that com-
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ponents Hy and Hz are much greater than Hx, that is absent in the mode L of the

single chain and in this case is due to the presence of the T2 modes. In Fig.7 d) the

mode T2aLi is shown: as observed in the previous section, in this case the modes L

and T2 have nearly the same weight in the combination, that is confirmed from the

fact that Hx is comparable with Hy and Hz.

On the basis of the obtained results it is clear that the main limitation of

the proposed theoretical model to a full numerical solution is that it is ac-

curate when the particles are sufficiently small with respect to wavelength,

in order to excite only first order spherical harmonic. If this condition is

not fulfilled some errors are present (of the order of 10% in our simula-

tions). Nevertheless we highlight that in cases of applicative interest the

useful modes stay in the band in which the above condition is respected

and that the proposed methodology is order of magnitude faster and re-

quires a negligible memory consumption respect to a numerical solution.

6. Conclusions

In this paper we derived the complex dispersion relation of a double chain of lossy

spheres by using the Mie theory and considering the interaction between spherical

vector harmonics of the first order, that is a very good approximation when the

radius R of the spheres is sufficiently smaller then the wavelength.

The search of the roots of the dispersion relations requires the evaluation of some

20



DTFTs for which divergence problems arise due to the complex nature of the solution

k. In order to avoid these problems the DTFTs have been approximated by means

of Lerch functions for which analytic continuation is possible. Moreover, the pursued

analysis gives the exact solution for the case of two chains with vanishing distance L,

that corresponds to a single non uniform binary chain.

As an example, a practical case of two parallel chains without displacement has been

analyzed: six modes are present, that correspond to the coupling interaction between

the transverse and longitudinal modes of the single chains. We have shown that in

this interaction the weight of the transverse component can be very different respect

to the weight of the longitudinal one and that only two modes have a degree of losses

that allows for a propagation over a reasonably long distance. The main goal achieved

is that the total useful band is nearly 5 times that of the single chain.

To conclude, all the results has been compared with finite element solutions of the

Maxwell’s equations.
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Fig. 1. The system analyzed in this paper consists of two chains of spheres

over the xy plane. The chains have distance L, displacement s along the x axis

and the spheres (of radius R) in the chains have center-to-center distance d.

Odd spheres stay in the left chain, even spheres in the right chain. Note as

example the angle β(1) between the spheres 0 and 3.
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Fig. 2. General view of the real and imaginary part of k(ω) for the theoretically

predicted modes in the double chain. Black dashed and bold line is mode T1i;

black bold line is T2iLa; black thin line is T1a; black dashed and thin line is

T2aLi together with LiT2a; black dotted line is LaT2i. Real part represent the

dispersion curve of the mode, imaginary part its losses.
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Fig. 3. Real and imaginary part of k(ω) for the mode T1i (theoretical results:

black thin line; FEM results: triangles) and T2iLa (theoretical results: black

bold line; FEM results: circles). The black dashdot line is relative to mode T1

and T2 in the single chain.
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Fig. 4. Real and imaginary part of k(ω) for the mode T1a (theoretical results:

black bold line; FEM results: circles). The black dashdot line is relative to

mode T1 and T2 in the single chain.
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Fig. 5. Real and imaginary part of k(ω) for the mode T2aLi and LiT2a (theo-

retical results: black thin line; FEM results: triangles) and LaT2i (theoretical

results: black bold line; FEM results: circles). The black dashdot line is relative

to mode L in the single chain. The curve relative to T2aLi flows into that of

LiT2a starting from ωd ≈ 1.72

a b c

Fig. 6. Field Hx of modes T1 in the single chain (a, ωd = 1.50) and of modes

T1i (b, ωd = 1.50) and T1a in the double chain (c, ωd = 1.59)
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Fig. 7. Fields Hx, Hy and Hz of modes T2 (a, ωd = 1.50) and L (b, ωd = 1.70)

in the single chain and of modes T2iLa (c, ωd = 1.34), T2aLi (d, ωd = 1.70)

and LiT2a (e, ωd = 1.76) in the double chain
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