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Abstract:  

We use twenty de novo genome assemblies to probe the speciation history and architecture of gene 

flow in rapidly radiating Heliconius butterflies. Our tests to distinguish incomplete lineage sorting 

from introgression indicate that gene flow has overwritten the original bifurcating evolutionary 

history of loci across the genome. Introgressed loci are underrepresented in low recombination and 5 

gene-rich regions, consistent with the purging of foreign alleles more tightly linked to 

incompatibility loci. We identify a hitherto unknown inversion that traps a color pattern switch 

locus. We infer that this inversion was transferred between lineages via introgression and is 

convergent with a similar rearrangement in another part of the genus. These multiple de novo 

genome sequences enable improved understanding of the importance of introgression and selective 10 

processes in adaptive radiation. 

 

One Sentence Summary: Introgression has been a major contributor of genealogical discordance 

throughout Heliconius evolution, varying across the genome with local recombination rate, gene 

density, and genome architecture. 15 

 

Main Text: Adaptive radiations play a fundamental role in generating biodiversity. Initiated by 

key innovations and ecological opportunity, radiation is fueled by niche competition that promotes 

rapid diversification of species (1). Reticulate evolution may enhance radiation by introducing 

genetic variation, enabling rapidly emerging populations to take advantage of novel ecological 20 

opportunities (2, 3). Diverging from its sister genus Eueides ~12 My ago, Heliconius radiated in a 

burst of speciation in the last ~5 My (4). Introgression is well known in Heliconius, with 

widespread reticulate evolution across the genus (5), though this has been disputed (6). 

Nonetheless, how introgression varies across the genome is known only in one pair of sister 

lineages (7, 8). Here, we use multiple de novo whole genome assemblies to improve the resolution 25 

of introgression, incomplete lineage sorting (ILS), and genome architecture in deeper branches of 

the Heliconius phylogeny. 

 

Phylogenetic analysis 

We generated 20 de novo genome assemblies for species in both major Heliconius sub-clades and 30 

three additional genera of Heliconiini. Here we align the sixteen highest quality Heliconiini 

assemblies to two Heliconius reference genomes and seven other Lepidoptera genomes, resulting 

in an alignment of 25 taxa (9). De novo assembly provides superior sequence information for low 

complexity regions, allows for discovery of structural rearrangements, and improves alignment of 

evolutionarily distant clades (10). Other studies in Heliconius have shown a high level of 35 

phylogenetic discordance, arguably a result of rampant introgression (4, 5). We attempted to 

reconstruct a bifurcating species tree by estimating relationships using protein-coding genes, 

conserved coding regions, and conserved non-coding regions. We generated phylogenies with 

coalescent-based and concatenation approaches, using both the full Lepidoptera alignment and a 

restricted, Heliconiini-only sub-alignment. These topologies were largely congruent among 40 

analytical approaches, but weakly supported nodes were resolved inconsistently. These approaches 

therefore failed to resolve the phylogeny of Heliconius as a simple bifurcating tree (Fig. 1A, 

Erreur ! Source du renvoi introuvable.). 
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To determine whether hybridization was a cause of the species tree uncertainty, we calculated 

Patterson's D-statistics (11) for every triplet of the 13 Heliconius species, using a member of the 

sister genus, Eueides tales, as outgroup. In 201 of 286 triplets, we observed values significantly 

different from zero based on block-jackknifing, demonstrating strong evidence for introgression 

(Erreur ! Source du renvoi introuvable.). However, this test alone yields little quantitative 5 

information about admixture. We therefore used phyloNet (12) to infer reticulate phylogenetic 

networks of these species on the basis of random samples of one hundred 10 kb windows across 

the alignment. For each sample, we co-estimated all 100 regional gene trees and the overall species 

network in parallel (12). To improve alignments, we analyzed the melpomene-silvaniform group 

with respect to the H. melpomene Hmel2.5 assembly (13) and the erato-sara group with respect to 10 

the H. erato demophoon v1 assembly (9, 14). Most species exhibited an admixture event at some 

point in their history using this method; we confirmed extensive reticulation among silvaniform 

species and discovered major gene flow events in the erato-sara clade. Based on these results, we 

propose the reticulate phylogenies in Fig. 1B-C.  

 15 

Correlation of local ancestry with genome architecture 

We next analyzed the distribution of tree topologies across the genome, again treating each major 

clade separately and using its respective reference genome. The melpomene-silvaniform group 

lacked topological consensus, unsurprisingly since introgression, especially of key mimicry loci, 

is well known from this clade (15). The most common tree topology was found in only 4.3% of 20 

windows, with an additional 14 topologies appearing in 1.0-3.4% of windows (Erreur ! Source 

du renvoi introuvable.-Erreur ! Source du renvoi introuvable.). By contrast, we here focus on 

the erato-sara group, where two topologies dominate (Fig. 2). One (Tree 2, Fig. 2B) matched our 

bifurcating consensus topology (Fig. 1A) and a recently published tree (4), while the other (Tree 

1) differs in that it places H. hecalesia and H. telesiphe as sisters.  25 

 

Regions with local topologies discordant from the species tree may have arisen through 

introgression or ILS. In order to make within-topology locus-by-locus inferences, we developed a 

statistical test to distinguish between ILS and introgression based on the distribution of internal 

branch lengths among windows for a given three-taxon subtree, conditional on its topology. We 30 

call this method Quantifying Introgression via Branch Lengths (QuIBL). In the absence of 

introgression, we expect internal branch lengths of triplet topologies discordant with the species 

tree (due to ILS) to be exponentially distributed.  However, if introgression has occurred, their 

distribution should have that same exponential component, but also include an additional 

component with a non-zero mode corresponding to the time between the introgression event and 35 

the most recent common ancestor of all three species (9). Like other tree-based methods, QuIBL 

is potentially sensitive to the assumption that each tree is inferred from loci with limited internal 

recombination (Fig. S75). We therefore chose small (5 kb) windows to reduce the probability of 

intra-locus recombination breakpoints.  

 40 

For every triplet in the erato-sara clade, we calculate the likelihood that the distribution of internal 

branch lengths is consistent with introgression or with ILS only. We formally distinguish between 

these two models using a BIC test with a strict cutoff of ∆BIC > 10. Consistent with our results 

from D-statistics, we find that 13 of 20 triplets have evidence for introgression (Table S13). For 

example, in the triplet H. erato-H. hecalesia-H. telesiphe, QuIBL infers that 76% of discordant 45 

loci, or 38% of all loci genome-wide are introgressed. Averaging over all triplets, QuIBL estimates 
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that 71% (67% with BIC filtering) of loci with discordant gene trees have a history of introgression, 

or 20% (19% with BIC filtering) of all triplet loci, recovering a broad signal of introgression 

throughout the clade (Equation, S7.7, Erreur ! Source du renvoi introuvable.; see (9) for 

additional discussion). 

 5 

In hybrid populations, individuals have genomic regions that originate from different species and 

may be incompatible with the recipient genome or with their environment (16). Linked selection 

causes harmless or even beneficial introgressed loci to be removed along with these deleterious 

loci if they are tightly linked; this effect depends on the strength of selection and the local 

recombination rate (17, 18). We therefore expect introgressed loci to be enriched in regions where 10 

selection is likely to be weak, such as gene deserts, or in regions of high recombination, where 

harmless introgressed loci more readily recombine away from linked incompatibility loci.  

 

In Heliconius, even distant species like H. erato and H. melpomene have the same number of 

broadly collinear chromosomes (13), facilitating direct comparisons among species. Furthermore, 15 

each chromosome in Heliconius has approximately one crossover per chromosome per meiosis in 

males (there is no crossing over in female Heliconius) (14, 19). Chromosomes vary in length, and 

chromosome size is inversely proportional to recombination rate per base pair (8, 13). We found a 

strong correlation between the fraction of windows in each chromosome that show a given 

topology and physical chromosome length (Fig. 3A). Such relationships exist for all 8 trees in Fig. 20 

2B (9), but we focus here on the two most common trees: Tree 1 has a strongly negative correlation 

with chromosome size (r2=0.883, t= 11.7, 18 d.f., p<0.0001, ) while Tree 2 (concordant with our 

inferred species tree) has a positive correlation (r2=0.726,  t=6.9, 18 d.f., p<0.0001). Results from 

QuIBL indicate that 94% of windows that recover a Tree 1 triplet topology are consistent with 

introgression (Erreur ! Source du renvoi introuvable., Erreur ! Source du renvoi 25 

introuvable.). The Z (sex) chromosome 21, is strongly enriched for Tree 2, suggesting it may 

harbor more incompatibility loci than autosomes. Interspecific hybrid females in Heliconius are 

often sterile, conforming to Haldane's Rule, and sex chromosomes have been implicated as 

particularly important in generating this incompatibility (8, 20-24).  

 30 

To test whether the pattern we observe among chromosomes is related to differences in 

recombination, we investigated the relationship between recombination rate and tree topology 

within chromosomes. Recombination rate declines at the ends of chromosomes (Erreur ! Source 

du renvoi introuvable.), and the species tree (Tree 2) is more abundant in those regions (Fig. 3B). 

In addition, when windows are grouped by local recombination rate calculated from population 35 

genetic data (9, 14), we observe a strong relationship with the recovered topology (Fig. 3C). 

Finally, we observe a minor enrichment of Tree 1 in regions of very low gene density, but this 

effect is weak (Fig. 3D) compared to that of recombination. Taken together, these results show 

that tighter linkage on longer chromosomes, and in lower recombination regions within 

chromosomes leads to removal of more introgressed variation in those regions. This very strong 40 

correlation is consistent with a highly polygenic architecture of incompatibilities between species. 

 

Introgression of a convergent inversion 

The topology block size distribution in the erato clade generally decayed exponentially (Fig. 2C), 

but two unusually long blocks contained minor topologies: one on chromosome 2 (Tree 3, 45 

composed of three sub-blocks) and the other on chromosome 15 (Tree 4). Our study of the ~3 Mb 
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topology block on chromosome 2 confirms an earlier finding of an inversion in H. erato (13), and 

we show here that its rare topology is most likely explained by ILS including a long period of 

ancestral polymorphism (Erreur ! Source du renvoi introuvable.).  

 

The topology block on chromosome 15 is of particular interest, as it spans cortex, a genetic hotspot 5 

of wing color pattern diversity in Lepidoptera (25, 26). We hypothesized that this block could be 

an inversion, as in H. numata, where the P1 'supergene' inversion polymorphism around cortex 

controls color pattern switching among mimicry morphs (27). This block recovers H. telesiphe and 

H. hecalesia as a monophyletic subclade, which together are sister to the sara clade (Fig. 2B, Tree 

4). We searched our de novo assemblies for contigs that mapped across topology transitions. 10 

Taking H. melpomene as the standard arrangement, we find clear inversion breakpoints in H. 

telesiphe, H. hecalesia, H. sara, and H. demeter. Conversely, H. erato, H. himera, and E. tales all 

contain contigs that map in their entirety across the breakpoints (Fig. 4A), implying that they have 

the ancestral H. melpomene arrangement.  

 15 

This chromosome 15 inversion covers almost exactly the same region as the 400 kb P1 inversion 

in H. numata (25, 27, 28). However, de novo contigs from our H. numata assembly show that the 

breakpoints of P1 are close to but not identical to those of the inversion in the erato clade (Fig. 

4A). Furthermore, in topologies for H. numata, H. telesiphe, H. erato, and E. tales across 

chromosome 15, not a single window recovered H. numata and H. telesiphe as a monophyletic 20 

subclade, as would be expected if the erato group inversion was homologous to P1 in H. numata. 

 

We used QuIBL with the triplet (H. erato +H. telesiphe + H. sara) to elucidate the evolutionary 

history of this inversion. A small internal branch would suggest ILS while a large internal branch 

would be more consistent with introgression (Fig. 4B). The average internal branch length in the 25 

inversion was much longer than the genome-wide average, corresponding to a 79% probability of 

introgression (Fig. 4C). If the inversion was polymorphic in the ancestral population for some 

time, we could also recover a similarly long internal branch (Fig. 4B, center). We distinguish 

between this longer-term polymorphic scenario and introgression by comparing the genetic 

distance (DXY) between H. telesiphe and H. sara, represented by T3 in Fig. 4B. Normalized DXY (as 30 

in Fig. S95) within the inversion is ~25% less than in the rest of the genome. Given that this is a 

large genomic block, introgression is therefore the most parsimonious explanation for the 

evolutionary history of the inversion (Fig. 4D) (29). 

 

Discussion 35 
Species involved in rapid radiations are prone to hybridization due to frequent geographical 

overlap with closely related taxa. In both melpomene and erato clades of Heliconius, introgression 

has overwritten the original bifurcation history of several species across large swaths of the 

genome, a pattern also observed in Anopheles mosquitos (30). This observation is also consistent 

with genomic analysis of other rapid radiations characterized by widespread hybridization and 40 

introgression, including Darwin’s finches (2) and African cichlids (31). In other radiations, the 

role of introgression is less clear: in Tamias chipmunks, widespread introgression of mitochondrial 

DNA was identified, in contrast to an absence of evidence for nuclear gene flow (32). With few 

genomic comparisons available to date, it is perhaps too early to say whether introgression is a 

major feature of adaptive radiations in general, but evidence thus far suggests this to be the case. 45 
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Our results raise the question of why some genomic regions cross species boundaries while others 

do not. In the erato clade, we find a strong correlation between recombination rate and 

introgression probability. Similar associations with topology also exist between sister species in 

the melpomene clade (7). Associations between recombination and introgression in actively 

hybridizing populations of sword-tail fish (Xiphophorus) and  monkey flowers (Mimulus) support 5 

the role of linked selection on a highly polygenic landscape of interspecific incompatibilities (18, 

33, 34). Our results establish that this relationship persists and may indeed be strengthened with 

time since introgression. This may be because while hybridization is ongoing, many introgressed 

blocks are constantly being re-introduced into the population. Even if linked to weakly deleterious 

alleles, this genetic material will persist for some time before being purged by linked selection 10 

depending on the local recombination rate. 

 

Recombination rate alone cannot account for differential introgression, so we must delve into 

specific regions to elucidate their function and relevance to speciation. It is critical, therefore, to 

have tools that can confidently identify introgressed loci, and much effort has gone into developing 15 

such methods (11, 35). Our test using internal branch lengths in triplet gene trees is based in 

coalescent theory and takes advantage of the discriminatory power of a property of gene trees not 

explicitly accounted for by other methods. QuIBL allows us to assess probability of introgression 

for each locus in each species triplet (8). Here, we employ this method to identify the evolutionary 

origin of a convergent inversion that has undergone multiple independent introgression events, and 20 

to show that genomic regions with discordant topologies arose mostly through hybridization. Just 

as sex aids adaptation within species, occasional introgression and recombination among species 

can have major long-term effects on the genome, contributing variation that could fuel rapid 

adaptive divergence and radiation. 

  25 
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Fig. 1: Phylogeny and phylogenetic networks of Heliconius show lack of support for bifurcating tree. 
A. All nodes resolved in a majority of species trees are shown in this cladogram (heavy black lines), while 

the poorly resolved silvaniform clade is collapsed as a polytomy (Erreur ! Source du renvoi 

introuvable.). The 500 colored trees were sampled from 10 kb non-overlapping windows and constructed 
with maximum likelihood. B, C. High-confidence tree structure (black) and introgression events (red) are 

shown as solid lines. Dashed red lines indicate weakly supported introgression events. Grey branch ends 

are cosmetic. The melpomene-silvaniform clade is shown in B, the erato-sara clade in C.  Euclidean lengths 

of solid black lines are proportional to genetic distance along the branches. Scale bars in units of 
substitutions per site. Breaks at the base in B indicate that the branch leading to H. doris has been shortened 

for display. 
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Fig. 2: Local evolutionary history in the erato-sara clade is heterogeneous across the genome. 
A. Each bar represents a chromosome, in terms of the H. erato reference (14). Colored bands represent tree 

topologies of each 50 kb window; colors correspond to the topologies in B, with black regions showing 

missing data. B. The eight most common trees are shown. The value in the top left corner is the percentage 
of all 50 kb windows that recover that topology. C. Each histogram corresponds to the topology of the same 

color in B, and shows the distribution of the number of consecutive 50 kb windows with that topology. 

Arrows indicate long blocks in inversions.  
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Fig. 3: Chromosomal architecture is strongly correlated with local topology.  
Tree 1 is shown in red, and Tree 2 is shown in blue, as in Fig. 2. A. Tree 1 shows a negative relationship 

with chromosome size, while Tree 2 shows a positive relationship. Lines are linear regressions with 

chromosome 21 excluded. Numbers along top indicate chromosome number. B. Each chromosome was 
divided into 10 equally sized bins, and the occupancy of each topology in each bin was calculated as the 

number of windows that recovered the topology in the bin divided by the number of windows that recovered 

the topology in the chromosome. C. Windows are binned by recombination rate, and boxes show the 

fraction of each tree in each bin for each chromosome separately. Numbers above boxes are the number of 
windows in each bin. D. Boxes show the relationship of tree topology with coding density. Asterisk denotes 

significance at 5% level (paired t-test, p<0.025). In all boxplots, central line is median, box edges are first 

and third quartile, and whiskers extend to the largest value no further than 1.5*(inter-quartile range). 
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Fig. 4: Parallel evolution of a major inversion at the cortex supergene locus. 
A. Map of 1.7 Mb region on chromosome 15. Coordinates are in terms of Hmel 2.5, and ticks are in Mb. 

Tree topology colors correspond to those in Fig. 2. Genes are shown as black rectangles; cortex is 

highlighted in yellow. Each line shows the mapping of a single contig. Aligned sections of each contig are 

shown as thick bars, while unaligned sections are shown as dotted lines. Arrows indicate the strand of the 
alignment. The H. erato group breakpoints are shown with red vertical lines, while the H. numata 

breakpoints are shown with green vertical lines. B. Evolutionary hypotheses consistent with the topology 

observed in this inversion in the context of the previously estimated phylogenetic network. The three 
species used in the triplet gene tree method – H. erato, H. telesiphe, and H. sara – are shown as black lines, 

while lineages not included are shown as grey lines.  C. Histogram of internal branch lengths (T2) in 

windows with the topology H. erato, (H. telesiphe, H. sara). The inferred ILS distribution is shown as a 
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dashed line, and the inferred introgression distribution is shown as a dotted line. The average internal branch 
length in the inversion is shown as a green vertical line. D. Histogram of normalized DXY (T3) between H. 

telesiphe and H. sara. Mean normalized DXY in the inversion is shown as a green vertical line.
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