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We present a comprehensive model to describe the propagation of single-cycle

and broadband optical pulses in anisotropic, dispersive and nonlinear mate-

rials. Two nonlinear coupled wave equations describe the dynamics and in-

teractions of optical pulses in uniaxial second-order nonlinear materials. The

equations are first order in the propagation coordinate and are valid for arbi-

trarily wide pulse bandwidth, providing an accurate modeling of the evolution

of ultra-broadband pulses also when the separation into different coupled fre-

quency components is not possible or not profitable. We exploit this model to

simulate recently observed femtosecond single-cycle multiterahertz transients

in gallium selenide and to predict harmonic generation and spectral broadening

in the visible and mid-infrared in lithium niobate.
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1. Introduction

Femtosecond light pulses play an important role in the study of ultrafast dynamics of el-

ementary excitations in molecules and solids [1, 2], and in exploring new regimes of light

matter interactions [3]. Structural changes in molecules or in molecular complexes were

monitored directly in the time domain by means of the transient absorption of molecular

vibrations [4]. Vibrational dynamics in liquids or in proteins have been succesfully studied

with femtosecond pulses in the mid-infrared [5, 6]. Femtosecond infrared spectroscopy has

also been applied to problems in solid state physics.

In the last decade, considerable efforts have been dedicated to the achievement of shorter

femtosecond light pulses, to improve temporal resolution, and to expand the frequency tun-

ability of pulses [7, 8]. In this context, different schemes based on parametric frequency

conversion in uniaxial quadratic crystals have been used to generate tunable high inten-

sity femtosecond pulses in the ultraviolet, visible, near and mid infrared: as representative

examples, ultrabroadband near infrared self-phase-stabilized pulses by difference-frequency

generation in β barium borate [9], single-cycle ultrabroad-band multiterahertz transients in

gallium selenide (GaSe) [10], few optical cycle pulses tunable from the visible to the mid

infrared by optical parametric amplifiers in β barium borate and periodically poled lithium

tantalate [11].

Theoretical research efforts on the modeling of this kind of single-cycle and broadband

phenomena are limited. From the theoretical side, the analysis of optical pulse propaga-

tion in anisotropic quadratic media typically involves the definition of polarized complex

envelopes whose variations are supposed to be slow with respect to the oscillation of carrier

frequencies (slowly varying envelope approximation (SVEA) [12]). In the frequency domain,

this assumption is equivalent to requiring that the envelope bandwidths are narrow with

respect to the carrier frequencies. Moreover when second-order parametric processes are

considered, the usual approach is to write coupled equations for the separated frequency

bands relevant for the processes [7, 13, 14]. However, when single-cycle or ultrabroadband

phenomena take place, the harmonic bands merge, generating a single broad spectrum. Ob-

viously, in these cases, the coupled envelopes description of the propagation fails due the

frequency overlapping of the distinct bands. Different works showed that it is possible to

model the propagation of fields with pulse duration down to the single optical oscillation

cycle and to the generation of very broad spectra [15]–[24].
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The scope of this article is to present a model for the description of single-cycle and

ultrabroadband electric field phenomena in dispersive quadratic uniaxial media. This model

provides a powerful tool for analytical treatment due to its simplicity, and can be easily solved

with a modest computational effort. The paper is organized as follows: in section 2 we recall

the derivation of the master equations in anisotropic media, discussing the approximations

and the limit of validity of the model. In section 3, we test our model analyzing recent

experimental results of single-cycle mid-infrared terahertz generation in GaSe crystals [10],

finding an excellent agreement between the experimental data and our numerics; moreover

we predict harmonic generation and spectral broadening in the mid-infrared and in the

visible in Periodically Poled MgO-doped Lithium Niobate (PPMgOLN). Finally, we present

our conclusions in Section 4.

2. Derivation of the propagation equations

We start from Maxwell equations written in MKS units, in the reference frame x′y′z′

∇′ × E′ = −
∂B′

∂t
(1)

∇′ ×H′ =
∂D′

∂t
(2)

B′ = µ0H
′ (3)

D′ = ε0D
′

L +P′

NL (4)

where D′

L and P′

NL account for the linear and nonlinear response of the medium, re-

spectively. The components of the linear displacement vector for a dispersive anisotropic

medium reads (assuming summation over repeated indxes)

D′

L,j =
∫

∞

−∞

ε′jk(t− t′)E ′

k(t
′)dt′ . (5)

In the reference frame of the principal axes of a uniaxial crystal, the dielectric permittivity

tensor is the diagonal matrix ε = diag(εo, εo, εe), where εo, εe are the ordinary and extraor-

dinary relative dielectric permittivity, respectively. The reference frame of the principal

axes of the crystal (x′y′z′) is not convenient for the derivation of the propagation equations.

We introduce a reference frame xyz that is rotated by (θ, φ) with respect to crystal axes.

Namely, θ is the angle between the propagation vector (parallel to z) and the crystalline z′

axis (the crystal optical axis), and φ is the azimuthal angle between the propagation vector

and the x′z′ crystalline plane. The two reference frame are linked by the orthogonal rotation
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matrix A:

A =













cosφ cos θ sinφ cos θ − sin θ

− sinφ cosφ 0

sin θ cosφ sinφ sin θ cos θ













. (6)

The dielectric permittivity tensor in the xyz frame is no longer diagonal, and it can be

written as

ε = Aε′AT

=













εo cos
2 θ + εe sin

2 θ 0 (εo − εe) cos θ sin θ

0 εo 0

(εo − εe) cos θ sin θ 0 εo sin
2 θ + εe cos

2 θ













. (7)

In the reference frame xyz, it is possible to decompose the electromagnetic field into

two linear and orthogonal polarizations of D, both transverse to the propagation direction

z [25]: D = (0, Dy, 0)
T + (Dx, 0, 0)

T . We assume the propagation of plane waves, so the

electric field and displacement vectors depend upon the z coordinate (and time) only. It

is worth noting that this decomposition is rigorous for linear propagation only, since the

nonlinearity can rotate locally the polarization. However it is reasonable to consider the

nonlinearity as a perturbative term whose effect is to couple the orthogonal polarized field

vector components during propagation. If we neglect dispersion and nonlinearity, just for

the moment, the electric field vector can be straightforwardly computed as:

E = ε−1
0 ε−1D = ε−1

0













(

cos2 θ
εo

+ sin2 θ
εe

)

Dx

ε−1
o Dy

εe−εo
εeεo

cos θ sin θDx













(8)

By eliminating the magnetic field from Maxwell equations we obtain the vector wave

equation:

∇×∇× E−
1

c2
∂2DL

∂t2
=

1

ε0c2
∂2PNL

∂t2
(9)

Note that obviously ∇ ·D = 0, but ∇ ·E 6= 0. By writing (2equation.2.9) in components

we obtain

∂2Ex

∂z2
−

1

c2
∂2DL,x

∂t2
=

1

ε0c2
∂2PNL,x

∂t2
(10)

∂2Ey

∂z2
−

1

c2
∂2DL,y

∂t2
=

1

ε0c2
∂2PNL,y

∂t2
(11)
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0 =
1

ε0c2
∂2PNL,z

∂t2
(12)

The last equation witnesses the fact that the decomposition into two independent orthog-

onal polarizations is rigorous only in the linear case. We neglect PNL,z, in the reasonable

hypothesis of small nonlinearity.

Exploiting the relation (2equation.2.5) we obtain:

∂2Em(z, t)

∂z2
−

1

c2
∂2

∂t2

∫ +∞

−∞

Em(z, t
′)εm(t− t′)dt′

=
1

ε0c2
∂2

∂t2
PNL,m(z, t) , m = x, y (13)

where we have defined

εx =

(

cos2 θ

εo
+

sin2 θ

εe

)

−1

(14)

εy = εo (15)

We thus have obtained the propagation equations for an ordinary polarized wave Ey and

an extraordinary polarized wave Ex.

By defining the Fourier transform F [E](ω) = Ê(ω) =
∫+∞

−∞
E(t)e−iωtdt, we can write

(13equation.2.13) in the frequency domain:

∂2Êm(z, ω)

∂z2
+

ω2

c2
ε̂m(ω)Êm(z, ω) = −

ω2

ε0c2
P̂NL,m(z, ω), (16)

where c is the velocity of light in vacuum, ε0 is the vacuum dielectric permittivity, ε̂m(ω) =

1 + χ̂m(ω), χ̂m(ω) is the linear electric susceptibility and km(ω) = (ω/c)
√

ε̂m(ω) is the

propagation wavenumber.

We now proceed to obtain from the second order vector wave equation (2equation.2.16)

an equation first order in the propagation coordinate z, describing electromagnetic fields

propagating in the forward direction only. Several techniques were proposed in literature

in order to achieve a pulse propagation equation with minimal assumptions [3, 16–22]. The

interested reader can find in [21] an exhaustive discussion on the different derivation styles.

Here we decided to follow a simple approach firstly proposed by Brabec and Krausz [3]

for describing propagation in isotropic cubic media, and successfully extended to the case

of isotropic quadratic media [23, 24]. It is worth noting that, in the case of plane wave

propagation we are interested in, all the techniques reported in [3, 16–22] lead to the same

model.
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We factor out the fast dependence of the propagation coordinate from the electric field,

for all the frequencies: Êm(z, ω) = Ûm(z, ω) exp[−ikm(ω)z]. This definition amounts writing

the electric field as the product of a spatial carrier wave and a slowly varying envelope.

Since we remove the exact propagation constant at every frequency, we can avoid making

any requirement on the bandwidth of the pulses. The wave equation for the field Ûm reads:

∂2Ûm(z, ω)

∂z2
− 2ikm(ω)

∂Ûm(z, ω)

∂z
= −

ω2

ε0c2
P̂NL,m(z, ω)e

ikm(ω)z. (17)

We make the slowly evolving wave approximation (SEWA [3]), that is |∂zÛm| <<

2k(ω)|Ûm|, and thus we can write

∂Ûm(z, ω)

∂z
= −i

ω2

2ε0c2km(ω)
P̂NL,m(z, ω)e

ikm(ω)z, (18)

and from the definition of Ûm, we obtain the equation for the electric field:

∂Êm(z, ω)

∂z
+ ikm(ω)Êm(z, ω) = −i

ω

2ε0cnm(ω)
P̂NL,m(z, ω). (19)

We consider an instantaneous second order nonlinear polarization (summation over re-

peated indexes is assumed)

P ′

NL,j = 2ε0djklE
′

kE
′

l (20)

where djkl is the second order nonlinear susceptivity tensor, that is usually given in the

crystal axes reference frame. In order to obtain the effective nonlinearity [26], we have to

rotate the polarization vector with matrix A, following the prescription

PNL(E) = AP′

NL(A
TE). (21)

After some calculations, we can write:

∂Êx

∂z
+ ikx(ω)Êx =

−iω

cnx(ω)
F [2d1ExEy + d2E

2
y ]

(22)

∂Êy

∂z
+ iky(ω)Êy =

−iω

cny(ω)
F [d1E

2
x + 2d2ExEy]

where d1 is the effective nonlinearity for oee, eoe and eeo interactions, whereas d2 is the

effective nonlinearity for oeo, eoo and ooe interactions. We have neglected eee (terms propor-

tional to E2
x in the first equation) and ooo (terms proportional to E2

y in the second equation)
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interactions since they are usually not phase matched by birefringence. However they can be

added if necessary without any additional complication. We have also neglected the PNL,z

component as explained before. The values of the effective nonlinearity depend upon the

crystal and their values can be found in several textbooks [27]. In Table 1Effective Nonlinear

Coefficients. As to GaSe, d22 = 54pm/V ; as to MgOLN d22 = 0, d31 = 4.5pm/V table.1 we

report the effective nonlinearity for the crystals we use in the next section.

Equations (22equation.2.22) are first order in the propagation coordinate, conserve the

total field energy (see Appendix) and retain their validity for arbitrary wide pulse band-

width. As opposed to what is reported in the literature [21], we focus our attention on

situations where Êx(ω) or/and Êy(ω) are broadband signals extending from a few terahertz

to hundreds of terahertz, as observed in several physical settings [10]. For this reason we

need here to take full advantage of the approach first introduced in [23, 24] to efficiently

tackle broadband χ(2) interactions. The computational effort needed to solve these equa-

tions, by a standard split step Fourier method exploiting Runge-Kutta for the nonlinear step,

is of the order of magnitude of that needed for solving the standard three-wave equations

universally exploited to describe light propagation in quadratic crystals [28, 29]. However

Eqs. (22equation.2.22) are far more general, and are equivalent to Maxwell equations when

dealing with unidirectional propagation [17]. In the next section we show some examples of

ultra-broadband pulse generation in anisotropic quadratic crystals that cannot be handled

by standard three-wave interactions but are well described by model (22equation.2.22).

3. Examples

In this section we report a representative example of modelling single cycle generation in the

terahertz domain by optical rectification in GaSe [10], and we predict harmonics generation

and spectral broadening in PPMgOLN in the mid-infrared and in the visible.

Single-cycle multiterahertz transients in GaSe

We consider the generation of single-cycle terahertz transients as the idler of a parametric

amplifier. This phenomenon has been observed very recently in experiments exploiting GaSe

crystals [10]. GaSe is an excellent material for THz generation due to its exceptionally large

nonlinear coefficient d22 = 54pm/V and infrared transparency. The strong anisotropy allows

for widely tunable phase matching. For a given set of pump, signal and idler frequencies

(ωp, ωs, ωi) the phase matching condition ∆k = kp − ks − ki = 0 can be satisfied by tuning
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the propagation angle θ. In a type-I interaction (ep → os + oi) the effective nonlinearity is

maximized for an azimuthal angle φ = π/6 (see Tab. 1Effective Nonlinear Coefficients. As

to GaSe, d22 = 54pm/V ; as to MgOLN d22 = 0, d31 = 4.5pm/V table.1). To achieve the

broadest phase-matching bandwidth it is necessary to suppress the group velocity mismatch

between the signal and the idler and to minimize group velocity dispersion. In order to

achieve this condition it is necessary to choose accurately the pump wavelength; as studied

in [10] the phase matching bandwidth is maximized for a pump wavelength λp = 1.18µm

and a signal wavelength λs = 1.28µm. We thus consider an extraordinary polarized gaussian

pulse, with Tp = 115fs, peak intensity Ip = 25GW/cm2 at λp for the pump, which mixes

with an ordinary polarized gaussian pulse, with Ts = 30fs, peak intensity Is = 40GW/cm2

at λs in a L = 140µm long GaSe crystal cut for type-I interaction (φ = π/6) with a phase

matching angle θ = 12.5o. Figure 1Generation of single cycle idler pulse by parametric mix-

ing of pump and signal waves centered at 1.18 and 1.28 µm, respectively. Ip = 25GW/cm2,

Is = 40GW/cm2, L=140µm. a) Input (dashed curves) and output (solid curves) power spec-

trum of extraordinary wave Ex (red curves) and ordinary wave Ey (blue curves). b) Power

spectrum of ordinary output THz component. c) Single cycle THz transients obtained by

filtering Ey in [1-100] THz range. Dashed curve, in phase pump-signal input; solid curve,

phase difference 3/4πfigure.1a) shows the power spectrum of the input and output pulses as

obtained from numerical solution of Eqs. (22equation.2.22). The THz ordinary idler, gener-

ated with an efficiency of 3.5% and shown in linear scale in Fig 1Generation of single cycle

idler pulse by parametric mixing of pump and signal waves centered at 1.18 and 1.28 µm,

respectively. Ip = 25GW/cm2, Is = 40GW/cm2, L=140µm. a) Input (dashed curves) and

output (solid curves) power spectrum of extraordinary wave Ex (red curves) and ordinary

wave Ey (blue curves). b) Power spectrum of ordinary output THz component. c) Single

cycle THz transients obtained by filtering Ey in [1-100] THz range. Dashed curve, in phase

pump-signal input; solid curve, phase difference 3/4πfigure.1b), spans over several octaves

from 1 to 60 THz. As secondary effects, we notice an extraordinary THz component gener-

ated with much lower efficiency and a consistent spectral broadening of the pump. Figure

1Generation of single cycle idler pulse by parametric mixing of pump and signal waves cen-

tered at 1.18 and 1.28 µm, respectively. Ip = 25GW/cm2, Is = 40GW/cm2, L=140µm. a)

Input (dashed curves) and output (solid curves) power spectrum of extraordinary wave Ex

(red curves) and ordinary wave Ey (blue curves). b) Power spectrum of ordinary output THz
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component. c) Single cycle THz transients obtained by filtering Ey in [1-100] THz range.

Dashed curve, in phase pump-signal input; solid curve, phase difference 3/4πfigure.1c) shows

the ordinary polarized electric field filtered in the [1-100]THz range, showing a FWHM en-

velope around 50fs, corresponding to a single oscillation of a 20 THz carrier. It is worth

noting that our approach enable us to calculate the real electric field: this is of paramount

importance in few cycle phenomena, where the carrier-envelope phase (CEP) must be taken

into account. In fact, due to dispersion, CEP is strongly sensitive to just a few microns

propagation in a solid medium. The CEP can be controlled by varying pump-signal relative

phase: in Fig. 1Generation of single cycle idler pulse by parametric mixing of pump and

signal waves centered at 1.18 and 1.28 µm, respectively. Ip = 25GW/cm2, Is = 40GW/cm2,

L=140µm. a) Input (dashed curves) and output (solid curves) power spectrum of extraor-

dinary wave Ex (red curves) and ordinary wave Ey (blue curves). b) Power spectrum of

ordinary output THz component. c) Single cycle THz transients obtained by filtering Ey in

[1-100] THz range. Dashed curve, in phase pump-signal input; solid curve, phase difference

3/4πfigure.1c) dashed curve corresponds to in-phase pump-signal input, while solid curve

corresponds to a pump and signal relative phase of 3/4π. The numerical results reproduce

perfectly the experiments of Ref. [10].

Harmonic generation and spectral broadening in PP-MgOLN

We consider a PPMgOLN crystal, cut for type-I interaction [30, 31]. In PPMgOLN, type-I

(o + o → e) quasi-phase-matched (QPM) scheme, exploiting the d31 = 4.5pm/V nonlinear

coefficient, offers a spectral range in which the wave-vector mismatch varies more slowly with

the fundamental wavelength than in conventional type-0 (e + e → e) QPM scheme, using

the d33 = 25pm/V nonlinear coefficient, giving rise to broadband phase-matched nonlinear

interactions.

We consider an ordinary polarized (Ey) fundamental frequency (FF) gaussian pulse with

a duration T = 100fs, centered at λ = 1550nm, peak intensity I = 90GW/cm2, that

propagates in a L = 6.5mm long PPMgOLN sample. The off-diagonal nonlinear coefficient

d31 is poled with a period Λ = 19.55µm, and the crystal orientation is θ = φ = π/2.

Figure 2Evolution of the total power spectrum (dB). The initial pulse has gaussian shape

and the parameters are T = 100fs, λ = 1550nm, I = 60GW/cm2, ΛQPM = 19.55µm,

θ = φ = π/2figure.2 shows the evolution of the field spectrum during the propagation.

We see a consistent broadening on both the red and blue side of the input field spectrum
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at λFF = 1550nm which, at the end of the crystal, reaches 1.5 octave spanning. We see

the generation of spectral components at the second harmonic (SH) and third harmonic

(TH). The generation of field components at the SH is ruled by mismatched interactions:

fig. 4a) Phase-matching curve for type I SHG interaction in a PPMg0LN crystal. b) Level

curves of sum frequency wavelength (λ3 = λ1 + λ2) and of mismatch ∆k = 0 (thick blue

curves) for V-order (superimposed to λ = 540nm) and VII-order QPM (superimposed to

λ = 470nm)figure.4a) reports the mismatch ∆k for SH generation, which never vanishes

in the FF range [1300 − 2000]nm. At the output of the crystal we note a broadband

extraordinary SH and ordinary TH, as well as the presence of some TH spikes given by

quasi phase matching of higher order spatial harmonics of the grating (fig. 3Input (dashed

curves) and output (solid curves) power spectrum after propagation in a PPMgOLN crystal.

Red and blue curves represent extraordinary and ordinary polarized spectra, respectively.

Power spectrum is shown both as a function of frequency (a) and of wavelength (b)figure.3).

The TH spikes at 540nm and 470nm corresponds to a broadband type-II sum frequency

generation (o + e → o) matched by fifth (V) and seventh (VII) order QPM, respectively.

Indeed, fig. 4a) Phase-matching curve for type I SHG interaction in a PPMg0LN crystal.

b) Level curves of sum frequency wavelength (λ3 = λ1+λ2) and of mismatch ∆k = 0 (thick

blue curves) for V-order (superimposed to λ = 540nm) and VII-order QPM (superimposed

to λ = 470nm)figure.4b) reports the sum frequency wavelengths (λ3 = λ1 + λ2) and the

matching curve ∆koeo = k3 − k2 − k1 = 0 as a function of wavelengths λ1,2; the V-order and

VII-order matching curves are practically superimposed to sum frequency λ = 540nm and

λ = 470nm.

4. Conclusions

We derived the propagation equations for electric fields in anisotropic, dispersive, quadratic

nonlinear media. Our approach enable us to simulate unidirectional electromagnetic prop-

agation in uniaxial quadratic media with modest computational effort, order of magnitudes

less than the numerical solution of full Maxwell equations. We have exploited this model

to simulate recently observed femtosecond single-cycle multiterahertz transients in gallium

selenide and to predict harmonic generation and spectral broadening in the visible and

mid-infrared in lithium niobate.
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Appendix

Equations (22equation.2.22) posses the following conserved quantity, proportional to the

total intensity of the field:

I =
∫

[

nx(ω)|Êx(ω)|
2 + ny(ω)|Êy(ω)|

2
]

dω (23)

where the integration is performed from −∞ to +∞, and n(ω) is assumed to be real

(lossless medium).

We have:

dI

dz
=

∑

m=x,y

∫

nm(ω)
[

∂Êm

∂z
Ê∗

m +
∂Ê∗

m

∂z
Êm

]

dω

=
−iω

c

[

2d1

∫ ∫

ωÊx(ω
′)Êy(ω − ω′)Ê∗

x(ω)dωdω
′

+ d2

∫ ∫

ωÊy(ω
′)Êy(ω − ω′)Ê∗

x(ω)dωdω
′

+ d1

∫ ∫

ωÊx(ω
′)Êx(ω − ω′)Ê∗

y(ω)dωdω
′

+ 2d2

∫ ∫

ωÊx(ω
′)Êy(ω − ω′)Ê∗

y(ω)dωdω
′ − c.c.

]

=
−iω

c
[J1 − J2]

By exploiting the Hermiticity of Ê and by the change of variables (ω → −ω, ω′ → −ω′)

in the integrals J1, we obtain J1 = −J2, so that:

dI

dz
=

2

c

{

2d1

∫

[iωÊx(ω)]
∗

[
∫

Êx(ω
′)Êy(ω − ω′)dω′

]

dω

+ d2

∫

[iωÊx(ω)]
∗

[
∫

Êy(ω
′)Êy(ω − ω′)dω′

]

dω

+ d1

∫

[iωÊy(ω)]
∗

[
∫

Êx(ω
′)Êx(ω − ω′)dω′

]

dω

+ 2d2

∫

[iωÊy(ω)]
∗

[
∫

Êx(ω
′)Êy(ω − ω′)dω′

]

dω
}

By exploiting Parseval’s theorem (i.e. conservation of scalar product), we can write the

integrals in time domain, and considering that the fields must vanish at infinity we have:

dI

dz
=

2

c

[

2d1

∫ ∂Ex

∂t
ExEydt+ d2

∫ ∂Ex

∂t
E2

ydt

+ d1

∫ ∂Ey

∂t
E2

xdt+ 2d2

∫ ∂Ey

∂t
ExEydt

]

= 0

where in the last step we have integrated by parts the second and third terms.
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Figure Captions

• Figure 1: Generation of single cycle idler pulse by parametric mixing of pump and

signal waves centered at 1.18 and 1.28 µm, respectively. Ip = 25GW/cm2, Is =

40GW/cm2, L=140µm. a) Input (dashed curves) and output (solid curves) power

spectrum of extraordinary wave Ex (red curves) and ordinary wave Ey (blue curves).

b) Power spectrum of ordinary output THz component. c) Single cycle THz transients

obtained by filtering Ey in [1-100] THz range. Dashed curve, in phase pump-signal

input; solid curve, phase difference 3/4π.

• Figure 2: Evolution of the total power spectrum (dB). The initial pulse has gaussian

shape and the parameters are T = 100fs, λ = 1550nm, I = 60GW/cm2, ΛQPM =

19.55µm, θ = φ = π/2.

• Figure 3: Input (dashed curves) and output (solid curves) power spectrum after prop-

agation in a PPMgOLN crystal. Red and blue curves represent extraordinary and

ordinary polarized spectra, respectively. Power spectrum is shown both as a function

of frequency (a) and of wavelength (b).

• Figure 4: a) Phase-matching curve for type I SHG interaction in a PPMg0LN crystal.

b) Level curves of sum frequency wavelength (λ3 = λ1 + λ2) and of mismatch ∆k = 0

(thick blue curves) for V-order (superimposed to λ = 540nm) and VII-order QPM

(superimposed to λ = 470nm).
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Fig. 1. Generation of single cycle idler pulse by parametric mixing of pump and signal waves

centered at 1.18 and 1.28 µm, respectively. Ip = 25GW/cm2, Is = 40GW/cm2, L=140µm.

a) Input (dashed curves) and output (solid curves) power spectrum of extraordinary wave

Ex (red curves) and ordinary wave Ey (blue curves). b) Power spectrum of ordinary output

THz component. c) Single cycle THz transients obtained by filtering Ey in [1-100] THz

range. Dashed curve, in phase pump-signal input; solid curve, phase difference 3/4π.
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Fig. 2. Evolution of the total power spectrum (dB). The initial pulse has gaussian shape

and the parameters are T = 100fs, λ = 1550nm, I = 60GW/cm2, ΛQPM = 19.55µm,

θ = φ = π/2
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Fig. 3. Input (dashed curves) and output (solid curves) power spectrum after propagation in

a PPMgOLN crystal. Red and blue curves represent extraordinary and ordinary polarized

spectra, respectively. Power spectrum is shown both as a function of frequency (a) and of

wavelength (b).
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Fig. 4. a) Phase-matching curve for type I SHG interaction in a PPMg0LN crystal. b) Level

curves of sum frequency wavelength (λ3 = λ1 + λ2) and of mismatch ∆k = 0 (thick blue

curves) for V-order (superimposed to λ = 540nm) and VII-order QPM (superimposed to

λ = 470nm).
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Crystal d1 (eeo, eoe, oee) d2 (ooe, oeo, eoo)

GaSe d22 cos
2 θ cos 3φ d22 cos θ sin 3φ

MgO:LN d22 cos
2 θ cos 3φ d31 sin θ − d22 cos θ sin 3φ

Table 1. Effective Nonlinear Coefficients. As to GaSe, d22 = 54pm/V ; as to MgOLN d22 = 0,

d31 = 4.5pm/V .
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