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Introduction

Femtosecond light pulses play an important role in the study of ultrafast dynamics of elementary excitations in molecules and solids [START_REF] Huber | How many-particle interactions develop after ultrafast excitation of an electronhole plasma[END_REF][START_REF] Gunter | Subcycle switch-on of ultrastrong lightmatter interaction[END_REF], and in exploring new regimes of light matter interactions [START_REF] Brabec | Intense few-cycle laser fields: Frontiers of nonlinear optics[END_REF]. Structural changes in molecules or in molecular complexes were monitored directly in the time domain by means of the transient absorption of molecular vibrations [START_REF] Chudoba | Site-specific excited-state solute-solvent interactions probed by femtosecond vibrational spectroscopy[END_REF]. Vibrational dynamics in liquids or in proteins have been succesfully studied with femtosecond pulses in the mid-infrared [START_REF] Heilweil | Ultrafast glimpses at water and ice[END_REF][START_REF] Woutersen | Femtosecond mid-IR pump probe spectroscopy of liquid water: evidence for a two-component structure[END_REF]. Femtosecond infrared spectroscopy has also been applied to problems in solid state physics.

In the last decade, considerable efforts have been dedicated to the achievement of shorter femtosecond light pulses, to improve temporal resolution, and to expand the frequency tunability of pulses [START_REF] Cerullo | Ultrafast Optical Parametric Amplifiers[END_REF][START_REF] Polli | High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics[END_REF]. In this context, different schemes based on parametric frequency conversion in uniaxial quadratic crystals have been used to generate tunable high intensity femtosecond pulses in the ultraviolet, visible, near and mid infrared: as representative examples, ultrabroadband near infrared self-phase-stabilized pulses by difference-frequency generation in β barium borate [START_REF] Manzoni | Ultrabroadband self-phasestabilized pulses by difference-frequency generation[END_REF], single-cycle ultrabroad-band multiterahertz transients in gallium selenide (GaSe) [START_REF] Junginger | Single-cycle multiterahertz transients with peak fields above 10 MV/cm[END_REF], few optical cycle pulses tunable from the visible to the mid infrared by optical parametric amplifiers in β barium borate and periodically poled lithium tantalate [START_REF] Brida | Few-optical-cycle pulses tunable from the mid-infrared by optical parametric amplifiers[END_REF].

Theoretical research efforts on the modeling of this kind of single-cycle and broadband phenomena are limited. From the theoretical side, the analysis of optical pulse propagation in anisotropic quadratic media typically involves the definition of polarized complex envelopes whose variations are supposed to be slow with respect to the oscillation of carrier frequencies (slowly varying envelope approximation (SVEA) [START_REF] Boyd | Nonlinear Optics[END_REF]). In the frequency domain, this assumption is equivalent to requiring that the envelope bandwidths are narrow with respect to the carrier frequencies. Moreover when second-order parametric processes are considered, the usual approach is to write coupled equations for the separated frequency bands relevant for the processes [START_REF] Cerullo | Ultrafast Optical Parametric Amplifiers[END_REF][START_REF] Kinsler | Few-cycle pulse propagation[END_REF][START_REF] Moses | Controllable Self-Steepening of Ultrashort Pulses in Quadratic Nonlinear Media[END_REF]. However, when single-cycle or ultrabroadband phenomena take place, the harmonic bands merge, generating a single broad spectrum. Obviously, in these cases, the coupled envelopes description of the propagation fails due the frequency overlapping of the distinct bands. Different works showed that it is possible to model the propagation of fields with pulse duration down to the single optical oscillation cycle and to the generation of very broad spectra [START_REF] Geissler | Light propagation in field-ionizing media: extreme nonlinear optics[END_REF]- [START_REF] Conforti | Ultra-broadband optical phenomena in quadratic nonlinear media[END_REF].

The scope of this article is to present a model for the description of single-cycle and ultrabroadband electric field phenomena in dispersive quadratic uniaxial media. This model provides a powerful tool for analytical treatment due to its simplicity, and can be easily solved with a modest computational effort. The paper is organized as follows: in section 2 we recall the derivation of the master equations in anisotropic media, discussing the approximations and the limit of validity of the model. In section 3, we test our model analyzing recent experimental results of single-cycle mid-infrared terahertz generation in GaSe crystals [START_REF] Junginger | Single-cycle multiterahertz transients with peak fields above 10 MV/cm[END_REF],

finding an excellent agreement between the experimental data and our numerics; moreover we predict harmonic generation and spectral broadening in the mid-infrared and in the visible in Periodically Poled MgO-doped Lithium Niobate (PPMgOLN). Finally, we present our conclusions in Section 4.

Derivation of the propagation equations

We start from Maxwell equations written in MKS units, in the reference frame

x ′ y ′ z ′ ∇ ′ × E ′ = - ∂B ′ ∂t (1) 
∇ ′ × H ′ = ∂D ′ ∂t (2) 
B ′ = µ 0 H ′ (3) 
D ′ = ε 0 D ′ L + P ′ N L (4) 
where D ′ L and P ′ N L account for the linear and nonlinear response of the medium, respectively. The components of the linear displacement vector for a dispersive anisotropic medium reads (assuming summation over repeated indxes)

D ′ L,j = ∞ -∞ ε ′ jk (t -t ′ )E ′ k (t ′ )dt ′ . (5) 
In the reference frame of the principal axes of a uniaxial crystal, the dielectric permittivity tensor is the diagonal matrix ε = diag(ε o , ε o , ε e ), where ε o , ε e are the ordinary and extraordinary relative dielectric permittivity, respectively. The reference frame of the principal axes of the crystal (x ′ y ′ z ′ ) is not convenient for the derivation of the propagation equations.

We introduce a reference frame xyz that is rotated by (θ, φ) with respect to crystal axes.

Namely, θ is the angle between the propagation vector (parallel to z) and the crystalline z ′ axis (the crystal optical axis), and φ is the azimuthal angle between the propagation vector and the x ′ z ′ crystalline plane. The two reference frame are linked by the orthogonal rotation matrix A:

A =       cos φ cos θ sin φ cos θ -sin θ -sin φ cos φ 0 sin θ cos φ sin φ sin θ cos θ       . (6) 
The dielectric permittivity tensor in the xyz frame is no longer diagonal, and it can be written as

ε = Aε ′ A T =       ε o cos 2 θ + ε e sin 2 θ 0 (ε o -ε e ) cos θ sin θ 0 ε o 0 (ε o -ε e ) cos θ sin θ 0 ε o sin 2 θ + ε e cos 2 θ       . (7) 
In the reference frame xyz, it is possible to decompose the electromagnetic field into two linear and orthogonal polarizations of D, both transverse to the propagation direction z [START_REF] Landau | Electrodynamics of continuous media[END_REF]: D = (0, D y , 0) T + (D x , 0, 0) T . We assume the propagation of plane waves, so the electric field and displacement vectors depend upon the z coordinate (and time) only. It is worth noting that this decomposition is rigorous for linear propagation only, since the nonlinearity can rotate locally the polarization. However it is reasonable to consider the nonlinearity as a perturbative term whose effect is to couple the orthogonal polarized field vector components during propagation. If we neglect dispersion and nonlinearity, just for the moment, the electric field vector can be straightforwardly computed as:

E = ε -1 0 ε -1 D = ε -1 0       cos 2 θ εo + sin 2 θ εe D x ε -1 o D y εe-εo εeεo cos θ sin θD x       (8) 
By eliminating the magnetic field from Maxwell equations we obtain the vector wave equation:

∇ × ∇ × E - 1 c 2 ∂ 2 D L ∂t 2 = 1 ε 0 c 2 ∂ 2 P N L ∂t 2 (9) 
Note that obviously ∇ • D = 0, but ∇ • E = 0. By writing (2equation.2.9) in components we obtain

∂ 2 E x ∂z 2 - 1 c 2 ∂ 2 D L,x ∂t 2 = 1 ε 0 c 2 ∂ 2 P N L,x ∂t 2 (10) 
∂ 2 E y ∂z 2 - 1 c 2 ∂ 2 D L,y ∂t 2 = 1 ε 0 c 2 ∂ 2 P N L,y ∂t 2 (11) 0 = 1 ε 0 c 2 ∂ 2 P N L,z ∂t 2 (12) 
The last equation witnesses the fact that the decomposition into two independent orthogonal polarizations is rigorous only in the linear case. We neglect P N L,z , in the reasonable hypothesis of small nonlinearity.

Exploiting the relation (2equation.2.5) we obtain:

∂ 2 E m (z, t) ∂z 2 - 1 c 2 ∂ 2 ∂t 2 +∞ -∞ E m (z, t ′ )ε m (t -t ′ )dt ′ = 1 ε 0 c 2 ∂ 2 ∂t 2 P N L,m (z, t) , m = x, y (13) 
where we have defined

ε x = cos 2 θ ε o + sin 2 θ ε e -1 (14) 
ε y = ε o (15) 
We thus have obtained the propagation equations for an ordinary polarized wave E y and an extraordinary polarized wave E x .

By defining the Fourier transform

F[E](ω) = Ê(ω) = +∞ -∞ E(t)e -iωt
dt, we can write (13equation.2.13) in the frequency domain:

∂ 2 Êm (z, ω) ∂z 2 + ω 2 c 2 εm (ω) Êm (z, ω) = - ω 2 ε 0 c 2 PNL,m (z, ω), ( 16 
)
where c is the velocity of light in vacuum, ε 0 is the vacuum dielectric permittivity, εm (ω) = 1 + χm (ω), χm (ω) is the linear electric susceptibility and k m (ω) = (ω/c) εm (ω) is the propagation wavenumber.

We now proceed to obtain from the second order vector wave equation (2equation.2.16)

an equation first order in the propagation coordinate z, describing electromagnetic fields propagating in the forward direction only. Several techniques were proposed in literature in order to achieve a pulse propagation equation with minimal assumptions [START_REF] Brabec | Intense few-cycle laser fields: Frontiers of nonlinear optics[END_REF][START_REF] Housakou | Supercontinuum generation of higherorder solitons by fission in photonic crystal fibers[END_REF][START_REF] Kolesik | Unidirectional optical pulse propagation equation[END_REF][START_REF] Kolesik | Nonlinear optical pulse propagation simulation: From Maxwell's to unidirectional equations[END_REF][START_REF] Genty | Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides[END_REF][START_REF] Kinsler | Theory of directional pulse propagation[END_REF][START_REF] Kinsler | Optical pulse propagation with minimal approximations[END_REF][START_REF] Kumar | Ultrashort pulse propagation in a cubic medium including the Raman effect[END_REF]. The interested reader can find in [START_REF] Kinsler | Optical pulse propagation with minimal approximations[END_REF] an exhaustive discussion on the different derivation styles.

Here we decided to follow a simple approach firstly proposed by Brabec and Krausz [START_REF] Brabec | Intense few-cycle laser fields: Frontiers of nonlinear optics[END_REF] for describing propagation in isotropic cubic media, and successfully extended to the case of isotropic quadratic media [START_REF] Conforti | Nonlinear envelope equation for broadband optical pulses in quadratic media[END_REF][START_REF] Conforti | Ultra-broadband optical phenomena in quadratic nonlinear media[END_REF]. It is worth noting that, in the case of plane wave propagation we are interested in, all the techniques reported in [START_REF] Brabec | Intense few-cycle laser fields: Frontiers of nonlinear optics[END_REF][START_REF] Housakou | Supercontinuum generation of higherorder solitons by fission in photonic crystal fibers[END_REF][START_REF] Kolesik | Unidirectional optical pulse propagation equation[END_REF][START_REF] Kolesik | Nonlinear optical pulse propagation simulation: From Maxwell's to unidirectional equations[END_REF][START_REF] Genty | Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides[END_REF][START_REF] Kinsler | Theory of directional pulse propagation[END_REF][START_REF] Kinsler | Optical pulse propagation with minimal approximations[END_REF][START_REF] Kumar | Ultrashort pulse propagation in a cubic medium including the Raman effect[END_REF] lead to the same model.

We factor out the fast dependence of the propagation coordinate from the electric field, for all the frequencies: Êm (z, ω) = Ûm (z, ω) exp[-ik m (ω)z]. This definition amounts writing the electric field as the product of a spatial carrier wave and a slowly varying envelope.

Since we remove the exact propagation constant at every frequency, we can avoid making any requirement on the bandwidth of the pulses. The wave equation for the field Ûm reads:

∂ 2 Ûm (z, ω) ∂z 2 -2ik m (ω) ∂ Ûm (z, ω) ∂z = - ω 2 ε 0 c 2 PNL,m (z, ω)e ikm(ω)z . ( 17 
)
We make the slowly evolving wave approximation (SEWA [START_REF] Brabec | Intense few-cycle laser fields: Frontiers of nonlinear optics[END_REF]), that is

|∂ z Ûm | << 2k(ω)| Ûm |
, and thus we can write

∂ Ûm (z, ω) ∂z = -i ω 2 2ε 0 c 2 k m (ω) PNL,m (z, ω)e ikm(ω)z , (18) 
and from the definition of Ûm , we obtain the equation for the electric field:

∂ Êm (z, ω) ∂z + ik m (ω) Êm (z, ω) = -i ω 2ε 0 cn m (ω) PNL,m (z, ω). (19) 
We consider an instantaneous second order nonlinear polarization (summation over repeated indexes is assumed)

P ′ N L,j = 2ε 0 d jkl E ′ k E ′ l ( 20 
)
where d jkl is the second order nonlinear susceptivity tensor, that is usually given in the crystal axes reference frame. In order to obtain the effective nonlinearity [START_REF] Midwinter | The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order nonlinear optical polarization[END_REF], we have to rotate the polarization vector with matrix A, following the prescription

P N L (E) = AP ′ N L (A T E). (21) 
After some calculations, we can write:

∂ Êx ∂z + ik x (ω) Êx = -iω cn x (ω) F[2d 1 E x E y + d 2 E 2 y ] (22) 
∂ Êy ∂z + ik y (ω) Êy = -iω cn y (ω) F[d 1 E 2 x + 2d 2 E x E y ]
where d 1 is the effective nonlinearity for oee, eoe and eeo interactions, whereas d 2 is the effective nonlinearity for oeo, eoo and ooe interactions. We have neglected eee (terms proportional to E 2 x in the first equation) and ooo (terms proportional to E 2 y in the second equation) interactions since they are usually not phase matched by birefringence. However they can be added if necessary without any additional complication. We have also neglected the P N L,z component as explained before. The values of the effective nonlinearity depend upon the crystal and their values can be found in several textbooks [START_REF] Nikogosyan | Nonlinear Optical Crystals: A Complete Survey[END_REF]. In to hundreds of terahertz, as observed in several physical settings [START_REF] Junginger | Single-cycle multiterahertz transients with peak fields above 10 MV/cm[END_REF]. For this reason we need here to take full advantage of the approach first introduced in [START_REF] Conforti | Nonlinear envelope equation for broadband optical pulses in quadratic media[END_REF][START_REF] Conforti | Ultra-broadband optical phenomena in quadratic nonlinear media[END_REF] to efficiently tackle broadband χ (2) interactions. The computational effort needed to solve these equations, by a standard split step Fourier method exploiting Runge-Kutta for the nonlinear step, is of the order of magnitude of that needed for solving the standard three-wave equations universally exploited to describe light propagation in quadratic crystals [START_REF] Conforti | Parametric frequency conversion of short optical pulses controlled by a CW background[END_REF][START_REF] Baronio | Three-wave trapponic solitons for tunable high-repetition rate pulse train generation[END_REF]. However

Eqs. (22equation.2.22) are far more general, and are equivalent to Maxwell equations when dealing with unidirectional propagation [START_REF] Kolesik | Unidirectional optical pulse propagation equation[END_REF]. In the next section we show some examples of ultra-broadband pulse generation in anisotropic quadratic crystals that cannot be handled by standard three-wave interactions but are well described by model (22equation.2.22).

Examples

In this section we report a representative example of modelling single cycle generation in the terahertz domain by optical rectification in GaSe [START_REF] Junginger | Single-cycle multiterahertz transients with peak fields above 10 MV/cm[END_REF], and we predict harmonics generation and spectral broadening in PPMgOLN in the mid-infrared and in the visible.

Single-cycle multiterahertz transients in GaSe

We consider the generation of single-cycle terahertz transients as the idler of a parametric amplifier. This phenomenon has been observed very recently in experiments exploiting GaSe crystals [START_REF] Junginger | Single-cycle multiterahertz transients with peak fields above 10 MV/cm[END_REF]. GaSe is an excellent material for THz generation due to its exceptionally large nonlinear coefficient d 22 = 54pm/V and infrared transparency. The strong anisotropy allows for widely tunable phase matching. For a given set of pump, signal and idler frequencies (ω p , ω s , ω i ) the phase matching condition ∆k = k p -k s -k i = 0 can be satisfied by tuning the propagation angle θ. In a type-I interaction (e p → o s + o i ) the effective nonlinearity is maximized for an azimuthal angle φ = π/6 (see Tab. 1Effective Nonlinear Coefficients. As to GaSe, d 22 = 54pm/V ; as to MgOLN d 22 = 0, d 31 = 4.5pm/V table.1). To achieve the broadest phase-matching bandwidth it is necessary to suppress the group velocity mismatch between the signal and the idler and to minimize group velocity dispersion. In order to achieve this condition it is necessary to choose accurately the pump wavelength; as studied in [START_REF] Junginger | Single-cycle multiterahertz transients with peak fields above 10 MV/cm[END_REF] the phase matching bandwidth is maximized for a pump wavelength λ p = 1.18µm and a signal wavelength λ s = 1.28µm. We thus consider an extraordinary polarized gaussian pulse, with T p = 115f s, peak intensity I p = 25GW/cm 2 at λ p for the pump, which mixes with an ordinary polarized gaussian pulse, with T s = 30f s, peak intensity I s = 40GW/cm 2 at λ s in a L = 140µm long GaSe crystal cut for type-I interaction (φ = π/6) with a phase matching angle θ = 12.5 o . Figure 1Generation of single cycle idler pulse by parametric mixing of pump and signal waves centered at 1.18 and 1.28 µm, respectively. I p = 25GW/cm 2 , 

I s = 40GW/cm 2 ,

Harmonic generation and spectral broadening in PP-MgOLN

We consider a PPMgOLN crystal, cut for type-I interaction [START_REF] Yu | Broadband quasiphase-matched second-harmonic generation in MgO-doped periodically poled LiN bO 3 at the communications band[END_REF][START_REF] Yu | Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate[END_REF]. In PPMgOLN, type-I (o + o → e) quasi-phase-matched (QPM) scheme, exploiting the d 31 = 4.5pm/V nonlinear coefficient, offers a spectral range in which the wave-vector mismatch varies more slowly with the fundamental wavelength than in conventional type-0 (e + e → e) QPM scheme, using the d 33 = 25pm/V nonlinear coefficient, giving rise to broadband phase-matched nonlinear interactions.

We consider an ordinary polarized (E y ) fundamental frequency (FF) gaussian pulse with a duration T = 100f s, centered at λ = 1550nm, peak intensity I = 90GW/cm 2 , that propagates in a L = 6.5mm long PPMgOLN sample. The off-diagonal nonlinear coefficient 

Conclusions

We derived the propagation equations for electric fields in anisotropic, dispersive, quadratic nonlinear media. Our approach enable us to simulate unidirectional electromagnetic propagation in uniaxial quadratic media with modest computational effort, order of magnitudes less than the numerical solution of full Maxwell equations. We have exploited this model to simulate recently observed femtosecond single-cycle multiterahertz transients in gallium selenide and to predict harmonic generation and spectral broadening in the visible and mid-infrared in lithium niobate.

Appendix

Equations (22equation.2.22) posses the following conserved quantity, proportional to the total intensity of the field:

I = n x (ω)| Êx (ω)| 2 + n y (ω)| Êy (ω)| 2 dω ( 23 
)
where the integration is performed from -∞ to +∞, and n(ω) is assumed to be real (lossless medium).

We have:

dI dz = m=x,y n m (ω) ∂ Êm ∂z Ê * m + ∂ Ê * m ∂z Êm dω = -iω c 2d 1 ω Êx (ω ′ ) Êy (ω -ω ′ ) Ê * x (ω)dωdω ′ + d 2 ω Êy (ω ′ ) Êy (ω -ω ′ ) Ê * x (ω)dωdω ′ + d 1 ω Êx (ω ′ ) Êx (ω -ω ′ ) Ê * y (ω)dωdω ′ + 2d 2 ω Êx (ω ′ ) Êy (ω -ω ′ ) Ê * y (ω)dωdω ′ -c.c. = -iω c [J 1 -J 2 ]
By exploiting the Hermiticity of Ê and by the change of variables (ω → -ω, ω ′ → -ω ′ ) in the integrals J 1 , we obtain J 1 = -J 2 , so that:

dI dz = 2 c 2d 1 [iω Êx (ω)] * Êx (ω ′ ) Êy (ω -ω ′ )dω ′ dω + d 2 [iω Êx (ω)] * Êy (ω ′ ) Êy (ω -ω ′ )dω ′ dω + d 1 [iω Êy (ω)] * Êx (ω ′ ) Êx (ω -ω ′ )dω ′ dω + 2d 2 [iω Êy (ω)] * Êx (ω ′ ) Êy (ω -ω ′ )dω ′ dω
By exploiting Parseval's theorem (i.e. conservation of scalar product), we can write the integrals in time domain, and considering that the fields must vanish at infinity we have:

dI dz = 2 c 2d 1 ∂E x ∂t E x E y dt + d 2 ∂E x ∂t E 2 y dt + d 1 ∂E y ∂t E 2 x dt + 2d 2 ∂E y ∂t E x E y dt = 0
where in the last step we have integrated by parts the second and third terms. 

  L=140µm. a) Input (dashed curves) and output (solid curves) power spectrum of extraordinary wave E x (red curves) and ordinary wave E y (blue curves). b) Power spectrum of ordinary output THz component. c) Single cycle THz transients obtained by filtering E y in [1-100] THz range. Dashed curve, in phase pump-signal input; solid curve, phase difference 3/4πfigure.1a) shows the power spectrum of the input and output pulses as obtained from numerical solution of Eqs. (22equation.2.22). The THz ordinary idler, generated with an efficiency of 3.5% and shown in linear scale in Fig 1Generation of single cycle idler pulse by parametric mixing of pump and signal waves centered at 1.18 and 1.28 µm, respectively. I p = 25GW/cm 2 , I s = 40GW/cm 2 , L=140µm. a) Input (dashed curves) and output (solid curves) power spectrum of extraordinary wave E x (red curves) and ordinary wave E y (blue curves). b) Power spectrum of ordinary output THz component. c) Single cycle THz transients obtained by filtering E y in [1-100] THz range. Dashed curve, in phase pump-signal input; solid curve, phase difference 3/4πfigure.1b), spans over several octaves from 1 to 60 THz. As secondary effects, we notice an extraordinary THz component generated with much lower efficiency and a consistent spectral broadening of the pump. Figure 1Generation of single cycle idler pulse by parametric mixing of pump and signal waves centered at 1.18 and 1.28 µm, respectively. I p = 25GW/cm 2 , I s = 40GW/cm 2 , L=140µm. a) Input (dashed curves) and output (solid curves) power spectrum of extraordinary wave E x (red curves) and ordinary wave E y (blue curves). b) Power spectrum of ordinary output THz component. c) Single cycle THz transients obtained by filtering E y in [1-100] THz range. Dashed curve, in phase pump-signal input; solid curve, phase difference 3/4πfigure.1c) shows the ordinary polarized electric field filtered in the [1-100]THz range, showing a FWHM envelope around 50fs, corresponding to a single oscillation of a 20 THz carrier. It is worth noting that our approach enable us to calculate the real electric field: this is of paramount importance in few cycle phenomena, where the carrier-envelope phase (CEP) must be taken into account. In fact, due to dispersion, CEP is strongly sensitive to just a few microns propagation in a solid medium. The CEP can be controlled by varying pump-signal relative phase: in Fig. 1Generation of single cycle idler pulse by parametric mixing of pump and signal waves centered at 1.18 and 1.28 µm, respectively. I p = 25GW/cm 2 , I s = 40GW/cm 2 , L=140µm. a) Input (dashed curves) and output (solid curves) power spectrum of extraordinary wave E x (red curves) and ordinary wave E y (blue curves). b) Power spectrum of ordinary output THz component. c) Single cycle THz transients obtained by filtering E y in [1-100] THz range. Dashed curve, in phase pump-signal input; solid curve, phase difference 3/4πfigure.1c) dashed curve corresponds to in-phase pump-signal input, while solid curve corresponds to a pump and signal relative phase of 3/4π. The numerical results reproduce perfectly the experiments of Ref. [10].
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  [START_REF] Yu | Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate[END_REF] is poled with a period Λ = 19.55µm, and the crystal orientation is θ = φ = π/2.

Figure 2Evolution of the

  Figure 2Evolution of the total power spectrum (dB). The initial pulse has gaussian shape and the parameters are T = 100f s, λ = 1550nm, I = 60GW/cm 2 , Λ QP M = 19.55µm, θ = φ = π/2figure.2 shows the evolution of the field spectrum during the propagation.We see a consistent broadening on both the red and blue side of the input field spectrum

Fig. 1 .

 1 Fig. 1. Generation of single cycle idler pulse by parametric mixing of pump and signal waves centered at 1.18 and 1.28 µm, respectively. I p = 25GW/cm 2 , I s = 40GW/cm 2 , L=140µm. a) Input (dashed curves) and output (solid curves) power spectrum of extraordinary wave E x (red curves) and ordinary wave E y (blue curves). b) Power spectrum of ordinary output THz component. c) Single cycle THz transients obtained by filtering E y in [1-100] THz range. Dashed curve, in phase pump-signal input; solid curve, phase difference 3/4π.
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 23 Fig. 2. Evolution of the total power spectrum (dB). The initial pulse has gaussian shape and the parameters are T = 100f s, λ = 1550nm, I = 60GW/cm 2 , Λ QP M = 19.55µm, θ = φ = π/2

Fig. 4 .

 4 Fig. 4. a) Phase-matching curve for type I SHG interaction in a PPMg0LN crystal. b) Level curves of sum frequency wavelength (λ 3 = λ 1 + λ 2 ) and of mismatch ∆k = 0 (thick blue curves) for V-order (superimposed to λ = 540nm) and VII-order QPM (superimposed to λ = 470nm).

  Table 1Effective Nonlinear Coefficients. As to GaSe, d 22 = 54pm/V ; as to MgOLN d 22 = 0, d 31 = 4.5pm/V table.1 we report the effective nonlinearity for the crystals we use in the next section. Equations (22equation.2.22) are first order in the propagation coordinate, conserve the total field energy (see Appendix) and retain their validity for arbitrary wide pulse bandwidth. As opposed to what is reported in the literature [21], we focus our attention on situations where Êx (ω) or/and Êy (ω) are broadband signals extending from a few terahertz

Table 1 .

 1 Crystal d 1 (eeo, eoe, oee) d 2 (ooe, oeo, eoo) GaSe d 22 cos 2 θ cos 3φ d 22 cos θ sin 3φ MgO:LN d 22 cos 2 θ cos 3φ d 31 sin θd 22 cos θ sin 3φ Effective Nonlinear Coefficients. As to GaSe, d 22 = 54pm/V ; as to MgOLN d 22 = 0, d 31 = 4.5pm/V .

Figure Captions

• Figure 1: Generation of single cycle idler pulse by parametric mixing of pump and signal waves centered at 1.18 and 1.28 µm, respectively. I p = 25GW/cm 2 , I s = 40GW/cm 2 , L=140µm. a) Input (dashed curves) and output (solid curves) power spectrum of extraordinary wave E x (red curves) and ordinary wave E y (blue curves).