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We obtain solitary-wave solutions of a model describing light propagation in binary (linearly and nonlinearly)
waveguide arrays. This model describes energy localization and transport in various physical settings, ranging
from metal-dielectric (i.e., plasmonic) to photonic crystal waveguides. The solitons exist for focusing, defocusing,
and even for alternating focusing-defocusing nonlinearity.
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I. INTRODUCTION

Discrete optics in coupled waveguides has been an area of
intense research activities during the last three decades (see [1]
for a recent review). Most efforts have been devoted to the
analysis of linear and nonlinear properties of uniform waveg-
uide arrays, i.e., arrays composed of equally spaced identical
waveguides, and both one-dimensional and multidimensional
configurations have been considered theoretically as well as
experimentally [2–8].

On the other hand, nonuniform waveguide arrays offer a
richer setting where engineering of the periodic structure can
provide further degrees of freedom. In this context, zigzag
waveguide arrays (i.e., the cascade of arrays characterized by
alternating tilt angles) have been introduced to get diffraction
management [9]. Binary arrays composed of waveguides
with different wave numbers have been thoroughly studied
(see [10–13] and related works) since they exhibit interesting
features, such as double refraction, due to their intrinsic two-
band nature. Moreover, binary arrays with different coupling
coefficients have been considered, since they might offer a
more feasible experimental framework in which to exploit a
two-band structure in the linear and nonlinear regimes [14,15].
In this instance, the use of photonic crystal waveguides [16] or
waveguides based on plasmonic confinement [17,18] offers a
unique setting in which to exploit propagation in the so-called
alternating positive and negative coupling regime [19,20].
Efremidis et al. [20], in particular, studied nonlinearly uniform
arrays where the coupling coefficients are equal in modulus
but of opposite sign. In this case the structure does not
possess a gap in the linear spectrum, and can be reduced to
a uniform array by a phase transformation. Exploiting this
transformation, families of discrete solitons were calculated
starting from the well-known discrete Schrödinger equation.

In this paper we consider a binary array designed in such a
way that the coupling between successive waveguides switches
periodically from C to −C(1 + ε), thus opening a gap centered
at zero Bloch momentum in the linear dispersion relation.
We consider also a binary Kerr nonlinearity and we look for
self-sustained nonlinear propagation in the form of gap solitons
in such a structure. Specifically, extending previously derived
results [21–30], we obtain in the continuum limit exact analyt-
ical solutions for both stationary and “walking” gap solitons
moving along the spatial coordinate with a tunable velocity.
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II. THEORETICAL MODEL AND SOLITON SOLUTIONS

According to coupled mode theory and taking into account
third-order nonlinearities in the form of a pure Kerr effect, the
governing equations read as [10]

iE′
nz

+ βnE
′
n + Cn−1E

′
n−1 + Cn+1E

′
n+1 + χn|E′

n|2E′
n = 0,

where E′
n is the amplitude of the modal field Mn(x) of the nth

waveguide; βn is the propagation constant of each individual
waveguide (βn = β + �β/2 for n even and βn = β − �β/2
for n odd); χn, the site-dependent nonlinear coefficient, is
γ1 (γ2) for n even (odd); and Cn−1,Cn+1 are the coupling
coefficients with the (n − 1)th and the (n + 1)th waveguides,
respectively. In the specific case of interest, Cn−1 = C1 and
Cn+1 = C2 when n is even, whereas Cn−1 = C2 and Cn+1 =
C1 when n is odd. We then perform the transformation E′

n =
En exp(iβz) and we separately consider the mode amplitudes
in the even and odd waveguides. Finally, E2n = An and
E2n−1 = Bn are governed by the following two sets of coupled
equations with constant coefficients:

iAnz + �β

2
An + C1Bn + Bn+1 + γ1|An|2An = 0,

(1)

iBnz − �β

2
Bn + An−1 + C1An + γ2|Bn|2Bn = 0,

where C2 has been set equal to 1, without loss of generality.
Assuming Bloch-wave disturbances, (An,Bn) ∝

exp{i(nkx + kzz)}, the linear dispersion relation of Eqs. (1)
reads

k2
z =

(
�β

2

)2

+ C2
1 + 1 + 2C1 cos kx.

Note that a band gap opens whenever �β �= 0 and/or for
C1 �= ±1, the band edges corresponding to the wave number
kx = 0 for C1 < 0 and kx = π for C1 > 0. Moreover, there
is numerical evidence [10,28] that discrete solitons can reside
inside this gap. We shall make a comprehensive analytical
study of stationary and moving gap solitons on the basis of an
equivalent continuous model.

Specifically, for C1 < 0, in the neighborhood of kx = 0, we
use the expansions

An±1(z) = u(x,z) ± ux(x,z) + 1
2uxx(x,z) + · · · ,

Bn±1(z) = w(x,z) ± wx(x,z) + 1
2wxx(x,z) + · · ·
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to obtain (as a first-order approximation)

iuz + �β

2
u + wx + εw + γ1|u|2u = 0,

(2)

iwz − �β

2
w − ux + εu + γ2|w|2w = 0,

where C1 = −1 + ε. This equation system also arises in the
neighborhood of kx = π for C1 = 1 + ε, following a similar
expansion procedure after the change of variables (An,Bn) →
(−1)n(An,Bn).

We now look for both stationary and walking self-confined
solutions of the system defined by Eqs. (2). To this end, we
use the following trial functions [23]:

u(x,z) = 1
2 [K1g1(ξ ) + iK2g2(ξ )] exp(iψ cos Q),

w(x,z) = 1
2i

[K1g1(ξ ) − iK2g2(ξ )] exp(iψ cos Q),
(3)

ξ = x + vz√
1 − v2

, ψ = vx + z√
1 − v2

,

K1 =
(

1 + v

1 − v

)1/4

, K2 =
(

1 − v

1 + v

)1/4

with g1,2 two arbitrary complex functions, −1 � v � 1 and
0 � Q � π . Although not necessary, for the sake of simplicity,
from now on we set �β = 0 (i.e., the biatomic nature of the
array is left to the coupling coefficients only).

Substitution of the ansatz (3) into Eqs. (2) gives (s = γ1 +
γ2, d = γ1 − γ2)

−ġ1+ i cos(Q)g1+ iεg2+ s

8i

(
K4

1 |g1|2g1+ 2|g2|2g1− g2
2g

∗
1

)
−d

8

(− K2
2 |g2|2g2 − 2K2

1 |g1|2g2 + K2
1 g2

1g
∗
2

) = 0,

ġ2 + i cos(Q)g2 + iεg1 + s

8i

(
K4

2 |g2|2g2 + 2|g1|2g2 − g2
1g

∗
2

)
−d

8

(
K2

1 |g1|2g1 + 2K2
2 |g2|2g1 − K2

2 g2
2g

∗
1

) = 0.

These equations have the invariant P = |g1|2 − |g2|2; as we
are interested in bright solitons, we set P = 0, so that |g1|2 =
|g2|2 and g1,2(ξ ) = f (ξ ) exp[iθ1,2(ξ )]. Finally, using η = f 2

and µ = θ1 − θ2, we get

η̇ = −∂H

∂µ
, µ̇ = ∂H

∂η
,

H = 2η(ε cos µ + cos Q)
(4)

− s

8
η2

(
K4

1

2
+ K4

2

2
+ 2 − cos(2µ)

)

− d

4
η2

(
K2

1 + K2
2

)
sin µ.

Equations (4) represent a one-dimensional (thus integrable)
Hamiltonian system, and solitary-wave solutions correspond
to the separatrix trajectories that are homoclinic to (i.e.,
emanate from and return to) the unstable fixed points of (4). In
the following we assume s > 0, since the results can be easily
extended to the case s < 0 by the substitution µ → µ + π ,
Q → π − Q.

Bright solitons emanate from the unstable fixed point
(η0,µ0) = (0, ± arccos[− cos(Q)/ε]) and correspond to level
curves of the Hamiltonian H (η0,µ0) = 0. By exploiting H =
0, we can derive the expression of η as a function of µ from
the definition of H :

η = 16(ε cos µ + cos Q)

s
[

K4
1

2 + K4
2

2 + 2 − cos(2µ)
]

+ 2d
(
K2

1 + K2
2

)
sin µ

.

(5)

By inserting Eq. (5) into µ̇ = ∂H
∂η

, it follows that

µ̇ = −2(cos Q + ε cos µ). (6)

This equation can be easily integrated to obtain

µ(ξ ) = −2 arctan

[√
ε + cos Q

ε − cos Q
tanh[

√
ε2 − cos(Q)2ξ ]

]
.

(7)

and, upon substitution in Eq. (5),

η(ξ ) = sech(δξ )2(cos Q + ε)

−4db1α tanh(δξ ) + sb2[1 + α2 tanh(δξ )2] − 2s
[1−α2 tanh(δξ )2]2

1+α2 tanh(δξ )2

, (8)

where α =
√

ε+cos(Q)
ε−cos(Q) , δ =

√
ε2 − cos(Q)2, b1 = K2

1 + K2
2 ,

b2 = K4
1

2 + K4
2

2 + 3.
Once we get the solutions η(ξ ) and µ(ξ ), we can find the

fields u(x,z) and w(x,z) by substitution in (3) and solving

θ̇1 = cos Q + ε cos µ − s

8
η
[
K4

1 + 2 − cos(2µ)
]

− d

8
η

(
3K2

1 + K2
2

)
sin µ. (9)

The expression of θ1 is rather cumbersome except for station-
ary solutions (v = 0). In fact by inserting (5) and (6) in (9) it
is straightforward to show that θ1 = µ/2.

We now focus our attention on the existence domain
for bright gap solitons. These solitons belong to a family
with two free parameters: the velocity v (−1 � v � 1) and
Q (arccos ε � Q � π − arccos ε). From Eq. (5) we note,
however, that, as the array parameters (ε,s,d) are changed, the
amplitude η can diverge at some points, entailing that some
(v,Q) couples are not allowed.
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More specifically, for a given Q, we find that η(ξ ) is
bounded for all ξ , and bright soliton solutions can exist only
above a critical velocity v; as long as s > |d| this critical
velocity is 0 so that all possible v and Q values in the
(Q,v) plane can be attained; however, when |d| � s a different
situation arises: for arccos ε � Q � π/2, solutions only exist
above a critical velocity vcr :

|vcr | =
√

2

s

√
s2 − d2 + |d|

√
d2 − s2. (10)

For π/2 � Q � π − arccos ε such a critical velocity does
not exist; however, bright soliton solutions are permitted only
for Q � π − arccos(ε

√
t) with t given by

t =
s2(3 + f1) − (df2)2 +

√
(df2)4 − 2s2d2f 2

2 (1 + f1)

2s2
,

(11)

f1 = K4
1 + K4

2

2
, f2 = K2

1 + K2
2 .

This last condition can be derived by looking at
the phase plane (η,µ). When Q = π − arccos(ε

√
t),

another unstable fixed point exists characterized by µp =
−sgn(d) arccos[− cos(Q)/ε)], ηp = 8ε2

√
1 − cos(Q)2/ε2

sec(Q)/[−|d|(K2
1 + K2

2 ) + 2s
√

1 − cos(Q)2/ε2] and having
Hamiltonian H (ηp,µp) = 0. In this instance the separatrix
trajectory is heteroclinic, connecting the points (η0,µ0)
and (ηp,µp), and the resulting solution corresponds to a
kink soliton. If we increase Q above this threshold, the
trajectories in the phase plane become unbounded, preventing
the existence of localized solutions.

The existence conditions on v and Q can be easily
translated into conditions on the soliton transverse phase
kx = v cos(Q)/(

√
1 − v2) and propagation constant kz =

cos(Q)/(
√

1 − v2), as illustrated in Fig. 1.

FIG. 1. (Color online) Existence conditions on kx and kz.
Continuous line refers to the dispersion relation of the discrete
problem; dashed line shows the dispersion relation of the continuous
approximation and the filled region corresponds to the existence
domain of the gap soliton solutions (ε = 0.25, s = 2, d = 2.1).
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FIG. 2. (a) Bifurcation diagram of the Hamiltonian system
(v = 0): continuous line for stable centers, dashed line for unstable
saddles; inset shows phase plane for Q = 1.77 (open circle indicates
saddle, filled circle indicates stable center); (b) field amplitude in
even (continuous) and odd (dashed) waveguides (v = 0); (c) field
evolution along the array for v = 0; (d) field evolution along the
array for v = 0.5. In all panels, ε = 0.25, Q = 1.77, s = 2, d = 0.

III. EXAMPLES

In this section, we discuss some specific examples of the
soliton solutions derived earlier. We also show the robustness
of our solutions in some representative cases where we
consider propagation in different arrays.

As a first example, we consider an array with all the
waveguides having the same nonlinear response (s = 2,d =
0). In this case, bright soliton solutions do exist for arccos ε �
Q � π − arccos ε as one can also infer from the bifurcation
diagram of Fig. 2(a), that shows the amplitude η0 of the

043822-3
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FIG. 3. (a) Bifurcation diagram of the Hamiltonian system
(v = 0): continuous line for stable centers, dashed line for unstable
saddles; left (right) inset shows phase plane for Q = 1.5 (Q = 1.77)
(open circle indicates saddle, filled circle indicates stable center); (b)
field amplitude in even (continuous) and odd(dashed) waveguides
(v = 0); (c) field evolution along the array for v = 0; (d) field evolu-
tion along the array for v = 0.5. In all panels, ε = 0.25, Q = 1.77,
s = 2, d = 2.
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FIG. 4. (a) Bifurcation diagram of the Hamiltonian system
(v = 0): continuous line for stable centers, dashed line for unstable
saddles; left (right) inset shows phase plane for kink (bright) soliton
(open circle indicates saddle, filled circle indicates stable center); (b)
field amplitude in even (continuous) and odd (dashed) waveguides
(v = 0); (c) field evolution along the array for v = 0; (d) field
evolution along the array for v = 0.5. In all panels, ε = 0.25,
Q = 1.77, s = 2, d = 2.1.
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fixed points of system (4) as a function of the parameter
Q. In fact, in this interval both the unstable saddle η0 = 0
and a stable center with η0 �= 0 exist. From the phase plane
depicted in the inset (corresponding to Q = 1.77), it is
evident that the separatix describing the soliton emanates from
(η0,µ0) = (0, arccos[− cos(Q)/ε]), turns around the center
and returns to the fixed point with vanishing η. Note that
in this situation (d = 0) the v = 0 case shows perfect mirror
symmetry between the field in the even and odd sites [see
Fig. 2(b)]; as d increases this mirror symmetry is obviously
lost. Figures 2(c) and 2(d) show the propagation of a stationary
(v = 0) and a moving (v = 0.5) soliton.

The second example we are considering in this section
corresponds to s = 2,d = 2 (i.e., an interlaced linear-nonlinear
array). As one can see from Fig. 3(a), for this choice of
parameters bright soliton solutions for v = 0 exist only for
π/2 < Q � π − arccos ε, because the stable center does not
exist for Q < π/2. In this instance, the phase portrait is
qualitatively different for Q greater or less than π/2 [right
and left insets of Fig. 3(a)]. For Q > π/2 the phase portrait
is similar to the d = 0 case, except for the asymmetry with
respect to µ. For Q < π/2 the separatrix emanating from the
saddle is not closed and separates orbits of unbounded motion
from periodic motion. As a consequence solitons do not exist.

It is remarkable to note that even in the case of interlaced
focusing-defocusing nonlinearities soliton solutions still exist
as clearly demonstrated in Fig. 4 for s = 2,d = 2.1; this
applies also to solutions walking along the array as shown
in Fig. 4(d). Note also that, as can be seen from Fig. 4(a), in
this case we do not have bright soliton solutions for Q < 1.73;
however, as we have already noted above, in the presence of a
nonzero transverse velocity we have access to this region of Q

values. This is what we can see in Fig. 5 where propagation in
an interlaced focusing-defocusing array is shown for Q = 1.72
and v = 0.5; note that, remarkably, this last case corresponds
to a situation where we do not have bright soliton solutions
with zero transverse velocity.

Another interesting feature of the interlaced focusing-
defocusing case is the existence of flat-top and kink solitons,
due to the presence of an additional saddle in the bifurcation
diagram. It is possible that the two saddles possess the same

FIG. 5. Field evolution along the array for v = 0.5; here ε =
0.25, Q = 1.72, s = 2, d = 2.1.

−100 −50 0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

waveguide number

F
ie

ld
 a

m
pl

itu
de

 [a
rb

. u
ni

ts
]

(a)

(b)

FIG. 6. (a) Example of a flat-top (thin lines) and a kink (thick
lines) soliton. Here ε = 0.25, Q = 1.786 553 604 650 208 for the dark
soliton (Q = 1.786 553 7 for the flat-top soliton), s = 2, d = 2.5,
v = 0.5. (b) Field evolution along the array for the kink soliton.

Hamiltonian: in this case the heteroclinic orbit connecting the
two points gives rise to a kink soliton [left inset of Fig. 4(a)].
As Q approaches the existence limit defined by (11), bright
solitons become wider and eventually take a kinklike shape.
An example of this kind of solution is reported in Fig. 6(a).
Figure 6(b) shows the propagation of the kink soliton with
velocity v = 0.5.

IV. CONCLUSIONS

We have analyzed a model describing light propagation
in a binary array, accounting for alternating positive and
negative linear coupling as well as nonuniform nonlinearity.
This model can be applied in different physical settings
such as plasmonic, Bragg, and photonic crystal waveguides.
We derived exact bright and kink soliton solutions in the
long-wavelength (i.e., continuous) limit. Such solitons display
several interesting and unusual features, unique to this type
of waveguide structure, and are possible even in the case of
alternating focusing-defocusing nonlinearity.
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