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Abstract

We study the propagation of velocity-locked dark triplet solitons in the three

wave resonant interaction model. The modulational instability of the plane

wave background where the solitons sit prevents the long range propaga-

tion. However even a small second order dispersion proves to greatly reduce,

or suppress, the modulational instability gain, allowing for effective stable

soliton propagation.

Keywords: Keywords: Three wave resonant interaction, dark solitons,

stability, nonlinear optics
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1. Introduction

Three-wave resonant interactions (3WRI) are widespread in various branches

of physics, as they describe the resonant mixing of waves in weakly nonlin-

ear and dispersive media. The 3WRI model is typically encountered in the

description of any conservative nonlinear medium where the nonlinear dy-

namics can be considered as a perturbation of linear wave propagation, the
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lowest-order nonlinearity is quadratic in the field amplitudes and the phase-

matching (or resonance) condition is satisfied. Solutions of the 3WRI have

been known for a long time [1, 2, 3, 4, 5, 6, 7], and extensive applications are

found in nonlinear optics (parametric amplification, frequency conversion,

stimulated Raman and Brillouin scattering), plasma physics (laser-plasma

interactions, radio frequency heating, plasma instabilities), acoustics (light-

acoustic interactions), fluid dynamics (interaction of water waves) and solid

state physics [8, 9, 10, 11, 12, 13, 14, 15].

Soliton solutions of 3WRI can be classified in three main classes, depend-

ing on the boundary conditions. The first one is the class of bright-bright-

bright (BBB) solitons [2, 6, 7, 16], where the pulses of the three interacting

waves vanish sufficiently fast at infinity. The second class, bright-bright-dark

(BBD) solitons, is given by two bright pulses which vanish sufficiently fast

at infinity and a kink-like pulse which asymptotically behaves like a plane

wave [3, 17, 18, 19, 20]. The third class, dark-dark-dark (DDD) solitons,

is given by three locked dark waves [21]. The modulational instability of

constant-amplitude backgrounds, i.e. continuous wave (cw) solutions, play

an important role for BBD and DDD solitons [22, 23, 24] as it may lead to

break-up processes.

The main purpose of this paper is to investigate the propagation and sta-

bility of DDD solitons [21] of the 3WRI system. We find that DDD solitons

are always unstable because of the modulational instability of the cw back-

ground. We also show, however, that the introduction of a quasi-negligible

second-order dispersion (or diffraction) is sufficient to drastically reduce the

instability gain allowing for effective stable DDD soliton propagation. This
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interesting balance between dispersion and nonlinearity, which implies poten-

tial applicability of unstable waves since small dispersion is always present in

real contexts, is not new in nonlinear optics, see f.i. the case of the Nonlinear

Schroedinger model [25, 26].

Because of computational convenience, we choose to write the 3WRI equa-

tions as

u1z + c1u1y = −s2u
∗

3u2 ,

u2z + c2u2y = s1u3u1 , (1)

u3y = (c2 − c1)u
∗

1u2 ,

where u1, u2, u3 are the wave envelopes, and z and y are, respectively, the

transverse and longitudinal coordinates in a spacial process, or, respectively,

the space and time coordinates in the time domain. Despite these specifica-

tions, we term the parameters c1 and c2, “velocities”, and, with no loss of

generality, we assume 0 < c1 < c2. The coupling constants s1 , s2 are just

signs: s21 = s22 = 1. It should be pointed out that this system, being first or-

der, is covariant with respect to arbitrary linear transformations of the (z, y)

plane in itself. Therefore, we discuss the system (1) with the understanding

that the results we display here can be easily translated into corresponding

results for other forms of the 3WRI equations which are covariantly related to

it. This observation can be made explicit by displaying the way to transform

the general form

a1t + v1a1x = −p1K
∗a2 a

∗

3 ,

a2t + v2a2x = p2Ka1 a3 ,

a3t + v3a3x = −p3K
∗a∗1 a2

(2)
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of the 3WRI system as given in [7], into our equations (1). Here K is a

complex parameter and p1 , p2 , p3 are signs, p
2
j = 1, one of which can be freely

chosen ( f.i. p3, see below). First note that the labeling of the amplitudes

aj(x, t) , j = 1, 2, 3 is arbitrary because the system (2) is left unchanged

by combining transpositions of the indices 1, 2, 3 with complex conjugation.

Thus one way of fixing the labeling is via ordering the three velocities, for

instance v1 > v2 > v3. Next we change coordinates in such a way that

the transformed smallest velocity v3 vanishes, namely x = z + v3y , t = y.

Then we observe that, if K = |K| exp(iα), then the simple transformation

(a1 , a2 , a3) → (a1 , a2 exp(iα) , a3) amounts to asking K to be positive real.

The final step is setting p1 = s2 , p2 = s1 , p3 = −1 and defining the new

wave amplitudes uj , j = 1, 2, 3 , as

u1(z, y) = K
√

c2
c2−c1

a1(x, t) ,

u2(z, y) = K
√

c1
c2−c1

a2(x, t) ,

u3(z, y) = K
√
c1c2 a3(x, t) ,

(3)

with c1 = 1/(v1− v3) , c2 = 1/(v2− v3), which turn out to satisfy our system

(1), with the condition 0 < c1 < c2. Only one crucial point should be kept

in mind, namely that in the system (1) the independent variable y should be

treated as “evolution” variable. This specification is specially important in

investigating the linear stability of solutions.

In the next section 2 we address the modulational stability analysis of the

plane wave (cw background) solution of both the (integrable) dispersionless

3WRI system and of its (nonintegrable) dispersive (or diffractive) general-

isation, and we show numerical examples of instability gain functions. In

section 3 we sketch the main features of the DDD soliton, as described in
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detail in [21], and display numerical evidence of its instability. There we

provide also numerical simulations of DDD soliton propagation, without and

with the effect of dispersion. Finally the last section 4 presents conclusions

and remarks.

2. Linear stability analysis of cw solutions

Before addressing the stability of the DDD soliton which propagates on

a background, we investigate in this section the stability of the background

itself, namely of the triplet plane wave solution. For future reference, we first

generalize the system (1) by adding second-order dispersion terms in the z

coordinate:

u1y +
1

c1
u1z + iβ1u1zz = −s2

c1
u∗

3u2 ,

u2y +
1

c2
u2z + iβ2u2zz =

s1
c2
u3u1 , (4)

u3y + iβ3u3zz = (c2 − c1)u
∗

1u2 ,

where the real dispersion constants βm (m = 1, 2, 3) may be considered small.

The reason for this generalization is not only physical, as a small dispersion

is always present, but it is also due to the fact that higher order dispersion

may reduce (or even suppress) instability [25, 26]. Such effect is found for

instance for the Nonlinear Schrödinger equation iut+γ2uxx+iγ3uxxx = η|u|2u
where the stability condition η(γ2−3kγ3) > 0 for the cw solution ucw(x, t) =

A exp[i(kx− ωt)] implies that, by suitably choosing the wave number k and

the higher order dispersion parameter γ3, stability can be attained even in

the self-focusing case ηγ2 < 0 .
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In order to proceed in this analysis in full generality, first we construct

the family of triplet plane wave solutions of our dispersive 3WRI system (4),

namely

uj = Aje
i(kjy−ωjz) , j = 1, 2, 3 , (5)

and then we analyze the linear stability of these solutions with respect to

small perturbations. Inserting the expressions (5) into the equations (4)

yields five relations among the nine plane wave parameters Aj , kj , ωj , j =

1, 2, 3, three of them being immediately found, i.e. the resonance conditions

k3 = k2 − k1 and ω3 = ω2 − ω1, and the amplitude relation

A3 = −i

[

c2 − c1
k3 − β3ω2

3

]

A∗

1A2 . (6)

In order to obtain explicit expressions of the remaining two relations we find

it convenient to give a priori (the real value of) ω1 and ω2, together with

the complex amplitudes A1 and A2, and to derive the expressions of the

parameters k1 and k2. This way we first find the implicit relations

k1 =
ω1

c1
+ β1ω

2
1 −

s2(c2 − c1)

c1(k3 − β3ω2
3)
|A2|2 , (7)

k2 =
ω2

c2
+ β2ω

2
2 −

s1(c2 − c1)

c2(k3 − β3ω2
3)
|A1|2 , (8)

and then we derive the expression of k3 = k2 − k1 by solving a second degree

equation,

k3 = β3ω
2
3 +

1
2
[ω2

c2
− ω1

c1
+ β2ω

2
2 − β1ω

2
1 − β3ω

2
3]+

1
2
σ
√

[ω2

c2
− ω1

c1
+ β2ω2

2 − β1ω2
1 − β3ω2

3]
2 + 4(c2 − c1)(

s2
c1
|A2|2 − s1

c2
|A1|2) ,

σ = sign[ω2

c2
− ω1

c1
+ β2ω

2
2 − β1ω

2
1 − β3ω

2
3] .

(9)
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This expression completes the construction of the plane wave solutions (5)

of the dispersive 3WRI equations (4). We note that, because of the square

root in the formula (9), a necessary condition for k1 , k2 to be real is that the

parameters ω1, ω2, A1, A2 be such that

[
ω2

c2
− ω1

c1
+ β2ω

2
2 − β1ω

2
1 − β3ω

2
3]

2 +4(c2 − c1)(
s2
c1
|A2|2 −

s1
c2
|A1|2) ≥ 0 . (10)

Now we analyze the stability of these plane wave solutions by considering

the following perturbed solutions

uj = Aj[1 + pj(z, y)]e
i(kjy−ωjz) , j = 1, 2, 3 . (11)

By inserting this ansatz into Eqs. (4) and retaining only linear terms in

pj , j = 1, 2, 3, the three complex perturbations pj obey the linearized equa-

tions:

p1y + (1/c1 + 2β1ω1)p1z + iβ1p1zz + iµ1(p1 − p2 − p∗3) = 0 ,

p2y + (1/c2 + 2β2ω2)p2z + iβ2p2zz + iµ2(p2 − p1 − p3) = 0 ,

p3y + 2β3ω3p3z + iβ3p3zz + iµ3(p3 − p2 − p∗1) = 0 .

(12)

Here we have conveniently introduced the notation

µ1 = − s2
c1µ3

(c2 − c1)|A2|2 , µ2 = − s1
c2µ3

(c2 − c1)|A1|2 , µ3 = k3 − β3ω
2
3 .

(13)

As in the standard Fourier analysis, we consider a periodic perturbation as

sum of two Stokes–anti-Stokes sidebands, pm(z, y) = p
(+)
m exp[i(νz − λy)] +

p
(−)
m exp[−i(νz − λ∗y)],m = 1, 2, 3, which reduce the differential equations

(12) to a linear 6 × 6 homogeneous system of algebraic equations whose
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solvability requires that the (possibly complex) parameter λ be one of the

six roots of the polynomial

P (λ) = (f 2
1 − g21)(f

2
2 − g22)(f

2
3 − g23) + 2µ1g1(f

2
2 − g22)(f

2
3 − g23) + 2µ2g2(f

2
1 − g21)(f

2
3 − g23)

+2µ3g3(f
2
1 − g21)(f

2
2 − g22)− µ2

1(f
2
2 − g22)(f

2
3 − g23)− µ2

2(f
2
1 − g21)(f

2
3 − g23)

−µ2
3(f

2
1 − g21)(f

2
2 − g22)− 2µ1µ2(f1f2 − g1g2)(f

2
3 − g23)− 2µ2µ3(f2f3 − g2g3)(f

2
1 − g21)

+2µ1µ3(f1f3 + g1g3)(f
2
2 − g22) + 4µ1µ2µ3[f3(f1g2 − g1f2)− 2f1f2g3]

+4µ2
1µ2µ3g2g3 + 4µ1µ

2
2µ3g1g3 + 4µ1µ2µ

2
3g1g2 .

(14)

This expression is written with the following notation:

fj = λ−ν(1/cj+2βjωj) , j = 1, 2 , f3 = λ−2νβ3ω3 , gm = βmν
2 , m = 1, 2, 3 ,

(15)

and µm is defined by (13). For any real value of the variable ν, each of the six

roots of the polynomial (14) defines one branch of the “dispersion relation”,

λ = λ(ν). The unstable modes occur at those “frequencies” ν to which there

corresponds at least one zero λ(ν) of the polynomial (14) which is complex

with nonvanishing imaginary part. We note that this polynomial (14) has

real coefficients and therefore its complex zeros come as complex conjugate

pairs. For each ν, the instability gain G(ν) is defined as the maximum of the

absolute values of the imaginary part of the six roots:

G(ν) = max
i=1,···,6

{|Imλi(ν)|} . (16)

Since in general the roots cannot be explicitly obtained, some approximations

which lead to analytical results were used in [23]. However these approxi-

mations apply only when the root λ(ν) and the frequency ν are small. This

hypothesis is too stringent for the analysis we want to carry on, thus we will

solve the general problem by standard numerical methods.
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2.1. The case with no dispersion

Let us consider first the dispersionless case, βm = 0. In this case, by

numerically exploring the parameter space, we find that, if the amplitudes Aj

of the three waves are not all vanishing, A1A2A3 6= 0, for any real value of ω1

and ω2 there exists an interval of the frequency ν for which there is at least one

pair of complex conjugated roots λ(ν) , λ∗(ν), with the implication that these

plane wave solutions are always unstable. This fact entails that the simulton

family reported in the next section does not contain any stable solution. To

gain some insight into the three-wave instability problem we consider first

the single cw solution, where a complete analytical solution is attainable. Let

us start with the simple plane wave solution u1 = A1 exp(ik1y − iω1z), u2 =

0, u3 = 0 with c1k1 = ω1. Inserting the perturbed solution u1 = A1 exp(ik1y−
iω1z)[1 + ǫ2p1(z, y)] , u2 = ǫ exp(ik1y − iω1z)p2(z, y) , u3 = ǫp3(z, y) in the

3WRI equations (1), yields, at the first order in ǫ, the following system of

two linear equations

p2y +
1

c2
p2z + iω1(

1

c1
− 1

c2
)p2 =

s1A1

c2
p3 , p3y = A∗

1(c2 − c1)p2 , (17)

which, for the Fourier mode exp[i(λy−νz)], implies a second degree equation

for λ(ν) whose roots are

λ±(ν) =
1

2c2
[ν − ω1

c1
(c2 − c1)±

√

[ν − ω1

c1
(c2 − c1)]2 − 4s1c2(c2 − c1)|A1|2 .

(18)

Therefore, if s1 = −1, the two roots are real and the plane wave solution

is stable. On the contrary, if s1 = 1, the solution is unstable, the insta-

bility frequency band being ν− < ν < ν+ with ν± = (ω1/c1)(c2 − c1) ±
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2|A1|
√

c2(c2 − c1). Moreover the instability gain is

G(ν) = 1/(2c2)
√

4c2(c2 − c1)|A1|2 − [ν − ω1(c2 − c1)/c1]2 , (19)

and the maximum instability gain occurs at ν = νmax = (ω1/c1)(c2−c1) with

G(νmax) = |A1|
√

(c2 − c1)/c2.

Similar calculations can be carried out for the other two single plane wave so-

lutions. In particular we find that the plane wave solution u2 = A2 exp(ik2y−
iω2z), u1 = 0, u3 = 0 is stable if s2 = 1, while, if s2 = −1, this so-

lution is unstable, the instability band being ν− < ν < ν+ with ν± =

−(ω2/c2)(c2 − c1)± 2|A2|
√

c1(c2 − c1). In this case the instability gain takes

the expression

G(ν) = 1/(2c1)
√

4c1(c2 − c1)|A2|2 − [ν + ω2(c2 − c1)/c2]2 , (20)

with its maximumG(νmax) = |A2|
√

(c2 − c1)/c1 for ν = νmax = −(ω2/c2)(c2−
c1). On its turn, the plane wave solution u3 = A3 exp(ik3y − iω3z), u1 =

0, u2 = 0 is stable if s1s2 = 1, while, if s1s2 = −1, this solution is unsta-

ble, the instability band being ν− < ν < ν+ with ν± = ω3c1/(c2 − c1) ±
2|A3|

√
c1c2/(c2 − c1). The instability gain is

G(ν) = 1/(2c1c2)
√

4c1c2|A3|2 − [ν(c2 − c1)− c1ω3]2 , (21)

with its maximum G(νmax) = |A3|
√
c1c2 for ν = νmax = ω3c1/(c2 − c1).

Although the general case with A1A2A3 6= 0 is not tractable by analytic

means, we find it useful to derive approximate expressions of the zeros λ(ν)

of the polynomial P (λ) (see (14)) and of the instability frequency band ν− <

ν < ν+. For instance, if we consider amplitudes close to the values A2 =
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A3 = 0, with s1 = 1, we find that the expression

ν± = c2k1 − ω2 ±
√

c2(c2 − c1)|A1| (22)

of the instability band well approximates the numerical results shown in next

sections. Similarly we obtain the approximate expressions ν± = c1k2 − ω1 ±
2
√

c1(c2 − c1)|A2|, and ν± = (c1c2k3−c2ω1+c1ω2)/(c2−c1)±2|A3|
√
c1c2/(c2−

c1) of the instability bands in the cases of amplitudes close to A1 = A3 = 0,

with s2 = −1 and, respectively, to A1 = A2 = 0, with s1s2 = −1.

We summarize these findings according to the signs s1, s2, and by borrowing

the classifying terminology used for the BBB solutions of the 3WRI model

(see [7]), i.e. backscattering, explosive and soliton exchange regimes:

• backscattering (s1 = s2 = 1): A1 unstable, A2 stable, A3 stable;

• backscattering (s1 = −1, s2 = 1): A1 stable, A2 stable, A3 unstable;

• soliton exchange (s1 = −1, s2 = −1): A1 stable, A2 unstable, A3 stable;

• explosive (s1 = 1, s2 = −1): A1 unstable, A2 unstable, A3 unstable.

This scenario shows that, in the dispersionless case (β1 = β2 = β3 = 0), the

cw stationary solutions, see (5) with A1A2A3 6= 0, are always unstable: for

every combination of signs at least one single cw is modulationally unstable.

As a side remark, we also note that the stability of the u1 single plane wave

in the soliton exchange case is consistent with the stability property of some

recently found BBD-type soliton solutions (boomerons) of the 3WRI equa-

tions [18, 19, 21].

Since our main interest is in the stability of the DDD soliton and in the
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next section we show that DDD solitons do not exist in the soliton exchange

configuration s1 = −1, s2 = −1, in the following subsection 2.2, we limit our

attention to backscattering configurations, in particular we consider only the

case s1 = s2 = 1 since the other case s1 = −s2 = −1 is equivalent and can

be similarly treated. In fact in the third (explosive) case (s1 = −s2 = 1), all

three single cw solutions are unstable and therefore DDD soliton solutions

are expected to develop a singularity in a finite propagation interval.

2.2. Effects of second-order dispersion

We first consider the stability properties of the single cw solutions of the

3WRI system (4) with second order dispersion terms. The aim is to display

the effect of dispersion by comparing the following analytical results with

those given above. Our discussion here is very sketchy since computations,

as in the dispersionless case, are standard. Consider first the single plane

wave solution u1 = A1 exp(ik1y − iω1z), u2 = 0, u3 = 0 with c1k1 = ω1 +

c1β1ω
2
1. This solution is again stable if s1 = −1, and is stable also if s1 = 1

provided the following two conditions are met (all square roots are meant to

be positive):






β2 6= β3

−1
4
+ ω1c2

c1
[β3(c2 − c1)− c2β2] + c22ω

2
1(β1β3 − β2β3 − β1β2) > 2c2|A1|

√

c2(c2 − c1)(β2 − β3)2

(23)

Therefore, by appropriately choosing ω1 and the dispersion coefficients β1, β2, β3

so that these conditions are satisfied, the effect of dispersion is that of making

stable an unstable solution. As for this result, we deem it helpful to briefly

point out few computational steps in the derivation of these two conditions.

As in the dispersionless case, we start by inserting the perturbed solution
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u1 = A1 exp(ik1y−iω1z)[1+ǫ2p1(z, y)] , u2 = ǫ exp(ik1y−iω1z)p2(z, y) , u3 =

ǫp3(z, y) in (4) to derive the linear equations (compare with (17))

p2y+(
1

c2
+2β2ω1)p2z+iβ2p2zz+iω1[

1

c1
− 1

c2
+ω1(β1−β2)]p2 =

s1A1

c2
p3 , p3y+iβ3p3zz = A∗

1(c2−c1)p2

(24)

which, for the Fourier mode exp[i(λy − νz)], implies that the inequality

(γ2ν
2 + 2γ1ν + γ0)

2 > 4s1c2(c2 − c1)|A1|2 (25)

should be satisfied for all real values of ν in order to guarantee stability. Here

the three coefficients γ0 , γ1 , γ2 take the expression γ0 = ω1[c2(β2−β1)−(c2−
c1)/c1] , γ1 = 1/2+c2β2ω1 , γ2 = c2(β2−β3). Therefore, if s1 = −1 this single

plane wave is stable. If instead s1 = 1, we first note that that the polynomial

γ2ν
2+2γ1ν+γ0 never vanishes for real ν if and only if γ0γ2−γ2

1 > 0 with the

implication that γ2 6= 0, and this provides the first condition β2 6= β3 in (23).

If the condition γ0γ2 − γ2
1 > 0 is satisfied (as it is necessary for stability),

one is left with the conditioin

minν real(γ2ν
2 + 2γ1ν + γ0)

2 = (γ0 − γ2
1/γ2)

2 > 4c2(c2 − c1)|A1|2 (26)

which coincides precisely with the second condition given in (23).

By elaborating (23), we find that sufficient conditions for the existence of

modulationally stable cw solution are:

k1 < k− and β2 > max{β2+, β2−} (27)

k1 > k+ and β2 < min{β2+, β2−}, (28)

where

k± = −β3ω
2
1 ±

2
√

s1c2(c2 − c1)|A1|2
c2

, (29)
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β2± =
−1 + 4β3c2(c2k1 − ω1 ± 2

√

s1c2(c2 − c1)|A1|2)
4c2[c2(k1 + β3ω2

1)± 2
√

s1c2(c2 − c1)|A1|2]
. (30)

A similar result holds true for the other two single cw solutions. Precisely,

the solution u2 = A2 exp(ik2y−iω2z), u1 = 0, u3 = 0 remains stable if s2 = 1

and becomes stable, if s2 = −1, if the two conditions






β1 6= −β3

−1
4
+ ω2c1

c2
[β3(c2 − c1)− c1β1] + c21ω

2
2(β1β3 − β2β3 − β1β2) > 2c1|A2|

√

c1(c2 − c1)(β1 + β3)2

(31)

are satisfied. Finally, the solution u3 = A3 exp(ik3y − iω3z), u1 = 0, u2 = 0

remains stable if s1s2 = 1 and becomes stable, if s1s2 = −1, if the two

conditions






β1 6= β2

−1
4
+ ω3c1c2

(c2−c1)2
(c2β2 − c1β1) + ω2

3(
c1c2
c2−c1

)2(β1β3 − β2β3 − β1β2) > 2 c1c2
(c2−c1)2

|A3|
√

c1c2(β2 − β1)2

(32)

are satisfied. These results show that second-order dispersion can indeed

suppress the modulation instability of single cw solutions. As for the triplet

cw solutions, the previous stability analysis cannot be carried on analyti-

cally. Thus, in the next subsection, we show by numerical examples that the

analytical results obtained for single plane waves which prove the stabiliz-

ing effect of dispersion, still hold for triple cw solutions in certain ranges of

parameters.

2.3. Numerical examples

We fix the set of parameters s1 = s2 = 1, c2 = 2c1 = 2, A1 = 1,

ω1 = −3, ω2 = 2.25. Figure 1 a) reports the instability gain G(ν) for a single

wave solution u1 (A2 = 0, A3 = 0) and for a three-waves solution u1, u2, u3
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Figure 1: Instability gain for s1 = s2 = 1, c2 = 2c1 = 2, ω1 = −3, ω2 = 2.25, βm = 0. a)

A1 = 1, A2 = 0 dashed curve, A1 = 1, A2 = 0.5 solid curve. b) A1 = 1, A2 = 0 dashed

curve; A1 = 1, A2 = 1.5 solid curve.

(A2 = 1/2, A3 = 1/8), in absence of dispersion (βm = 0). We can see that the

difference between the two instability bands curve is hardly distinguishable.

This approximation holds true until the amplitudes of the waves u2, u3 (A2

and A3) do not exceed the amplitude of the unstable wave u1. Figure 1b)

shows that the instability bands start differing appreciably in the two cases

when A2 = 1.5.

We introduce a small second-order dispersion, in particular we set β2 6= 0

and β1 = β3 = 0. Considering single stationary u1 solutions, from Eqs. (29)

and (30) we find that under the conditions k1 < −
√
2 and β2 > 0.0393 (when

k1 = −3) the instability bands disappear. On the other hand, when all the

three cw waves are present we find numerically that it is not possible to

completely eliminate the instability gain; however a drastic reduction of the

instability gain is found for values of β2 higher than the stability threshold of

the single wave solution. Figure 2 a) shows that the introduction of a small

dispersion leads to the reduction (by an order of magnitude) of the instability

gain G(ν). Moreover Fig. 2 b) shows that for higher amplitude values of the
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Figure 2: Instability gain for s1 = s2 = 1, c2 = 2c1 = 2, w1 = −3, w2 = 2.25. a)

A1 = 1, A2 = 0.5; b) A1 = A2 = 1. βm = 0 dashed curve; β1 = 0, β2 = 0.05, β3 = 0 solid

curve.

waves u2, u3, the reduction of instability gain is less pronounced, since we go

over the range of the validity of single wave approximation.

We peruse the developmental changes of the instability bands as a func-

tion of the dispersion parameter β2. Figure 3 shows the numerically evaluated

instability bands as a function of β2. Figure 3 a) reports the case of single

wave u1. The presence of dispersion generates four branches of unstable fre-

quencies, whereas for β2 = 0 only two branches exist. The presence of four

branches is generated by the folding of the two β2 = 0 branches at some crit-

ical value of dispersion. This folding completely cancels the unstable bands

for large enough β2.

Figure 3 b) reports the case of three-waves cw solution u1, u2, u3. No

appreciable differences exist from the previous case when u2, u3 are small

(A1 = 1, A2 = 0.5), in the sense that the unstable branches folding takes

place at around the same value of β2 (see the white line). Only low-gain

unstable branches exist for β2 > β2+, but they are not discernable in the

figure. Increasing u2, u3 amplitudes, the effects of the interaction between
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Figure 3: Instability gain. s1 = s2 = 1, c2 = 2c1 = 2, A1 = 1, ω1 = −3, ω2 = 2.25.

a) β1 = β3 = 0, A2 = 0. b) β1 = β3 = 0, A2 = 0.5. c) β1 = β3 = 0, A2 = 1. d)

β1 = −β2 = β3, A2 = 0. d) β1 = −β2 = β3, A2 = 0.5. f) β1 = −β2 = β3, A2 = 1.

The vertical white line represents the minimum of β2 that ensures stability for the single

stationary wave u1.(

the three waves become more pronounced (Fig. 3 c): additional unstable

bands are visible in the β2 > β2+ region, which are associated to a non

negligible modulational instability gain.

Figures 3 d)-3 f) show the modulation instability gain considering βm 6= 0

(i.e., β1 = −β2 = β3). The relative sign of the dispersions are chosen to

minimize the absolute value of βm required to kill the instability bands. The

outcomes of the analysis are similar to the previous a)-c) cases, moreover the

stabilization can be obtained at lower values of dispersions.
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3. DDD solitons

In this section we report the analytical expression of the DDD soliton

solution of the 3WRI equations (1) which describes the propagation of three

velocity-locked dark pulses.

This expression, which is derived in [21] by a Darboux dressing transfor-

mation, reads

uj(z, y) = Aj e
i(kjy−ωjz) (

eξ + e2iθj e−ξ

eξ + e−ξ
) , j = 1, 2 ,

u3 = −i(
c2 − c1
k2 − k1

)A2A
∗

1 e
i[(k2−k1)y−(ω2−ω1)z] (

eξ + e2i(θ2−θ1) e−ξ

eξ + e−ξ
) .(33)

where

ξ = p(y − V z) . (34)

It clearly describes the propagation of three pulses, all with the same “ve-

locity” V , on the background of three (interacting) plane waves. Even if the

expression (33) is rather simple, it contains several parameters, whose value

has to be computed in a quite involved way which is detailed in [21]. There

the spectral characterisation of (33) is given via the standard construction

of the one-soliton solution by means of the Darboux dressing transforma-

tion with just one simple pole in the complex plane of the spectral variable.

For the sake of completeness, we briefly recall the step-by-step procedure to

compute this solution :

1. assign the value of the real parameters (“wavenumbers”) k1 , k2, which

are arbitrary except for the condition k1 6= k2, and of the arbitrary

complex amplitudes A1 , A2.
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2. compute the real “frequencies” ω1 , ω2 by the explicit formulae

ω1 = c1k1 + s2|A2|2(
c2 − c1
k2 − k1

) , ω2 = c2k2 + s1|A1|2(
c2 − c1
k2 − k1

) . (35)

3. find the four zeros of the 4-th degree polynomial DIS(k)

DIS(k) = − 4

27
(k1 − k2)

2 k4 +∆3 k
3 +∆2 k

2 +∆1 k +∆0 (36)

where the real coefficients ∆n are the following functions of the given

parameters k1 , k2 , A1 , A2:

∆3 = 16(k1 − k2) (k
2
1 − k2

2 + s2|A2|2 − s1|A1|2)
∆2 = 4{(s1|A1|2 + s2|A2|2)2 + (k1 − k2)

2 [(k1 + k2)
2 + 2k1k2]

−2(k1 − k2)[(k1 − k2)(s1|A1|2 + s2|A2|2) + 3(k1s1|A1|2 − k2s2|A2|2)]}
∆1 = 2{(k1 − k2)[2k1k2(k

2
1 − k2

2) + 9(|A1|4 − |A2|4)
+3(s1|A1|2 − s2|A2|2)(k2

1 + k2
2 − 4k1k2)

−5(s1|A1|2 + s2|A2|2)(k2
1 − k2

2)] + (s1|A1|2 + s2|A2|2)2(k1 + k2)}
∆0 = {k2

1k
2
2(k1 − k2)

2 − 4(s1|A1|2 + s2|A2|2)3 + 8(k1 − k2)(k2|A1|4 − k1|A2|4)
+k2

1|A1|4 + k2
2|A2|4 + 18s1s2|A1|2|A2|2(k2

1 + k2
2 − k1k2)

+2(k1 − k2)[s1k2|A1|2(2k2
2 − k2

1 − 2k1k2)− s2k1|A2|2(2k2
1 − k2

2 − 2k1k2)]} .

(37)

If the four zeros of DIS(k) are all complex there is no soliton solution;

the other two possibilities are: two real zeros k− and k+ with k− < k+,

and four real zeros k
(1)
− , k

(1)
+ , k

(2)
− , k

(2)
+ with k

(1)
− < k

(1)
+ < k

(2)
− < k

(2)
+ .

4. choose the real parameter α in the interval k− < α < k+ in the case

of two real zeros, or in one of the two intervals k
(1)
− < α < k

(1)
+ or

k
(2)
− < α < k

(2)
+ in the case of four real zeros. Note the difference with

respect to the case of the defocusing NLS equation: in the NLS case
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the dark soliton exists for any value of the wave number and amplitude

of the background plane wave.

5. compute the complex number χ = q + ip in the upper half-plane (i.e.

with real part q and positive imaginary part p > 0) as solution of the

equation

χ = q + ip = α− s1
α + χ+ k1

|A1|2 −
s2

α + χ+ k2
|A2|2 , (38)

which amounts to find the roots of a third degree polynomial. If α has

been chosen as at point 4, these three roots have to be one real and

two complex conjugated. Alternatively, q and p can be computed by

solving the two coupled real equations

q = α− s1(α + q + k1)

(α + q + k1)2 + p2
|A1|2 −

s2(α + q + k2)

(α + q + k2)2 + p2
|A2|2 (39)

1 =
s1|A1|2

(α + q + k1)2 + p2
+

s2|A2|2
(α + q + k2)2 + p2

. (40)

This last equation shows that no solution exists if s1 = s2 = −1.

6. compute the velocity V of the soliton as

V =
s1c1|A1|2

(α + q + k1)2 + p2
+

s2c2|A2|2
(α + q + k2)2 + p2

. (41)

Note that the assumption c1 < c2 implies that

c1 < V− ≤ V ≤ V+ < c2 , if s1 = s2 = 1 , (42)

V = c1−
(c2 − c1)|A2|2

(α + q + k2)2 + p2
, −∞ < V− ≤ V ≤ V+ < c1 , if s1 = 1 , s2 = −1 ,

(43)

V = c2+
(c2 − c1)|A1|2

(α + q + k1)2 + p2
, c2 < V− ≤ V ≤ V+ < +∞ , if s1 = −1 , s2 = 1 .

(44)
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No analytic expression of the limit velocities V± is known so that their

value can be obtained only numerically.

7. compute the asymptotic phase shifts θ1 and θ2 by the formula

tan(θj) = − p

α + q + kj
, j = 1, 2 . (45)

To summarize this procedure, s1, s2, c1 and c2 are fixed by the 3WRI

equation (1). Once the free parameters k1, k2, A1, A2, which characterize the

background plane waves, and the real parameter α are given, the DDD soliton

solution is obtained by computing ω1, ω2, q, p, V, θ1, θ2.

Fig. 4 shows a typical analytical DDD soliton solution of the 3WRI.
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Figure 4: Amplitude and phase of a DDD soliton with parameters s1 = s2 = 1, c2 =

2c1 = 2, A1 = A2 = 1, k1 = 2, k2 = 1, α = −1, V = 1.43, p = 1.3071, q = −0.7849,

θ1 = −1.4077, θ2 = 1.03.

As expected from our analysis reported in section 2, Fig. 5 shows the

typical numerical DDD soliton propagation in the z − y plane and its in-

stability break-up. Indeed the stable propagation of DDD solitons [21] of

the dispersionless 3WRI (1) is not possible due to the modulation instability

of the background components. Similar conclusions are already known and

have been investigated in plasma physics [11, 27]. Nevertheless, we showed

that an albeit small second-order dispersion can drastically reduce the mod-
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Figure 5: Propagation of the DDD soliton pulses with initial profiles as described in Fig.

4

ulation instability gain of cw solutions, leading to a quasi-stabilization of the

background plane waves.

The introduction of second-order dispersion perturbs the 3WRI system

and breaks the 3WRI integrability, preventing the existence, in strict sense,

of soliton solutions. Anyway, we consider a small dispersion that perturbs the

soliton shape a little upon propagation, but in the meantime it causes a dras-

tic reduction of the instability gain, thus reaching a stable quasi-invariant-

shape long range propagation.

Figure 6 a) shows the numerical dispersionless propagation of the u1 com-

ponent of a DDD solitons solution in the presence of noise. We consider a

quasi-cw background where the DDD soliton sits, in order to mimic real ex-

perimental contexts. Figure 6 b) reports the power spectrum of the quasi-cw

background of wave u1 evaluated at y = 8. It is evident the formation of

the unstable band from noise. The instability band location is perfectly cap-

tured by the analytical formula (22). On the other hand, Fig. 6 c) shows

the numerical propagation of the u1 component of the same waves in the

presence of a small dispersion β1 = −β2 = β3 = 0.05. As expected, the pres-

ence of dispersion kills the modulation instability and the DDD simulton can
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propagate in a stable fashion. As a matter of fact, the perturbations intro-

duced by second-order dispersion slightly modifies the soliton shape during

the propagation: the dark waves undergo little broadening and small ripples

are generated.
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Figure 6: a) Propagation of the u1 component of a DDD soliton of the dispersionless

3WRI. Here, s1 = s2 = 1, c2 = 2c1 = 2; soliton parameters are α = 1.4, p = 0.9536,

q = 0.9615, V = 1.04, θ1 = −1.2085, θ2 = −0.3838. b) Power spectrum of background

of wave u1 at y = 8. Dashed lines mark the unstable band calculated from Eq. (22). c)

Propagation in presence of dispersion β1 = −β2 = β3 = 0.05.

4. Conclusions

In this paper we have analyzed the stability properties of stationary cw

solutions and dark-dark-dark soliton solutions of the three-wave system. We

have found that cw stationary solutions composed of three wave components

and dark-dark-dark solitons are always unstable. This could pose severe

limitations on applications that tend to exploit long (quasi-cw) pulses in

three-wave nonlinear interaction processes. Nevertheless, we have enlight-

ened that the presence of a small dispersion drastically reduce the instabil-

ity gain, allowing for effective-stable propagation of dark-dark-dark velocity

locked nonlinear waves on relevant long distances.
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