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Theory and experiments on multistep parametric processes in nonlinear optics

We present a comprehensive model for the description of different types of parametric interactions, associated with simultaneous phase-matching of several optical processes: the so-called multistep parametric interactions. Our approach is based on a recently derived single wave broadband equation that is able to describe general quadratic nonlinear optical interactions and can be solved with modest computational effort. We compare theoretical results with experiments on simultaneous second and third harmonic generation performed in periodically poled lithium tantalate crystals.

Introduction

Energy transfer between waves oscillating at different frequencies is one of the fundamental concepts in nonlinear optics and has been studied intensively since the early 1960s [START_REF] Franken | Generation of optical harmonics[END_REF]. Parametric processes naturally take place in nonlinear materials where the lowest-order nonlinear contribution to the polarization of the medium is quadratic in the electric field (P ∝ χ (2) E 2 ) and involve several waves at different frequencies [START_REF] Boyd | Nonlinear Optics[END_REF]. In order to be efficient the parametric coupling requires special relations between the phase velocities of the interacting waves to be satisfied, the so called phase matching conditions. Phase matching is either realized exactly by birefringence, or by periodically reversing the sign of the nonlinear coefficient χ (2) by quasi phase matching (QPM). The QPM technology permits also to engineer the nonlinear response of the medium and to obtain "nonlinear metamaterials" where the quadratic properties can be designed at will [START_REF] Fejer | Quasi-phasematched second harmonic generation: tuning and tolerances[END_REF][START_REF] Conforti | From femtosecond infrared to picosecond visible pulses: temporal shaping with high-efficiency conversion[END_REF].

Multistep parametric interactions [START_REF] Saltiel | Multistep parametric processes in nonlinear optics[END_REF] represent a special type of second-order parametric process that involves several different second-order nonlinear interactions and is characterized by at least two different phase matching parameters. For example it is possible to obtain cascaded third harmonic generation (THG) from two concurrent processes: second harmonic generation (SHG) ω + ω = 2ω and sum frequency mixing (SFM) ω + 2ω = 3ω.

There exists a wide variety of multistep parametric processes, such as third harmonic generation [START_REF] Luo | Simultaneously efficient blue and red light generations in a periodically poled L i T aO 3[END_REF], two-color parametric interaction [START_REF] Couderc | Trapping of a weak probe through coupling with a two-color quadratic spatial soliton[END_REF], fourth harmonic generation [START_REF] Sukhorukov | Multistep cascading and fourth harmonic generation[END_REF], wavelength conversion [START_REF] Cardakli | Tunable all-optical time-slot-interchange and wavelength conversion using differencefrequency-generation and optical buffers[END_REF] and many others [START_REF] Saltiel | Multistep parametric processes in nonlinear optics[END_REF]. In general it is hard to phase match different processes by traditional methods such as birefringence phase matching, but QPM structures with chirped and aperiodic gratings supply the requested flexibility. This variety of phenomena requires a variety of mathematical models, that are usually derived in the frame of coupled slowly varying field envelopes. These models consist of quadratic nonlinear terms such as A 2 n , A m A n or A m A * n (in Ref. [START_REF] Saltiel | Multistep parametric processes in nonlinear optics[END_REF] a non exhaustive list of the most frequent cases is reported). It is clear that a deep knowledge of the physical setting is required in order to select the correct model, and all the matched processes have to be considered, in order to obtain consistent results: for example in a periodically poled lithium niobate (PPLN) sample several spatial harmonics of the grating can match several different processes. Sometimes the interacting waves have bandwidths that can be comparable with their frequency separation, making the division into harmonics somewhat arbitrary . For example one can ask if in a SFM process ω 1 + ω 2 = ω 3 , where ω 1 and ω 2 have a frequency separation comparable with their bandwidth, is more correct to model the process as a two or three wave process.

A different approach to the study of multistep quadratic phenomena is to exploit a single nonlinear envelope equation (NEE) for the entire frequency interval involved in the process.

Such a nonlinear envelope equation was derived recently and was shown to be accurate to model several quadratic processes [START_REF] Conforti | Nonlinear envelope equation for broadband optical pulses in quadratic media[END_REF][START_REF] Conforti | Ultra-broadband optical phenomena in quadratic nonlinear media[END_REF]. This model is particularly suited for the purpose of numerically simulating the optical pulse propagation: in fact the computational resources required for the solution of this model are of the order of magnitude of those required for standard coupled wave equations.

In this article we show how to exploit the NEE for the description of multistep parametric processes. We show that a single wave equation can describe with great accuracy phenomena spanning several optical octaves. We also show that the relevant coupled wave models can be derived directly from the NEE with minimal assumptions.

The rest of the paper is organized as follows: in Section 2 we describe the single wave model and we outline the derivation of the the three wave equation describing cascading and third harmonic generation in a periodically poled lithium tantalate crystal (PPLT).

Finally we present out conclusions in section 4.

2. Nonlinear χ (2) envelope equation

The starting point of our analysis is the following equation [START_REF] Conforti | Nonlinear envelope equation for broadband optical pulses in quadratic media[END_REF][START_REF] Conforti | Ultra-broadband optical phenomena in quadratic nonlinear media[END_REF]:

∂A ∂z + iDA = -iG(z) χ (2) ω 0 4n 0 c 1 - i ω 0 ∂ ∂t A 2 e iω 0 t-iβ 0 z +2|A| 2 e -iω 0 t+iβ 0 z , ( 1 
)
where c is the velocity of light in vacuum, ε(ω) = 1 + χ(ω), χ(ω) is the linear electric susceptibility and k(ω) = (ω/c) ε(ω) is the propagation constant, A = A(z, t) is the electric field envelope as defined in [START_REF] Conforti | Nonlinear envelope equation for broadband optical pulses in quadratic media[END_REF], ω 0 is a reference frequency, 2) is the nonlinear coefficient and G(z) describes the spatial modulation of the nonlinear material. The dispersive operator is defined as

n 0 = n(ω 0 ) is the reference refractive index, β 0 = k(ω 0 ) is the reference wavevector, χ ( 
D = ∞ m=1 1 m! k m (-i ∂ ∂t ) m where k m = ∂ m k ∂ω m (ω 0 ). It is possible, if needed, to
consider other and more general expressions of the dispersive operator [START_REF] Sh | Pade approximant for the refractive index and nonlocal envelope equations[END_REF].

The nonlinear envelope equation ( 1), first order in propagation coordinate, provides a powerful means of describing light pulse propagation in dispersive quadratically nonlinear media. Using an approach exploited in [START_REF] Brabec | Nonlinear optical pulse propagation in the single-cycle regime[END_REF] for cubic nonlinear media, equation

(1) was first reported in [START_REF] Conforti | Nonlinear envelope equation for broadband optical pulses in quadratic media[END_REF], then derived rigorously extending its range of validity in [START_REF] Conforti | Ultra-broadband optical phenomena in quadratic nonlinear media[END_REF] . Equation ( 1) can be solved easily by split-step Fourier method exploiting the exact frequency dependence of the propagation constant for the linear step, and a fourth order Runge-Kutta scheme for the nonlinear step.

It has been pointed out that evolution equations like (1) describe unidirectional elec-tromagnetic propagation with a surprising degree of accuracy, almost without restrictions on the frequency extent of the signals [START_REF] Conforti | Nonlinear envelope equation for broadband optical pulses in quadratic media[END_REF][START_REF] Brabec | Nonlinear optical pulse propagation in the single-cycle regime[END_REF][START_REF] Kolesik | Nonlinear optical pulse propagation simulation: From Maxwell's to unidirectional equations[END_REF][START_REF] Kinsler | Optical pulse propagation with minimal approximations[END_REF]: in this sense they can be considered as forward Maxwell equations [START_REF] Housakou | Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers[END_REF].

In order to show the validity of Eq. ( 1) over a bandwidth of several optical octaves and its ability to model multistep parametric processes, we derive from (1) the three-wave model for the description of cascading third harmonic generation [START_REF] Saltiel | Multistep parametric processes in nonlinear optics[END_REF][START_REF] Qin | Theoretical investigations of efficient cascaded third-harmonic generation in quasi-phase-matched and -mismatched configurations[END_REF]. We consider an electric field envelope composed of three waves:

A(z, t) = A 1 (z, t)e i(Ω-ω 0 )t-i(q 1 -β 0 )z + A 2 (z, t)e i(2Ω-ω 0 )t-i(q 2 -β 0 )z + A 3 (z, t)e i(3Ω-ω 0 )t-i(q 3 -β 0 )z , ( 2 
)
where Ω is the fundamental frequency and q 1 , q 2 , q 3 are the propagation constants at fundamental, second and third harmonic.

In order to handle the dispersive term in a straightforward manner we first Fourier transform the Eq. ( 1):

∂ Â(ω) ∂z + i[k(ω + ω 0 ) -k 0 ] Â(ω) = N L (3) 
where N L stands for the Fourier transform of the nonlinear terms. The difference in the frequency dependence between Â(.) and k(.) is given by the fact that A is the envelope and is centered around zero in frequency domain, whereas the wavenumber k has the same dependence of the total electric field, that is centered around ω 0 . It must be kept in mind that this frequency offset is totally arbitrary and it is not assumed that the band of the envelope must be narrow with respect to ω 0 [START_REF] Conforti | Nonlinear envelope equation for broadband optical pulses in quadratic media[END_REF].

Now inserting (Fourier transform of) ansatz ( 2) in (3) we obtain:

3 m=1 ∂ Âm ∂z (ω -(mΩ -ω 0 )) + (4) i[k(ω + ω 0 ) -q m ] Âm (ω -(mΩ -ω 0 )) e -i(qm-β 0 )z = N L
that after inverse Fourier transform reads:

3 m=1 ∂A m ∂z + iD m A m e i(mΩ-ω 0 )-i(qm-β 0 )z = -iG(z) χ (2) ω 0 4n 0 c 1 - i ω 0 ∂ ∂t A 2 1 e i(2Ω-ω 0 )t-i(2q 1 -β 0 )z +2A 1 A 2 e i(3Ω-ω 0 )t-i(q 1 +q 2 -β 0 )z +2A 2 A * 1 e i(Ω-ω 0 )t-i(q 2 -q 1 -β 0 )z +2A 3 A * 2 e i(Ω-ω 0 )t-i(q 3 -q 1 -β 0 )z +2A 3 A * 1 e i(2Ω-ω 0 )t-i(q 3 -q 1 -β 0 )z + R , ( 5 
)
where R is the remainder including terms oscillating at other frequencies. The dispersive terms D n represent inverse Fourier transforms of the real propagation constant k(ω + ω 0 ) expanded in power series around the reference wavenumbers q n .

By grouping together terms oscillating at the same frequency we obtain:

∂A 1 ∂z + iD 1 A 1 = -iG(z) χ (2) Ω 2n 0 c A 2 A * 1 e -i∆k 1 z + A 3 A * 2 e -i∆k 2 z , ∂A 2 ∂z + iD 2 A 2 = -iG(z) χ (2) Ω 2n 0 c A 2 1 e i∆k 1 z + 2A 3 A * 1 e -i∆k 2 z , ∂A 3 ∂z + iD 3 A 3 = -iG(z)3 χ (2) Ω 2n 0 c A 1 A * 2 e i∆k 2 z , (6) 
where ∆k 1 = q 2 -2q 1 and ∆k 2 = q 3 -q 2 -q 1 . Dispersive operators are usually truncated at second order , so we take D n ≈ Dn = -ik 1n ∂ t -1/2k 2n ∂ tt . We can now expand the nonlinear coefficient modulation G(z) in Fourier series truncated at the third spatial harmonic: G(z) ≈ 2 π e i2π/Λz + 2 3π e i2π/Λz•3 where Λ is the QPM period. Usually in ferroelectric materials such as lithium niobate and lithium tantalate, the dispersion is such that first harmonic matches SHG and third harmonic matches THG, so it is possible to write:

∂A 1 ∂z + i D1 A 1 = -iσ 1 A 2 A * 1 e -iδk 1 z -iσ 3 A 3 A * 2 e -iδk 2 z ∂A 2 ∂z + i D2 A 2 = -iσ 2 A 2 1 e iδk 1 z -iσ 4 A 3 A * 1 e -iδk 2 z , ∂A 3 ∂z + i D3 A 3 = -iσ 5 A 1 A * 2 e iδk 2 z , (7) 
where

δk 1 = ∆k 1 -2π/Λ and δk 2 = ∆k 2 -2π/Λ • 3 are the residual mismatches, σ 1,2 = d ef f,I Ω n 0 c , σ j = (j -2)d ef f,II Ω n 0 c [j = 3, 4, 5] and d ef f,I = χ (2) 2 2 π , d ef f,II = χ (2) 2 2 3π .
This system is the usual coupled wave equations describing cascading THG, as can be obtained by Maxwell's equations [START_REF] Saltiel | Multistep parametric processes in nonlinear optics[END_REF][START_REF] Qin | Theoretical investigations of efficient cascaded third-harmonic generation in quasi-phase-matched and -mismatched configurations[END_REF]. It is worth noting that the derived equations do not depend on ω 0 .

In order to show the validity of our approach, we simulated the propagation of a femtosecond pulse in a L = 5mm long periodically poled stoichiometric lithium tantalate sample (PPSLT). To model the refractive index dispersion we employed a Sellmeier model fitted from experimental data [START_REF] Bruner | Temperature[END_REF] (temperature T = 25 o C) and nonlinear coefficient

d 33 = χ (2)
/2 = 10.6pm/V . In the numerical solution of Eq. ( 1) we inserted the exact dispersion relation k(ω). We assumed a first order quasi phase matching (QPM) grating, with a period Λ = 17.4µm. We injected a T = 120f s FWHM long gaussian pulse, centered around 1400nm, with I = 20GW/cm 2 peak intensity. The corresponding residual phase mismatch is δk 1 = 10000m -1 and δk 2 = 8002m -1 . In the simulation we set the reference frequency ω 0 to be equal to the second harmonic of the input pulse: in this way the second harmonic is stationary in the reference frame (z ′ , τ ). The change of reference frame is introduced by the change of variables z = z and τ = t -k 1 z [START_REF] Conforti | Nonlinear envelope equation for broadband optical pulses in quadratic media[END_REF].

Figure 1 shows the amplitude of the electric field envelope. The two concurrent processes of second and third harmonic generation appear clearly. The crystal dispersion makes the fundamental frequency (FF), second harmonic (SH) and TH (third harmonic) pulses to separate each other during propagation. The FF pump depletion is significant with a conversion efficiency of 37% to second harmonic and 9.5% to third harmonic.

We then simulated the same set up with coupled wave model [START_REF] Couderc | Trapping of a weak probe through coupling with a two-color quadratic spatial soliton[END_REF]. We approximated dispersion up to second order, calculating the relevant parameters from the Sellmeier relation. For inverse group velocities we used the following values (in s/m) k 11 = 7.2136 • 10 -9 , k 12 = 7.538 • 10 -9 , k 13 = 8.293e • 10 -9 ; whereas for group velocity dispersion we used (in

s 2 /m) k 21 = 1.0408 • 10 -25 , k 22 = 3.7514 • 10 -25 , k 23 = 7.9607 • 10 -25 .
To compare the results we filtered the envelope A around FF, SH and TH: the outcome of the comparison is shown in Fig. 2. The agreement is almost perfect for fundamental and second harmonic, whereas small differences can be noted on third harmonic. This can be ascribed to the higher dispersion at short wavelength, that makes the truncation at second order in Eqs. [START_REF] Couderc | Trapping of a weak probe through coupling with a two-color quadratic spatial soliton[END_REF] sightly inaccurate.

Experimental results

For the experimental observation of the cascading SHG and THG we chose a PPSLT crystal. focused in the middle of the PPSLT crystal in order to obtain an effective interaction length of 2mm. This mild focusing enables to neglect both linear and nonlinear spatial effects. At the output of the sample the frequency spectra of the pulses are detected by a spectrometer. Figure 3a) shows the outcome of the experiments performed with a FF pulse centered around 1390 nm, with a peak intensity I=15GW/cm 2 . The three periods 17.7µm, 18.1µm and 18.5µm phase match SH waves at 723.5nm, 730.9nm and 738nm, respectively. A discrete amount of non phase-matched second harmonic is visible between 650nm and 720nm. We can also see the generation of third harmonic at 475nm, 478.5nm and 482nm, respectively.

The amplitude of the TH peaks is around 5% of SH peaks.

Figure 3b) shows the results of the numerical solution of Eq. ( 1): we can see a good agreement with the experimental data. The two insets show the comparison between experiments (solid curves) and numerics (dashed curves) around the second and third harmonics.

At the SH numerical and experimental curves are perfectly superimposed: peak positions and linewidths are perfectly captured by the theory. For what concerns third harmonic, we can see a perfect reproduction of the peak positions, but with a larger experimental linewidth. This discrepancy can be ascribed to the insufficient resolution of the spectrum analyzer used in the experiments.

Conclusion

We presented a model for the description of different types of parametric interactions in nonlinear optics which are associated with simultaneous phase-matching of several optical 10 processes, based on a recently derived single wave boradband equation. This model is able to describe general quadratic nonlinear optical interactions and can be solved with modest computational efforts. We compared theoretical results with experiment on simultaneous second and third harmonic generation performed in periodically poled lithium tantalate crystals.
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 12 Fig. 1. Propagation of a femtosecond pulse in a PPLT crystal. a) Evolution of the field
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 3 Fig. 3. Experimental (a) and numerical (b) SH and TH spectra at the crystal output