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We present a comprehensive model for the description of different types of

parametric interactions, associated with simultaneous phase-matching of sev-

eral optical processes: the so-called multistep parametric interactions. Our

approach is based on a recently derived single wave broadband equation that

is able to describe general quadratic nonlinear optical interactions and can be

solved with modest computational effort. We compare theoretical results with

experiments on simultaneous second and third harmonic generation performed

in periodically poled lithium tantalate crystals.
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1. Introduction

Energy transfer between waves oscillating at different frequencies is one of the fundamental

concepts in nonlinear optics and has been studied intensively since the early 1960s [1]. Para-

metric processes naturally take place in nonlinear materials where the lowest-order nonlinear

contribution to the polarization of the medium is quadratic in the electric field (P ∝ χ(2)E2)

and involve several waves at different frequencies [2]. In order to be efficient the parametric

coupling requires special relations between the phase velocities of the interacting waves to be

satisfied, the so called phase matching conditions. Phase matching is either realized exactly

by birefringence, or by periodically reversing the sign of the nonlinear coefficient χ(2) by

quasi phase matching (QPM). The QPM technology permits also to engineer the nonlin-

ear response of the medium and to obtain “nonlinear metamaterials” where the quadratic

properties can be designed at will [3, 4].

Multistep parametric interactions [5] represent a special type of second-order parametric

process that involves several different second-order nonlinear interactions and is character-

ized by at least two different phase matching parameters. For example it is possible to

obtain cascaded third harmonic generation (THG) from two concurrent processes: sec-

ond harmonic generation (SHG) ω+ω = 2ω and sum frequency mixing (SFM) ω+2ω = 3ω.

There exists a wide variety of multistep parametric processes, such as third harmonic

generation [6], two-color parametric interaction [7], fourth harmonic generation [8], wave-

length conversion [9] and many others [5]. In general it is hard to phase match different

processes by traditional methods such as birefringence phase matching, but QPM structures

with chirped and aperiodic gratings supply the requested flexibility.

This variety of phenomena requires a variety of mathematical models, that are usually

derived in the frame of coupled slowly varying field envelopes. These models consist of
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N equations for the envelopes Ai, i = 1, . . . , N which are nonlinearly coupled through

quadratic nonlinear terms such as A2
n, AmAn or AmA

∗

n (in Ref. [5] a non exhaustive list of

the most frequent cases is reported). It is clear that a deep knowledge of the physical setting

is required in order to select the correct model, and all the matched processes have to be

considered, in order to obtain consistent results: for example in a periodically poled lithium

niobate (PPLN) sample several spatial harmonics of the grating can match several different

processes. Sometimes the interacting waves have bandwidths that can be comparable with

their frequency separation, making the division into harmonics somewhat arbitrary . For

example one can ask if in a SFM process ω1 + ω2 = ω3, where ω1 and ω2 have a frequency

separation comparable with their bandwidth, is more correct to model the process as a two

or three wave process.

A different approach to the study of multistep quadratic phenomena is to exploit a single

nonlinear envelope equation (NEE) for the entire frequency interval involved in the process.

Such a nonlinear envelope equation was derived recently and was shown to be accurate to

model several quadratic processes [10, 11]. This model is particularly suited for the purpose

of numerically simulating the optical pulse propagation: in fact the computational resources

required for the solution of this model are of the order of magnitude of those required for

standard coupled wave equations.

In this article we show how to exploit the NEE for the description of multistep parametric

processes. We show that a single wave equation can describe with great accuracy phenomena

spanning several optical octaves. We also show that the relevant coupled wave models can

be derived directly from the NEE with minimal assumptions.

The rest of the paper is organized as follows: in Section 2 we describe the single wave

model and we outline the derivation of the the three wave equation describing cascading
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THG. In Section 3 we compare numerical and experimental results of simultaneous second

and third harmonic generation in a periodically poled lithium tantalate crystal (PPLT).

Finally we present out conclusions in section 4.

2. Nonlinear χ(2) envelope equation

The starting point of our analysis is the following equation [10, 11]:

∂A

∂z
+ iDA = −iG(z)

χ(2)ω0

4n0c

(

1−
i

ω0

∂

∂t

)[

A2eiω0t−iβ0z

+2|A|2e−iω0t+iβ0z
]

, (1)

where c is the velocity of light in vacuum, ε̂(ω) = 1 + χ̂(ω), χ̂(ω) is the linear electric

susceptibility and k(ω) = (ω/c)
√

ε̂(ω) is the propagation constant, A = A(z, t) is the electric

field envelope as defined in [10], ω0 is a reference frequency, n0 = n(ω0) is the reference

refractive index, β0 = k(ω0) is the reference wavevector, χ
(2) is the nonlinear coefficient and

G(z) describes the spatial modulation of the nonlinear material. The dispersive operator is

defined as D =
∑

∞

m=1
1
m!
km(−i ∂

∂t
)m where km = ∂mk

∂ωm
(ω0). It is possible, if needed, to

consider other and more general expressions of the dispersive operator [12].

The nonlinear envelope equation (1), first order in propagation coordinate, provides a

powerful means of describing light pulse propagation in dispersive quadratically nonlinear

media. Using an approach exploited in [13] for cubic nonlinear media, equation

(1) was first reported in [10], then derived rigorously extending its range of

validity in [11] . Equation (1) can be solved easily by split-step Fourier method exploiting

the exact frequency dependence of the propagation constant for the linear step, and a fourth

order Runge-Kutta scheme for the nonlinear step.

It has been pointed out that evolution equations like (1) describe unidirectional elec-
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tromagnetic propagation with a surprising degree of accuracy, almost without restrictions

on the frequency extent of the signals [10, 13–15]: in this sense they can be considered as

forward Maxwell equations [16].

In order to show the validity of Eq. (1) over a bandwidth of several optical octaves and

its ability to model multistep parametric processes, we derive from (1) the three-wave model

for the description of cascading third harmonic generation [5, 17]. We consider an electric

field envelope composed of three waves:

A(z, t) = A1(z, t)e
i(Ω−ω0)t−i(q1−β0)z

+ A2(z, t)e
i(2Ω−ω0)t−i(q2−β0)z

+ A3(z, t)e
i(3Ω−ω0)t−i(q3−β0)z, (2)

where Ω is the fundamental frequency and q1, q2, q3 are the propagation constants at

fundamental, second and third harmonic.

In order to handle the dispersive term in a straightforward manner we first Fourier trans-

form the Eq. (1):

∂Â(ω)

∂z
+ i[k(ω + ω0)− k0]Â(ω) = NL (3)

where NL stands for the Fourier transform of the nonlinear terms. The difference in the

frequency dependence between Â(.) and k(.) is given by the fact that A is the envelope

and is centered around zero in frequency domain, whereas the wavenumber k has the same

dependence of the total electric field, that is centered around ω0. It must be kept in mind

that this frequency offset is totally arbitrary and it is not assumed that the band of the

envelope must be narrow with respect to ω0 [10].

Now inserting (Fourier transform of) ansatz (2) in (3) we obtain:

3
∑

m=1

[

∂Âm

∂z
(ω − (mΩ− ω0)) + (4)
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i[k(ω + ω0)− qm]Âm(ω − (mΩ− ω0))
]

e−i(qm−β0)z = NL

that after inverse Fourier transform reads:

3
∑

m=1

[

∂Am

∂z
+ iDmAm

]

ei(mΩ−ω0)−i(qm−β0)z =

−iG(z)
χ(2)ω0

4n0c

(

1−
i

ω0

∂

∂t

)[

A2
1e

i(2Ω−ω0)t−i(2q1−β0)z

+2A1A2e
i(3Ω−ω0)t−i(q1+q2−β0)z

+2A2A
∗

1e
i(Ω−ω0)t−i(q2−q1−β0)z

+2A3A
∗

2e
i(Ω−ω0)t−i(q3−q1−β0)z

+2A3A
∗

1e
i(2Ω−ω0)t−i(q3−q1−β0)z +R

]

, (5)

where R is the remainder including terms oscillating at other frequencies. The dispersive

terms Dn represent inverse Fourier transforms of the real propagation constant k(ω + ω0)

expanded in power series around the reference wavenumbers qn.

By grouping together terms oscillating at the same frequency we obtain:

∂A1

∂z
+ iD1A1 = −iG(z)

χ(2)Ω

2n0c

[

A2A
∗

1e
−i∆k1z + A3A

∗

2e
−i∆k2z

]

,

∂A2

∂z
+ iD2A2 = −iG(z)

χ(2)Ω

2n0c

[

A2
1e

i∆k1z + 2A3A
∗

1e
−i∆k2z

]

,

∂A3

∂z
+ iD3A3 = −iG(z)3

χ(2)Ω

2n0c

[

A1A
∗

2e
i∆k2z

]

, (6)

where ∆k1 = q2− 2q1 and ∆k2 = q3− q2− q1. Dispersive operators are usually truncated

at second order , so we take Dn ≈ D̃n = −ik1n∂t − 1/2k2n∂tt. We can now expand

the nonlinear coefficient modulation G(z) in Fourier series truncated at the third spatial

harmonic: G(z) ≈ 2
π
ei2π/Λz + 2

3π
ei2π/Λz·3 where Λ is the QPM period. Usually in ferroelectric
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materials such as lithium niobate and lithium tantalate, the dispersion is such that first

harmonic matches SHG and third harmonic matches THG, so it is possible to write:

∂A1

∂z
+ iD̃1A1 = −iσ1A2A

∗

1e
−iδk1z − iσ3A3A

∗

2e
−iδk2z

∂A2

∂z
+ iD̃2A2 = −iσ2A

2
1e

iδk1z − iσ4A3A
∗

1e
−iδk2z,

∂A3

∂z
+ iD̃3A3 = −iσ5A1A

∗

2e
iδk2z, (7)

where δk1 = ∆k1 − 2π/Λ and δk2 = ∆k2 − 2π/Λ · 3 are the residual mismatches, σ1,2 =

deff,I
Ω
n0c

, σj = (j − 2)deff,II
Ω
n0c

[j = 3, 4, 5] and deff,I =
χ(2)

2
2
π
, deff,II =

χ(2)

2
2
3π
.

This system is the usual coupled wave equations describing cascading THG, as can be

obtained by Maxwell’s equations [5, 17]. It is worth noting that the derived equations do

not depend on ω0.

In order to show the validity of our approach, we simulated the propagation of a

femtosecond pulse in a L = 5mm long periodically poled stoichiometric lithium tanta-

late sample (PPSLT). To model the refractive index dispersion we employed a Sellmeier

model fitted from experimental data [18] (temperature T = 25oC) and nonlinear coefficient

d33 = χ(2)/2 = 10.6pm/V . In the numerical solution of Eq. (1) we inserted the exact

dispersion relation k(ω). We assumed a first order quasi phase matching (QPM) grating,

with a period Λ = 17.4µm. We injected a T = 120fs FWHM long gaussian pulse, centered

around 1400nm, with I = 20GW/cm2 peak intensity. The corresponding residual phase

mismatch is δk1 = 10000m−1 and δk2 = 8002m−1. In the simulation we set the reference

frequency ω0 to be equal to the second harmonic of the input pulse: in this way the sec-

ond harmonic is stationary in the reference frame (z′, τ). The change of reference frame is

introduced by the change of variables z = z and τ = t− k1z [10].
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Figure 1 shows the amplitude of the electric field envelope. The two concurrent processes

of second and third harmonic generation appear clearly. The crystal dispersion makes the

fundamental frequency (FF), second harmonic (SH) and TH (third harmonic) pulses to sep-

arate each other during propagation. The FF pump depletion is significant with a conversion

efficiency of 37% to second harmonic and 9.5% to third harmonic.

We then simulated the same set up with coupled wave model (7). We approximated

dispersion up to second order, calculating the relevant parameters from the Sellmeier rela-

tion. For inverse group velocities we used the following values (in s/m) k11 = 7.2136 · 10−9,

k12 = 7.538 · 10−9, k13 = 8.293e · 10−9; whereas for group velocity dispersion we used (in

s2/m) k21 = 1.0408 · 10−25, k22 = 3.7514 · 10−25, k23 = 7.9607 · 10−25.

To compare the results we filtered the envelope A around FF, SH and TH: the outcome

of the comparison is shown in Fig. 2. The agreement is almost perfect for fundamental and

second harmonic, whereas small differences can be noted on third harmonic. This can be

ascribed to the higher dispersion at short wavelength, that makes the truncation at second

order in Eqs. (7) sightly inaccurate.

3. Experimental results

For the experimental observation of the cascading SHG and THG we chose a PPSLT crystal.

The 25-mm-long (L) sample presents poling periods ranging from Λ = 17.7µm to Λ = 21µm

separated by non-poled regions. At the temperature of 160oC used in the experiments these

periods correspond to phase matching wavelengths from 1440 nm to 1560 nm. The near-IR

pulses are derived from a non-collinear optical parametric amplifier (NOPA) pumped by

the second harmonic of an amplified Ti:sapphire laser system (500 µJ , 150 fs, 1 kHz). The

NOPA generates 70 nm nearly transform-limited pulses tunable in the near IR (1300-1500

nm) with widths around 40 fs (FWHM in intensity) and energy up to 1 µJ . The pulses are
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Fig. 1. Propagation of a femtosecond pulse in a PPLT crystal. a) Evolution of the field

amplitude |A| from numerical solution of Eq.(1). The initial pulse has gaussian shape and

the parameters are T = 120fs, I = 20GW/cm2, λin = 1400nm, λ0 = 2πc/ω0 = 700nm,

d33 = χ
(2)
LT/2 = 10.6pm/V
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Fig. 2. Comparison between coupled wave solution (dashed curves) and |A| filtered around

fundamental, second harmonic and third harmonic (solid curves).

focused in the middle of the PPSLT crystal in order to obtain an effective interaction length

of 2mm. This mild focusing enables to neglect both linear and nonlinear spatial effects. At

the output of the sample the frequency spectra of the pulses are detected by a spectrometer.

Figure 3a) shows the outcome of the experiments performed with a FF pulse centered

around 1390 nm, with a peak intensity I=15GW/cm2. The three periods 17.7µm, 18.1µm

and 18.5µm phase match SH waves at 723.5nm, 730.9nm and 738nm, respectively. A discrete
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Fig. 3. Experimental (a) and numerical (b) SH and TH spectra at the crystal output

for several poling periods. The inset in figure b) shows a close-up comparison between

experiment and numerics at the second and third harmonic.

amount of non phase-matched second harmonic is visible between 650nm and 720nm. We

can also see the generation of third harmonic at 475nm, 478.5nm and 482nm, respectively.

The amplitude of the TH peaks is around 5% of SH peaks.

Figure 3b) shows the results of the numerical solution of Eq. (1): we can see a good

agreement with the experimental data. The two insets show the comparison between exper-

iments (solid curves) and numerics (dashed curves) around the second and third harmonics.

At the SH numerical and experimental curves are perfectly superimposed: peak positions

and linewidths are perfectly captured by the theory. For what concerns third harmonic,

we can see a perfect reproduction of the peak positions, but with a larger experimental

linewidth. This discrepancy can be ascribed to the insufficient resolution of the spectrum

analyzer used in the experiments.

4. Conclusion

We presented a model for the description of different types of parametric interactions in

nonlinear optics which are associated with simultaneous phase-matching of several optical
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processes, based on a recently derived single wave boradband equation. This model is able

to describe general quadratic nonlinear optical interactions and can be solved with modest

computational efforts. We compared theoretical results with experiment on simultaneous

second and third harmonic generation performed in periodically poled lithium tantalate

crystals.
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